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Abstract

Helicity asymmetries in double-charged-pion photoproduction from
unpolarized hydrogen with circularly polarized photons have been studied
for the first time in the resonance region. The data were taken as part of
the CLAS g1c run group with incident photons in the energy range be-
tween 0.5 GeV and 2.3 GeV. Owing to the large angular acceptance of the
CLAS detector, complete angular distributions of the helicity asymmetries
were measured. The large cross-section asymmetries exhibit strong sensi-
tivity to the kinematics of the reaction and provide valuable information
on the reaction dynamics. This document summarizes the analysis of the
data.
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1 Introduction

Many nucleon resonances in the mass region above 1.6 GeV decay predominantly
through ∆π or Nρ intermediate states into Nππ final states (see the Particle-
Data-Group review, [1]). This makes electromagnetic exclusive double-pion
production an important tool in the investigation of N ∗ structure and reaction
dynamics, as well as in the search for “missing” baryon states. Unpolarized
cross-section measurements of double-pion electroproduction have recently been
reported in [2]. Further constraints are to be found in polarization observables.

Here, we discuss the analysis of a measurement of the γp→ pπ+π−reaction,
where the photon beam is circularly polarized (with helicity λγ = ±1) and no
nuclear polarizations (target or recoil) are specified. The general form of the
cross section can then be written as

σ± = Σ± Pγ∆ , (1)

where Σ and ∆ are the unpolarized and polarized cross sections. The degree of
circular polarization is Pγ . The cross-section asymmetry, obtained by flipping
the beam polarization, is given by:

A =
1

Pγ
· σ

+ − σ−
σ+ + σ−

=
∆

Σ
. (2)

For this kind of study, a three-body final state is required, since reactions
with only two-body final states are always coplanar and have identical cross
sections for unpolarized or circularly polarized photons [3], so that ∆ = 0. The
asymmetry A vanishes in full coplanar kinematics.

2 Reaction

The γp → pπ+π−reaction with its three-body final state is described by a
five-fold-differential cross section. Figure 1 illustrates the kinematics of the
reaction, where ~k and ~p are the center-of-mass photon and target momenta,
and ~a, ~b1, and ~b2 are the momenta of the final-state particles in their three
different configurations: a[b1, b2] = p[π+, π−], π+[π−, p], or π−[p, π+]. Following
the convention of Schilling, Seyboth, and Wolf [4], the normal vector ~y to the

production plane is given by ŷ = k̂ × q̂ where q̂ points into the direction of
~b1 +~b2. The polar angle of q̂ is given by

cos θcm = k̂ · q̂ . (3)

The polar and azimuthal angles of b1 (decay angles) are given in the rest
frame of the b1b2 system. The commonly used helicity, Gottfried-Jackson, or
Adair coordinate systems differ by the choice of the z axis; see Table 1.

cos θ = b̂1 · ẑ , cosφ =
ŷ · (ẑ × b̂1)

|ẑ × b̂1|
, and sinφ = − x̂ · (ẑ × b̂1)

|ẑ × b̂1|
. (4)
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Figure 1: Definitions of variables for the γp → ab1b2 reaction in the helicity
system. Indicated are the four-momentum vectors of the participating particles.
θcm is defined in the center-of-mass frame of the γp system, and θ is defined in
the rest frame of the b1b2 system.

Table 1: Coordinate systems

System z axis

Helicity Direction of ~b1 +~b2 in the overall c.m. system

Gottfried-Jackson Direction of flight of the incoming photon
in the b1b2 rest frame

Adair Direction of flight of the incoming photon
in the c.m. system

The quasi-two-particle mechanisms involving the production and subsequent
decay of ∆ and ρ resonances in the intermediate state (∆++π−, ∆0π+, and pρ)
make the main contributions to the γp→ pπ+π−reaction. Thews [5] has studied
decay angular distributions for the general case of a two-body inelastic reaction
γ +N → V +N∗, where the photon is linearly or circularly polarized, the nu-
cleon is unpolarized and V and N∗ are mesons and baryons with arbitrary spins.
K. Schilling, P. Seyboth, and G. Wolf discussed the more specific case of pho-
toproduction of vector mesons by polarized photons on an unpolarized nucleon
and their subsequent decay distribution [4]. The decay angular distributions are
functions of the density matrix elements ρij and are given by

W±(cos θ, φ) = W 0(cos θ, φ) ± PγW 3(cos θ, φ) (5)
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with

W 0(cos θ, φ) =
3

4π

(
1

2
(1− ρ0

00) +
1

2
(3ρ0

00 − 1) cos2 θ

−
√

2<ρ0
10 sin 2θ cosφ− ρ0

1−1 sin2 θ cos 2φ
)
, (6)

W 3(cos θ, φ) =
3

4π

(
+
√

2=ρ3
10 sin 2θ sinφ+ =ρ3

1−1 sin2 θ sin 2φ
)
. (7)

Since ρ3 is made of imaginary parts of products of helicity amplitudes, a nonzero
value forW 3 implies interference terms between amplitudes with different phases.
A detailed study of the decay angular distribution of the ∆++, ∆0, or ρ can
only be performed after isolating these channels. This is not the scope of the
first stage of this analysis.

3 Experiment

The γp→ pπ+π−data were obtained with the CEBAF-Large-Acceptance Spec-
trometer (CLAS) [6] at Jefferson Lab. Longitudinally polarized electrons with
an energy of 2.445 GeV were incident on the thin radiator of the Hall-B Pho-
ton Tagger [7] and produced circularly polarized tagged photons in the energy
range between 0.5 GeV and 2.3 GeV. The collimated photon beam irradiated a
liquid-hydrogen target. The degree of circular polarization of the photon beam
can be determined from the electron-beam polarization and the ratio of photon
and incident electron energy; see Sec. 4.2.1. Characteristics of the experiment
are summarized in Table 2. More information can be found in [8] and on the
g1c data set, calibration, and cooking WEB page [9].

To identify the reaction channel, the missing-mass technique was used, re-
quiring the detection of at least two out of three charged final-state particles (p,
π+, and π−) in CLAS, see Sec. 4.1.4.
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Table 2: Experimental parameters and running conditions.

Run g1c

Running period November 11–20, 1999

Electron-beam energy 2.445 GeV

Electron-beam polarization (average) 0.656

Tagged-photon-beam-energy range (0.5 – 2.3) GeV

Target liquid hydrogen (unpolarized)

Target length 178.5(5) mm

Target diameter 40 mm

Target density 0.0711(1) g cm−3

CLAS Torus magnetic field 1920 A

Event trigger Level 1, with coincidence be-
tween hits in the tagger, start
counter, and time-of-flight pad-
dles

Range of run numbers 21763 – 21983

Runs used in the analysis 137
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4 Data analysis

4.1 Particle and channel identification

4.1.1 Reaction vertex

The reconstructed event vertex is stored in the MVRT bank. Panels (a) to (c)
of Fig. 2 show the vertex-x, -y, and -z distributions for a subset of the g1c
data for which all the particle and channel identification cuts for the γp →
pπ+π−reaction have been applied except for the reaction vertex. Information
about the interaction vertex can help to reduce background to the γp→ pπ+π−

reaction. Panel (d) shows an example of a vertex-z distribution for background
events in the production data at low-photon-energies (Eγ < 0.9 GeV) for which
a proton and a π− has been detected in CLAS, but where the missing mass
squared of these particles is negative. The plot indicates that these background
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Figure 2: Vertex distributions for a subset of the γp → pπ+π−g1c data; (a),
(b), and (c) for vertex-x, y, and z, respectively; (d) Vertex-z distribution for a
subset of low-photon-energy background events from production data, see text.

events originate mostly from the target-entrance and -exit windows, possibly
also from the target walls. To remove events from the target windows, other
target structure material, or generally mistracked events, cuts on the vertex

7



coordinates were applied as follows:

−7.5 cm < zMVRT < 7.5 cm, (8)

x2
MVRT + y2

MVRT < 4 cm2. (9)

Also events without proper vertex reconstruction (zMVRT ≡ 0) have been ex-
cluded. For possible helicity-dependent photon-beam positions see Sec. 4.4.

4.1.2 Tagger and coincidence time

The coincidence time between the Tagger and CLAS is given by the event-
start-time difference at the interaction point between the Tagger and the Start
Counter, ∆tTGPB. Figure 3 shows on a logarithmic scale the distribution of
tagged photons as a function of the coincidence time ∆tTGPB, with a central
peak including the true tagger-CLAS coincidences, and accidental coincidences
in a series of other peaks associated with different beam buckets and separated
by 2 ns each. The raw distribution is plotted as dotted histogram. Only coin-
cident events with one and only one tagged photon within

|∆tTGPB| < 1 ns (10)

were chosen in the subsequent analysis. The tagged energy of that photon was
taken as the photon energy for the event.

The coincidence-time distribution after applying all the γp→ pπ+π−selection
cuts is shown in Fig. 3 as solid histogram. The fraction of accidental coinci-
dences of at most 1.8% within |∆tTGPB| < 1 ns can be estimated from the
comparison in the yields between the central peak with neighboring beam buck-
ets. The one-photon requirement reduces this fraction of accidental coincidences
in the data sample strongly, since accidental events would remain only if the
“true” photon had been undetected.

4.1.3 Particle identification

The protons and pions were identified by their charge (from the curvature of the
particle track), momentum (from the drift chamber tracking information), and
velocity (from the time of flight and path length). The particle identification
of the EVNT bank was used to preselect proton, π+, and π− candidates. Valid
pointers to the DC, SC, and ST subsystems were additionally required for those
particles. Figure 4 shows the mass-square distributions, m2 = p2(β−2 − 1), for
those particles as dashed histograms after applying the vertex and coincidence-
time cuts. With the assumed mass m0 (here mπ± or mp) from that identi-
fication one gets the time difference between measured and expected times of
flight:

∆t =
l

c
·


 1

β
−
√
m2

0

p2
+ 1


 . (11)
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Figure 3: Coincidence-time distribution of tagged photons for the raw data
(dotted histogram) and after applying all γp → pπ+π−selection cuts (solid
histogram), including the ∆tTGPB cut, Eq. (10). The hatched events indicate
the final selection of coincidence events.

Figure 5 shows the ∆t distribution for π-mesons, (a) and (b), and for protons
(c). The hatched areas indicate a tight timing cut of |∆t| < δt, applied to
improve on the particle identification with δt = 1 ns for π-mesons and δt = 2 ns
for protons. For both particle types δt is about four times the σ width of the
central ∆t peak. The results are shown in Fig. 4 as solid histograms. About
5% to 7% of previously identified particles were cut out, including misidentified
particles at m2 ≈ 0. The timing cut may reject correctly identified particles,
but since the timing cut does not depend on the helicity of the electron beam,
this is not a concern for this analysis.

4.1.4 Reaction channel

The reaction channel of interest (γp → pπ+π−) was identified through the
missing-mass technique and the detection of none but all three particles in the
final state (event class 1), or the detection of none but two of the final-state
particles (event classes 2–4); see Table 3. The four-momentum of an identified
particle was determined from the measured three momentum and the known
particle mass. The three-momentum had been corrected for energy losses in the
cryogenic target material, target wall, carbon cylinder, and start counter [10].
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Figure 4: Particle mass squared for π+-mesons (a), π−-mesons (b), and pro-
tons (c) from EVNT particle identification before (dashed histogram), and after
applying an additional timing cut of |∆t| < δt (solid histogram); see Eq. (11).
Data are from file a00 of run 21982.
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Figure 5: Relative flight-time distributions for π+-mesons (a), π−-mesons (b),
and protons (c). The hatched regions indicate the selected events, |∆t| < δt;
see Eq. (11). Data are from file a00 of run 21982.
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The missing four-momentum is

xµ = kµ + P µ −
2,3∑

i=1

pµi (12)

where kµ and P µ are the photon and proton-target four-momenta, and pµi are
the four-momenta of the two or three detected particles. The missing mass mX

is given by
m2
X = xµxµ , (13)

and was used to identify γp → pπ+π−events according to the selection cuts of
Table 3. Figure 6 shows the m2

X distributions for all four event classes. The
four-momentum vector xµ from Eq. (12) was used after channel identification
to complete the set of four-momentum vectors for events of classes 2, 3, or 4.

Table 3: Identification of the γp → pπ+π−channel. The total number of ge-
ometrically reconstructed particles is given by the gpart entry of the HEVT
bank.

Class Reconstructed particles Missing mass m2
X cut

total p π+ π− mX (GeV2)

1 3 1 1 1 0 −0.003 . . . 0.001

2 2 0 1 1 mp 0.70 . . . 1.10

3 2 1 1 0 mπ− −0.04 . . . 0.07

4 2 1 0 1 mπ+ −0.04 . . . 0.07

There is no physical background from other reaction channels with missing
masses in the regions indicated in Table 3. As stated above, background from
accidental coincidences is expected to be very small (probably less than 1%).
The tight particle-identification cuts and the multi particle coincidence make
background contributions from misidentified particles extremely small. No hints
of background are seen in Fig. 6. Thus, events passing the selection cuts and
used in the analysis were assumed to be background free.

Figures 7 – 10 show examples of γp→ pπ+π−event distributions. The data
are from several g1c runs and are integrated over the full CLAS acceptance. The
contribution of the various event classes are indicated by the hatched regions.
Reconstructing an unidentified particle (event classes 2–4) greatly increases the
size of the available data set. It is clear from the plots that the acceptance of
CLAS has different effects on the distributions for the various event classes. In
total, however, full angular coverage is accessible, even, e.g., for cos(θcm), where
the forward and backward holes of CLAS are most prominent, as can be seen
in Fig. 9.

12



0

0.5

1

1.5

-0.003 -0.002 -0.001 0 0.001

p π+ π- XClass: 1

mX
2 (GeV2)

10
6  C

ou
nt

s 
/ C

ha
nn

el

0

0.4

0.8

0.7 0.8 0.9 1 1.1

π+ π- XClass: 2

mX
2 (GeV2)

10
6  C

ou
nt

s 
/ C

ha
nn

el

0

0.5

1

1.5

-0.04 0 0.04 0.08

p π+ XClass: 3

mX
2 (GeV2)

10
6  C

ou
nt

s 
/ C

ha
nn

el

0

0.2

0.4

0.6

-0.04 0 0.04 0.08

p π- XClass: 4

mX
2 (GeV2)

10
6  C

ou
nt

s 
/ C

ha
nn

el

Figure 6: Missing-mass-square distributions for the four different event classes.
The vertical dotted lines are at the nominal values of the mass square of the
missing particle X . Indicated are the detected particles.
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Figure 7: Summed event distribution from several runs as a function of cos(θ)
in the p[π+π−] configuration. Contributions of the four different event classes
are indicated as hatched regions along with the detected particles; from top to
bottom: pπ−, pπ+, π+π−, and pπ+π−.
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Figure 8: Same as Fig. 7 for the azimuthal angle φ in the p[π+π−] configuration.
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Figure 9: Same as Fig. 7 for cos(θcm) in the p[π+π−] configuration.
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Figure 10: Same as Fig. 7 for the π+π−-invariant mass.
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4.2 Photon-beam polarization

4.2.1 Circularly polarized bremsstrahlung

Circularly polarized photons are produced using a beam of longitudinally po-
larized electrons incident on the bremsstrahlung radiator. For the g1c running
period a gold foil with a thickness of 10−4 radiation length was most often used.
The degree of circular polarization of the photon beam is proportional to the
electron-beam polarization Pe. In particular, with x = Eγ/Ee, the degree of
circular polarization of bremsstrahlung from longitudinally polarized electrons
is given by [11]

Pγ = Pe ·
4x− x2

4− 4x+ 3x2
, (14)

when the final electron spin is not observed and when all final electron angles
are integrated out. Olsen and Maximon found that screening and Coulomb
corrections do not have any significant influence on the circular polarization,
and thus they are not included in Eq. (14).
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Figure 11: Circular polarization of the photon beam as a function of photon
energy.

Table 4 summarizes the Møller measurements of the electron-beam polar-
ization. In this analysis a mean value of 65.6% with an uncertainty of 1.5% is
used for the degree of the electron-beam polarization.

4.2.2 Electron-beam helicity

The longitudinal polarization of the electron beam was flipped pseudo-randomly
with 30 sequences of helicity (+,−) or (−,+) signals per second; see Fig. 14.
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Table 4: Møller measurements of the electron-beam polarization.

Date e-log entry Beam polarization Pe Run number

Nov. 13, 1999 6943 64.41% ± 0.46% 21787

Nov. 16, 1999 6964 67.34% ± 0.55% 21873

Nov. 22, 1999 7034 65.1% ± 1.5% 21976
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Figure 12: Møller measurements of the electron-beam polarization.

Occasionally a λ/2 plate is inserted in the circularly-polarized laser beam of
the electron gun to reverse helicities and provide for systematic checks. The
λ/2 plate position for the g1c run period has been recorded in the EPICS data
base. Over the entire period the λ/2 plate was out. Experimental asymmetries
in each run are experimental checks of the sign of the beam polarization over
time. Figure 13 shows

∑
h sin(φ)/

∑
sin2(φ) as a function of run number.1 The

stability of the setup and thus the correspondence between helicity bit 16 and
the electron-beam helicity, see Tab. 5, is confirmed by the constant asymmetry
value indicated by the dashed line.

The electron-beam helicity information is stored in the level1-trigger-latch
word (TGBI bank). Bit 15 contains the helicity clock. A high state of the
helicity-clock bit indicates the start of a new helicity-signal sequence. Bit 16
is the helicity-state bit. It indicates the sign of the electron-beam polarization
(for λ/2 plate in OUT position); see Table 5, and the CLAS analysis note [12].

1The sum was taken over events within 1.5 GeV < W < 1.9 GeV, and φ as the azimuthal
angle in p[π+, π−] configuration in the Adair system.
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Figure 13: Experimental asymmetry by run for all runs used in this analysis;
see text. The lower dashed line is a fit to the data, the upper dashed line
corresponds to a change in sign, which could occur from a change in the half-
wave-plate position. No sign change is observed during the experiment.

Table 5: Helicity signal from the TGBI-bank latch1 for the two half-wave-plate
positions.

TGBI latch1 Beam helicity

bit-16 λ/2 (OUT) λ/2 (IN)

1 + −
0 − +

4.2.3 Beam-charge asymmetry

Over time, the photon-beam flux for both helicity states should be identical on
average. Small beam-charge asymmetries of the electron beam, however, can
cause instrumental asymmetries in the observed γp→ pπ+π−asymmetries, and
need to be taken into account. This was done by considering the luminosities
for helicity-plus and -minus events:

L± = α±L , (15)

xp where L is the total luminosity, and the values for

α± =
1

2
(1± āc) (16)

18



Figure 14: TGBI bank information from latch1 and interrupt time of the
first 500 ms of the data from one particular g1c file.

depend on the mean value of the electron-beam-charge asymmetry āc.
The beam-charge asymmetry ac was experimentally derived from the sum

N±π of observed single-pion photoproduction events from both the γp → pπ0

and nπ+ reactions for the two helicity states:

ac =
N+
π −N−π

N+
π +N−π

. (17)

In these two-body–to–two-body reactions, and with the unpolarized proton tar-
get, there is no cross-section difference for the two helicity states. Any ob-
served asymmetry ac in the yield is thus instrumental. Figure 15 shows a his-
togram of ac for the g1c runs used in this analysis. The mean charge asymmetry
āc = −0.0043± 0.0001 follows from the sum of the events in all runs.

4.3 Cross-section asymmetry

The experimental value for the helicity-dependent cross-section asymmetry for
a specific phase-space volume ∆τ is given by

Aexp(∆τ) =
1

P̄γ
· Y

+ − Y −
Y + + Y −

. (18)
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Figure 15: Distribution of beam-charge asymmetries for the analyzed runs.

The variable τ represents collectively all the variables necessary to have a com-
plete description of the final state, e.g., photon-beam energy and particle mo-
menta. Here, Y ± = N±/α± are the total number of γp → pπ+π−events for
the two helicity states observed within ∆τ and corrected for the electron-beam-
charge asymmetry, and P̄γ is the mean value of the circular polarization; see
Eq. (14):

P̄γ =
1

N+ +N−
∑

i∈∆τ

Pγ(Eγ,i) . (19)

The phase-space volume can be, the full CLAS acceptance or any subset thereof
defined by kinematical constraints.

Equation (18) provides for the link between the measured count-rate asym-
metry and the physical helicity asymmetry A, given by Eq. (2). The total
numbers of observed counts are

N± =

∫

∆τ

ε(τ)L±σ(τ,±)dτ , (20)

where ε is the product of acceptance and detection efficiency, and the cross
section σ is given by Eq. (1). The argument τ is generic for all quantities which
may vary within the phase space volume ∆τ . For the normalized yields using
Eqs. (2) and (15), one obtains

Y ± =

∫

∆τ

ε(τ)LΣ(τ) [1± Pγ(τ)A(τ)] dτ , (21)
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and together with Eq. (18)

Aexp =
1

P̄γ

∫
∆τ

ε(τ)Σ(τ)Pγ (τ)A(τ)dτ∫
∆τ ε(τ)Σ(τ)dτ

(22)

≈
∑
i∈∆τ Pγ(τi)A(τi)∑

i∈∆τ Pγ(τi)
. (23)

Where the sum is running over all events i observed in the phase-space
volume ∆τ . Thus, Aexp is the event- and polarization-weighted mean value
of the helicity asymmetry averaged over the observed event sample within the
phase-space volume ∆τ . The degree of circular polarization Pγ(τi) changes
with photon-beam energy and is thus also dependent on the event kinematics
τi. Equation (23) provides a way to compare the experimental data with results
of model calculations, by performing the same averaging with the calculated
asymmetries.

The cross-section asymmetry is independent of the experimental luminosity
(photon flux, tagging efficiency, target density). Furthermore, since the product
of the CLAS acceptance and efficiency is independent of the photon-beam he-
licity, it too does not enter into the determination of Aexp. The value of Aexp is
exactly independent of ε if the phase-space volume is sufficiently small, so that ε
is constant over ∆τ . A varying ε affects the event topology and mean kinematics
and thus influences the event sample used to determine Aexp(∆τ). In that case,
the experimental event sample within ∆τ — not the actual value of ε — needs
to be taken into account when comparing Aexp with model calculations of the
asymmetry; see Eq. (23).

An example of an experimental cross-section asymmetry is shown in Fig. 16.
This is a typical example, except for the fact that particularly large asym-
metries have been observed in this phase-space volume. Panels (a) and (b)
show the φ angular distributions of the γp → pπ+π−helicity-plus and -minus
events, respectively. The phase-space volume for this event sample is defined
by the CLAS acceptance and W ∈ [1.68, 1.72] GeV, cos(θcm) ∈ [−1.0,−0.3],
cos(θ) ∈ [−0.50,−0.25]. The yield distributions obey approximately the sym-
metry relation

N+(φ) ≈ N−(−φ) . (24)

Panel (c) shows the resulting helicity asymmetry following Eq. (18). The asym-
metry is corrected for the beam-charge asymmetry and the photon polarization.
It is fitted with a series of sine and cosine functions,

Aexp(φ) =

n∑

k=1

ak sin(kφ) +

n∑

k=0

bk cos(kφ) , (25)

shown as solid curve in Fig. 16(c) for n = 3. All cosine-Fourier coefficients are
consistent with zero and the dashed curve fits the data equally well with only
sine terms up to the order of n = 2. The fit results are summarized in Table 6.
This indicates that A(φ) is an odd function. Additionally, the cross-section
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Figure 16: Example of φ angular distributions in the helicity frame of
helicity-plus events (a), and helicity-minus events (b), as well as the result-
ing cross-section asymmetry (c). The data were selected according to W ∈
[1.68, 1.72] GeV, cos(θcm) ∈ [−1,−0.3], cos(θ) ∈ [−0.50,−0.25], and otherwise
integrated over the CLAS acceptance. The azimuthal angle φ is given in the
p[π+, π−] configuration. The solid curve is a fit of Eq. (25) with n = 3 to the
data; the dashed curve is for n = 2 and bk = 0.

asymmetries vanish for φ = 0 and φ = 180◦ when all particles are coplanar.
Indeed, this is expected from parity conservation. A(φ) being an odd function
is equivalent to Eq. (24).

It is important to note that experimentally, even-function contributions may
enter into the angular distributions. For that to happen, three effects have to
coincide. Firstly, the considered phase-space volume has to be large enough to
allow for substantial changes of the CLAS acceptance (or detector efficiency)
within that phase-space volume. Secondly, these acceptance changes have to be
angular dependent, such that the mean kinematics of the data varies with φ.
Thirdly, the change in kinematics has to yield to a change in asymmetry. Indi-
cations for such an effect are not seen in the angular distribution of Fig. 16(c),
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Table 6: Fit results for the two different fits to the 21 data points of the angular
distribution of the helicity asymmetry in Fig. 16(c).

Parameters Fit-1 Fit-2

χ2 14.5 20.4

d.o.f 14 19

a1 −0.292± 0.012 −0.291± 0.012

a2 0.214± 0.012 0.215± 0.012

a3 0.011± 0.012 0

b0 −0.003± 0.009 0

b1 0.025± 0.012 0

b2 0.007± 0.012 0

b3 0.002± 0.012 0

nor in any other case shown below in this report. Furthermore, this effect is
not a concern for this analysis, since the interpretation of the data is done by
comparing it with a model, and in this comparison the actual kinematics of the
event sample is taken into account.

4.4 Systematic uncertainties

The beam helicity is flipped in the injector of the electron accelerator. If this
imposes any helicity dependence on the electron-beam orbit, one may speculate
that this is carried over through the mean photon-beam position and the re-
action vertex to the kinematical variables of the γp → pπ+π−reaction, finally
introducing instrumental asymmetries.

However, no such effects were observed. Figure 17 shows the helicity asym-
metries for the full γp→ pπ+π−data set as a function of the three vertex coordi-
nates as given by the MVRT bank. Shown are the raw count-rate asymmetries
(open circles). As expected, these asymmetries are low, and reflect mostly the
beam-charge asymmetry ac. After correcting for this effect the asymmetries are
close to zero (filled circles). They show no dependence on any of the reaction-
vertex coordinates, as shown by noting that the fit of a constant to the 48 data
points yields favorable values for χ2 per degree of freedom of 0.8, 1.3, and 0.8
for the x, y, and z distributions, respectively. Their constants are summarized
along with the beam-charge asymmetry in Table 7. Instrumental asymmetries
due to helicity-dependent beam positions are smaller than 0.1%.

The experimental systematic uncertainties are dominated by the knowledge
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Table 7: Mean helicity asymmetries for the full γp→ pπ+π−data set.

Beam-charge asymmetry āc −0.0043± 0.0001

Raw event asymmetry N+−N−
N++N− −0.0038± 0.0002

Event asymmetry corrected for ac
Y +−Y −
Y ++Y − 0.0005± 0.0002

of the beam polarization of the circularly polarized photon beam. Contributions
to the systematic uncertainties are summarized in Table 8.

Table 8: Systematic contributions to the uncertainties in Aexp. The values are
given as standard deviations, u.

Contribution u(Aexp) u(Aexp)/Aexp

Circular polarization of photon beam 1.5%

Electron beam-charge asymmetry < 0.1%

Photon beam position < 0.1%

5 Results

5.1 Examples of angular distributions

Figures 18, 19, and 20 show examples of φ angular distributions of the cross-
section asymmetry for twelve equal center-of-mass-energy bins from 1.35 GeV
to 2.30 GeV for the three configurations p[π+, π−], π−[p, π+], and π+[π−, p],
respectively. The data are integrated over the CLAS acceptance. They reveal
asymmetries with a strong energy dependence in amplitude as well as structure.
Fits of Eq. (25) to the data with n = 5 and bk = 0 are shown as solid curves.
Figures 21 to 24 show additional differential angular distributions, where the
center-of-mass energy has been kept fixed at W = (1.68 − 1.72) GeV and the
data have been binned in other kinematical variables, namely, cos(θcm), cos(θ),
and the invariant masses m(π+, π−) and m(p, π+).
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Figure 17: Helicity asymmetries of the γp → pπ+π−data set corrected for the
beam-charge asymmetry (filled circles), and raw, uncorrected count-rate asym-
metries (open circles) as a function of the MVRT vertex coordinates x (a), y
(b), and z (c).

25



Configuration: p(π+π-)
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Figure 18: Azimuthal angular distributions of the cross-section asymmetry for
twelve equal energy bins between W = 1.35 GeV and 2.30 GeV. The angle φ
is taken in the configuration p[π+π−]; data are integrated over the full CLAS
acceptance. The solid lines are fits of Eq. (25) to the data with n = 5 and
bk = 0.
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Configuration: π-(pπ+)
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Figure 19: Azimuthal angular distributions of the cross-section asymmetry for
twelve equal energy bins between W = 1.35 GeV and 2.30 GeV. The angle φ
is taken in the configuration π−[p, π+]; data are integrated over the full CLAS
acceptance. The solid lines are fits of Eq. (25) to the data with n = 5 and
bk = 0.
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Configuration: π+(π-p)
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Figure 20: Azimuthal angular distributions of the cross-section asymmetry for
twelve equal energy bins between W = 1.35 GeV and 2.30 GeV. The angle φ
is taken in the configuration π+[π−, p]; data are integrated over the full CLAS
acceptance. The solid lines are fits of Eq. (25) to the data with n = 5 and
bk = 0.
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Configuration: p(π+π-)
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Figure 21: CLAS-integrated azimuthal angular distributions of the cross-section
asymmetry for the energy bin W = (1.68−1.72) GeV for six equal angular bins
in cos(θcm), between −1 and +1, from (a) to (f). The solid lines are fits of
Eq. (25) to the data with n = 5 and bk = 0.

Configuration: p(π+π-)
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Figure 22: CLAS integrated azimuthal angular distribution of the cross-section
asymmetry for the energy bin W = (1.68−1.72) GeV for six equal angular bins
in cos(θ), between −1 and +1, from (a) to (f). The solid lines are fits of Eq. (25)
to the data with n = 5 and bk = 0.
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Configuration: p(π+π-)
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Figure 23: CLAS integrated azimuthal angular distribution of the cross-section
asymmetry for the energy bin W = (1.68− 1.72) GeV for six equal energy bins
in the π+π−-invariant mass between 0.25 GeV and 0.70 GeV, from (a) to (f).
The solid lines are fits of Eq. (25) to the data with n = 5 and bk = 0.

Configuration: p(π+π-)
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Figure 24: CLAS integrated azimuthal angular distribution of the cross-section
asymmetry for the energy bin W = (1.68− 1.72) GeV for six equal energy bins
in the pπ+-invariant mass between 1.05 GeV and 1.50 GeV, from (a) to (f). The
solid lines are fits of Eq. (25) to the data with n = 5 and bk = 0.
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5.2 Examples of Fourier distributions

A way to study the energy dependence of the cross-section asymmetries is to look
into the W dependence of the Fourier coefficients. Figures 25, 26, and 27 show
the energy dependence of the parameters a1 to a4 for the fully CLAS-integrated
data in the p[π+, π−] (filled circles), π−[p, π+] (open circles), and π+[π−, p]
(filled triangles) configurations. The figures are given for the various choices
of the z axis according to the helicity (Fig. 25), Gottfried-Jackson (Fig. 26),
and Adiar (Fig. 27) frames; see Table 1. Most striking is the good agreement
among the three different cases for the a1 term in the Adair system over the
entire covered W range. This can be understood from momentum conservation
which makes the sinφ values for all three different configurations have the same
sign (not value) in the Adair system. The a1 and a2 terms show in all cases
the strongest energy dependence. This is not surprising, given that the sinφ
and sin 2φ terms are govern the typical decay angular distribution W 3; Eq. (7).
Nonzero coefficients a3 and a4 can come trivially from the phi dependence of the
W 0, which is the denominator of the cross-section asymmetry, A = W 3/W 0.

Subsequent analyses will try to single out certain event samples to emphasize
specific reaction channels, when comparing the experimental asymmetries with
the data. As an example, Fig. 28 shows a scatter plot of the data as a function of
the pπ+ invariant mass (with a clustering of events close to the mass of the ∆++

at 1.23 GeV), and the π+π− invariant mass (with a clustering of events close to
the ρ mass at 0.77 GeV). The boxes select events with large contributions from
the ∆π and ρN channels, respectively; this is for reference only.

The energy dependence of the a1 and a2 Fourier coefficients of the observed
angular distributions for the p[π+, π−] configuration is shown in Fig. 29(a) for
the full data set (filled circles), for the ∆ events (open circles), and for the
ρ events (filled triangles), as denoted in Fig. 28. Figure 29(b) shows the ρ
events with additional angular cuts, namely, for data with cos(θcm) < −0.5
(filled circles), −0.1 < cos(θcm) < −0.1 (open circles), and cos(θcm) > 0.7 (filled
triangles), showing the large variation with θcm.
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Figure 25: Fourier components of the γp → pπ+π−cross-section asymmetry in
the helicity system as a function of the γp center-of-mass energy. The data for
the various configurations were integrated over the full CLAS acceptance. The
vertical lines indicate the masses of 3- and 4-star resonances [1].
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Gottfried-Jackson system
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Figure 26: Fourier components of the γp → pπ+π−cross-section asymmetry
in the Gottfried-Jackson system as a function of the γp center-of-mass energy.
The data for the various configurations were integrated over the full CLAS
acceptance. The vertical lines indicate the masses of 3- and 4-star resonances
[1].
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Adair system
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Figure 27: Fourier components of the γp → pπ+π−cross-section asymmetry in
the Adair system as a function of the γp center-of-mass energy. The data for
the various configurations were integrated over the full CLAS acceptance. The
vertical lines indicate the masses of 3- and 4-star resonances [1].
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Figure 28: Event distribution as a function of the π+π− and pπ+ invariant
masses. The solid regions select events which mostly went through the ∆++π−

channel, and the dashed region selects events dominated by the Nρ channel.
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Figure 29: Fourier components of the γp→ pπ+π−cross-section asymmetry as a
function of the γp center-of-mass energy. The data in the p[π+, π−] configuration
were integrated over the full CLAS acceptance constrained by the following cuts:
panel (a) all data (filled circles), ∆ events (open circles) and ρ events (filled
triangles) as denoted in Fig. 28; panel (b) ρ-event data with cos(θcm) < −0.5
(filled circles), −0.1 < cos(θcm) < 0.1 (open circles), and cos(θcm) > 0.7 (filled
triangles). The vertical lines indicate the masses of 3- and 4-star resonances [1].
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5.3 Comparison with calculations

Preliminary calculations for γp → pπ+π−cross-section asymmetries were done
by Oed and Roberts [13] using a phenomenological Lagrangian approach. The
formalism of the model is discussed in Ref. [14]. It is important to note that
the calculations performed to date have been integrated over 4π, whereas the
experimental data are integrated only over the CLAS acceptance. The results
of the calculations are shown in Fig. 30 as solid curves. Calculations including
the CLAS acceptance will be available soon. In general, a very good description
of the data has been achieved.

Calculations have also been performed by Mokeev [15] in a phenomenological
calculation using available information on N ∗ and ∆ states. Parameters of this
phenomenological code have been fitted to CLAS cross-section data for the real-
and virtual-photon double-charged-pion production. The results are shown in
Fig. 31; the model has not yet been adjusted to the polarization data and is
preliminary. Using Eq. (23), the CLAS acceptance was taken into account in this
calculation. There is clearly room for improvement in the model parameters.
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Figure 30: CLAS integrated azimuthal angular distribution of the cross-section
asymmetry for six 25-MeV wide energy bins at W = 1.40, 1.45, 1.50, 1.55, 1.60,
and 1.65 GeV for the configuration p[π+, π−]; panels (a) to (f). The solid curves
are 4π-integrated calculations by Roberts [13, 14] (not for the highest energy).
The dashed curves are fits of Eq. (25) up to order n = 5 to the data.

It is desirable to examine the sensitivity of the asymmetry to various theo-
retical model parameters. In fact, current studies have indicated a strong sen-
sitivity of the helicity asymmetries to relative contributions of various isobaric
channels and the interference among them. An example is shown in Fig. 32,
where the γp→ pπ+π−asymmetry data at W = 1.84 GeV for the configuration
π−[p, π+] are compared with various calculations by Mokeev [16]. These calcu-
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Figure 31: Same as Fig. 30, except for the solid curves which are calculations
by Mokeev [15]. These calculations are event-weighted, according to Eq. (23),
to account for the CLAS acceptance.

lations differ only in the amplitude and phase of the diffractive rho-production
term. The helicity asymmetry shows strong sensitivity to this model parameter,
whereas the differential cross section does not. This confirms the importance of
polarization observables for differentiating between model predictions.
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Figure 32: γp → pπ+π−angular distribution of the cross-section asymmetry
at W = 1.84 GeV for the π−[p, π+] configuration, along with the results of
calculations by Mokeev with various choices for the diffractive rho-production
amplitude [16].
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6 Summary

In summary, angular distributions of large helicity-dependent cross-section asym-
metries in the γp → pπ+π−reaction were observed for the first time, using the
CLAS detector system. The analysis has revealed the rich structure inherent in
these data. Preliminary comparisons with model calculations show that these
asymmetries are sensitive to details of the reaction dynamics. These data will
therefore prove to be an important tool in baryon spectroscopy.
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A Uncertainty of the beam-charge asymmetry

The experimental asymmetry for the full data set is given by Eq. (18) and can
be rewritten as

P̄γA
exp(∆τ) =

∑
i
N+
i

α+
i

−∑i
N−
i

α−
i∑

i
N+
i

α+
i

+
∑

i
N−
i

α−
i

, (26)

where the sums are running over all runs which belong to the full data set.
Eq. (26) can to a very good approximation written as

P̄γA
exp(∆τ) ≈

∑
iN

+
i −

∑
iN
−
i∑

iN
+
i +

∑
iN
−
i

−
∑

i ac,i(N
+
i +N−i )∑

i(N
+
i +N−i )︸ ︷︷ ︸
āc

, (27)

since the beam-charge asymmetry is much smaller than one, |ac| � 1 and thus
(α±)−1 ≈ 2(1∓ ac), and also ac(N

+ −N−) � (N+ + N−). The second term
in Eq. (27) is the event weighted mean value of the beam-charge asymmetries
of each run. This term is equivalent to the mean value of ac in Eq. (17) since
the number of single-pion events (N±π ) and the number of γp → pπ+π−events
(N±) are strictly proportional to each other for each run.

The distribution of ac,i is shown in Fig. 15. The mean value and width of
the distribution are

āc = −0.0043, (28)

σ(ac) = 0.0026 . (29)

It follows from Eq. (27) that a contribution to the uncertainty of the experi-
mental asymmtry is given by the standard deviation of the sample mean σ(āc),
and not by the standard deviation of the sample σ(ac). Both are related to each
other by the number of events in the sample, here the number of runs n = 135:

σ(āc) = σ(ac)/
√
n = 0.00022 (30)

A more complete error propagation taking into account the differrent weights
in the runs with different statistics gives the final results as quoted in section
4.2.3:

āc = −0.00429± 0.00013 . (31)
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