
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

MEASUREMENT OF THE POLARIZATION OBSERVABLES IS AND IC FOR

~γ p → p π+ π− USING THE CLAS SPECTROMETER

By

CHARLES HANRETTY

A Dissertation submitted to the
Department of Physics

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Physics

Degree Awarded:
Spring Semester, 2011



The members of the committee approve the dissertation of Charles Hanretty defended on

December 7th, 2010.

Dr. Volker Credé
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3.4 Pull distributions for the proton momentum for a γ p → p π+π− final state
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3.10 Photon energies taken from data (run #048544) produced with a coherent
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3.20 The normalized slope distributions for each final state topology. Each con-
fidence level distribution was fitted to a linear equation from [0.5,1] and the
normalized slope determined using Equation (3.8). The behavior of the dis-
tributions (centered around zero) indicated the flatness of the confidence level
histograms. Entries that stray away from zero can be attributed to kinematical
regions containing low statistics. . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.21 Pull distributions generated from a kinematic fit to a p π+π− final state for
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4.1 A diagram describing (one possible configuration of) the kinematics of ~γp→ p π+π−

reactions. The blue plane represents the center-of-mass (CM) production plane
while the gold plane represents the decay plane (where the two pions are pro-
duced back-to-back). Vector drawn with a solid line represent final state par-
ticles in the CM frame while the vectors drawn with a dashed line represent
the final state particles in the decay frame. The pion 4-vectors in the CM
frame (~π+

CM + ~π−CM ) are used to form the ~z ′-axis. The ~y ′-axis is formed
by determining the cross product of the target and recoil proton’s 4-vector
(~p × ~p ′). The ~x ′-axis is then determined by forming the cross product of
the ~y ′ and ~z ′ axes (~y ′ × ~z ′). The angle φ∗π+ is shown here and is the angle
between the (π+)′ (the 4-vector of π+ after a boost into the decay frame) and
the ~x ′-axis (which lies in the production plane). The angle θ∗π+ , also shown
here, is the angle between the (π+)′ and the ~z ′-axis. . . . . . . . . . . . . . . 71

4.2 A cartoon describing the two linear polarization settings of the photon. For the
PARA setting (a), the ~E field oscillates in a plane parallel to the floor (φ = 0)
of the experimental hall while for the PERP setting (b), the oscillation of the
~E field is perpendicular to the floor of the experimental hall. Not shown here
is the magnetic ( ~B) field which oscillates in the vertical plane in (a) and the
horizontal plane in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 φ-distributions for each polarization setting for a p π+π− final state using
data from the 1.3 GeV coherent edge setting. All three histograms belong to
the same bin combination (1.25 GeV < Eγ < 1.3 GeV, −1 < cosθ∗π+ < −0.9,
180◦ < φ∗π+ < 198◦). Acceptance effects (such as the support structures of
the Drift Chambers) can be seen in all figures and demonstrate the need for
a method which would remove these acceptance effects. Furthermore, as the
error bars for the measurements are an indication of available statistics, the
low-statistics problem for the AMO setting is clearly evident. This low amount
of statistics for the AMO setting leads to observable measurements which also
possess large error bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xv



4.4 φ-distributions generated by dividing the PARA and PERP φ-distributions
by the AMO φ-distribution (using the histograms seen in Figure 4.3). The
solid line on both (a) and (b) represents the fitting of the distributions with
Equation (4.5). Once this fit is performed, the observables Is and Ic can be
extracted. The large error bars and low number of data points seen in both
histograms demonstrate the limitation of extracting the polarization observ-
ables in this manner. This limitation arises from the low amount of statistics
contained in the amorphous (AMO) data. . . . . . . . . . . . . . . . . . . . . 74

4.5 Examples of φ-distributions generated using the asymmetry between PARA
and PERP which have been fitted with the final state equation (Equation (4.9)).
The distribution seen in (a) corresponds to 1.1 GeV < Eγ < 1.15 GeV,
−0.9 < cosθ∗π+ < −0.8, 108◦ < φ∗π+ < 126◦ and the distribution seen in (b)
corresponds to 1.25 GeV < Eγ < 1.3 GeV, −1 < cosθ∗π+ < −0.9, 180◦ <
φ∗π+ < 198◦). Both distributions were generated for a p π+π− final state. By
using the asymmetry between the PARA and the PERP settings to generate
the φ-distributions, the number of data points is greater and the error bars for
these points smaller leading to a much better fit. . . . . . . . . . . . . . . . . 76

4.6 A distribution of χ2 values reflecting the fit quality of the fits of the φ-
distributions for all events with a p π+(π−) final state. Each φ-distribution
has 30 total degrees of freedom involved in the fit. With three degrees of
freedom being reserved for fit parameters, the total degrees of freedom total
27. Therefore a χ2 distribution around 27 is an indication that the fits of the
φ-distributions are of good quality and trustworthy. . . . . . . . . . . . . . . 77

4.7 Histograms containing the offsets for each final state topology for all bin com-
binations. A fit of these histograms to a Gaussian from [−0.1,0.1] show the
distributions as being centered around zero. These fit results indicate that
the fits of the φ-distributions (and the φ-distributions themselves) have the
appropriate vertical offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 The top plot of this figure shows the collimated photon energy spectra com-
pared with the result from the ANB calculation for the 1.3 GeV coherent edge.
The bottom plot here shows the degree of photon polarization versus photon
energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Measurement of the polarization observable Is for a p π+π− final state for
1.50 < Eγ < 1.55 GeV. The observable measurements (blue points), being
quite continuous across bins, are broken up by the effects of the topology-
dependent acceptance. The averaging of the observable measurement across
all topologies is represented by the red points. This averaging is conducted
per final state topology per kinematic bin combination. . . . . . . . . . . . . 83
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5.2 Measurement of the polarization observable Ic for 1.20 < Eγ < 1.25 GeV.
The red points seen in the figure represent the average value of the observable
across all final topologies for the shown kinematic bin combination. The errors
bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size
representing the measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Measurement of the polarization observable Ic for 1.40 < Eγ < 1.45 GeV.
The red points seen in the figure represent the average value of the observable
across all final topologies for the shown kinematic bin combination. The errors
bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size
representing the measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Measurement of the polarization observable Ic for 1.60 < Eγ < 1.65 GeV.
The red points seen in the figure represent the average value of the observable
across all final topologies for the shown kinematic bin combination. The errors
bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size
representing the measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Measurement of the polarization observable Ic for 2.00 < Eγ < 2.05 GeV.
The red points seen in the figure represent the average value of the observable
across all final topologies for the shown kinematic bin combination. The errors
bars for each data point represent the statistical error for the measurement.
The error bars here are more noticeable due the lower amount of statistics for
the 2.1 GeV coherent edge (when compared to the other coherent edge settings). 87

5.6 Measurement of the polarization observable Ic for a p π+(π−) final state for
1.20 < Eγ < 1.25 GeV. The observable measurements for the p π+(π−) final
state are represented by the blue points while the red points represent the av-
erage value of the observable across all final topologies for the shown kinematic
bin combination. The errors bars for each data point represent the statistical
error for the measurement. For almost all of the data points, this error is
smaller than the symbol size representing the measurement. . . . . . . . . . . 88

5.7 Measurement of the polarization observable Is for 1.20 < Eγ < 1.25 GeV.
The red points seen in the figure represent the average value of the observable
across all final topologies for the shown kinematic bin combination. The errors
bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size
representing the measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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5.8 Measurement of the polarization observable Is for 1.40 < Eγ < 1.45 GeV.
The red points seen in the figure represent the average value of the observable
across all final topologies for the shown kinematic bin combination. The errors
bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size
representing the measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9 Measurement of the polarization observable Is for 1.60 < Eγ < 1.65 GeV.
The red points seen in the figure represent the average value of the observable
across all final topologies for the shown kinematic bin combination. The errors
bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size
representing the measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.10 Measurement of the polarization observable Is for 2.00 < Eγ < 2.05 GeV.
The red points seen in the figure represent the average value of the observable
across all final topologies for the shown kinematic bin combination. The errors
bars for each data point represent the statistical error for the measurement.
The error bars here are more noticeable due the lower amount of statistics for
the 2.1 GeV coherent edge (when compared to the other coherent edge settings). 92

5.11 Measurement of the polarization observable Is for a p π+(π−) final state for
1.40 < Eγ < 1.45 GeV. The observable measurements for the p π+(π−) final
state are represented by the blue points while the red points represent the av-
erage value of the observable across all final topologies for the shown kinematic
bin combination. The errors bars for each data point represent the statistical
error for the measurement. A comparison between the blue and the red points
here demonstrates the high level of agreement between the topology-dependent
observable extraction and the averaged value of the polarization observable. . 93

5.12 Three diagrams showing the parity transformation leading to even and odd
polarization observable for a 3-body final state. In (a), a choice of axes is
shown for spin orientations (top) and momentum (bottom). The image seen
in (b) shows the same system after a parity transformation (xi→−xi). Finally,
(c) shows the rotation of axes by the angle π around the y-axis. This rotation
in φ∗ results in the momenta of the final state particles being what they were
before parity transformation. Image source: [59]. . . . . . . . . . . . . . . . . 95

5.13 The results of the fitting of the averaged observable measurements with equa-
tion (5.3) showing the contributions of the different terms to the fit as a func-
tion of cos(θ∗π+). The contribution from the A0 term is shown as the black
squares, the A1sin(φ∗) contribution is shown by the red stars, the A2sin(2φ∗)
contribution is shown by the blue +’s, the contributions from the A3sin(3φ∗)
through A7sin(7φ∗) terms are shown by the triangles. Lastly, the A8cos(φ∗)
contribution is shown by the black ◦’s. . . . . . . . . . . . . . . . . . . . . . . 96
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5.14 The results of the fitting of the averaged observable measurements with equa-
tion (5.4) showing the contributions of the different terms to the fit as a func-
tion of cos(θ∗π+). The contribution from the A0 term is shown as the black
squares, the A1cos(φ∗) contribution is shown by the red stars, the A2cos(2φ∗)
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through A7sin(7φ∗) terms are shown by the triangles. Lastly, the A8cos(φ∗)
contribution is shown by the black ◦’s. . . . . . . . . . . . . . . . . . . . . . . 97

5.15 Model calculations provided by Winston Roberts [4, 60] which show the pre-
dicted values of the polarization observables Is (a) and Ic (b) for γp→ p π+π−

reactions as a function of mpπ+ . These predictions are shown for various values
of φ∗ with the inclusion or exclusion of certain resonances. The black curve
represents φ∗ ≈ 0, red represents φ∗ ≈ π

6 , green represents φ∗ ≈ 2π
3 , and blue

represents φ∗ ≈ π. For each color, the solid line represents a full model calcu-
lation including all resonances (the baryons considered here have a spin of 3/2
or less), the dashed lines represent model calculations with the omission of the
S31(1900) ∆∗ resonance and the dot-dashed lines represent the omission of the
P31(1910) ∆∗ resonance. Here, the angle φ∗ (for a p π+π− final state) is de-
fined as the angle between the plane formed by the two pions and the reaction
plane (measured with respect to one of the final state pions) (see Fig. 4.1). . 98

5.16 Measurement of the polarization observable Is averaged across all final state
topologies for 1.60 < Eγ < 1.65 GeV. The errors bars for each data point
represent the statistical error for the measurement. For almost all of the data
points, this error is smaller than the symbol size representing the measurement.100

5.17 Measurement of the polarization observable Ic averaged across all final state
topologies for 1.60 < Eγ < 1.65 GeV. The errors bars for each data point
represent the statistical error for the measurement. For almost all of the data
points, this error is smaller than the symbol size representing the measurement.101

5.18 Model calculations provided by Winston Roberts [4, 60] which show the pre-
dicted values of the polarization observable Ic for γp → p π+π− reactions as a
function of mpπ+ . On the mass axis, at the mass of the ∆++(1232), a feature
is observed in the predicted value of Ic for all fixed values of φ∗ (represented by
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to the square of the ∆++ mass, a feature is seen in the observable measurement.
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5.20 Model calculations provided by Winston Roberts [4, 60] which show the pre-
dicted values of the polarization observable Ic for γp → p π+π− reactions as a
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5.21 Measurements of Ic produced using a binning in Eγ), φ∗π+ and m2
π+π− . Here
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π+π− and the y-axis represents the extracted
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ABSTRACT

Predictions regarding the excited baryon spectrum provided by symmetric quark models
called Constituent Quark Models (CQMs) show good agreement with experimental measure-
ments in the low-energy region (less than ≈ 1.8 GeV). The mass region above ≈ 1.8 GeV,
however, contains many resonances which are predicted to exist by these models but have
not been experimentally verified [1, 2]. This describes a well known problem in Baryon
Spectroscopy, the issue of missing resonances. These resonances are considered missing as
the mass measurements made regarding these resonances are either absent or fairly large
in their uncertainties [1]. This discrepancy between the theoretical predictions and the ex-
perimental measurements can be attributed to several sources. Firstly, the majority of the
data regarding the excited baryon spectrum originates from pion-nucleon or kaon-nucleon
scattering (which the missing resonances may only weakly couple to). Therefore, as sug-
gested by recent quark model calculations, a study of reactions involving photoproduction
(γp) may present a better opportunity for the production of these missing resonances [3].
In addition, previous analyses involved unpolarized data. This absence of polarization leads
to ambiguous analysis results, therefore a constraint such as the polarization of the photons
can be used in order to further constrain the kinematics of the reaction(s). The anal-
ysis of polarized photoproduction data (~γp or ~γ~p) in the low-energy region (< 1.8 GeV)
presents the opportunity to further study previously observed resonances, possibly resolving
currently unanswered questions about their properties. An analysis of polarized photopro-
duction data in the high-mass region (> 1.8 GeV) allows for a study of the resonances
contributions, providing insight into the issue of the missing resonances.

The study of a photoproduced 3-body final state (such as ~γp → p π+π−) has been
indicated as a promising method for detecting the effects of the missing resonances as this
final state topology accounts for most of the cross section above ≈ 1 GeV. A study of double-
meson final states very well may fill the holes in the experimental data as the majority of
analyses regarding this issue have come from the analysis of quasi 2-body final states (such
as Nπ, Nη, Nω, KΛ, and KΣ). It is also likely that these missing resonances decay to
high mass intermediate states instead of directly into a meson and a ground state nucleon.
Therefore the decay of these resonances is more of a chain (resulting in a two-meson-one-
ground-state-nucleon state) than a direct decay.

The presence (or absence) of these missing resonances can be determined through quan-
tities sensitive to resonance contributions called polarization observables. A study of a
pseudoscalar single-meson final state produced via polarized photoproduction gives access
to 7 of these polarization observables. The analysis of a double-meson final state however,
allows access to a total of 15 polarization observables. These additional 8 polarization ob-
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servables (which are unique to a double-meson final state) arise from the more complicated
kinematics needed to describe the reaction. For example, the introduction of a second me-
son leads gives rise to a second frame in which the two meson are produced back-to-back as
well as two additional angles describing the orientation of this plane. By measuring these
sensitive quantities, a determination of what resonances contribute, or do not contribute,
to the excited baryon spectrum can be determined.

Presented in this work are the first ever measurements of the polarization observable
Is for a final state with two pions and the first ever measurements of Ic for a final state
containing charged pions (let alone the first measurements of both observables for the spe-
cialized case of ~γp → p π+π− reactions). The presented measurements were made using
the high-statistics data available in the CLAS g8b data set. This data were taken at the
Thomas Jefferson National Accelerator Facility (JLab) from July 20th to September 1st of
2005 using linearly polarized photons, an unpolarized liquid hydrogen (LH2 target), and
the CEBAF Large Acceptance Spectrometer (CLAS). The highly-polarized photons were
produced via bremsstrahlung using an unpolarized electron beam provided by the Continu-
ous Electron Beam Accelerator Facility (CEBAF) accelerator and a well-oriented diamond
radiator. These polarized photons were produced at five different coherent edge energies:
1.3 GeV, 1.5 GeV, 1.7 GeV, 1.9 GeV, and 2.1 GeV. Considering the 200 MeV-wide window
of highly polarized photons whose upper limit is the coherent edge energy, and the five
different coherent edge energies used, highly polarized photons were produced covering an
total energy range of 1 GeV. These data along with the utilized analysis tools have lead to
clean, continuous, low-error measurements of Is and Ic which will aide the hadronic physics
community in its search for the complete description of one of the most fundamental systems
in nature, the baryon.

xxv



CHAPTER 1

INTRODUCTION AND THEORY

Currently one of the areas of curiosity in hadronic physics is the excited baryon spectrum
and the resonances contained within. Historically it has been shown that a way to study the
underlying physics of composite systems (such as their internal components and structure
as well as how its components interact) is to study the excited states of such a system. An
example of such a method and its possible results can be seen in the field of Atomic Spec-
troscopy which has lead to many great and important leaps in physics, namely Quantum
Mechanics, the concept of spin (Pauli exclusion principle), and Quantum Electrodynamics
(QED). Baryons, particles comprised of more fundamental particles called quarks and glu-
ons, are examples of such composite systems found in nature and therefore can be excited
into unstable higher-energy states. This collection of excited states is called the spectrum
of the baryon. By analyzing this spectrum and its decay products, we as humans can learn
more about these sub-atomic particles found in all of nature: how the baryon is formed
and behaves when excited, how the quarks and gluons interact and how these interactions
affect the system. This learning also aids in the development of theories which can and will
extrapolate our present knowledge to the experimental limits and beyond.

1.1 General Motivation

Studying the excited baryon spectrum is not a task easily accomplished. The current
theory used to describe the behavior and physics of strong interactions is Quantum Chro-
modynamics (QCD). However, this advanced theory cannot presently provide a complete
description of the interactions involved in the “low energy” regime and in the “high energy”
regime presently offer only approximations. In the absence of a fundamental theory derived
from first principles, there are phenomenological models which can be used to predict the
behavior of these multi-quark particles in the low energy region and thusly their excited
spectrum. Such models that treat the baryons as particles composed of three constituent
quarks are called Constituent Quark Models (CQMs). Using these models, theorists can
predict the spectrum of excited baryons along with the quantum characteristics of the con-
tained resonance states. These models however predict many more states than have been
seen experimentally. The states predicted by the CQMs but presently lacking experimental
verification are termed missing resonances. The pressing issue of missing resonances is not
a new source of curiosity and is and has been the focus of many modern day experimental
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queries, efforts, and analyses. Measurable quantities called polarization observables, which
appear when the kinematics of the reaction are constrained via polarization, are highly
sensitive to resonance contributions [4]. Through the analysis of the asymmetries seen in
polarized photoproduction data for the reaction ~γp → p π+π−, these polarization observ-
ables can be extracted, giving insight into the excited baryon spectrum and are sensitive
enough to reveal properties (masses and mass-widths) of the resonances themselves.

1.2 From Rutherford to Gell-Mann

The year 1911 marked the emergence of the Rutherford model of the atom into main-
stream physics [5]. Although it was already postulated that the atom was comprised of
smaller, more fundamental particles (such as the structure proposed by J.J. Thomson’s
“plum pudding” model), the Rutherford model presented the planetary-like, orderly view
of the atom. In 1913, this atomic model was then improved upon by Niels Bohr through
the inclusion of Quantum Mechanical principles to make the Rutherford-Bohr model [6].
According to the Rutherford-Bohr model, the system of the atom was described as an elec-
tron cloud surrounding a central, positively charged nucleus. Still, the question remained:
Was this positively charged nucleus a particle itself or is it also made of something more
fundamental? In 1919, this was answered through the discovery of the proton in one of
Rutherford’s scattering experiments [7] and again by the discovery of the neutron by Chad-
wick in 1932. The discovery of these two particles (the two nucleons) answered the question
regarding whether or not the nucleus was made of more fundamental particles but also
brought to light an additional question: If the positively charged proton and electrically
neutral neutron are bound together, then what binds them? The Japanese theorist Hideki
Yukawa came forth with an answer to this question in 1935. He called this binding force
between nucleons the strong force and described the interaction between the two nucleons
as being the exchange of a particle called a meson (later identified to be a pion, which can
be seen in Fig. 1.1).

These initial developments towards the discovery and understanding of subatomic par-
ticles, specifically nuclear structure, energized the physics community. Many physicists,
spurred on by the idea that there is a slew of particles yet to be seen, soon sought out to
discover new sub-atomic particles. Early discoveries of these particles (pions, kaons, and
muons) utilized cosmic rays as the source and bubble and streamer chambers as the de-
tector. As technologies developed, tools useful to experimental physicists to both produce
and detect new, more short-lived particles emerged in the form of particle accelerators and
detector systems. This period (starting in the 1930’s) marked an explosion in the number
of new particle states detected. Newly seen particles were classified by their quantum num-
bers with a new quantum number, strangeness (S) being introduced to explain the long,
“strange” lifetimes of some newly seen particles. This strangeness was later attributed to
the presence of the strange quark upon its discovery in deep inelastic scattering experiments
at the Stanford Linear Accelerator Center. In order to give this ever-growing group of new
particles a name, Lev B. Okun introduced the term hadron at the 1962 International Confer-
ence on High-Energy Physics. This term has become part of the lexicon of particle physics
(including its own field) and refers to all particles which are held together and interact via
the strong force.
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Figure 1.1: A photograph showing the creation and decay of a pion in a streamer chamber. Here, pions
originate in a collision in the streamer chamber. One of the pions makes the looping track toward the bottom
before it decays into a muon which then curls counterclockwise four times and eventually changes into an
electron which moves off towards the lower right [8].

This explosion in the number of new particles seen prompted the theorist Murray Gell-
Mann to begin classifying these newly seen particles in terms of their quantum numbers.
He began by separating the known particles by baryon number (B) into two groups: B=0
(representing mesons) and B=1 (representing baryons). He then further classified the par-
ticles in terms of their total angular momentum (J). The particles contained in these four
groups were then arranged on axes corresponding to charge (Q), a quantum number related
to the strong force called Isospin (Isospin projection Iz), and strangeness (S). The result of
this organization of the known hadrons can be seen in Fig 1.2 for baryons (a three-quark
state) and Fig 1.3 for mesons (a quark-antiquark state).

(a) JP = 1
2

+
Octet (b) JP = 3

2

+
Decuplet

Figure 1.2: The two light baryon (B=1) multiplets. The JP = 1
2

+
Octet (named as such as it contains

eight particles) to which the nucleon belongs can be seen in (a). The JP = 3
2

+
Decuplet (named as such as

it contains ten particles) where particles such as the ∆++ and Ω− reside is shown in (b). The Greek letters
here indicate the name of the hadron.
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(a) JP = 0− Nonet (b) JP = 1− Nonet

Figure 1.3: The two light meson (B=0) nonets (named as such as they contain nine particles). The JP =
0− Nonet to which the pion belongs is shown in (a) while the JP = 1− Nonet is shown in (b). The Greek
letters here indicate the name of the hadron.

In making these arrangements of the lightest known hadrons, Gell-Mann was building
upon the idea that there exist a symmetry between these particles. His early JP = 3

2

+

Decuplet did not contain the Ω− baryon (as it had not been discovered yet) yet he predicted
that there should be a particle at the apex with certain quantum properties. The discovery
of the Ω− in 1964 verified Gell-Mann’s predictions regarding its quantum properties and
solidified Gell-Mann’s scheme.

1.3 The Quark Model

The apparent SU(3) symmetry hinted at by these arrangements of the light hadrons had
an interesting implication in the eyes of Gell-Mann and George Zweig. They proposed that
this symmetry indicated that the hadron was a bound state of more fundamental particles
called quarks, a term he derived from Book 2, Episode 4 of James Joyce’s Finnegans Wake
(Zweig preferred the term aces but the term quark stuck and was eventually adopted by
the physics community). These quarks, they proposed, came in three different types or
flavors: up (u), down (d), and strange (s). Their emerging model, which later became
known as the Quark Model, stated that baryons were particles comprised of three quarks
(qqq) and mesons were comprised of a quark-antiquark pair (qq̄) (Fig. 1.4) with the quantum
properties (such as the quantum numbers) of the baryons and mesons being determined by
their quark composition. In addition to the three (baryons) or two (mesons) quarks present
in the hadron, there exist many “off-shell” quark-antiquark pairs. These quark-antiquark
pairs exist only briefly and do not contribute to the quantum properties of the hadron and
form the “sea of quarks” (these quarks are also known as sea quarks). The two (in the case
of a meson) or three (in the case of a baryon) quarks of the hadron which do contribute
the hadron’s quantum properties are termed valence quarks. It is these quarks that are
considered when classifying (and for the most part, modeling) baryons and mesons. The
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Quark Model stated that the quark flavors possessed quantum numbers of fractional electric
charge of +2/3 (for the u quark) or −1/3 (for the d and s quarks), a spin of 1/2 (quarks
are fermions), a baryon number of 1/3, and a quantum number called strangeness (with
the strange quark having a strangeness of −1). The arrangement of these three quark (and
antiquark) flavors along the same axes of charge, strangeness, and isospin can be seen in
Fig. 1.5.

(a) Baryon (b) Meson

Figure 1.4: Diagrams of the quark structure of a baryon (a) and a meson (b).

Figure 1.5: Arrangement of the light quarks according to the Quark Model along axes corresponding to
the quantum numbers of charge (Q) and strangeness (S) and the unlabeled axis of Isospin (which goes from
−1/2 to +1/2 from left to right in units of 1/2).

Since the birth of the Quark Model, three additional flavors of quarks have been added
to the model and verified via high-energy experiments indicating an SU(6) symmetry. These
quarks differ greatly from the three original flavors in their mass and are thusly termed the
heavy quarks (with the u, d, and s quarks making up the group of light quarks). The charm
quark (c) was found in the discovery of the J/ψ (a cc̄ state) in 1974 [9, 10], the bottom
quark (b) with the discovery of the Υ (a bb̄ state) in 1977 [11], and the top quark (t) via
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its decay in 1995 [12].

The discovery of the ∆++, ∆−, and Ω− puzzled physicists as they were bound states
of three identical quarks. If these three quarks possess the same quantum numbers, then
this would be a direct violation of the Pauli Exclusion Principle. This prompted Oscar
W. Greenberg to propose, in 1964, that the quarks carry one additional quantum number
later known as color charge (having the values of red, blue, green, anti-red, anti-blue, and
anti-green). He postulated that since color charge cannot be observed experimentally, any
particle that exists in nature (and therefore can be detected) must exist as a color singlet, or
color neutral state. For example, for a baryon this would mean a combination of red, blue
and green and for a meson, a combination of color and anti-color. This quantum property is
one that has become accepted by the hadronic physics community, experimentally verified
[13] and forms the cornerstone on which Quantum Chromodynamics is founded.

1.4 Taxonomy of the Baryon Spectrum

The naming of the known baryon resonances follows a specific convention. This con-
vention is X(m)L2I2J where X denotes the type of baryon, m the invariant mass of the
resonance (in units of MeV/c2), L is the relative angular momentum between the π (or K)
and the nucleon which gave rise to the resonance, I is the isospin of the particle, and J the
total angular momentum. Baryons are divided into groups which gives hints to its quark
composition as well as isospin. The X denotes these types of baryons. Baryons made of
only u and d quarks and having an isospin of 1/2 are termed N and those with isospin
3/2 are called ∆’s. Replacing one of the u or d quarks with an s quark (S = −1) changes
this naming to Λ if it has isospin 0 and Σ if it has isospin 1. Replacing two of the u or
d quarks with strange quarks makes the baryon a Ξ resonance with isospin 1/2 (S = −2)
while replacing all quarks with an s quark (S = −3) means the resonance is an Ω. The
historical reason for specifying the relative angular momentum of the production particles
comes from the fact that the majority of the baryon resonances were discovered using πN
or KN scattering. This notation told not only the properties of the baryon resonance but
also how it was produced.

1.5 Quantum Chromodynamics (QCD)

It became apparent that a theory was needed to describe this blossoming field of physics.
But where and how should this theory start? As defined by our current understanding of
physics, there exists in nature four fundamental forces. These forces are: the electromagnetic
force, gravity, the weak nuclear force, and the strong nuclear force. The theory of Quantum
Chromodynamics (QCD) describes one of these forces, the strong force, and how it governs
the interactions of quarks and gluons. Quarks and gluons are two of the most fundamental
particles known to modern physics. All hadrons, defined as particles that are held together
by and interact via the strong force, are bound states of quarks with baryons being comprised
of three quarks and mesons being comprised of a quark-antiquark pair. These quarks occur
in nature in six different flavors: up, down, charm, strange, top, and bottom and six
different color charges: red, green, blue, anti-red, anti-blue, and anti-green. It is from
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this introduction of color charges that QCD derives its name. In this theory, each quark
(regardless of flavor) and gluon carries this color charge and all hadrons that can exist in
nature must be a color singlet, or color-neutral, state. Each flavor of quark in QCD has its
own anti-particle. A particle’s anti-particle possess the same mass but opposite quantum
numbers. The properties of the six known flavors of quarks are shown in Table 1.1.

Table 1.1: Table of known quarks and their properties.

Name Symbol Mass I3 J B Q C S T B′

Up u 1.5 - 4 MeV/c2 +1/2 1/2 +1/3 +2/3 0 0 0 0

Down d 4 - 8 MeV/c2 −1/2 1/2 +1/3 −1/3 0 0 0 0

Strange s 80 - 130 MeV/c2 0 1/2 +1/3 −1/3 0 −1 0 0

Charm c 1.15 - 1.35 GeV/c2 0 1/2 +1/3 +2/3 +1 0 0 0

Top t 174.3 ± 5.1 GeV/c2 0 1/2 +1/3 +2/3 0 0 +1 0

Bottom b 4.1 - 4.4 GeV/c2 0 1/2 +1/3 −1/3 0 0 0 −1
I3 = Isospin projection; J = total angular momentum; B = baryon number; Q = electric charge; C =

charm; S = strangeness; T = topness; B′ = bottomness

In Quantum Electrodynamics (QED), the force carrier and information carrier between
particles is the photon, an electrically neutral, massless vector boson. In Quantum Chro-
modynamics (which deals with hadrons which are bound together by a “glue” known as
gluons), the gluons serve as the mediators between quarks and possess a color charge of
their own. This means that these mediating particles, within their respective theories, con-
tribute very differently to interactions. The electrical neutrality of the photon means that
in QED, the photon serves to only mediate interactions and does not participate in them.
In contrast, the gluons in QCD (being able to carry both a color and anti-color charge) do
not just serve as mediators but also participate in strong interactions. This added source of
interaction is one of the reasons for the high level of difficulty that comes with developing,
analyzing, and studying QCD.

A well known observation of strong interactions is quark confinement. This observation
indicates that the attractive force between two quarks does not decrease as the distance
between the quarks increases, rather it increases (Fig. 1.6). The consequence of such an
observation is that quarks can never exist alone (i.e. it is impossible for there to ever be
a free quark) and are therefore bound into hadrons such as baryons and mesons. If one
were to pull two quarks apart, the attractive potential between them would increase to the
point where there is enough energy to create another pair of quarks and one would now
have two quark pairs. This also implies that a measurement of the quark’s mass has to be
done indirectly as it can never exist by itself and is always part of a system.
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Figure 1.6: The attractive potential between two quarks as a function of the distance between. This
ever-increasing potential leads the the property of QCD called quark confinement.

Due to the gluons’ possession of a color charge, interactions that occur between quarks
and gluons can come from a quark emitting (or absorbing) a gluon, a gluon emitting (or
absorbing) a gluon, and the direct interaction between two gluons. The last two possibilities
(the indirect and direct interactions between gluons) lead QCD down a path that makes it
non-linear and difficult to solve analytically. As a result, approaches/theories have to be
developed to provide testable approximations for the interactions explained by this theory.
One of these approaches, perturbation theory, involves taking the theory to the high-energy
limit. As the energy of the system increases (large momentum transfer), the effect of the
strong interaction decreases. This phenomenon results from the QCD coupling constant
αs, which describes the strength of these strong interactions, decreasing as the exchange
momentum/energy of the system increases (Figure 1.7). This behavior, termed asymptotic
freedom (a well-known and important property of QCD), occurs when the exchange mo-
mentum is large which greatly simplifies the mathematics of the gauge theory and allows
for perturbative calculations, the realm of perturbative QCD (pQCD). In this scenario,
the quarks contained in the hadron are treated as essentially free-moving, non-interacting
quarks. It is then that the well-established procedures of QED for describing photon and
electron interactions can be applied to the quarks and gluons. In the lower-energy regime
(“medium” energy) the coupling constant, αs, approaches a value of one. This complicates
the theory as it makes it such that the coupling constant cannot be expanded in terms
of αs and QCD becomes non-perturbative. This area, where the theory of QCD cannot
presently provide solutions, is the energy regime where the quarks and gluons combine to
form hadrons making it a highly important region to study. Thus the strength of the strong
coupling constant, αs, and its effects on the QCD calculations provides for a division the
theory into two main areas which attempt to describe the same system (the hadron).
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Figure 1.7: The strength of the QCD coupling constant as a function of the exchanged gluon momentum,
Q [14].

Attempts to provide theoretical solutions to non-perturbative QCD have mainly been
unsuccessful. However, there is one very promising and well-established method called
Lattice QCD that has been developed to provide solutions to non-perturbative QCD. This
method uses a grid of space-time points to simplify the integral calculations needed for
predictions to come out of the theory (QCD). This method has shown some promise. Recent
calculations from Lattice QCD in the non-perturbative region of QCD have resulted in the
prediction of the masses of the two lowest state octet and decuplet baryons [15]. The main
limitation encountered by Lattice QCD comes in the form of the hardware used to carry
out the calculations. Extracting testable predictions from the theory requires large amounts
of computational power with this requirement greatly increasing when considering light
quarks. There have been recent efforts to construct supercomputers at labs such as CERN,
JLab, Fermilab, and Brookhaven National Lab for the purpose of carrying out Lattice
QCD calculations [17]. Predictions from Lattice QCD have improved over the years with
this trend expected to continue as computational technology improves. While this method,
and lesser known ones, show much promise for providing approximations and access to areas
of the theory previously off limits, the theory in its present form is still a long way from
complete. The theory of QCD, the methods for providing analytical solutions to QCD (such
as Lattice QCD) as well as the technology to complete and test them continue to evolve.
As they do, physics gets closer to predicting and fully describing hadronic interactions,
excitations and the excited baryon spectrum.
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1.6 Spectroscopy

Spectroscopy is the use of light, sound, or particle emission to gain information about
the properties of the matter under investigation. This technique has been utilized to gain
knowledge regarding the nature of matter in several scientific disciplines. A good example of
this is the field of Atomic Spectroscopy. To gain a deeper understanding of the atom and its
structure, atoms were excited via absorption of a photon and then allowed to relax (emission
of a photon) and return to their original ground state. When these atoms relaxed, it was
seen that they emitted photons at different wavelengths, i.e. the spectrum of that atom.
It was seen that this spectrum, instead of exhibiting a continuous distribution, contained
discrete lines (Figure 1.8). Already in existence were theories that attempted to explain
the structure of an atom (the cubic model, the plum-pudding model, the Saturnian model,
and the Rutherford model) yet these theories did not mesh with the experimental evidence.
Using the observed spectra to build upon the Rutherford model, Niels Bohr proposed the
Bohr Model in 1913. This model described the atom as having a central nucleus surrounded
by orbiting electrons which occupy a discrete set of distances corresponding to a discrete set
(or quanta) of energies. This explained the discrete set of lines seen in the excited spectra of
atoms and aided considerably in the development of the theory of Quantum Mechanics. The
study of the spectra seen in Atomic Spectroscopy also led to the development of Wolfgang
Pauli’s Pauli Exclusion Principle which led to the discovery of a property of all fermions, an
internal angular momentum termed spin. The discovery of such a property was also crucial
in the development of Quantum Electrodynamics, for which spin plays a major role.

Figure 1.8: The excited spectrum of Hydrogen which exhibits a discrete set of lines as opposed to a
continuous distribution.

1.7 Baryon Spectroscopy

The study of the atomic spectra (Atomic Spectroscopy) led to a deeper understanding of
the properties and behavior of atoms and atomic processes. Presently, a looming question
in Nuclear Physics is in regards to the structure and behavior of the nucleons which make
up the nucleus of atoms. These nucleons (protons and neutrons) are baryons which are
particles made of three (constituent) quarks. Since these baryons are made of smaller,
more fundamental particles, they can be excited not unlike the atom (although the process
needed to excite them requires much more energy). In Baryon Spectroscopy however, the
decay product is not only a photon but an array of products such as photons, π’s, ω’s, η’s,
etc. As there are an array of particles that may be emitted in the de-excitation of a baryon,
complicated and highly-developed arrays of particle detectors must be employed in the most

10



Figure 1.9: A cartoon demonstrating the lineshape of the baryon resonances and how they can interfere
with each other.

basic of cases. This is in contrast to the basic techniques for detecting the photons from a
de-excited atom used in Atomic Spectroscopy (such as diffraction grating). Still, the basic
techniques developed for studying and probing the atom are applicable to the younger field
of Baryon Spectroscopy.

In spite of the fact that many principles used in Baryon Spectroscopy are borrowed from
Atomic Spectroscopy, resolving the excited baryon spectrum is a much more difficult task.
When studying the atomic spectra, the spectral lines are narrow and separate enough for
the different spectra to be readily seen. This is a result of their relatively long lifetimes (τ).
According to Werner Heisenberg’s uncertainty principle:

∆E∆t ≈ h̄. (1.1)

Therefore as the lifetime of an excited state increases, the energy width of the state
decreases. This can be seen in the excited spectra of atoms as while the visible bands
are narrow, they are not infinitely narrow and do have noticeable widths. This width, or
natural linewidth is inversely proportional to the lifetime of the excited state. The lifetimes
of excited baryon are much shorter than that of excited atoms (≈ 10−23 s). A result of
this short lifetime is a broad width in the mass (or energy) measurement of that (unstable)
excited baryon state (also known as a resonance) resembling a Breit-Wigner distribution
having a width of at least ≈ 100 MeV. This also implies that the individual resonances
contained in the excited baryon spectrum, must be not only broad but overlapping (Fig. 1.9).
The broad and overlapping characteristics of these states make the determination of which
resonances are contained in the excited baryon spectrum a very difficult task: gone are the
days when one could look for peaks on an energy scale.

1.8 Modeling the Excited Baryon Spectrum

1.8.1 Constituent Quark Models

In the absence of a fully developed approach which is applicable to the non-perturbative
region of QCD, phenomenological models using the confining potential of QCD are used
to describe and predict the excited baryon spectrum, namely Constituent Quark Models
(CQMs). The modeling of the hadron in this manner began in the 1960’s with the baryon
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being treated as an object with two independent oscillators, ρ (which links quark #1 and
quark #2) and λ (which links the center-of-mass between quark #1 and quark #2 to quark
#3) (Fig 1.10). When the behavior of the excited baryon is modeled, both of these oscilla-
tors are allowed to become excited and predictions of higher-energy states extracted. As the
model evolved, so did its predictions and explanations. For example, in a paper published
in 1975, de Rujula, Georgi, and Glashow recalculated the baryon spectrum according to
their new model using a one-gluon-exchange (OGE) mediating the interaction between con-
stituent quarks (the DGG model) and were able to extract new mass relations and explain
the ∆-N mass splitting [21]. As the CQM Hamiltonian was refined, the model calculations
and predictions of the masses of the the low-lying light hadrons more closely resembled that
which was seen in experiment. In addition to this however, these new calculations predicted
many more baryon resonances than have been observed experimentally. This issue is that
which has been termed the missing resonance problem.

Figure 1.10: A picture of the baryon using the ρ and λ oscillators.

Constituent Quark Models and their predictions are used in the study of the physics
that occur in the low/medium-energy regime of QCD where asymptotic freedom does not
exist. In this region, the sea quarks and virtual gluons contained in the baryon play an
unignorable role and must be accounted for (Figure 1.11). It is known that the baryon
is comprised of three quarks called the valence quarks from which it derives its quantum
numbers. These valence quarks, when possessing only their bare masses, are called current
quarks. Therefore to account for this sea of quarks and gluons, the current quarks are
then “dressed” with the masses/energies of the sea quarks and virtual gluons, making them
constituent quarks. This is the reason why the constituent quark masses are higher than the
masses/energies of the bare quarks (the bare masses of the valence quarks only account for
≈ 1% of the hadron’s total mass). By dressing the three current quarks in such a manner,
the baryon can be treated as though it is comprised of just three quarks while not negating
the effects and presence of the sea particles. While Constituent Quark Models treat the
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baryon as a particle comprised of three constituent quarks (thus possessing three degrees of
freedom), there are variations in the approaches used for different models. This variation
is a result of how the models treat the short-range interactions between the three quarks
within the hadron. Three prominent examples of how this short-range interaction is treated
involve one-gluon exchange [2], Goldstone boson exchange [22], or instanton exchange [1].
An example of a CQM developed by U. Loring using instantons as the mediator for the
short-range interactions can be seen in Figure 1.12 [1].

Figure 1.11: A diagram of the three-quark structure of the proton along with the presence of sea quarks
and gluons. It is the mass of these sea quarks and gluons with which the current quarks are dressed, becoming
constituent quarks.

1.8.2 Missing Resonance Problem

A well-known and long-standing issue in hadronic physics is the issue of missing reso-
nances with much effort invested both from the theoretical and experimental communities.
While CQMs treat the short-range interactions between quarks differently when producing
their respective predicted spectras, they all share this issue due to their use of a confining
potential. Constituent Quark Models have fairly accurately predicted the baryon resonances
in the low-energy region (less than ≈ 1.8 GeV). Two good examples of this are the S11(1650)
and the P13(1720) (Figure 1.12). However, as one moves to higher masses (> 1.8 GeV) in
these models, there are many more states predicted to exist than have been experimentally
verified. These states that have been predicted to exist by the models yet lack experimental
evidence make up the collection of missing resonances. Some reasons why these states have
not been seen experimentally lie in both the theoretical and experimental realms.
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Figure 1.12: A Constituent Quark Model (CQM) developed at Bonn for the N* spectrum using instanton
exchange for short-range interactions [1]. The blue lines here represent the resonances predicted to exist
by Constituent Quark Model calculations while the blocks represent experimental (mass) measurements
(with the height of the block corresponding to the uncertainty in the mass measurement). Many of the
predicted resonances have no corresponding experimental measurement, especially in the high-mass region
(>1.8 GeV). These resonances form the set of missing resonances. The ground state nucleon can be seen as
the lowest lying state in the P11 column and the first radial excitation of the nucleon, the Roper resonance
as the state in the P11 column with a mass of 1440 MeV. The number of *’s indicates the ranking of the
state set by the PDG [23]. A 4-star state is well-established, a 3-star state has good evidence supporting its
existence, 2-star states have some evidence, and a 1-star state has poor/little evidence.

Possible Theoretical Reason: Diquark Structure. As previously stated, the cur-
rent quark models used to predict the excited baryon spectrum treat the baryons as particles
comprised of three constituent quarks. This approach gives the baryon three quark degrees
of freedom. This concept however could be flawed, requiring a modification of the models
on a fundamental level. A possibility pertaining to the structure of the baryon is that there
is not a three-quark structure but a quark-diquark structure. A diagram of the structure of
the baryon using each of these two approaches can be seen in Figure 1.13. The hypothesis is
that two of the three quarks inside the baryon have colors and spins that are antisymmetric
and therefore are attracted to each other and form a bound state thereby “freezing” the ρ
oscillator, only allowing excitations of the λ oscillator (Fig. 1.10) [24]. This quark-diquark
structure approach simplifies the model calculations from dealing with the excited states
of a three-body system to dealing with the excited states of a two-body system. Treating
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it in such a fashion decreases the number of degrees of freedom and simplifies many other
theoretical calculations and behaviors that must be accounted for (such as spin-orbit mass
splitting between baryons) [25]. This quark-diquark structure also means that the excited
baryon spectrum can be treated in a manner not unlike the excited meson spectrum. Cal-
culations of the excited baryon spectrum using this approach result in a lower density of
baryon states and remove many of the missing resonances from the spectrum. While this
concept has not proven to be reality just yet or widely used, there is a possibility that this
quark-diquark structure exists and, if it does, would account for the large number of missing
resonances.

Figure 1.13: A diagram of the internal structure of the baryon using two approaches. The upper-left image
demonstrates the internal structure of the baryon as described by using three constituent quarks (three-quark
structure). The lower-right image demonstrates the internal structure of the baryon as described by using a
quark-diquark structure.

Experimental Reasons. For decades now, almost from the beginning of the theory,
experimentalists have performed experiments to study the excited baryon spectrum. While
some of the resonances predicted by Constituent Quark Models have been seen experimen-
tally (mass measurements of these resonances are fairly large in their uncertainties), many
more of the predicted resonances have still not been seen (Fig 1.12). There exists a few
reasons that possibly explain why these missing resonances are still missing in spite of all
the efforts to see them [26]. The majority of the data collected (as well as subsequent anal-
yses) regarding baryons overall and specifically, the missing resonance problem, involved
pion or kaon production on the nucleon. As suggested by recent quark model calculations,
πN scattering may not have led to a discovery of these resonance states as these states may
couple strongly to photoproduction (γp) reactions [3]. Therefore the analysis of data from
photoproduction experiments may be a better way to reveal these missing resonances.

With the above being said, there have been a collection of experiments and analyses
that have utilized photoproduction on the nucleon with the ultimate goal of measuring the
baryon spectrum and the resonances contained within (this is also the central motivation
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behind the construction of the CLAS detector). So why is this issue still not resolved? The
majority of the world photoproduction data involves energies that are fairly low (below
≈ 1.8 GeV). As seen in Figure 1.12, the majority of the missing resonances lie in the
region above ≈ 1.8 GeV. The analysis of data involving these higher energies would reveal
more of the baryon spectrum and hopefully, the existence or nonexistence of these missing
resonances. Many of these analyses have also involved a channel with one final state meson,
a quasi 2-body final state (such as K+Λ0, K+Σ0, Nπ, Nη) [27, 28, 29]. It has recently been
indicated, however, that looking at a 3-body final states has great potential for revealing
the high-mass missing resonances as they account for most of the cross section above ≈
1 GeV (Fig. 1.14). These missing resonances are also predicted to decay into particles
with high masses (excited intermediate states) rather than a final state characterized by a
meson and a ground-state nucleon. Therefore the missing resonances may exist as part of a
decay chain as an intermediate state leading to a final state with two mesons (for example:
γp → N∗ → ∆++π− → p π+π−). The theoretical widths of these missing states have also
been calculated to be at least 150 MeV. Calculations of the decays of these resonances into
two-particle channels (like Nπ) result in very narrow particle widths. This indicates that
the majority of the decays involve more than just a two-body final state.

Figure 1.14: A collection of various cross sections for γp reactions. The final state π+π− clearly dominates
the total cross section (black line) starting around Eγ ≈ 1 GeV.
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1.9 Polarization Observables

Typically one can extract hints (although not trivial as this type of analysis is very
difficult) regarding the presence (or absence) of resonance states from an examination of the
cross section for a final state. As previously pointed out, the cross section for a γp→ p π+π−

reaction dominates the collection of cross sections for γp reactions, as is seen in Figure 1.14.
The cross section for a p π+π− final state is clearly dominant at photons energies (Eγ)
greater than ≈ 1 GeV. The shape of the p π+π− cross section also demonstrates a difficulty
that exists regarding the determination of the resonances contained within. The observed
cross section is fairly flat, devoid of obvious structures (peaks) that would indicate the
presence of resonance states. The lack of structure is an additional indication of the extent
of the overlap of the resonances and rules out “peak hunting” to find resonance states.
Therefore another method must be employed in order to unveil what is contained in this
cross section.

Measurable quantities called polarization observables possess a high degree of sensitiv-
ity to the presence (or absence) of baryon resonances especially in the higher mass region
(above ≈ 1.8 GeV) where these resonances are most entangled [4]. This makes polarization
observables excellent probes for investigating hadronic processes, namely the investigation
of the resonances contained (or not contained) in the excited baryon spectrum. It has been
established that these resonances are both broad and overlapping and require that they be
disentangled through some type of measurement. A measurement of the polarization ob-
servables can help to do just this. Model-dependent theoretical values of these polarization
observables can be extracted from model calculations and compared to the experimentally
measured values. Resonance contributions can then be explored by omitting or including
them in model calculations. Figures 1.15 and 1.16 shows such a prediction for several po-
larization observables, their dependence on the inclusion or exclusion of certain resonances
(namely the P31(1910) and S31(1900)), and the sensitivity of the observables to particular
kinematic variables.

When analyzing a final state containing pseudoscalar one meson and one ground state
nucleon, one has access to 7 polarization observables:

dσ

dΩ
= (

dσ

dΩ
)0 { 1− δl Σ cos(2φ)

+ Λx ( − δl H sin(2φ) + δ� F ) (1.2)

− Λy ( −T + δl P cos(2φ) )

− Λz ( − δl G sin(2φ) + δ� E )}.

where dσ
dΩ is the differential cross section. The variables δl and δ� are the degree of po-

larization of the photon beam, be it linearly or circularly, respectively. The degree and
direction of target polarization is represented by Λx, Λy, Λz; Λx and Λy for transverse po-
larization and Λz for longitudinal polarization. The quantities Σ, H, F, T, P, G, E are the
polarization observables obtainable from the analysis of a single-meson final state.
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Figure 1.15: Model calculations by W. Roberts [30, 31] showing predicted values of the polarization
observables P�x and P�y (two of the polarization observables which exist for a two meson final state for a
circularly polarized beam incident on a transversely polarized target) as a function of invariant mass. The
top row shows the observable P�x (left) and P�y versus mπ+π− . The bottom row shows predictions for the
observable P�y versus mpπ+ (left) and mpπ− (right). The solid line represents a model calculation containing
all resonances (the baryons considered here have a spin of 3/2 or less), the dashed curve represents a model
calculation with the S31(1900) omitted and the dot-dash represents a model calculation with the P31(1910)
resonance omitted. The black curve represents φ∗ ≈ 0, red represents φ∗ ≈ π

6
, green represents φ∗ ≈ 2π

3
,

and blue represents φ∗ ≈ π. Although these two observables are not measured in this work, the sensitivity
of polarization observables is apparent.Here, the angle φ∗ (for a p π+π− final state) is defined as the angle
between the decay plane (in which the two pions occur back-to-back) and the reaction plane and is measured
with respect to one of the final state pions (see Fig. 1.17).
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(a) Ic v. mpπ− (b) Is v. mpπ+

(c) Is v. mπ+π−

Figure 1.16: Model calculations provided by Winston Roberts [30, 60] which show the predicted values
of the polarization observables Ic v. mpπ− (a), Is v. mpπ+ (b) and Is v. mπ+π− (c) for γp → p π+π−

reactions. These predictions are shown for various values of φ∗ with the inclusion or exclusion of certain
resonances. The black curve represents φ∗ ≈ 0, red represents φ∗ ≈ π

6
, green represents φ∗ ≈ 2π

3
, and blue

represents φ∗ ≈ π. For each color, the solid line represents a full model calculation including all resonances
(the baryons considered here have a spin of 3/2 or less), the dashed lines represent model calculations with
the omission of the S31(1900) ∆∗ resonance and the dot-dashed lines represent the omission of the P31(1910)
∆∗ resonance. Here, the angle φ∗ (for a p π+π− final state) is defined as the angle between the decay plane
(in which the two pions occur back-to-back) and the reaction plane and is measured with respect to one of
the final state pions (see Fig. 1.17).

When formulated for the analysis of a channel containing two final state mesons, this
final state equation picks up three additional terms. These additional terms arise from
the increased number of independent kinematic variables needed to properly describe the
kinematics of the reaction. These additional kinematic variables are needed not only to
describe the orientations of the increased number of particles but also the decay plane
which can be formed for every reaction in which the two final state pions occur back-to-
back. These additional kinematic variables describe the orientation of the decay frame with
respect to the production plane and are measured with respect to one final state pion. A
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diagram displaying the kinematics of the γp→ p π+π− reactions can be seen in Figure 1.17.
An in-depth discussion of these kinematics can be found in Chapter 4.

Figure 1.17: A diagram describing (one possible configuration of) the kinematics of ~γp→ p π+π− reactions.
The blue plane represents the center of mass (CM) production plane while the gold plane represents the
decay plane (where the two pions are produced back-to-back). The angle φ∗π+ is the angle between the (π+)′

(the 4-vector of π+ after a boost into the decay frame) and the ~x ′-axis (which lies in the production plane).

For the analysis of a single-meson final state one needs two independent kinematic
variables. An analysis of a double-meson final state however, needs five. The reaction rate
I for a γp → p π+π− reaction can be written as [4]:

I = I0 { ( 1 + ~Λi · ~P )

+ δ� ( I� + ~Λi · ~P� ) (1.3)

+ δl [ sin(2β) ( Is + ~Λi · ~Ps )

+ cos(2β) ( Ic + ~Λi · ~Pc ) ] }.

Here I0 is the unpolarized reaction rate. The quantity ~P is a polarization asymmetry
(or a measurable polarization observable) that arises from the polarization of the target
material with the degree and direction of target polarization being denoted by ~Λi (where i
denotes the three directions of polarization: x, y, z). The variables δl and δ� again represent
the degree of the polarization of the photon beam as well as the type of polarization. The
variables I�, Is, Ic are also polarization observables with Ic being equivalent to Σ in the
equation for a single-meson final state. The angle used in the arguments of the sine and
cosine terms, β, is a combination of the φlab angle and the φpolarization angle. This takes
into account the angle of polarization possessed by the incident photon. In other words:

β = φlab + φpolarization. (1.4)
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This two-meson final state equation (equation (1.3)) contains 15 polarization observ-
ables as opposed to the 7 seen in the single-meson final state equation (equation (1.2)).
This increase in the number of polarization observables means an analysis of a two-meson
final state provides inherently more access to the resonances contained in the excited baryon
spectrum. This increased access is a combination of the high sensitivity of the polarization
observables to resonance contributions/interference effects and the pure number of polar-
ization observables that are at hand and measurable.

In order to reduce equation (1.3) to a form from which we can extract values for par-
ticular polarization observables, the conditions under which the data were collected may
be applied to the final state equation. In the case of the run conditions under which the
analyzed data were taken, the beam of photons was polarized linearly and the target ma-
terial completely unpolarized. Inserting these run conditions into the two-meson final state
equation (1.3) kills all terms with ~Λi (target polarization) and the term with δ� (circular
polarization of the photon beam). Therefore equation (1.3) reduces to:

I = I0 { 1 + δl [ Is sin(2β) + Ic cos(2β) ] }. (1.5)

Here the number of observables present in equation (1.3) has been reduced from 15 to
two. We now have access to the polarization observables Is and Ic, making a measurement
of these observables possible. These measurements will serve to help shed light on the
baryon resonances that contribute to the p π+π− cross section in the energy range of this
analysis (Figure 1.18).

Figure 1.18: The cross section for the reaction γp → p π+π−. The photon energy range shown by the
green lines corresponds to the (photon) energy range of this analysis.

1.10 Resonances of interest in ~γp → p π+π−

The investigation of a double-pion final state in polarized photoproduction data taken
on the proton has been predicted to be a promising method for the discovery of high-mass,
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missing excited baryon states. Many of these missing states are predicted to decay back
down to their ground state through a process involving decays into intermediate states
with the emission of a meson. In fact, quark model predictions claim that there is a large
coupling of some of these excited states to ∆π and pρ [3]. The large branching fractions of
∆ → pπ (and therefore ∆π → p π+π−) as well as ρ → π+π− (and therefore pρ → p π+π−)
[23] make the analysis of a p π+π− final state a very viable way of detecting the existence of
the missing resonances. This detection of the resonances occurs indirectly as the measured
value of the polarization observables are dependent on which resonances were, or were not,
produced.

But how can it be known that an analysis looking for the effects of these missing res-
onances is valid? The decay into a p π+π− final state is not relegated to the high-mass,
missing states alone. Many known resonances possess a strong coupling to the p π+π− final
state and an investigation of these states can serve as a check of the analysis (a good exam-
ple of a known resonance being the P11(1440) Roper Resonance). In addition to this check,
unresolved questions and discrepancies regarding these established states can be further
investigated or investigated for the first time. A Partial Wave Analysis (PWA) using polar-
ization observable measurements can carry out these investigations into both the known and
poorly understood properties of the resonances contained in the excited baryon spectrum
as well as which resonances are produced.

1.10.1 P11(1440) Roper Resonance, D13(1520), and P33(1600)

The first radial excitation contained in the N* spectrum, the well-known P11(1440)
Roper Resonance, is considered a well established state (for instance it is given a 4-star
rating by the Particle Data Group). Quark model predictions regarding its mass how-
ever, show it having a higher mass than the first negative parity orbital excitation: the
S11(1535) (Fig. 1.12). This contradicts experimental measurements which show the mass
of the P11(1440) as being ≈ 100 MeV lower than the S11(1535). The answer to why this
is can be linked to how the Roper is treated in model calculations. In the majority of the
model calculations, the Roper is treated as a bound state with an indefinite lifespan. To
account for the discrepancy between model predictions and experimental findings, it has
been proposed that the Roper (instead of being a state originating from a direct interaction
between an incident pion and the nucleon) is actually a dynamically-generated resonance
[32] or perhaps a state with a strong gluonic component [33] (although recent analyses have
indicated that the hypothesis of the Roper having a strong gluonic component is incorrect
[34]). A further analysis of the measurements of the highly sensitive polarization observables
coming from polarized photoproduction data on the proton could serve to clear up some of
this controversy as well as reveal aspects regarding the structure of the Roper previously
unavailable.

In spite of being considered an established state, the actual contribution of the D13(1520)
(Fig. 1.12) to the total cross section for γp→ p π+π− is not a resolved issue. The main con-
tributor (resonance) to the cross section for this reaction varies depending on what models
are used. In the Valencia model, the decay of the D13(1520) into ∆π dominates the cross
section while the Laget model claims that the dominate contribution to the cross section
comes from the P11(1440) resonance decaying to a pσ final state. Although this issue has
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not been completely resolved, the likelihood of the Laget model being correct has been made
slim by recent analyses [35, 36]. Since both models lead to reasonable descriptions of the
cross section, a clear experimental determination of which model is correct is needed. Past
experimental investigations into this matter, however, have failed to reach a clear conclusion
as these efforts used unpolarized data. By utilizing the constraint provided by polarization
through the analysis of polarized photoproduction data and measuring polarization observ-
ables, the contribution of the P11(1440) Roper and the D13(1520) to the cross section for
γp → p π+π− can be better understood.

Being the first radial excitation in the ∆ spectrum (Fig 1.19), the P33(1600) resonance
is often referred to as the Roper of the ∆’s. Although analogous to the Roper resonance,
the P33(1600) differs in the amount and quality of evidence supporting its existence. The
Particle Data Group (PDG) [23] has assigned a 3-star classification to this state as opposed
to the Roper’s 4-star rating. Furthermore, the uncertainty of its mass measurement is much
larger than that of the P11(1440). The accruement of more data regarding the mass and
properties of the P33(1600) resonance would lead to a better understanding of this Roper
of the ∆’s.

Figure 1.19: A Constituent Quark Model (CQM) developed at Bonn for the ∆* spectrum using instanton
exchange for short-range interactions [1].

1.10.2 P13(1720)

The analysis of unpolarized data has revealed the contributions of the F15(1680), D13(1700),
D33(1700), and P13(1720) resonances to the total cross section. Specific aspects of their con-
tributions however, such as their isobar contributions, are still not understood (here, isobar

23



refers to particles belonging to the same isospin multiplet). For example, the properties
of the P13(1720), as reported by the CLAS Collaboration, differs from its properties listed
by the PDG [37]. Reports from the CLAS Collaboration show the P13(1720) to possess
an unusually large width. This large width may be a hint that there is not one but two
P13 resonance lying close together or a misunderstanding of the P13(1720) as quark models
predict only one P13 resonance below 1.9 GeV/c2 (Fig. 1.12). Through an analysis of polar-
ized data, specifically the measurement of polarization observables, these resonances, their
properties, and the issue regarding the P13(1720) resonance can be further investigated.

1.10.3 High-mass resonances

The high-mass region (> 1.8 GeV/c2) of the excited baryon spectrum predicted by
CQMs is the realm of the missing resonances. There are several (previously discussed)
possible reasons as to why these states have not been seen experimentally. The issue of
how the CQMs treat the quark-structure of the baryon (three quark degrees of freedom as
opposed to a quark-diquark structure) can be investigated by looking for effects (presence) of
the P11(2100), P13(1900), F15(2000), and F17(1990) N* resonances. These four resonances
represent part of the second orbital excitation (L=2) of the N* spectrum. More importantly,
these resonances form the first set of states that cannot be reproduced using a quark-
diquark interpretation of the baryon (where two quarks are frozen together in a ground
state diquark) as both oscillators must be excited to produce such resonances (see lower
right-hand diagram in Fig 1.13). Therefore if the structure of the baryon is not that of
a quark-diquark system then these resonances should not be observed. However, evidence
supporting the existence of the P13(1900) has recently been seen in CLAS data [38]. Should
the existence of the P13(1900) be verified, the quark-diquark hypothesis would find itself in
a quasi-mortally wounded state. Through the measurement of polarization observables, a
further investigation into the presence or absence of theses states will serve to further test
the quark-diquark hypothesis of the baryon.

In the high-mass region of the ∆* spectrum predicted by CQMs there lies a group of
three negative-parity resonances around 1.9 GeV/c2 which present a problem not unlike the
problem presented by the mass measurements of the P11(1440) Roper and the P33(1600) “∆
Roper”. These resonances, S31(1900), D33(1940), and D35(1930), are predicted by quark
model calculations to have much higher masses than have been experimentally observed.
Furthermore, data regarding these three states is rather sparse as the S31(1900) is a 2-star
state, the D33(1940) a 1-star state, and the D35(1930) a 3-star state (as assigned by the
PDG). Verifying the existence of these states as well as their previously measured properties
is important for refining quark model calculations.

Polarization observables, due to their high degree of sensitivity to resonance contri-
butions, are excellent tools for unambiguously determining what resonances do or do not
contribute to both the N* and ∆* spectrums. A further analysis of the measurements of
these quantities allows for a determination of the helicity ratios of the resonances and for
the measurement of properties such as masses and widths with a high degree of sensitivity.
This makes the measurement of polarization observables a powerful tool for studying the
excited spectrum of these fundamental particles.
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1.11 Previous Measurements of Polarization Observables

This quest to measure polarization observables with the goal of removing the veil from
the excited baryon spectrum is not a new one. In a 2005 paper, S. Strauch et al. [CLAS]
presented measurements for the polarization observable I� for ~γp→ p π+π− reactions using
polarized photoproduction data collected at CLAS [39]. In this work, he compared his
results to a variety of model predictions and demonstrated the sensitivity of the observables
to the presence of resonances. Through the comparison of his measurements with model
calculations, it was concluded that further refinement of these symmetric quark models is
needed in order to provide an adequate description of his presented measurements of I�.

In addition to the I� measurement at CLAS, the polarization observable Ic (Σ) has
been extracted in several analyses by the GRAAL collaboration. These measurements were
conducted for double-meson states involving photoproduction on the nucleon resulting in
a final state with two neutral pions (~γN → Nπ0π0) [40, 41]. The observable Is (along
with a measurement of Ic) has also been measured at CBELSA/TAPS for ~γp → pπ0η [42].
However, measurements of not only the polarization observable Ic but also Is for a double-
charged-meson final state, namely for ~γp → p π+π− reactions, is non-existent in the world
data set. Therefore this work presents the first measurement of such quantities, making it
difficult to determine the manner in which the measurements should be presented. Many
of the previous measurements of Ic (Σ) as well as Is have suffered from the limited amount
of statistics available in the data set under analysis. The available amount of statistics is
further reduced by the presence of the 5 independent kinematic variables needed to fully
describe the kinematics of the reaction(s). In most of the previous analyses, binning in
all five of the kinematic variables reduces the statistics of the φ-distributions to the point
where the fits of the φ-distributions cannot be used to make reliable measurements. There-
fore many analyses have utilized techniques to reduce the number of kinematic variables,
such as reducing a three-body final state to a two-body final state, or simply integrated
over them. This analysis, while encountering the same problem to a lesser degree (a reduc-
tion of statistics when binning in all kinematic variables), benefited from the high amount
of p π+π− events contained in the data set under analysis (g8b). The amount of p π+π−

events contained in the data allow for a high-statistics extraction of the polarization observ-
ables even when binning in all five kinematic variables (although in the presented results,
two kinematic variables are integrated over). However the combination of there being no
established precedent for presenting/displaying Is and Ic for p π+π− final states along with
a possible binning in all kinematic variables makes the quest for and the presentation of
such measurements a difficult and complicated task.
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CHAPTER 2

EXPERIMENTAL APPARATUS AND

TECHNIQUES

The facility where the data used for this analysis were collected is the Thomas Jefferson
National Accelerator Facility (TJNAF), also known as Jefferson Lab (JLab) in Newport
News, Virginia. Jefferson Lab is a National Lab funded by the Department of Energy
(DoE) and is currently home to three experimental halls, Hall A, Hall B, and Hall C. The
Continuous Electron Beam Accelerator Facility (CEBAF), also located on-site at Jefferson
Lab, supplies these three experimental halls with a beam of accelerated electrons. In addi-
tion to the experimental halls and the accelerator, Jefferson Lab houses the Free-Electron
Laser (FEL) facility, one of the world’s most advanced lasers, as well as several research
and manufacturing facilities. An aerial view of Jefferson Lab can be seen in Figure 2.1.

Figure 2.1: An aerial view of the accelerator site at Jefferson Lab. The racetrack shape is the CEBAF
accelerator and the three mounds at the bottom of the photograph are the three experimental halls: (left to
right) Hall A, Hall B, Hall C.
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2.1 The g8b Data Set

The data set used for this analysis was taken between July 20th and September 1st, 2005
as part of the g8b run period in Hall B. The name “g8b” denotes a few properties of the run
period. The “g” indicates that it was a photoproduction experiment (photons were incident
on the target material), the “8” indicates that it is the eighth approved photoproduction
experiment, and the “b” means that it was the second iteration of the “g8” experiment.
The main detector used to study the physics events was the CEBAF Large Acceptance
Spectrometer (CLAS) [43]. This detector is optimized to study reactions involving multiple
charged particles and has nearly a 4π solid angle coverage. The CEBAF accelerator sup-
plied Hall B with unpolarized, accelerated electrons with an energy of 4.551 GeV which were
then used to produce a beam of polarized and tagged photons. The photons were linearly
polarized via coherent bremsstrahlung radiation through the use of a diamond radiator
(goniometer) and tagged using the Hall B Tagger. The g8b run period utilized photopro-
duction on the proton with the target material being liquid hydrogen (LH2) cooled using
liquid helium (LHe2). These pieces of hardware along with the Hall B Data Acquisition
System (DAQ) led to an impressive data set ≈ 30 TB in size and containing 10.7 billion
triggers. This chapter will involve the description of the CEBAF accelerator, the CLAS
detector, the Hall B Tagger, the goniometer used to produce polarized photons, and other
experimental apparatuses used during the g8b run period.

Figure 2.2: A broad-view schematic of the CEBAF accelerator showing the injector, circulating arcs,
LINACs, and experimental halls.
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2.2 The CEBAF Accelerator

The Continuous Electron Beam Accelerator Facility located at Jefferson Lab is an elec-
tron accelerator that is capable of delivering a high-quality beam to all three experimental
halls simultaneously, even when the halls have different beam requirements. The accelera-
tor has a racetrack shape, consists of an injector, 9 circulating arcs (4 at one end, 5 at the
other), 2 linear accelerators (LINACs), 2,200 magnets of 58 varieties and is 1.4 km in cir-
cumference (Figure 2.2). The accelerator’s two LINACs run anti-parallel to each other and
are able to accelerate the electrons such that they gain ≈ 1.2 GeV for every trip they take
around the accelerator. Using these, the CEBAF accelerator is able to deliver a high lumi-
nosity, continuous wave beam in ≈ 2 ns bunches. Components that make up this “world’s
most powerful microscope for studying the nucleus of the atom” [44] will be discussed in
the following subsections.

2.2.1 Injector

Electrons accelerated by CEBAF first enter the machine via the Injector. Here, three
pulsed lasers illuminate a Gallium Arsenide (GaAs) photocathode. These three lasers, one
each for the experimental halls (A, B, and C), are independent diode lasers that are syn-
chronized and combined to strike the GaAs disk at the third subharmonic (499 MHz) of
the accelerating cavity frequency (1497 MHz) [45]. By using this three-laser setup, all three
halls can be provided with electrons according to their individual requirements (require-
ments such as beam current and polarization) and all simultaneously receive electrons in
2 ns “buckets”. Each one of these beam buckets can have different properties than the one
preceding and following it. The electrons produced in the injector also have the potential
to be longitudinally polarized with the degree of polarization reaching up to 75%. This is
accomplished by circularly polarizing the light from the laser through the use of two Pockel
cells (used such that one is a quarter-wave plate and the other a half-wave plate). These
electrons are then accelerated by the injector LINAC to ≈ 67 MeV. The injector system
then uses an optical chopper to cleanly separate the (2 ns) bunches prior to injecting them
into the (North) LINAC.

2.2.2 CEBAF Linear Accelerators (LINACS)

Once the electrons leave the injector, they enter the North LINAC, one of two LINACS
used by the CEBAF accelerator. These LINACS each contain 168 Niobium RF cavities
which are made superconducting by cooling them to ≈ 2 K and are located at each “straight
away” portion of the racetrack-shaped beam line. This cooling occurs via immersion in
liquid Helium (LHe). Because the cavities are superconducting at this temperature, there
is no heating of the cavities and therefore much less RF power is needed for operation (1/3
of the power required if the cavities were not superconducting) [44]. This also means that
the accelerator can operate with a 100% duty cycle (accelerator can operate continuously).
A typical cavity can be seen in Figure 2.3.

To accelerate the electrons in the RF cavity, a standing electromagnetic wave is produced
in phase with the bundles of electrons. This standing wave produces a charge gradient which
serves as the source of the acceleration by maintaining an area of negative field behind
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the electrons and a positive field area in front (Figure 2.4). With this method and the
current hardware used, each LINAC is able to accelerate the electrons by ≈ 500 MeV per
pass with a maximum of 5 passes. This means that the current maximum energy of the
electrons coming from CEBAF is ≈ 5.7 GeV with current repairs and tune-ups attempting
to increase the maximum energy to its original limit of 6 GeV. In the works for the CEBAF
is the near-future upgrade that would increase the maximum energy of the accelerator to
≈ 12 GeV.

Figure 2.3: Two of the superconducting RF cavities used at CEBAF. These cavities are immersed in LHe
with the elliptical cavities being perpendicular to the beamline.

Figure 2.4: A diagram of an RF cavity during operation. The charge gradient produced makes it such
that the electrons are always being accelerated.

2.2.3 Recirculation Arcs

In order to accelerate the electrons without the use of a large number of accelerator
cavities, recirculation arcs are used so that the electrons can loop around the accelerator,
being boosted by the LINACs with every pass. At each end of the accelerator, a series of
dipole magnets are arranged in an arc in order to bend the beam 180◦ up to nine times (the
recirculation arcs can be seen in Fig. 2.2). Electrons in the accelerator may differ in their
energies (depending on how many passes they have made through the accelerator) but all
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must be bent around in an arc of the same radius. To do this, the electron beam is split into
a maximum of five different arcs, each one for a different pass number. Each one of these
sub-beams uses dipole magnets of different strengths (higher strength for more energetic
electrons). The electrons are then bent around the 180◦ arc before being recombined into
a single beam and entering the next LINAC (a picture of these magnets and the different
paths of the electrons can be seen in Fig. 2.5). The experimental halls can then choose to
extract the beam after any number of passes (≤ 5) with the extraction occurring via a RF
separator.

Figure 2.5: A picture of the eastern recirculation arc used at CEBAF. The yellow structures are the
electromagnets used to steer the electron beam through the arc. The four different paths the electrons may
take in the eastern arc are also visible.

2.3 Experimental Hall B

Of the three experimental halls located at Jefferson Lab, Hall B is the smallest in size.
It does, however, house many unique tools along with the largest detector located at JLab.
The general pieces of hardware used in Hall B and g8b-specific hardware will be discussed
in this section.

2.3.1 Photon Tagger

Experiments in Hall B benefit from having the option of using either the electron beam
from the accelerator or a tagged photon beam produced by the Hall B Tagger. This tagger
has the capability to tag photons with energies ranging from 20% to 95% of the incident
electron beam energy. Once the electrons enter the hall from the CEBAF accelerator, they
interact with the radiator and scatter off, producing photons via bremsstrahlung radiation
that remain in the beamline. The next major component, moving down the beamline,
is the Tagger Magnet which is a C-shaped magnet with an open-yoke design capable of
producing a magnetic field up to 1.75 T [46]. The purpose of the Tagger Magnet is to
bend all electrons, both the scattered (those that did radiate a photon) and unscattered
(those that did not scatter but passed right through the radiator), out of the beamline and
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through the E- and T-counter planes which are used to determine the energy and timing
of the produced photon. Unscattered electrons are bent out of the beamline and directly
into the Tagger’s beam dump, bypassing the E- and T-counters. A diagram of the Tagger
hodoscope can be seen in Figure 2.6.

E-Counters. The E-counter plane is aligned with the optical focal point of the tagger
magnet and is made of 384 plastic scintillators 20 cm long and 4 mm thick with widths vary-
ing from 6 to 18 mm (the variance in the widths ensures that the same momentum range is
covered by each scintillator) [46]. These scintillators are arranged in an overlapping manner
with one scintillator covering 1/3 of its neighbor’s width therefore creating 767 separate
energy channels (resulting in an energy resolution of 0.001 × (energy of incident electron)).
The scattered electrons are bent through this plane and the position of the corresponding
scintillator hit allows for the determination of the scattered electron’s momentum/energy.
Since the energy of the electron as it left the accelerator is known (E0) and the energy of
the scattered electron is measured (Ee), this leads to a determination of the energy of the
radiated photon (Eγ):

Eγ = E0 − Ee. (2.1)

T-Counters. The determination of the time at which a photon arrived at the target is
crucial to any analysis involving photoproduction. A timing resolution of 300 ps or better
is needed to associate the measured time of an electron with the corresponding electron
bunch and therefore for a determination of the photon time at the target center [46]. This
precise time measurement is provided by the T-counter plane with a resolution of ≈ 100 ps
[43]. This detector plane is positioned parallel to the E-counter plane and consists of 61
scintillator counters, 2 cm thick, which vary in length from 20 cm at the high electron
momentum end to 9 cm at the low-momentum end [46].

Figure 2.6: A diagram of the Tagger magnet, E- and T-counters used for tagging photons in Hall B with
both an energy and times stamp. This drawing also shows the shape of the magnet pole, the photon path
through the magnet yoke, and the relative locations of the hodoscope E- and T-planes. The dotted lines
traversing the detectors are examples of electron trajectories and are labeled according to the fraction of the
incident energy that was transferred to the photon.
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2.3.2 Coherent Bremsstrahlung

In addition to being able to produce a beam of tagged photons, the Hall B Tagging
Facility can also polarize these photons. Linearly polarized photons are produced via co-
herent bremsstrahlung with the electrons interacting with a well-oriented diamond radiator.
When linearly polarizing these photons, the majority of the highly polarized photons reside
in a 200 MeV wide window, the leading edge of which is called the coherent edge of the
photon spectrum (the portion of the energy spectrum possessing a highly negative slope).
The position of this coherent edge is determined by the orientation of the lattice structure
of the diamond crystal and can therefore be precisely controlled. This means that linearly
polarized photons can be produced at any energy for which the tagger can produce pho-
tons. One defining characteristic of the g8b run period is the use of these linearly polarized
photons with the degree of polarization of the photons surpassing an impressive 90%. The
major parts of the experimental setup used to produce these linearly polarized photons can
be seen in Figure 2.7.

Figure 2.7: Schematic of tagger setup for the production of linearly polarized photons as used during the
g8b experiment. The goniometer and active collimator will be discussed in later sections.

Radiators. The process of creating photons via bremsstrahlung radiation in Hall B
involves the use of a radiator. In this process, the incoming electrons interact with the
electromagnetic field of the nuclei of the radiator material. When the electrons encounter
this field, they feel a braking force and radiate a photon with the same trajectory the
electron(s) had before they interacted with the radiator (along the beamline). The use of
an amorphous radiator such as the Gold/Carbon (Au/C) foil used in Hall B will result in
a beam of photons with an energy spectrum which exhibits a smooth distribution with the
form of 1/Eγ and is unpolarized. To both produce linearly polarized photons and produce
these photons at certain coherent edge energies, the g8b run period used a well-oriented
diamond radiator.

32



Oriented Diamond Radiator. For certain orientations, the photon beam produced
using a diamond radiator shows strong linear polarization [47]. This behavior is a result
of the response from the well-ordered structure of the crystal lattice found in diamond
as incident electrons scatter off of it. The spectrum produced by such a process contains
two main contributions, coherent and incoherent background. The incoherent contribution
arises from the constant lattice vibrations occurring in the crystal structure and is a smooth

function of Egamma (
1

Eγ
) in the high-energy region where

E0 � mc2, (2.2)

where E0 is the energy of the incoming electron and m the electron rest mass. Also in this
high-energy region, the energies of the final particles, the electron (E ) and photon (k) are
assumed to be larger than the rest energy of the electron:

E, k > mc2. (2.3)

The coherent contribution is where the highly polarized photons lie. This enhancement
over the incoherent background shows a structure that is highly peaked at the lower end
of the spectrum but decreases in enhancement towards the higher energies of the emission
spectrum (as k approaches E0). The size and shape of this enhancement peak is affected
by the crystal structure while the degree of linear polarization of the photons in the peak is
determined by the orientation of the diamond crystal [47]. An enhancement plot showing
the energy distribution of polarized photons for two linear polarization settings can be seen
in Figure 2.8.

The thickness of the diamond radiator used in g8b was chosen with concern lying in the
angle at which the electrons diverge in the crystal structure. This angle needs to be smaller
than the natural emission angle (θγ) [47]:

θγ =
mc2

E0
. (2.4)

This divergence of the electron beam within the crystal arises from and is affected by
multiple scattering effects, defects in the crystal lattice, and the divergence of the incident
electron beam. The angle with which the electron beam diverges in the crystal is important
as it also affects the position of the coherent edge peak and its broadness therefore affecting
the degree of polarization of the photons in the peak. From multiple scattering, this spacial
divergence can be written as [48]:

θe− =
19.2

E0

√
t× (1 + 0.038ln(t)), (2.5)

where t is the thickness of the radiator material (diamond). To remove the dependence on
the incident electron beam, one can then use the relation from equation (2.4), giving

θe−

θγ
=

19.2

mc2

√
t × (1 + 0.038ln(t)). (2.6)

From here, the proper radiator thickness can be determined such that the divergence
angle is minimized. For the g8b run period it was determined that a diamond radiator
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40 µm thick (≈ 3.6× 104 radiation lengths) would be ideal. The diamond radiator used
during g8b was 50 µm thick and was a born out of a compromise between what was ideal
and what was available.

(a) Eγ Enhancement PARA (b) Eγ Enhancement PERP

Figure 2.8: An enhancement plot showing the energy distribution of polarized photons for the two linear
polarization settings using g8b data from the 1.7 GeV coherent edge. This enhancement plot was produced
by dividing the Eγ distribution for photons produced using a diamond radiator by the Eγ distribution for
photons produced using an amorphous radiator (using runs #048544, #048602, and #048641). This division
removes the 1

Eγ
behavior which is characteristic to unpolarized photons (photons produced from unpolarized

electrons interacting with an amorphous radiator). The small peaks at energies higher than the coherent
edge (> 1.7 GeV) represent photon production off of other geometrically equivalent crystal planes in the
radiator. The sharp dip seen in both (a) and (b) at Eγ ≈ 2.25 GeV is due to a dead channel in the E-plane
of the tagger hodoscope.

Goniometer. As described above, the proper orientation of the diamond radiator is
paramount when producing a beam of photons possessing a high degree of linear polariza-
tion. To achieve this proper orientation, the g8b goniometer (seen in Fig 2.9) was used
throughout the run period to position and hold both the diamond radiator and the amor-
phous carbon radiator. This goniometer was developed by George Washington University
(GWU) and has the ability of orienting the diamond radiator (or another radiator) with an
angular precision better than 10 µrad through three axes [49]. The various radiators used
were contained in the target ladder located in the center of the goniometer. The available
degrees of freedom of the goniometer and the target ladder can be seen in Figure 2.10.

Active Collimator. To further improve the polarized photon beam by reducing the
contribution from the incoherent background and increasing the overall degree of polariza-
tion before it interacts with the target, a collimator can be used [47]. This is due to the
coherent photons preferring the forward direction according to the relation seen in equa-
tion (2.4) and the incoherent having no angular preference (the incoherent photons have
an angular distribution that is nearly independent of the electron energy). The collimator
used in g8b was located ≈ 22.9 m downstream of the goniometer and was composed of 13
nickel diskettes, each with an outer diameter of 50 mm and a thickness of 15 mm and each
with a 2 mm hole in the middle, all placed in a sheath made of stainless steel. Sandwiched
between each disk was 4 mm of plastic scintillator. These pieces of scintillator were used to
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measure pair production in real-time (a way to monitor beam position). This real-time use
makes this type of collimator an active collimator.

Figure 2.9: A picture of the goniometer used for the production of linearly polarized photons. In the
center of the goniometer is where the target ladder is located. When used in the hall, this gonimeter is
positioned perpendicular to the beamline.

(a) Rotation axes. (b) Target ladder.

Figure 2.10: (a) The available rotational axes of the goniometer as well as translation directions. (b) A
diagram of the target ladder used with the GWU goniometer. Here, the different types of radiators are held
and moved into position as needed.
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2.3.3 Target

The beam of linearly polarized photons continues down the beamline and interacts with
the g8b target, located 20 m downstream of the tagger. The target cell itself is a cylinder
made mainly of Kapton, is 40 cm long with a 2 cm radius and is placed such that the center
of the target cell is 20 cm upstream from the geometric center of the CLAS detector. Inside
the target cell resides the target material which for g8b was liquid hydrogen (LH2) which
was kept at a density of 0.071 g/cm2. A Computer Aided Design (CAD) drawing of the
target used can be seen in Figure 2.11.

Figure 2.11: A CAD drawing of the g8b target cell. The photon beam is incident on the target cell from
the left-hand side of the figure.

2.4 CEBAF Large Acceptance Spectrometer (CLAS)

The main detector used in both electro- and photo-production experiments in Hall B is
the CEBAF Large Acceptance Spectrometer, also known as CLAS. This detector is made
up of several layers of sub-detectors providing a solid angle coverage of almost 4π. The
CLAS detector can be used to detect both charged and uncharged particles although it is
more efficient at the detection of charged particles. The magnetic field used for bending the
particles through the detector systems is provided by the Torus Magnet. The detection of
final state particles come from the Start Counter, Drift Chambers, Time of Flight Scintil-
lators, Cherenkov Counters, and Electromagnetic Calorimeters. These detectors are used
to obtain information on the charge, momentum, timing, mass and velocity of any particle
of interest and can be seen in Figure 2.12. The following sections will describe the Torus
Magnet and the detectors used in this analysis.
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(a) (b)

Figure 2.12: Cross sections of the CLAS detector showing the major parts such as the Drift Chambers,
Torus Coils, and TOF counters. Figure (a) shows the CLAS detector as viewed from the front. The mini-
torus was not used for g8b and in its place was the Start Counter. Figure (b) shows the CLAS detector as
viewed from above, sliced at the beamline. The two curved lines going through the detector represent two
charged particles as they would behave when transversing the detector.

2.4.1 Torus Magnet

The CLAS detector was designed, geometrically, for use with a toroidal magnetic field.
This magnetic field is provided by the CLAS Torus Magnet. This type of magnetic field was
chosen as it affords the ability to measure the momentum of charged particles with good
resolution while providing a large-angle coverage for the detection of final state particles.
A toroidal magnetic field also provides a magnetic field-free region around the target which
allows for the use of dynamically polarized targets [43].

The Torus Magnet provides the magnetic field through the use of six superconducting
coils arranged in a toroidal fashion around the beamline. This arrangement results in a
magnetic field pointing in the φlab direction while also geometrically dividing CLAS into six
sectors. A picture of these coils and the magnet outside of CLAS is shown in Figure 2.13
and maps of the produced magnetic field in Figure 2.14. The Torus Magnet as a whole is
5 m in diameter and 5 m long. Each one of the six superconducting coils contains four layers
each with 54 turns of aluminum-stabilized NbTi/Cu superconducting wire. These wires are
cooled to superconducting temperatures and kept superconducting by forcing supercritical
helium through cooling tubes at the edge of the windings. This torus magnet was designed
to handle a maximum current of 3860 A (resulting in a 3.5 T magnetic field) but in order
to keep the mechanical stresses to a minimum the usual current used is around 3375 A.
However, the resulting magnetic field is not perfectly uniform. Close to the coils, there is a
deviation from the “pure” φ direction (Fig. 2.14). The effect of this deviation on the paths
of charged particles moving through the field is minimized by the circular inner shape of
the kidney-shaped coils, making any deflection non-significant [43].

37



The g8b run period had its own requirements for the running of the Torus Magnet. A
feature of the magnet is that it can be run in positive polarity or negative polarity mode.
This simply indicates the direction of the current put through the coils and therefore the
direction of the resulting magnetic field. Using a positive polarity means that any positively
charged particle encountering the magnetic field will be bent away from the beamline and
any negatively charged particle will be bent towards the beamline. The g8b run used a
positive polarity setting produced from a half current of 1930 A. A half current setting
was used to produce a lower magnetic field, increasing acceptance for negatively charged
particles so less of these will be lost down the beamline hole at forward angles.

Figure 2.13: A picture of the CLAS Torus Magnet outside of CLAS during installation into Hall B. Three
of the six superconducting coils of the Torus Magnet can be seen.

(a) (b)

Figure 2.14: A mapping of the magnetic field produced by the CLAS Torus Magnet. (a) The toroidal
magnetic field as seen from a plane centered on the target. The length of the lines indicates field strength at
that point. (b) A plot of the absolute magnetic field strength as seen from a vantage point that is between
two coils.
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2.4.2 Start Counter

When a run period calls for the use of a photon beam instead of an electron beam,
the mini-torus (which is used only for runs involving an electron beam as it prevents the
electrons in the beam from reaching the drift chambers) is replaced with the Hall B Start
Counter. This detector surrounds the 40 cm target cell and is the first detector that the
particles coming from the target interact with. A CAD drawing of the Start Counter can
be seen in Figure 2.15. Its position immediately surrounding the target means that when
used in conjunction with the Time of Flight, it can provide a precise start time for every
trigger recorded by CLAS as well as the time at which the photon was at the interaction
vertex.

Figure 2.15: A CAD drawing of the Start Counter used for g8b.

The Start Counter provides complete coverage of the target cell. It is divided into
six sectors corresponding with the six sectors of CLAS with each sector containing four
scintillator paddles. Each paddle has a straight section 502 mm long with a bend at each
end. The portions of the scintillators that are located at the downstream end of the Start
Counter are tapered to form a “nose” while the upstream end of each scintillator is attached
to an acrylic light guide and a photomultiplier tube. Measurements of the timing resolution
of the Start Counter have shown that the straight section, or “leg”, of the start counter
has resolution of ≈ 290 ps while the nose portion has shown a resolution of ≈ 320 ps [50].
Such a sub-nanosecond resolution is needed to determine the timing of an event and the
β (β = v/c where v = the particle’s velocity and c = the speed of light) of the final state
particles.
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2.4.3 Drift Chambers

The CLAS Drift Chambers are used to track any charged final state particle as it moves
through the magnetic field produced by the Torus Magnet and consists of a total of 18
separate drift chambers. This tracking of the trajectory of the final state particles leads to
a determination of the momentum and particle type. The Drift Chambers are divided into
six sectors as mandated by the geometry of the Torus Magnet and its coils. Each one of
these six sectors is then further divided into three regions which are numbered according to
their distance from the target cell. These multi-layer regions are located at different radial
positions in CLAS termed Regions. The drift chambers located in Region 1 are inside the
torus coils in an area of very low magnetic field. These drift chambers are mainly used
to determine the beginning of the particle’s trajectory as it is the first part of the drift
chamber system the particle encounters. The next region, Region 2, is located between
the coils of the Torus in an area of highest magnetic field. This means that this region
is located near the area of maximum curvature of the particle’s trajectory providing for
excellent momentum resolution. The furthest region from the target cell, Region 3, lies in
an area of low magnetic field. This region provides an end-point of the particle’s trajectory
as it leaves the Drift Chambers and continues on to the outlying detector systems. This
setup of the Drift Chambers leads to a polar angle (θ) coverage of 8◦ to 142◦ and an 80%
coverage of the azimuthal angle φ [51]. Diagrams showing the CLAS Drift Chamber can be
found in Figure 2.12.

Each region of the drift chambers contains two superlayers which each contain six layers
of wires. The first superlayer is the axial layer as it is positioned axial to the magnetic field.
The second superlayer, the stereo layer, is tilted at a 6◦ stereo angle around the radius to
provide azimuthal information. The individual drift chambers are arranged with the sides
of the chambers being parallel to the neighboring Torus coils and therefore tilted at 60◦

with respect to each other. This means that the wires contained in the superlayers are
approximately perpendicular to the particle’s trajectory, providing maximum sensitivity to
the track’s curvature [43]. The six layers of wires contained in each superlayer are arranged
in layers of partial circles such that neighboring layers were offset by half a cell width. This
pattern of two field-wire layers and one sense-wire layer gives rise to a quasi-hexagonal
pattern of six field-wires surrounding one sense-wire (Figure 2.16). The sense-wire is made
of gold-plated tungsten and has a diameter of 20 µm while the surrounding six field-wires
are made of an gold-plated aluminum alloy with a diameter of 140 µm. This hexagonal
pattern was chosen since this type of cell shape is approximately an ideal circular cell.
In such a cell, the drift time and drift distance is independent of the particle’s entrance
angle which is useful as events in CLAS will traverse the chambers at varying angles. The
number of sense wires contained in the CLAS Drift Chambers totals 35,148. More detailed
information regarding the construction and function of the Drift Chambers can be found in
[43] and [51].
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Figure 2.16: A diagram showing the hexagonal cells of the CLAS Drift Chambers. The shaded region
represents a particle’s track through the cells located in each superlayer of the Region 3 drift chambers.

2.4.4 Time Of Flight Scintillators

Located between the CLAS Cherenkov Counters and the Electromagnetic Calorimeters
approximately 4 m from the target cell are the CLAS Time of Flight scintillators (Fig-
ure 2.12). This subsystem of CLAS comprises of six panels of scintillators (one panel for
each sector of CLAS) that provide coverage in the polar angle from 8◦ to 142◦ and com-
pletely cover the azimuthal angle φ [43]. This system was designed to provide excellent
timing resolution to aid in particle identification while possessing good segmentation for
flexible triggering and prescaling. Timing requirements for the Time of Flight stated that
it have a timing resolution of 120 ps at the smaller angles and 250 ps at angles above 90◦

[52]. A picture of a Time of Flight panel can be seen in Figure 2.17a.

Each one of the six panels of the Time of Flight contains 57 scintillator paddles each
being 5.08 cm thick. Each scintillator paddle is constructed of Bicron BC-408 scintillator
with a Photomultiplier Tube (PMT) attached to each end. These paddles are arranged
with the last 18 in each sector being coupled into 9 logical pairs, giving a total of 48
logical paddles per sector. These paddles and the panels themselves are positioned such
that each scintillator is perpendicular to the average local particle trajectory. The width
of the scintillators varies with polar angle (θ). In the forward region (θ less than 45◦) the
scintillators are 15 cm wide and in the large angle region (θ greater than ≈ 70◦) the width
of the scintillators is 22 cm. This is done such that the width of each counter subtends
about 1.5◦ of the scattering angle. The lengths of the scintillators also vary according to
their polar angle coverage. The length of the forward angle counters vary from 32 cm to
376 cm and the large angle counters from 371 cm to 445 cm. The timing resolution of these
counters degrades with an increase in length but has been shown, using cosmic rays, to be
≈ 80 ps for the short counters and ≈ 160 ps for the long counters, surpassing the initial
requirements. A diagram of a Time of Flight panel is shown in Figure 2.17b.
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The g8b run period used the prompt signals from the Time of Flight for the CLAS
Level 1 trigger. The Time of Flight was used as the counting rates seen in the Tagger
were too high to be incorporated into the trigger. During reconstruction of the g8b data,
the Time of Flight was also used to calculate the velocity of particles moving through the
CLAS detector. This was done through the use of timing information obtained by the Start
Counter and the Time of Flight. By combining this calculated velocity and information
regarding the particle’s momentum (taken from the Drift Chambers), the particle’s mass
and therefore also ID, can be determined.

(a) (b)

Figure 2.17: (a) A picture of CLAS when opened revealing the Time Of Flight which can be seen to the
far left. (b) A diagram of one panel of the Time Of Flight.

2.5 Beamline Devices

2.5.1 Beam Position Monitors

To determine and monitor the position of the electron beam used for experiments in
Hall B, Beam Position Monitors (BPMs) are used. These Beam Position Monitors are
located at three different places along the beamline. The 2C21A BPM is positioned just
upstream of the Goniometer (36 m upstream of the target), the 2C24A BPM is just upstream
of the tagger (24.6 m upstream of the target) and the 2H01A BPM is downstream of the
Tagger (8.2 m upstream of the target). For experiments involving a photon beam (such as
g8b), the third BPM is not used as it is downstream of the Tagger magnet [43]. The BPMs
provide the position of the beam as well as its intensity at each BPM location and insert
this information into the data stream every 20 seconds.

2.5.2 Beam Profile Monitors: Harps

The profile of the electron beam and the photon beam can be determined using the
Beam Profile Monitors (or Harps). The harps used for determining the profile of the electron
beam are located 36.7, 22.1, and 15.5 m upstream of the CLAS target. The electron beam
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harps are made of thin, crossed wires oriented along the horizontal and vertical axes. When
performing a “Harp Scan”, this arrangement of wires moves across the beamline at an angle
of 45◦ from the horizontal axis. As these crossed wires move across the beamline, PMT’s
are used to detect the Cherenkov light emitted by the scattered electrons. An example of
such a Harp Scan can be seen in Figure 2.18. Since this Harp Scan involves interception
of the beam before the target, this process occurs when CLAS is not taking data and at
startup of the electron beam or after any interruption of the electron beam. The harp used
for determining the profile of the photon beam is located 20 m downstream of the CLAS
target. This harp is made of crossed scintillator fibers. These scintillator fibers detect the
electron-positron pairs produced by the photons in the target, the atmosphere between the
target and harp, and the fibers themselves [43].

Figure 2.18: Typical electron beam profile in the x-dimension measured by the harp located just upstream
of the tagger magnet. The profile should be able to be fit to a Gaussian and a constant background term.

2.5.3 Total Absorption Shower Counter

When using a photon beam, knowing the total photon flux is necessary to determine
the efficiency of the Tagger hodoscope. To determine this photon flux, a large lead-glass
Total Absorption Shower Counter (TASC) is inserted into the beamline. Each of the four
glass-lead blocks has a length of ≈ 17 radiation lengths and is coupled to a phototube. This
TASC has an efficiency of essentially 100%, but can only be operated at beam currents up
to 100 pA due to counting pile-ups [43]. Due to this restriction on the beam current, special
normalization runs must be conducted using the TASC and when not in use, it is removed
from the beamline.

2.5.4 Pair Spectrometer

Cross-calibrated with the TASC and also able to measure photon flux is the Hall B
Pair Spectrometer [43]. This spectrometer consists of a dipole magnet, an aluminum foil
(to induce pair production), eight scintillator paddles, and 2 pairs of microstrip detectors
which are used to detect the produced e+e− pairs. The aluminum foil, 10−3 radiation
lengths thick, is positioned 5.77 cm upstream of the dipole magnet, within its magnetic field.
Arranged symmetrically on either side of the beamline are the scintillators and microstrip
detectors, positioned such that photons covering the entire tagging range may be sampled.

The center of the dipole magnet used for the Pair Spectrometer is positioned ≈ 13 m
upstream of CLAS, with the spectrometer being just downstream of the active collimator.
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Photons produced via coherent bremsstrahlung at the radiator interact with the aluminum
foil and produce e+e− pairs. These e+e− pairs are then swept out of the beamline by the
magnetic field and strike the scintillators and microstrip detectors. The energy of the photon
that gave rise to the e+e− pair can then be reconstructed according to the position of the
detected hit. While not having the near-perfect efficiency of the TASC, this spectrometer
has the ability to operate at much higher beam currents. For the running of g8b, the Pair
Spectrometer was also used to see any shift in beam position. This was done by measuring
the rates of e+e− pairs seen in the scintillators of the spectrometer. By tuning the Pair
Spectrometer to the energy of the coherent edge currently being produced, it could also be
used to determine the flux of linearly polarized photons present after the active collimator.

2.6 The g8b Trigger

Each one of the detector sub-systems in CLAS is connected to a series of electronics
which read out the information collected by the detector. In order to collect information
regarding physics events, criteria called Triggers are used. For information regarding an
event to be recorded, the criteria cited by the trigger(s) must be met. These triggers help to
prevent information about detector hits that arise from other sources such as cosmic rays,
electronic noise, etc. and can be restrictive enough to be biased toward a particular final
state (or fairly open as it was for g8b). The types of triggers and restrictions used to record
data in Hall B are the Level 1 trigger, the Level 2 trigger, and the Trigger Supervisor.
The use of a trigger also aids in the minimization of the dead-time of the Data Acquisition
System.

The first of the triggers used with Hall B’s Data Acquisition System is the Level 1
Trigger, the fastest of the triggers. This trigger requires that there be a hit in both the
Start Counter and the Time of Flight. For g8b, the Level 1 trigger required that the hit in
the Start Counter and the TOF be in the same sector: the track of a single charged particle.
The second trigger, the Level 2 trigger, involves using tracking information from the Drift
Chambers. For an event to pass the requirement of the Level 2 trigger, a particle’s path (or
trajectory) must be able to be reconstructed in the Drift Chambers. This prevents things
such as a cosmic ray event, which could pass a Level 1 trigger but not a Level 2 trigger, from
being written into the data stream. Finally, the Trigger Supervisor decides whether or not
the event will be recorded. There are two main configurations of the Trigger Supervisor.
The first configuration requires that the event only pass a Level 1 trigger. The second
configuration (the configuration used for g8b) requires that for an event to be recorded,
both the Level 1 and Level 2 conditions be satisfied.

2.7 Data Acquisition System (DAQ)

The data taken during a run period in Hall B is recorded by the Data Acquisition
System (DAQ). Data from all of the various detectors is digitized in 24 FASTBUS and VME
crates inside of the experimental hall. This data is then collected by the 24 VME Readout
Controller located in the crates. This assortment of detector signals is then translated into
tables where each data value is associated with the active detector component from which it
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arose. These data arrays are then buffered and transferred to the CLAS online acquisition
computer (CLON10). Three main processes are then carried out. These are the Event
Builder (EB), Event Transport (ET), and Event Recorder (ER). The EB assembles the
data stream into events with the tables of information being organized into data banks with
each event being labeled by run and event number. The ET manages the shared memory
of the DAQ and allows access by various event producer and consumer processes. The ER
then writes the data in a single stream to an array of local magnetic media called RAID
disks. This data is then transferred from these local RAID disks to a remote tape silo where
the data is stored for the long-term.

During the g8b run period, the DAQ experienced an event rate of ≈ 4.5 kHz. This led to
a live-time of ≈ 87% (dead-time of ≈ 13%). Event rates are usually determined by the data
acquisition hardware and software, however the event rate during g8b was not determined
by the performance of the DAQ but rather by the performance of the Tagger. It was seen
that when the number of photons produced in the coherent peak got too high, part of the
Tagger Hodoscope would not perform well. In order to reduce the number of photons being
produced at the radiator, the number of electrons coming from the accelerator needed to
be reduced. For this reason, g8b used a relatively low electron beam current of ≈ 10 nA.
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CHAPTER 3

PREPARATION OF THE p π+π− FINAL STATE

Data collection for the g8b experiment was carried out by the CLAS Collaboration between
July 20th and September 1st of 2005. The data set boasts 11,475 data files, is ≈ 30 TB
in size and contains 10.7 billion triggers. These data taken during the running of the g8b
is stored on large data tapes in a “silo” at Jefferson Lab. This data was initially in its
raw format, consisting of only detector signals and information about the various detector
elements. Therefore the data must undergo reconstruction, or be cooked (transforming the
data into information about scattered particle angles, masses, velocities, momenta, etc), in
order for it to be ready for a physics analysis. It is also during this cooking phase that the
calibration of the detectors is carried out with each detector being calibrated independently.

Quark model calculations suggest that the excited baryon resonances decay back to their
ground state through decays involving intermediate states (with the emission of a meson).
Some of these intermediate states, for example, are then expected to decay further into ∆π
which then decays into a p π+π− final state. Therefore the primary final state/channel
investigated in this work is:

• ~γ p → p π+π−,

where all final state particles are detected. Three additional topologies are investigated as
well:

• ~γ p → p π+(π−) (π− not detected),

• ~γ p → p π−(π+) (π+ not detected),

• ~γ p → π+π−(p) (proton not detected).

The investigation of these three additional final state topologies serves to provide a way
to extract the polarization observables over topology-dependent acceptance holes resulting
in a continuous measurement. Several steps and techniques were used to carry forth this
analysis and are described in the following sections.

3.1 Pre-Event Selection

After the detectors have been calibrated and the particle tracks have been reconstructed,
the cooking of the data is complete and the data is made available for analysis. Each event
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in the data has its information organized into data banks. These data banks hold not only
the properties of the particles involved in the reaction but information about detector hits.
Specific data banks of interest in this analysis are the GPID, TAGR, TBID, TBER, and
MVRT banks. How and where these banks were used will be explained during the course
of this chapter.

Explanation of data banks:

• GPID: This data bank contains much of the information regarding the event. This
information includes the particle IDs, vertex positions (for each detected particle),
4-vectors, charge, beta (β = v

c ) of the particle, the vertex time of the particle’s track,
particle masses (calculated), the incident photon’s energy, photon time, and an index
to the TAGR bank for the incident photon. Information from several detectors are
used to fill this data bank. These detectors are: the Drift Chambers, Time of Flight
Scintillators, Tagger and Start Counter.

• TAGR: Information recorded by the Hall B tagging system (the Tagger) is stored here.
Information includes: energy of all recorded photons, reconstructed time of photon
as calculated by the Tagger, the corrected time of the photon using information from
other detectors as well, the status of the photon (whether or not it was properly
reconstructed), and the E- and T- counter the scattered electron hit.

• TBER: The tracking resolution errors associated with the tracking measurements of
the particles in the event are stored in this bank. Information comes mainly from the
Drift Chambers and the Time of Flight. This bank is used to build up the covariance
matrix used for kinematic fitting.

• MVRT: This bank uses information from the Drift Chambers and the Time of Flight
and contains the vertex information for the event as a whole using individual particle
tracks.

3.2 Event Selection

Since the g8b experiment was not designed for this analysis alone, the trigger file (for
this run period, a single charged, able-to-be-reconstructed track in a single sector of CLAS)
used during data-taking allowed for the recording of a large variety of events. In order to
analyze a specific channel, the first step of this analysis is therefore to find events possessing
the final states of interest. As stated before, there are 4 different topologies of interest
in this analysis. However since the data contains all events which passed the single-sector
requirement of the trigger, the data must be filtered, keeping only the final states of interest.

This filtering occurs by placing requirements regarding what data to keep based on the
particle’s identification number, or PID, which is determined during the cooking process
and is based on the value of the particle’s calculated mass. Events that do not meet this
requirement are ignored and subsequently omitted from the analysis. The calculation of the
detected particle’s mass uses two independently measured quantities, its momentum (p) and
velocity as a fraction of the speed of light, β. The magnitude of the particle’s momentum
(p) is determined with an error of < 1% [43] using the measurements made by the Drift
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Chambers. The β of the detected final state particle is determined using a combination of
the Start Counter, the Time of Flight, and the particle’s detected trajectory through CLAS
(with an error of up to 5%). A detected particle’s mass can then be calculated according
to equation (3.1):

m2
particleX =

p2(1− β2)

β2
. (3.1)

After the particle’s mass has been calculated, it is compared to the masses of known
particles (hadrons and leptons). If this calculated mass matches that of a known particle
(within resolution errors), the PID associated with that mass is assigned to the final state
particle. This value can then be used to select certain final state particles for analysis.

Therefore to select events that match one of the four topologies, the first requirement is
based on this PID value and requires that the necessary final state particles are detected,
no more, no less. Information regarding the properties of these final state particles (their
4-vectors, vertex information for individual particles, etc.) was then extracted from the
GPID data bank and used for kinematic fitting, determination and application of cuts and
systematic corrections, and the extraction of the polarization observables.

3.3 Photon Selection

The g8b run period used photoproduction on the proton via a beam of tagged photons.
As the electrons used to produce this beam of polarized photons arrive in Hall B from
the accelerator in 2 ns bunches with each bunch containing many electrons, the photons
too arrive at the target in bunches with each bunch containing many photons. Therefore
an accurate determination of the correct photon is very important in order to have a full
understanding of the initial state of the event. This determination uses data collected by the
Drift Chambers (for tracking the particle’s path), Time of Flight (for velocity and timing
information), and the Tagger (for photon timing information). The timing information
collected by the Time of Flight and the Tagger (both independently calibrated) are used to
make a time-based determination of the correct photon.

Each event in the g8b data set has an average of 16 candidate photons associated with it
(Figure 3.1(a)). For a photon to be considered a candidate, it must occur within the timing
window set by the trigger and satisfy several consistency checks involving the Tagger. These
consistency checks involve the photon having a corresponding hit in the E- and T-counters,
depositing a certain amount of energy in the E-counter, and producing a PMT signal at
both ends of the scintillator bars that make up the E- and T-plane of the Tagger.

In spite of these requirements, many candidate photons are present in the data stream
for one physics event as a result of the 2 ns bunching of the electron beam. To determine the
exact photon corresponding to a physics event, vertex information of the physics event along
with the timing information regarding the photon(s) are used. The time of the event’s vertex
is determined by using information from the Time of Flight along with an extrapolation of
a particle’s track (a particle in the event) through CLAS. The process for determining the
correct photon uses the following:

First, the vertex time of the event (tv) is calculated:
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tv = tTOF −
dTOF
cβc

, (3.2)

where tTOF is the time at which the hadron was detected by the TOF, dTOF is the calculated
distance from the event vertex to the hit in the TOF scintillator paddle, c is the speed of
light, and βc is the hadron’s velocity as a fraction of c. Next, the time of each candidate
photon associated with the current event at the event vertex position (tγ) is calculated:

tγ = tcenter + (
z

c
), (3.3)

where tcenter is the time at which the photon arrives at the center of the target (calculated
by mathematically propagating the electron as it leaves the accelerator to the radiator and
then propagating the photon from the radiator to the center of the target cell), z is the
distance between the center of the target cell and the event vertex (with both positions
being measured along the beam axis), and c is again the speed of light. The small offsets
in the x- and y-positions of the event vertex do not appear in the calculations as they are
comparable to the resolution of vertex measurements.

The correct incident photon is then found by comparing these two times calculated in
equations (3.2) and (3.3) (tv and tγ) as in equation (3.4):

∆t = | tv − tγ |. (3.4)

A distribution of the time differences between the event vertex time and the times of
all candidate photons for the event can be seen in Figure 3.1(b). The 2 ns-wide structures
to the right and left of the central peak show the 2 ns beam buckets in which the beam is
delivered to the target.

(a) (b)

Figure 3.1: (a) Shows the number of candidate photons per event in the data. There is an average of 16
candidate photons associated with every physics event. (b) Shows a distribution of the time difference (∆t)
between the event vertex time (tv) and the vertex time of all candidate photons. The 2 ns-wide distributions
to the right and left of the central peak represent the 2 ns bucket structure in which the electrons (and
therefore photons) in the beam arrive. Both histograms were produced using run #048326.
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The photon in the list of candidate photons with the smallest time difference between
the event vertex time and the time of the photon at the event vertex (smallest value of ∆t)
is then labeled as the correct incident photon. The distribution seen in Figure 3.2 shows
the time difference (in ns) between the event vertex time and photon which was determined
to be the correct photon.

Using the above method usually results in the determination of a single photon in
the beam bucket which is responsible for the event. However, in the instance that more
than one photon is found with a time ∆t < 1 ns, the statement as to which photon was
actually responsible for the event cannot be made. In this case, the ambiguity of the photon
determination is reflected in the GPID bank and these events are subsequently not analyzed.

Figure 3.2: The time difference between the event vertex time and the time of the correct photon after
photon determination. This distribution shows a large peak around zero, signifying the quality of photon
selection. Produced using run #048326.

Once a single photon is found to be the incident photon, the information regarding
the incident photon is then stored in the GPID bank for each final state particle. The
fact that the incident photon is found per particle track means that a quick cross check
of the reconstruction code can be carried out by comparing the photon times for each
final state particle. When analyzing an event, the photon’s energy and time (as well as
other information regarding the photon) are obtained from the GPID and TAGR banks.
This information is then used in the reconstruction of the event, the binning of the data,
systematic corrections for the photon energy and to perform cuts.

3.4 ELoss

As a charged particle travels from the target cell to the Drift Chambers of CLAS, it
loses energy through atomic excitations and ionization when interacting with the target
material (liquid hydrogen), target walls, support structures, beam pipe, start counter, and
the air gap between the start counter and the Region 1 drift chambers. Therefore the
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reconstructed momentum seen in the Drift Chambers is actually less than the momentum
of the particle(s) at the production vertex. To account and correct for this, the 4-vectors of
the final state particles (as taken from the data) were corrected event-by-event according
to the ELoss package developed for charged particles moving through CLAS (using the
g8b parameters such as target geometry and target material) [53]. This ELoss package
calculates the momentum of the particle in the target cell. To perform this calculation, the
particle’s 4-momentum as measured by the Region 1 Drift Chambers is used to track the
particle back to the reaction vertex in the target cell. As the particle is tracked back to the
reaction vertex, the materials and distances it traverses are considered and the energy loss
of the detected particle calculated and the 4-vector of the particle appropriately corrected.
The energy-loss-corrected 4-vectors are then used in the analysis with the corrections being
on the order of a few MeV.

3.5 KinFit

Unique to this g8b analysis is the implementation of the COBRA kinematic fitter devel-
oped at Carnegie Melon University for CLAS experiments [54]. The use of this kinematic
fitter further refines the data through the enforcement of energy-momentum conservation
and missing mass cuts (should the fit hypothesis contain a missing particle). The kine-
matic fitter is also very useful for the precise determination of systematic errors such as
momentum corrections (needed to account for variations of the magnetic field of CLAS as
well as any inconsistencies in the Drift Chambers) and photon energy corrections (needed
to account for mismeasurements of the photon’s energy) to be applied to the data. The
following briefly describes the fitter and its implementation.

When an event is kinematically fitted, it is forced to obey energy-momentum conserva-
tion. The 4-vectors of the final state particles as determined by the reconstruction code are
fed to the fitter as well as the incident photon energy. The components of these 4-vectors
and the photon energy are then altered until the event satisfies energy-momentum conser-
vation. These alterations occur within the limits (measurement errors) contained in the full
covariance matrix which uses the tracking covariance matrix, built event-by-event from the
data, and the scaling parameters associated with the tracking covariance matrix. After the
tracking covariance matrix has been constructed for an event, the scaling parameters are
then applied to it to form the full covariance matrix. These scaling parameters are unique
to and must be determined for every run period and run condition. The resolution errors
contained in the full covariance matrix represent the actual resolution of the detectors while
the tracking covariance matrix is the resolution reported (calculated) by the reconstruction
code. Once an event has been kinematically fitted, the quality of that fit can be quanti-
fied via a confidence level value of the fit as well as a pull value for every measurement
parameter.

3.5.1 Confidence Level and Pulls

When using a kinematic fitter, the goodness of fit (the agreement between the data and
the fit hypothesis) can be determined by examining the confidence level and pull distribu-
tions (Fig. 3.3). The confidence level is defined as:
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CL =

∫ ∞
χ2

f(z;n)dz, (3.5)

where f(z;n) is the χ2 probability density function possessing n degrees of freedom. It is a
determination of the probability that a χ2 from the theoretical distribution is greater than
the χ2 obtained from the fit.

An ideal data set containing only events which satisfy the fit hypothesis and with nor-
mally distributed errors would result in a confidence level distribution that is flat from (0,1].
However, a real-life data set run through the fitter (assuming the resolution errors have been
properly determined) would produce a confidence level distribution that has a peak at zero.
This distribution should then possess a negative slope as you move to higher confidence
level values with this slope becoming level (flat) from [0.5,1] (representing confidence levels
of 50% - 100%). The large number of events with a low confidence level represent the events
which did not match the particular fit hypothesis used. These events include, but are not
relegated to only being from: background events, poorly reconstructed events, or events
with misidentified particles. This makes the confidence level a good parameter to cut on
as doing so will remove a large number background and “bad” events while only losing a
small portion good events.

Pull distributions are generated for every fit parameter for every (detected) final state
particle involved in the fit. A pull is a measure of how much (and in what direction) the
kinematic fitter had to alter, or pull, the value of that parameter in order to enforce energy-
momentum conservation normalized to the error of that measurement. A pull value for the
ith fit parameter (zi) is given by:

zi = − εi
σ(εi)

, (3.6)

where εi = ηi − yi is the difference between the value of the ith parameter from the final
iteration of the fitting routine, yi and the measured value of the ith parameter, ηi. The
quantity σ represents the standard deviation, or error, of the parameter. Therefore, the ith

pull can be written as:

zi = − ηi − yi√
σ2(ηi)− σ2(yi)

. (3.7)

Assuming that the errors of the parameters used for kinematic fitting are properly
determined and all systematic errors have been corrected, the distribution of pull values
(zi values) will be Gaussian in shape with a width of one (σ = 1) and a mean value of zero
(µ = 0). Any systematic error in the quantity ηi will be seen as an overall shift away from
zero. An overestimation or underestimation of the error of the quantity ηi will cause the
pull distribution to be too narrow or broad, respectively [54].
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(a) Confidence Level Distribution (b) Pull Distribution

Figure 3.3: Example of fit results coming from a fit to a p π+π− final state. (a) Shows an example of a
confidence level distribution. A confidence level distribution (working with real data) peaks toward zero but
flattens out toward one. (b) Shows an example of a pull distribution (the photon energy pull). Ideally, a
pull distribution is Gaussian in shape around the origin with a mean (µ) of zero and a sigma (σ) of one.

The above describes ideal confidence level and pull distributions. When one begins using
the kinematic fitter with their data, this is not the case. The scaling parameters applied to
the covariance matrix (the covariance matrix will be discussed in the following subsection)
are related to the tracking measurements made for each track, target and magnetic field
and are therefore unique to every run period and must be determined as such.

This determination of the proper covariance matrix errors is an iterative process. As a
starting point, one may use the scaling parameters from another run period (this analysis
started with the g11a scaling parameters). These parameters can then be adjusted/modified,
keeping track of all changes to the confidence levels and the pull widths. As these scaling
parameters exist as arrays read in by the kinematic fitter, a simple script may be used in
order to alter these parameters to be specific to one’s data set.

When iterating through this process, one needs to keep track of the pull sigmas and the
slope of the confidence level plots, specifically the normalized slope. This normalized slope
is the slope of a linear fit to the confidence level distribution from [0.5,1] (50% - 100%)
which has been normalized to the number of entries at the point 0.5 (the number of events
possessing a confidence level of 50%). The choice of the fit range used to calculate the
normalized slope was determined with the expectation that the negative slope arising from
the large number of events which resulted in poor fits flattens out at 50%. This normalized
slope is then defined as seen in Eq. (3.8) where a is the slope of a linear fit from [0.5,1] and
b is the y-intercept.

ā =
a

(a/2) + b
(3.8)

Checking the widths (σ’s) of the pull distributions is as simple as fitting them to a
Gaussian with a 2σ ([−2,2]) fit range.

The quality of the covariance matrix errors for a particular data set can be determined
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thusly: Errors which are too large will result in a confidence level distribution having a
positive slope between 0.5 and 1 and pull distributions with widths less than 1 (σ < 1). The
positive slope of the confidence level distribution signifies that one is artificially increasing
the number of events that fit, or pass, the fit hypothesis. In other words, the fitter is being
given too much freedom to alter the measured values of the particle’s 4-vectors. If the
determined and applied errors are too small, the confidence level plot will have a negative
slope between 0.5 and 1 signifying that one is excluding possible good events (by not allowing
the fitter enough “wiggle room”). The resulting pull distributions will then possess widths
greater than 1 (σ < 1). If the determined and applied errors are appropriate (not too
small, not too large), then the confidence level plot will be flat from 0.5 to 1 (resulting in
a normalized slope of zero) and the pull distributions will have a sigma of 1 (σ = 1).

Systematic errors in the data can be seen and corrected by examining the mean values of
the pull distributions. For example, the effects of the ELoss package as well as momentum
corrections (described in Section 3.6) can be easily seen by monitoring the momentum pull
distributions. An examination of the momentum pulls generated by the kinematic fitter
shows off the fitter’s sensitivity to small changes in the fit parameters. Pull distributions
showing this sensitivity can be seen in Figure 3.4. These proton momentum pulls were
generated using no momentum alterations for the proton (Fig. 3.4(a)) and a small alteration
in momentum equivalent to a 2 MeV shift (Fig. 3.4(b)). This correction corresponds to a
change that is smaller than the resolution of CLAS yet still results in a noticeable shift in the
pull distribution. Therefore the sensitivity of the kinematic fitter surpasses the resolution of
the detector systems. This was one of the reasons the kinematic fitter was used to generate
momentum corrections. This process was also an iterative one involving a binning of the
pull distributions (in pp, θlab, and φlab) that matched the binning of the corrections and
a script to alter the momentum correction factors. Corrections were refined by generating
correction factors, running over the data using these factors, fitting all of the binned pulls,
extracting the mean values, generating new corrections based on the results of the previous
iteration and repeating.

Figure 3.4: Pull distributions for the proton momentum for a γ p → p π+π− final state showing the
sensitivity of the kinematic fitter to systematic effects. The distribution on the left, (a), was generated using
one run (#048326) with alterations of the proton momentum. The distribution to the right was generated
using the same run but after an alteration to the proton’s 3-vector. This alteration was small (a 0.4%
increase) and is equivalent to a 2 MeV increase in the proton’s momentum. The high degree of sensitivity
of the kinematic fitter to systematic effects is clearly seen as this very small correction shifted the mean (µ)
value from 0.1977 to −0.01559.
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3.5.2 Use

Kinematically fitting an event requires a process involving several steps. The 4-vectors
of the final state particles as well as the incident photon energy must first be extracted from
the data. The resolution errors of the tracking measurements used for determining these
4-vectors are then used to build the tracking covariance matrix. Scaling parameters which
serve to refine these resolution errors are then applied to the tracking covariance matrix to
create a second matrix, the full covariance matrix. The event is then ready for a kinematic
fit.

Covariance Matrix. The covariance matrix used for kinematic fitting is built for
every event using information from the TBER and GPID data banks and has the form seen
below [54]. The TBER bank is used as it contains the errors pertaining to the measured
values of the detected particle’s momentum and the drift-chamber-specific angles lambda
(λ) and phi (φ) which are sector dependent and describe the particle’s track as it moves
through the Drift Chambers. To obtain the magnitude of the 3-momentum of the final
state particle, the GPID bank is used. The dimensions of the covariance matrix depend
on the number of detected final state particles being used for the fit hypothesis. It is a
square matrix of dimensions (3n + 1) × (3n + 1) where n is the number of detected final
state particles. The extra row and column (the ‘+1’) is reserved for containing the error
in the measurement of the photon energy. The tracking resolutions regarding the detected
final state particles are used to build 3 × 3 matrices along the diagonal of the covariance
matrix, one for each detected final state particle. In these mini-matrices, the diagonal
terms hold the “pure” (non correlated terms) measurements of momentum, lambda, or phi
while the off-diagonal terms represent the correlation (mixing) of these measurements. The
C’s present in the generalized covariance matrix seen below represent the elements of the
covariance matrix and are polynomials with values extracted or calculated from the data.

C =



σ2
Eγ

0 0 0 · · · 0 0 0

0 Cpp1 Cpλ1 Cpφ1 · · · 0 0 0

0 Cpλ1 Cλλ1 Cλφ1 · · · 0 0 0

0 Cpφ1 Cλφ1 Cφφ1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · Cppk Cpλk Cpφk
0 0 0 0 · · · Cpλk Cλλk Cλφk
0 0 0 0 · · · Cpφk Cλφk Cφφk



Photon Error. The energy of the photons are determined by using the 384 E-counter
scintillator paddles contained in the E-plane of the Tagger. These scintillator paddles are
arranged in an overlapping fashion such that each counter optically overlaps its adjacent
neighbors by one-third of their respective widths, leading to a total of 767 bins in photon
energy (767 E-bins). This configuration leads to an energy resolution of r = 0.001Ebeam
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[46]. Due to the fact that the information regarding the incident photon’s energy comes
from a measurement made by a detector, there is an error that must be associated with the
photon energy. If one assumes that this error is the same for all paddles then the error can
be given by equation (3.9):

σ2
Eγ =

1

2r

∫ r

−r
E2dE =

r2

3
, (3.9)

where again, r = 0.001Ebeam. Therefore for the g8b run period, which used an electron beam
with energy Ebeam = 4.559 GeV, the associated error in photon energy is σ2

Eγ
= 6.928 MeV.

Momentum and Tracking Angle Error. The measurements made regarding the
momentum and tracking angles (λ and φ) describe the path of the detected final state
particles as they moved through the Drift Chambers of CLAS. These measurements, like
all other measurements, carry with them an error. This error comes from several sources.
Tracking errors which lead to inaccurate momentum (and angle) measurements, multiple
scattering leading to differences between the measured angles and the angles at the inter-
action vertex, and the performance of the reconstruction code (the fitting of the tracks)
being the main culprits. When an event is reconstructed, the reconstruction code includes
the calculated errors but this calculation assumes a complete knowledge of the resolution
of detector components which vary in a small amount from one run period to the other.
Therefore it is necessary that the resolution of the detector components for the run period
under analysis be completely determined. This true resolution comes in the form of scaling
parameters. These scaling parameters are binned in sector number and θlab and are applied
to the momentum, and tracking angle components of the tracking covariance matrix.

Once a fit is performed, the user has access to several fit results. These are: the fitted
4-vectors of the final state particles (except the missing particle if the fit hypothesis involved
a missing particle), the fitted photon energy, the confidence level of the fit, and the pull
value for each pure element of the covariance matrix (elements along the diagonal of the
covariance matrix). The information returned by the fitter can then be used to check the
quality of the performed fit as well as provide quantities on which cuts may be imposed
during the course of the analysis.

3.6 Momentum Corrections

Since the CLAS detector is not a perfect detector, corrections for momentum must be
determined for every run period. This mainly is a result of unknown variations in the
magnetic field provided by the Torus Magnet as well as inefficiencies and misalignments
of the Drift Chambers. As mentioned before, the momentum corrections were determined
using the kinematic fitter, specifically looking at the momentum pull distributions for the
topology ~γ p → p π+π− and have been incorporated into the various analyses which use
the g8b data set.

To properly determine the momentum corrections for the g8b data set, these pulls (and
corresponding correction factors) must be binned in momentum (p) and the lab angles
θ and φ of the particle to be corrected (in this case, the proton). The binning used to
determine these correction factors was determined based upon the observed distribution

56



of momentum, θlab and φlab for the proton seen in Figure 3.5. The momentum binning
utilized 6 momentum bins covering a range of 0.2 GeV to 1.7 GeV with the angle binning
utilizing 7 bins in θlab (10◦ - 70◦) and 18 bins in φlab (covering the full range of φlab). First,
the proton momentum pulls and correction factors were binned in the above manner with
the correction factors existing in an array (each possessing a default value of 1). The pull
distributions were then individually fitted to a Gaussian and the resulting mean value (µ)
and width (σ) recorded into another array. Then through the examination of the mean
values resulting from the (Gaussian) fits of the pulls and determining the direction and
magnitude in which these mean values should be moved, the correction factors were altered
to either a value above or below 1 with these new correction factors being read into a new
array. These new correction factors were then applied to the data, the pulls regenerated
and then fit again to determine whether further corrections were needed. For example:
if the proton momentum pull has a mean value that is above zero, then for the majority
of the fits, the kinematic fitter is increasing the proton’s momentum in order to satisfy
energy-momentum conservation. In this case, the correction factor should be greater than
one such that the fitter pulls the momentum of the proton equally in both directions. The
same course of logic may be applied to a pull distribution with a (fitted) mean value that
is negative. This mean value indicates that the fitter is decreasing the proton momentum
the majority of the time. Therefore the appropriate correction factor would decrease the
proton’s momentum before it is kinematically fitted. Once these correction factors have
been determined, they are applied to the 3-momentum of the final state particles thereby
correcting its momentum. The effect of the momentum corrections on the momentum pull
of the proton can be seen in Figure 3.6.

(a) (b)

Figure 3.5: The observed distributions of momentum (a), θlab and φlab (b) for the proton used to determine
the binning for momentum corrections. Distributions were produced for p π+π− events contained in run
#048326 (a) and #048229 (b) which pass a confidence level cut of 1%. The region seen in (b) showing low
statistics for −150◦ < φproton < −110◦ is seen in several runs and can be attributed to dead wires in the
Drift Chambers.
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(a) Without momentum corrections (b) With momentum corrections

Figure 3.6: Proton momentum pulls without momentum corrections (a) and with momentum corrections
(b) as extracted from the fitter for a fit to a ~γp → p π+π− final state. After application of the final
momentum corrections, the pull becomes symmetric and has a mean value close to zero. Produced using a
full run (#048326).

3.7 Tagger Sag

The Hall B tagging system is an invaluable tool for determining the energy of the
photons that are incident on the target. This detection system, however, is not beyond the
need for corrections. It has been seen in the g8b data set (as well as in past experiments)
that there is a physical sagging of the support structures used to support the E-counter
scintillator bars in the Tagger hodoscope which has been attributed to gravitational forces
[55]. The consequence of this sagging is a misalignment of the scintillator bars which leads
to a mis-measurement of the scattered electron’s energy. This mis-measurement must then
be compensated for via an energy-dependent photon energy correction.

The sagging of the hodoscope’s support structures can be seen by comparing the cal-
culated photon energy, Etrue (which for this study was the photon energy returned by the
kinematic fitter) and the measured photon energy, Emeasured, as a function of photon en-
ergy (Emeasured) as seen in Figure 3.7. This sagging is demonstrated by the “humps” of
the (Etrue − Emeasured) values with the vertical support structures (which support the sag-
ging beams on which the E-counter scintillators rest) of the detector plane evidenced by
the sharp dips. The iterative routine used to correct the photon energies was developed
at Arizona State University (ASU) and verified using the Kinematic Fitter at FSU [56].
Corrections applied to the photon energies typically are on the order of a few MeV and
greatly improve the quality of the data. The before and after effects of these corrections
can be seen in Figure 3.8 with the effects on the photon energy pull distributions being
shown in Figure 3.9. These two histograms were generated using the kinematic fitter and
therefore are very sensitive to systematics. The plot seen in Figure 3.8 is a distribution of
the mean values of the photon energy pulls generated from fitting to a p π+π− final state
versus the measured photon energy. The effects of the sagging can be seen in this plot as
deviations from zero. Seen in Figure 3.9 is the y-projection of the photon pull distributions
used in Figure 3.8.
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(a) g1c (b) g8b

Figure 3.7: A plot of the difference between the calculated photon energy and the measured photon energy
as a function of incident photon energy using the g1c data set (a) and the g8b data set (b). The effects of
the sagging of the E-counter scintillator support structures can be seen in the “humps”.

Figure 3.8: Superimposed on one another are the mean values of the photon energy pulls as extracted
from the kinematic fitter versus the measured photon energy. The red points represent the mean values
of the photon energy pulls before the correction and the blue points represent the mean values after the
application of the photon energy corrections. These pull distributions were generated using one run for each
coherent edge energy for a p π+π− final state. The “humps” after this correction is applied are suppressed
and the mean values shift toward zero. The sharp dip seen near Eγ = 1.8 GeV represents an effect which
could not be overcome using these corrections.
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Figure 3.9: Superimposed on one another are the y-axis projections of the photon energy pulls used make
Figure 3.8. These photon energy pulls were extracted from the kinematic fitter with (blue) and without
(red) the energy-dependent photon corrections for p π+π− final states. After the application of the photon
energy corrections, the σ of the Gaussian fit changed from 1.087 to 1.069 and the µ improved from 0.374 to
0.042.

3.8 Cuts

Once the events that match one of the four topologies have been obtained and kine-
matically fitted, it is necessary to impose a series of cuts before extracting polarization
observables. These cuts will serve to further refine the data sample and help remove ac-
cidental particles/events and other things that corrupt the data set. In the histograms
contained in this section, the blue region represents the data which passes the imposed
cuts.

3.8.1 Photon Energy Cut

The first cut that is applied is a cut on the photon energy. While photons are produced
with a wide range of energies, the highly polarized photons occur in a 200 MeV wide
window (the upper limit of which is the coherent edge energy) with this window occupying
five different positions (the five different coherent edge energies). A cut on the upper and
lower limits of this window ensures that the events passing this cut came from a highly
polarized photon in the coherent peak (Fig. 3.10 shows an example of such a cut). This
leads to a total of 5 photon energy cuts (one for each coherent edge energy):

• 1.1 GeV ≤ Eγ < 1.3 GeV

• 1.3 GeV ≤ Eγ < 1.5 GeV

• 1.5 GeV ≤ Eγ < 1.7 GeV

• 1.7 GeV ≤ Eγ < 1.9 GeV

• 1.9 GeV ≤ Eγ ≤ 2.1 GeV
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Figure 3.10: Photon energies taken from data (run #048544) produced with a coherent edge energy of
1.7 GeV using events passing a 5% confidence level cut for all final state topologies. The highly polarized
photons in this coherent edge energy reside in the region between 1.5 and 1.7 GeV and therefore cuts are
applied to use only these photons.

3.8.2 Final State Momentum Cut

A low momentum particle moving through CLAS presents a problem to the recon-
struction of the event. These particles’ possession of low momentum can affect the ac-
curacy of the ELoss corrections applied to them. More importantly however is the fact
that particles with this characteristic have a low-acceptance for detection. Using these
acceptance limitations, cuts in the proton momentum and the momentum of the pions
were determined and applied. This cut requires all protons have a minimum momentum of
320 MeV/c (pproton > 320 MeV/c) and all pions have a momentum of at least 125 MeV/c
(pπ± > 125 MeV/c). These cuts may be seen in Figure 3.11.

(a) All protons (b) All pions

Figure 3.11: Momentum distributions showing the range of momentums for all (a) protons and (b) pions.
Generated for p π+π− events passing a confidence level cut of 1% using one full run: #048326.

61



3.8.3 Vertex Cut

The next set of cuts imposed in this analysis involves the vertex information for each
final state particle and event. This set of cuts then ensures that the physics event originated
in the target cell and all particles are from the same event.

Position. The dimensions of the target cell are well defined quantities. Therefore cuts
on the vertex positions of all the final state particles which mimic these dimensions ensure
that the event originated in the target cell. The first of these cuts is on the z-component
of the vertex position for all final state particles. The g8b target was a 40 cm long target
with its center located at z = −20 cm (Figure 3.12(a)). This vertex cut therefore requires
that −40 < zAllParticles < 0. The next cut that is applied involves comparing the vertex z-
positions of all final state particles. This cut requires that the z-component of the vertex po-
sitions all final state particles be within 4 cm of each other (| zparticleX − zparticleY | < 4 cm)
(Figure 3.12(b)). The third cut on the vertex position(s) involves the x- and y-components
of the event itself. This cut makes sure that the event originated no more than 2 cm from
the axis of the beamline (the z-axis). A distribution of event vertices in x, y, and x-y can
be seen in Figure 3.13.

(a) (b)

Figure 3.12: (a) The vertex z-position (axis along the beam line) of all reconstructed particles showing the
length and position of the target cell. The peak at ≈ 7 cm shows the exit window of the scattering chamber
(the vacuum tight chamber in which the target cell resides). Events must have a z-vertex occurring between
0 and −40 cm. (b) A distribution showing the differences between the vertex z-position of the π+ and π−

for a π+π−(p) final state. The cut applied to this difference requires that it be no more than 4 cm.
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(a) x-Vertex (b) y-Vertex

(c) x v. y Vertex

Figure 3.13: Plots showing the x- and y- vertices of all final state particles. (a) Shows the x-vertices, (b)
shows the y-vertices. Histogram (c) is a plot of the x v. y vertices of the reconstructed final state particles.
The vertex cut applied requires that the x- and y-components of the event to be no more than 2 cm from
the beamline.

Timing. Timing information regarding the vertex time for all final state particles is
used once again, but this time is used to make a cut on the time stamp of the particles’
vertex. This cut is the same for all final state particles and further aids in removal of
accidentals by requiring that the vertex time (for all final state particles) be between −10 ns
and 20 ns (Figure 3.14).

3.8.4 Angular Cuts

The CLAS detector, while having a large acceptance, does not possess a completely 4π
solid angle coverage. The existence of the forward-angle hole in CLAS means that it lacks
acceptance from 0◦ < θ < 8◦ and in the backward region lacks acceptance at angles greater
than θ = 142◦. These limitations combined with the observed distributions of the θ values
for all final state particles (Figures 3.15 and 3.16) determine the angular cuts used. The
applied cut requires that the lower limit (in θ) for all final state particles be θ > 10◦ and
the upper limit for pions be θ < 120◦.

63



(a) Proton Vertex Time

(b) π+ Vertex Time (c) π− Vertex Time

Figure 3.14: Vertex times of final state particles. A loose cut of (−10,20) ns is enforced to help remove
accidentals from the data set.

(a) Proton θ range. (b) Pion θ range.

Figure 3.15: Distributions showing the values of θ for all (a) protons and (b) pions. Generated for p π+π−

events passing a confidence level cut of 1% using one full run #048326.
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(a) θ v φ for Protons (b) θ v φ for Pions

Figure 3.16: Distributions showing θ v φ for protons ((a)) and pions ((b)). The six structures apparent in
the histograms represent the six sectors of CLAS. Generated for p π+π− events passing a confidence level cut
of 5% using one full run: #048326. The region seen in (b) showing low statistics for −150◦ < φproton < −110◦

is seen in several runs and can be attributed to dead wires in the Drift Chambers.

3.8.5 Other Cuts

‘ngrf’ and ‘tagrid’ Cuts. Another cut imposed on the g8b data set during this
analysis is one that uses specific bank variables. These variables can be found in the GPID
bank with the names ‘ngrf’ and ‘tagrid’ with both being in reference to the incident photon.
The ‘ngrf’ variable indicates how many of the candidate photons the reconstruction code
found which passed the reconstruction timing cut for finding the incident photon (using
the process outlined in Section 3.3). The ‘tagrid’ provides an index to the location of that
photon in the TAGR bank (therefore pointing to the correct photon). The cut on the
‘ngrf’ value imposed on all final state particles requires that they all have a value of one
(ngrf=1). This means that for every final state particle, there was only one photon that was
found to pass the timing requirements (occasionally the reconstruction code will find two
photons that are close enough in time for a time-based selection to be inconclusive). For
the ‘tagrid’ variable, the requirement that the value of this variable be the same for all final
state particles guarantees that the reconstruction code found the same photon for all final
state particles (as the photon determination occurs for every detected final state particle).
These cuts ensure that the events being analyzed include a successful determination of the
incident photon and that this photon is the same for all final state particles thus leading to
a well-defined initial state.

Confidence Level Cut. By performing a cut on the confidence level, one can easily
remove many of the background events, poorly reconstructed events as well as events with
misidentified particles. A confidence level cut of 5% was imposed in this analysis (shown in
Fig 3.17). This cut removes much of the background events while only cutting out 5% of
the good events.
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Figure 3.17: A confidence level distribution generated from run #048326 for a p π+(π−) final state showing
the imposed confidence level cut of 5%.

3.9 Results of Corrections and Cuts

The process of developing and applying energy and momentum corrections during the
course of an analysis serves the purpose of correcting for the effects of the experimental
setup, therefore resulting in a data set that is as nature intended it. Additionally, deter-
mining and enforcing cuts in an analysis serves not only to remove the remaining effects
of the experimental setup but also to remove the contribution to the data set from physics
events not of interest to the analysis (the background). This background may be comprised
of accidental events (where a detected particle was attributed to an event to which it does
not belong), events with an incorrect initial state (misidentification of a photon) and/or
events originating from interactions with matter other than the target material. A typical
method of observing the background is to choose a final state topology and construct the
missing mass of that topology. A single cut on the confidence level greatly reduces this back-
ground but does not entirely remove it. Through the application of vertex position, vertex
timing, photon identification variables, angular and momentum cuts, this background may
be reduced even further or, as in the case of this analysis, almost entirely removed (the
background is negligible after all cuts are imposed). The missing mass distribution seen in
Figure 3.18 was generated for all p π+(π−) events in run #048326 which passed the imposed
cuts (with the exclusion of the confidence level cut).

The confidence level and pull distributions reveal the quality of systematic corrections
as well as how well the covariance matrix errors were determined. Therefore to determine
the quality of the fits, these two quantities are examined. The confidence level distributions
produced in this analysis can be found in Figure 3.19. These confidence level distributions
show the typical peak at zero (corresponding to poor fits, these are cut from the analysis
via the confidence level cut) and a flat behavior from [0.5,1]. Distributions seen in Fig. 3.20
show the normalized slopes (given by Eq. (3.8)) of the confidence level distributions for each
final state topology. Each plot shows a distribution centered around zero. This is a strong
indication that the covariance matrix errors are correct.
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(a) Before Cuts (b) After Cuts

Figure 3.18: A missing mass plot for the final state topology p π+(π−) generated from run #048326 for
events passing all cuts (confidence level cut not imposed). The background events are reduced to a negligible
contribution via the application of cuts imposed on the final state measurements.

(a) p π+(π−) (b) p π−(π+)

(c) π+π−(p) (d) p π+π−

Figure 3.19: A set of confidence level distributions for all final state topologies after the application of all
corrections and cuts. Generated using one run (#048326).
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(a) p π+(π−) (b) p π−(π+)

(c) π+π−(p) (d) p π+π−

Figure 3.20: The normalized slope distributions for each final state topology. Each confidence level
distribution was fitted to a linear equation from [0.5,1] and the normalized slope determined using Equa-
tion (3.8). The behavior of the distributions (centered around zero) indicated the flatness of the confidence
level histograms. Entries that stray away from zero can be attributed to kinematical regions containing low
statistics.

To provide a second check to verify if the covariance matrix errors have been properly
determined, the pull distributions are examined. The following figure (Figure 3.21) shows
all pull distributions resulting from a fit to a p π+π− final state for events in run #048326.
These pulls have been fitted with a Gaussian distribution from [−2,2]. The resulting fits
show a σ close to one, indicative of the covariance matrix errors being properly determined.
Also seen in Figure 3.21 are the mean values of the Gaussian fits of the pull distributions.
The proximity of these mean values to zero affirms that the systematic corrections (energy
loss corrections, momentum corrections and photon energy corrections) were properly de-
termined and applied. A table containing the mean and sigma values of all of the fits seen
in Figure 3.21 can be found in Table 3.1.
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Figure 3.21: Pull distributions generated from a kinematic fit to a p π+π− final state for events in run
#048326. Distributions are fitted with a Gaussian from [−2,2].

Table 3.1: The Gaussian mean (µ) and sigma (σ) values for all fits to the pull distributions seen in
Figure 3.21.

Parameter Mean (µ) Sigma (σ)

pp 0.035 1.008

λp −0.041 1.022

φp 0.015 0.997

pπ+ −0.045 0.982

λπ+ −0.049 1.021

φπ+ −0.080 0.994

pπ− −0.033 0.988

λπ− −0.019 1.024

φπ− −0.058 0.996

Eγ −0.003 1.017
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CHAPTER 4

DATA ANALYSIS

Once the final state topologies of interest have been selected from the data, the corrections
and cuts applied and kinematic fitting performed, the process of extracting the polarization
observables Is and Ic may begin. This chapter will focus on the methods used to extract
these two polarization observables.

4.1 Binning and Angles

In order for any analysis to be carried out, the kinematics involved in the reaction of
interest must be understood. The description of the kinematics involved in the reaction
~γ p → p π+π− requires a choice of five independent kinematic variables. The kinematic
variables chosen for this analysis are cosθpCM , a mass (mpπ+ , mpπ− , or mπ+π−), the incident
photon energy (k), θ∗π+ , and φ∗π+ . A diagram showing the kinematics involved in the analysis
of this p π+π− final state can be seen in Figure 4.1. This diagram illustrates the kinematics
in not only the center-of-mass frame (the blue plane in the figure) but also the decay frame in
which the two final state pions occur back-to-back (the gold plane). The vectors describing
the final state particles in the center-of-mass frame are shown by the vectors drawn with a
solid line while the vectors with a dashed line represent the final state particles in the decay
frame.

The angle φ∗ is a kinematical variable unique to a final state containing two mesons. It
describes the orientation of the decay plane containing the two pions (defined by the z′-axis
and the π′ 4-vector) with respect to the production plane (defined by the incident photon
and recoiling proton) and is measured with respect to one final state pion. This angle (φ∗)
is calculated via two boosts, the first being a boost along the beamline (the z-axis) into
the center-of-mass frame. The second boost occurs along the axis that is antiparallel to the
recoiling proton and results in a boosting into the decay frame where the two final state
pions occur back-to-back. Describing the angle between one of the final state pions and
the axis defined as being anti-parallel to the recoiling proton in the center-of-mass frame
(the z′-axis) is the angle θ∗π. This angle is also calculated via boosting into the pion frame.
For this analysis, the pion from which both angles are measured was chosen to be the π+.
The coordinate system formed to calculate these angles is put together thusly (see also
Figure 4.1):
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1. The z′-axis is formed by adding the 4-vectors of the two final state mesons:

~z ′ = (~π+
CM + ~π−CM ). (4.1)

2. The y′-axis (pointing “up” perpendicular to the production plane) is formed by taking
the cross product of the target proton and the recoiling proton in the center-of-mass
frame:

~y ′ = (~p × ~p ′). (4.2)

3. Finally, the x′-axis is formed by taking the cross product of the y′- and the z′-axes:

~x ′ = (~y ′ × ~z ′). (4.3)

Figure 4.1: A diagram describing (one possible configuration of) the kinematics of ~γp→ p π+π− reactions.
The blue plane represents the center-of-mass (CM) production plane while the gold plane represents the decay
plane (where the two pions are produced back-to-back). Vector drawn with a solid line represent final state
particles in the CM frame while the vectors drawn with a dashed line represent the final state particles in
the decay frame. The pion 4-vectors in the CM frame (~π+

CM + ~π−CM ) are used to form the ~z ′-axis. The
~y ′-axis is formed by determining the cross product of the target and recoil proton’s 4-vector (~p × ~p ′). The
~x ′-axis is then determined by forming the cross product of the ~y ′ and ~z ′ axes (~y ′ × ~z ′). The angle φ∗π+ is
shown here and is the angle between the (π+)′ (the 4-vector of π+ after a boost into the decay frame) and
the ~x ′-axis (which lies in the production plane). The angle θ∗π+ , also shown here, is the angle between the
(π+)′ and the ~z ′-axis.

The data is then binned in three out of these five independent kinematical variables.
These binning variables are: incident photon energy (k), θ∗π+ and φ∗π+ . The decision to
bin in the incident photon energy (Eγ) was a matter of convention while the decision to
bin in the angles θ∗ and φ∗ came from the fact that they are unique to a three-body final
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state. A diagram of the reaction of interest and the angles used for binning can be seen in
Figure 4.1. In terms of photon energy, k, each 200 MeV-wide window of highly polarized
photons is divided into four bins each being 50 MeV wide. With there being 5 different
coherent edge energies, this leads to a total of 20 bins in incident photon energy, covering a
range from 1.1 GeV to 2.1 GeV. For the other two binning variables (θ∗π+ and φ∗π+), 20 bins
in cosθ∗π+ (covering a range from −1 ≤ cosθ∗π+ ≤ 1) and 20 bins in φ∗π+ (covering a range
from −π ≤ φ∗π+ ≤ π) are used. This choice of binning therefore results in a total of 8000
bin combinations per final state topology.

4.2 Phi Distributions

When using unpolarized photons, the production of the final state particles is inde-
pendent of the azimuthal lab angle φ. This analysis, however, involves the use of linearly
polarized photons which breaks this symmetry. Therefore a plot of the distribution of events
over the full range of the lab angle φ (with respect to a particular final state particle) can
be made, revealing this asymmetry.

The two orthogonal linear polarization settings used during g8b, termed PARA and
PERP, denote the relationship between the ~E field of the polarized photon and the axis
where φlab = 0. Therefore a PARA setting indicates that the photon was polarized such
that its ~E field (electric field) oscillates in a plane parallel to φlab = 0 (the floor of the
experimental hall) and the PERP setting indicates that the oscillation of the photon’s ~E
field is perpendicular to φlab = 0. The cartoon seen in Figure 4.2 demonstrates these two
settings. To produce unpolarized photons, an amorphous radiator was used in place of the
diamond radiator. This setting is termed the amorphous (AMO) setting.

(a) PARA (b) PERP

Figure 4.2: A cartoon describing the two linear polarization settings of the photon. For the PARA setting
(a), the ~E field oscillates in a plane parallel to the floor (φ = 0) of the experimental hall while for the PERP
setting (b), the oscillation of the ~E field is perpendicular to the floor of the experimental hall.

During the course of this analysis there were two methods developed to extract the
polarization observables. The common trait between these two methods is that they both
begin with the production of histograms containing the φlab distributions (hereby referred
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to as φ-distributions) containing the φlab value of a final state particle (in this case, the π+)
for all events which pass the imposed cuts. Exploiting the fact that the use of polarized
photons breaks the φ symmetry, events are plotted as a function of the lab angle φπ+ for
each polarization setting (Figure 4.3).

(a) PARA φ-distribution (b) PERP φ-distribution

(c) AMO φ-distribution

Figure 4.3: φ-distributions for each polarization setting for a p π+π− final state using data from the 1.3 GeV
coherent edge setting. All three histograms belong to the same bin combination (1.25 GeV < Eγ < 1.3 GeV,
−1 < cosθ∗π+ < −0.9, 180◦ < φ∗π+ < 198◦). Acceptance effects (such as the support structures of the
Drift Chambers) can be seen in all figures and demonstrate the need for a method which would remove
these acceptance effects. Furthermore, as the error bars for the measurements are an indication of available
statistics, the low-statistics problem for the AMO setting is clearly evident. This low amount of statistics
for the AMO setting leads to observable measurements which also possess large error bars.

Systematic effects which drown out the φ asymmetry can easily be seen in these distri-
butions. An example of such an effect are the support structures of the Drift Chambers
which, as one might expect, affect the distributions as no particle will be detected where the
support structure is. The effects of these support structures can be seen at φpi+ = −150◦,
−90◦, −30◦, 30◦, 90◦ and 150◦ in all three histograms. For this reason, two methods are car-
ried out which remove these systematic effects, leading to a measurement of the polarization
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observables.

4.2.1 Method 1: Using unpolarized (AMO) data

The first method for extracting the polarization observables involves using the unpo-
larized (AMO) data. Even though corrections and cuts have been imposed on the events
that are plotted in the φ-distributions, systematics such as the support structure of the
the Drift Chambers are still present in the distributions. In order to remove these effects,
the φ-distributions for each of the linear polarization settings is divided by the AMO φ-
distribution (for matching bin combinations) (Figure 4.4). The resulting distribution is
then fitted to the double-meson final state equation with the g8b run conditions applied [4]:

I = I0 { 1 + δl [Is sin(2β) + Ic cos(2β) ] }, (4.4)

which when written as a fit equation, becomes:

f(β) = y0 + δl [Is sin(2β) + Ic cos(2β) ], (4.5)

where the quantity y0 represents the possible vertical offset of the φ-distribution and the
corresponding fit.

(a) PARA/AMO (b) PERP/AMO

Figure 4.4: φ-distributions generated by dividing the PARA and PERP φ-distributions by the AMO φ-
distribution (using the histograms seen in Figure 4.3). The solid line on both (a) and (b) represents the
fitting of the distributions with Equation (4.5). Once this fit is performed, the observables Is and Ic can
be extracted. The large error bars and low number of data points seen in both histograms demonstrate
the limitation of extracting the polarization observables in this manner. This limitation arises from the low
amount of statistics contained in the amorphous (AMO) data.

The polarization observables Is and Ic can then be readily extracted from the fitted
φ-distributions. The downside of producing observable measurements in this way is that
the statistics of the φ-distribution to be fit is limited by the number of events in the AMO
distribution. This AMO setting possesses the lowest amount of statistics in the g8b data
set. This reduction of events in the PARA/AMO or PERP/AMO distributions directly
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affects the fits and the fit qualities therefore affecting the final polarization observable
measurements. This difference in statistics can be seen in Figure 4.3. Both the PARA and
PERP phi distributions contain roughly five times the statistics of the AMO φ-distribution
for the same bin combination. In order to produce observable measurements with minimal
statistical errors, another method is needed which does not depend on the statistics of the
AMO polarization setting.

4.2.2 Method 2: Asymmetry between the two linear polarization
settings, PARA and PERP

The second method for extracting polarization observables from the data is independent
of the (statistic-poor) AMO data and therefore leads to observable measurements with
much smaller statistical errors. This method possesses the characteristic that it uses the
asymmetry between the PARA and PERP polarization settings. Just like the previously
discussed method, the starting point is the generation of φ-distributions for both the PARA
and PERP settings. The asymmetry between these φ-distributions is then formed. Finally,
this asymmetry is fit to the asymmetry equation involving PARA and PERP (substituting
in the final state equation for two mesons for each setting):

A(Eγ , θ
∗
π+ , φ

∗
π+ , θ

cm
p ,mpπormππ) =

IPARA − IPERP

IPARA + IPERP
, (4.6)

with m standing for an invariant mass (mππ or mpπ) and I having the form seen in Equa-
tion (4.4) with IPARA and IPERP being defined as:

IPARA = I0 { 1 + δl [Is sin(2β) + Ic cos(2β) ] } (4.7)

and

IPERP = I0 { 1 + (−)δl [Is sin(2β) + Ic cos(2β) ] }, (4.8)

where δl represents the degree of linear polarization. The orthogonality of the two polar-
ization settings, PARA and PERP, gives rise to the minus sign seen in Equation (4.8). The
angle β denotes the azimuthal angle being a combination of φlab and the orientation of linear
polarization (β = φlab + φpolarization) where φpolarization equals 0◦ or 90◦ (0 or π

2 radians).
Placing equations (4.7) and (4.8) in equation (4.6) then gives (after simplification):

A(Eγ , θ
∗
π+ , φ

∗
π+) = y0 +B(Eγ , θ

∗
π+ , φ

∗
π+) (4.9)

where y0 is the vertical offset of the distribution and

B(Eγ , θ
∗
π+ , φ

∗
π+) =

(δ
‖
l + δ⊥l ) Is sin(2β) + (δ

‖
l + δ⊥l ) Ic cos(2β)

2 + (δ
‖
l − δ⊥l ) Is sin(2β) + (δ

‖
l − δ⊥l ) Ic cos(2β)

(4.10)

(here ‖ represents the PARA setting and ⊥ represents the PERP setting).
The resulting φ-distribution can then be fit to this asymmetry equation (4.9). Provided

as an example, the fits of two φ-distributions to this equation for a p π+π− final state can
be seen in Figure 4.5. Once the fit is performed, the polarization observables (being simply
the constants in front of the cosine and sine terms) can be extracted.
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Figure 4.5: Examples of φ-distributions generated using the asymmetry between PARA and PERP which
have been fitted with the final state equation (Equation (4.9)). The distribution seen in (a) corresponds to
1.1 GeV < Eγ < 1.15 GeV, −0.9 < cosθ∗π+ < −0.8, 108◦ < φ∗π+ < 126◦ and the distribution seen in (b)
corresponds to 1.25 GeV < Eγ < 1.3 GeV, −1 < cosθ∗π+ < −0.9, 180◦ < φ∗π+ < 198◦). Both distributions
were generated for a p π+π− final state. By using the asymmetry between the PARA and the PERP
settings to generate the φ-distributions, the number of data points is greater and the error bars for these
points smaller leading to a much better fit.

4.3 χ2 of φ-distributions

The high amount of statistics available in the g8b data set results in the ability to bin
in three or more of the independent kinematical variables (although the statistics contained
in each bin combination decreases as the number of binning variables used increases). The
cost of this however (whether binning in all or three of the kinematic variables), is the large
number of possible bin combinations and therefore a large number of φ-distributions to be
fit. For example, binning in only three of the five kinematic variables for each final state
topology leads to 32000 individual fits of the generated φ-distributions. When considering
the methods used to produce the fitted histograms (PARA/AMO, PERP/AMO, and the
asymmetry between PARA and PERP), this total increases to 96000. This makes it such
that there are too many individual fits to be checked by eye. Due to this large number of
individual fits, the most efficient method for judging the quality of the fits is to examine
the distribution of the χ2 values for the fits. Such a distribution can be seen in Figure 4.6
for a p π+(π−) final state for all bin combinations. The φ-distributions which are fitted to
extract the observables have 30 bins each in φlab leading to 30 degrees of freedom in the
fit. With the freezing of three of these degrees of freedom to use as fit parameters, the final
total degrees of freedom is then 27. As the values of the χ2s coming from each fit should
(ideally) reflect the number of degrees of freedom possessed by the fit, a plotting of the χ2

values from the fits of the φ-distributions is expected to be a distribution centered around
a value of 27. The distribution seen in Figure 4.6 shows such a behavior, indicating quality
fitting of the φ-distributions generated from the data.
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Figure 4.6: A distribution of χ2 values reflecting the fit quality of the fits of the φ-distributions for all
events with a p π+(π−) final state. Each φ-distribution has 30 total degrees of freedom involved in the
fit. With three degrees of freedom being reserved for fit parameters, the total degrees of freedom total 27.
Therefore a χ2 distribution around 27 is an indication that the fits of the φ-distributions are of good quality
and trustworthy.

4.4 Vertical offset of φ-distribution fits

The main fit parameters of interest concerning the fits of the φ-distributions are of course
the polarization observables. However, the vertical offsets of the fitted φ-distributions are
indicative of and hold weight in the discussion of the quality of the measurements of these
observables. Resulting from the method used to produce the observable measurements
(forming the asymmetry between PARA and PERP), this offset is expected to have a value
of zero. To verify this, histograms containing the offsets for each final state topology for all
bin combinations were generated (Figure 4.7). The resulting histograms show a distribution
centered around zero. A fit of the histograms to a Gaussian from [−0.1,0.1] and the results
are shown in the figure. These fit results indicate that the fits of the φ-distributions (and of
course, the φ-distributions themselves) have the appropriate vertical offset consistent with
zero.
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Figure 4.7: Histograms containing the offsets for each final state topology for all bin combinations. A
fit of these histograms to a Gaussian from [−0.1,0.1] show the distributions as being centered around zero.
These fit results indicate that the fits of the φ-distributions (and the φ-distributions themselves) have the
appropriate vertical offset.

4.5 Accounting for detector acceptance

The acceptance of the events occurring in the CLAS detector is not uniform for all
kinematical regions. This kinematically-dependent acceptance must then be considered in
the analysis of the data and presentation of results. The traditional method for accounting
for such acceptance effects is done via Monte Carlo simulations of the data. In these
simulations, events are generated and the detector response to said events simulated. The
results of this simulation can then be analyzed, the acceptance determined and the data
corrected for acceptance.

However, this acceptance can also be accounted for through the use of analysis techniques
using the data alone. In this work, the analysis techniques used to produce observable mea-
surements account for this kinematically-dependent acceptance rendering a Monte Carlo
simulation of the data unnecessary. First of all, both methods used to extract Is and Ic

use only φ-distributions with matching bin combinations to produce the observable mea-
surements for each final state topology. Additionally, each kinematic variable that is used
for binning the data (Eγ , θ∗π+ , φ∗π+) is divided into 20 bins. This leads to bin widths that
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are small enough for the kinematic acceptance to not vary within a particular bin combi-
nation. Therefore the combination of (sufficiently) small bins and the two methods used to
extract the observables leads to this kinematically-dependent acceptance being accounted
for (divided out) by comparing the same region of phase space.

4.6 Systematic Uncertainty

4.6.1 Degree of photon polarization (δl)

One source of systematic uncertainty in this analysis comes from the determination
of the degree of polarization of the photons (δl). In order to carry out this calculation,
the position of the coherent edge, defined as the part the photon energy spectrum with
the highest negative gradient, must be determined. This is done by producing a photon
enhancement plot (such as those seen in Figure 2.8) then fitting this enhancement plot over
the range of the coherent peak. This peak position (determined from the enhancement plot)
is then compared to the ANB analytic bremsstrahlung calculation [57]. This calculation
models the production of linearly polarized photons produced via an electron beam and a
diamond radiator. This modeling allows for the consideration of (and adjustment of) the
electron beam divergence as well as the size of the beam spot, both affecting the coherent
edge position. This calculation is run many times, varying parameters which affect the
degree of polarization such as the electron beam energy, radiator thickness and the geometry
of collimator. A more detailed description of these parameters may be found in [58]. This
is carried out until the ANB calculations show good agreement with the enhancement plot
produced from the data (Figure 4.8). This process is carried out for the entire range of
coherent edge positions. The calculated mean polarization as a function of photon energy
(E-counter) is then read into a look-up table per coherent edge position which is accessed
during the analysis.

Figure 4.8: The top plot of this figure shows the collimated photon energy spectra compared with the
result from the ANB calculation for the 1.3 GeV coherent edge. The bottom plot here shows the degree of
photon polarization versus photon energy.
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The systematic uncertainty involved in the calculation of the photon’s degree of linear
polarization can be attributed to four sources. The first of these sources arises from the
dependence of the degree of polarization on the energy measurement of the photon coming
from the Tagger E-plane. In the Tagger hodoscope, up to six of the E-counter bins can be
associated with a single T-counter bin. This leads to an uncertainty in the true position
of the coherent peak, affecting the calculated degree of polarization. The second source
comes from the set of parameters used in the ANB calculations. This uncertainty can be
attributed to the fact that there exists a range of values these parameters may possess
which would lead to a satisfactory comparison with the data. Thirdly, instabilities in the
position of the electron beam lead to instabilities in the position of the coherent edge. This
variation in edge position leads to a fluctuation in the degree of polarization of the photons
contained in the peak. This fluctuation is not handled in the ANB calculations which leads
to an uncertainty in the calculated value of δl. Lastly, the normalization procedure can
be affected by the “spikiness” of the photon energy spectra which may cause errors when
producing the enhancement plots. These effects were studied in reference [57] with the total
systematic uncertainty in the degree of photon polarization being found to be ±4.3%.

4.6.2 Fit offsets (y0)

Another possible source of systematic error can be attributed to the technique used to ex-
tract the observable measurements: forming and fitting the asymmetry, A(Eγ , θ

∗
π+ , φ

∗
π+ , θ

cm
p ,

(mpπ,mππ)), between the PARA and PERP settings. Forming and fitting the φ-distributions
in this manner (see Eq. (4.6)) results in a vertical offset of zero. As seen in Figure 4.7, a
plotting of the vertical offsets for each final state topology (y0) coming from the fits of the
φ-distributions shows (for all kinematic bin combinations) shows a distribution around zero.
However, while the distribution indicates a quality fitting of the data, not all offsets are
equal to zero. The results of a fitting of each of the histograms contained in Figure 4.7 to a
Gaussian from [−0.1,0.1] demonstrates this point. While these (Gaussian) fit results show
only small divergences from zero, the inclusion of the fits corresponding to offset values
above or below zero may introduce a systematic error. It is not clearly known however, ex-
actly how these vertical offsets affect the final observable measurements let alone the effect
of small vertical offsets. Nevertheless, as the variation around zero is small, the potential
systematic error associated with the observable measurements coming from the fits leading
to these (non-zero) offsets is also expected to be very small.

4.6.3 Effects from averaging

Forming the average value for the polarization observables Is and Ic provides a way of
extending the observable measurements across topology-dependent acceptance holes. These
average values are determined by first extracting the polarization observables per kinematic
bin combination per final state topology. Once all of the observable measurement have been
made, this average value is determined.

However, the averaging of these observable measurements to span these acceptance
holes may introduce a systematic error. The origins of this error lies in the integration
over two of the kinematic variables: invariant mass (mpπ or mππ) and cos(θCMp ). As these
variables were not used for binning the data (in the main part of the analysis), the observable
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values as a function of these two variables is not presently known. More importantly,
how the polarization observables behave in the acceptance holes is not known. These
acceptance holes are regions of phase space (as a function of these two integrated-over
kinematic variables) where the final state of interest was not produced. By averaging
the observables across all studied final state topologies, the assumption is made that the
topology-dependent acceptance holes in these two variables are the same for all final state
topologies. This, however, is known to not be reality. Therefore a study into the error
introduced from this averaging is needed to determine how the integration over these two
kinematic variables affects the final measurements.
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CHAPTER 5

MEASUREMENT RESULTS AND DISCUSSION

5.1 Measurements of Is and Ic

The extraction of the polarization observables Is and Ic comes from the extraction of fit
parameters. These parameters are contained in the fit function applied to the φ-distributions
produced using the asymmetry between the PARA and PERP φ-distributions (Method 2).
This extraction is a relatively straight forward one.

As previously stated, using the asymmetry for PARA and PERP for the same kinematic
bin combinations (and therefore the same kinematic regions) removes acceptance effects
which are dependent in the three binning variables used (two of the kinematic variables,
m and cos θCMp , are integrated over). Building on this concept and practice, the polariza-
tion observables are also independently measured for each final state topology (p π+(π−),
p π−(π+), π+π−(p), p π+π−). Therefore, each set of polarization observable measurements
(one set of measurements per topology) carries with it the acceptance “holes” specific to
that final state. These acceptance holes are kinematic regions in which the final state par-
ticles of interest were not produced and is dependent upon the final state topology. This
lack of statistics means that for a particular topology, the polarization observables cannot
be measured for certain kinematic regions. The effect of these holes on the observable
measurement can be seen in Figure 5.1 as a breaking in the distribution of the observable
measurement. A good example of such breaking can be seen in Figure 5.1 in the eleventh
block (corresponding to 0.0 < cosθ∗π+ < 0.1) where the blue points (representing the ob-
servable measurement for a specific final state topology) are absent in the middle of the
plot.

However, since the extraction of the observables Is and Ic was carried out per kinematic
bin combination per final state topology, the topology- and kinematic-dependent acceptance
effects have been appropriately accounted for (again, in terms of the three binning variables
used). These individual measurements can then be combined to form a continuous distribu-
tion for all kinematical regions in which the data was binned. This is done by averaging the
observable measurements for all topologies. This averaging can first be seen in Figure 5.1
as the set of red points which extend over the holes in the observable measurement for a
single final state (blue points). Returning to the example of the 0.0 < cosθ∗π+ < 0.1 block
of Figure 5.1, the red dots (the average across topologies) span much better the topology-
dependent acceptance hole previously discussed.
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Figure 5.1: Measurement of the polarization observable Is for a p π+π− final state for
1.50 < Eγ < 1.55 GeV. The observable measurements (blue points), being quite continuous across bins,
are broken up by the effects of the topology-dependent acceptance. The averaging of the observable mea-
surement across all topologies is represented by the red points. This averaging is conducted per final state
topology per kinematic bin combination.

5.1.1 Observable Measurement: Ic (also known as Σ)

The quantity Σ is a fairly well-known polarization observable which exists in the final
state equation for both a single- and double-meson final state. This observable has been
measured by several analyses involving a single-meson final state and more recently, for
final states containing two mesons (such as the measurements coming from CB-ELSA for
a pπ0η final state [42]). For a final state containing two neutral pions, measurements of
this observable have recently been carried out at GRAAL for Nπ0π0 final states [40, 41].
However, previous to this analysis, this observable has not been measured for a final state
containing two charged pions. For this analysis of double charged-meson final states, this
observable is termed Ic [4]. This observable exists as the coefficient of the cosine term in
the final state equation (equation (1.5)) as well as the fit equation (equation (4.9)) and is
expected to be symmetric around zero (φ∗π+ = 0). This is in fact the observed symmetry
seen in the distribution of Ic measurements. A further discussion regarding the observed
behavior of Ic can be found in Sections 5.2.1 and 5.2.2.

The following set of figures show a sample of the measurements made for Ic (Figures
5.2 through 5.5). The measurements presented in these histograms represent the averaged
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value of the polarization observable (averaged across final state topologies). To produce
these measurements, the φ-distributions were binned in photon energy (k), cosθ∗π+ , and φ∗π+ .
The manner in which the results are presented reflects such a binning although a binning in
any combination of the five kinematic variables is possible. In each of these figures (Figures
5.2 through 5.5), the y-axis represents the extracted value of the polarization observable
and the x-axis represents the φ∗ values measured with respect to the π+ (20 bins in φ∗

were used, hence there are 20 points on the x-axis). Each entire figure corresponds to a
single bin in k (Eγ) thereby providing a glimpse into the measurement results for four of
the five coherent edge settings (1.3 GeV, 1.5 GeV, 1.7 GeV and 2.1 GeV) with each square
representing a bin in cosθ∗π+ . Measurements of Ic using the data from the 1.9 GeV coherent
edge position are not presented as the data from this coherent edge position was unusable.
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Figure 5.2: Measurement of the polarization observable Ic for 1.20 < Eγ < 1.25 GeV. The red points seen
in the figure represent the average value of the observable across all final topologies for the shown kinematic
bin combination. The errors bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size representing the measurement.
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Figure 5.3: Measurement of the polarization observable Ic for 1.40 < Eγ < 1.45 GeV. The red points seen
in the figure represent the average value of the observable across all final topologies for the shown kinematic
bin combination. The errors bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size representing the measurement.
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Figure 5.4: Measurement of the polarization observable Ic for 1.60 < Eγ < 1.65 GeV. The red points seen
in the figure represent the average value of the observable across all final topologies for the shown kinematic
bin combination. The errors bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size representing the measurement.
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Figure 5.5: Measurement of the polarization observable Ic for 2.00 < Eγ < 2.05 GeV. The red points seen
in the figure represent the average value of the observable across all final topologies for the shown kinematic
bin combination. The errors bars for each data point represent the statistical error for the measurement.
The error bars here are more noticeable due the lower amount of statistics for the 2.1 GeV coherent edge
(when compared to the other coherent edge settings).

When comparing the topology-specific extractions for Ic to the averaged values of Ic,
a few discrepancies may be noted. As seen in Figure 5.6, for a few bins in cos(θ∗π+) the
topology-specific and averaged values do not agree. This disagreement occurs mainly in the
−1 < cos(θ∗π+) < −0.9 bin and again in the last three cos(θ∗π+) bins (0.7 < cos(θ∗π+) < −1).
The exact cause of this discrepancy and why it only shows itself in measurements of Ic is
currently not completely understood. Acceptance effects due to the integration over two of
the kinematic variables, mpπ (or mπ+π−) and cos(θCMp ), may be the root of this discrepancy.
Further studies into the effects of this integration as well as symmetry effects are needed in
order to settle this issue.
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Figure 5.6: Measurement of the polarization observable Ic for a p π+(π−) final state for
1.20 < Eγ < 1.25 GeV. The observable measurements for the p π+(π−) final state are represented by
the blue points while the red points represent the average value of the observable across all final topologies
for the shown kinematic bin combination. The errors bars for each data point represent the statistical error
for the measurement. For almost all of the data points, this error is smaller than the symbol size representing
the measurement.

5.1.2 Observable Measurement: Is

The second measured observable, Is, is one that is unique to multi-meson final states
and appears in the double-meson final state equation (equation (1.5)). This observable is
a quantity for which no previous measurement has been made for a final state containing
two pions, let alone the specialized case of two non-neutral pions. For ~γp → pπ0η reactions
however, this observable has been measured for the first time at CB-ELSA [42]. This
observable is extracted from the φ-distributions as the coefficient of the sine term in the
fitting equation (equation (4.9)) and is expected to be anti-symmetric around φ∗ = 0. A
further discussion of this expected behavior may be found in the Sections 5.2.1 and 5.2.2.

The following set of figures show a sample of the measurements made for Is (Figure 5.7
through 5.10). The measurements presented in these histograms represent the averaged
value of the polarization observable (averaged across final state topologies). These mea-
surements were extracted using the same method as was used for Ic and thusly presented
in the same manner. The y-axis is again the value of the polarization observable and the
x-axis the φ∗ of the π+. Each figure represents a single bin in photon energy (k) for the
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1.3 GeV, 1.5 GeV, 1.7 GeV and 2.1 GeV coherent edge settings. Each individual box again
represents a single bin in cosθ∗π+ . As mentioned in the description of the measurements of
Ic, extractions of the polarization observable Is are not shown for the 1.9 GeV coherent edge
setting due to the lack of usable data.
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Figure 5.7: Measurement of the polarization observable Is for 1.20 < Eγ < 1.25 GeV. The red points seen
in the figure represent the average value of the observable across all final topologies for the shown kinematic
bin combination. The errors bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size representing the measurement.
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Figure 5.8: Measurement of the polarization observable Is for 1.40 < Eγ < 1.45 GeV. The red points seen
in the figure represent the average value of the observable across all final topologies for the shown kinematic
bin combination. The errors bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size representing the measurement.
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Figure 5.9: Measurement of the polarization observable Is for 1.60 < Eγ < 1.65 GeV. The red points seen
in the figure represent the average value of the observable across all final topologies for the shown kinematic
bin combination. The errors bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size representing the measurement.
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Figure 5.10: Measurement of the polarization observable Is for 2.00 < Eγ < 2.05 GeV. The red points seen
in the figure represent the average value of the observable across all final topologies for the shown kinematic
bin combination. The errors bars for each data point represent the statistical error for the measurement.
The error bars here are more noticeable due the lower amount of statistics for the 2.1 GeV coherent edge
(when compared to the other coherent edge settings).

The following figure (Figure 5.11) demonstrates the high level of agreement seen between
the topology-dependent measurements of Is and the averaged value of Is. In this figure,
the measurement of Is for a p π+(π−) final state is shown by the blue points and the
measurement of Is averaged across all final state topologies is shown by the red points.
These measurements were both produced for 1.40 < Eγ < 1.45 GeV. Unlike the observable
Ic, the topology-dependent measurements of Is agree very well with the averaged values of Is.
This high level of agreement is even observed in the early cos(θ∗π+) bins where the observable
exhibits a more complicated behavior. While only one figure is shown here demonstrating
this agreement, the topology-dependent measurement of Is and the averaged value exhibit
this behavior for all kinematic bin combinations.

92



-2 0 2-1

-0.5

0

0.5

1

 ) < -0.9+πθ-1.0 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < -0.8+πθ-0.9 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < -0.7+πθ-0.8 < cos( 

-2 0 2-1

-0.5

0.5

1

 ) < -0.6+πθ-0.7 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < -0.5+πθ-0.6 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < -0.4+πθ-0.5 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < -0.3+πθ-0.4 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < -0.2+πθ-0.3 < cos( 

-2 0 2-1

-0.5

0.5

1

 ) < -0.1+πθ-0.2 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < 0.0+πθ-0.1 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < 0.1+πθ-0.0 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < 0.2+πθ0.1 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < 0.3+πθ0.2 < cos( 

-2 0 2-1

-0.5

0.5

1

 ) < 0.4+πθ0.3 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < 0.5+πθ0.4 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < 0.6+πθ0.5 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < 0.7+πθ0.6 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < 0.8+πθ0.7 < cos( 

-2 0 2-1

-0.5

0.5

1

 ) < 0.9+πθ0.8 < cos( 

-2 0 2-1

-0.5

0

0.5

1

 ) < 1.0+πθ0.9 < cos( 

0

1

0

1

0

1

0

1

-2 0 2-2 0 2-2 0 2-2 0 2-2 0 2

+π φ

s I

Figure 5.11: Measurement of the polarization observable Is for a p π+(π−) final state for
1.40 < Eγ < 1.45 GeV. The observable measurements for the p π+(π−) final state are represented by
the blue points while the red points represent the average value of the observable across all final topologies
for the shown kinematic bin combination. The errors bars for each data point represent the statistical error
for the measurement. A comparison between the blue and the red points here demonstrates the high level of
agreement between the topology-dependent observable extraction and the averaged value of the polarization
observable.

The extracted values of both polarization observables show a clear dependence on cosθ∗π+

with measurements being continuous across cosθ∗π+ bins. For small values of cos(θ∗π+), the
observables are rather small in magnitude with most measurements showing a value of
Is and Ic smaller than ≈ 0.5. This behavior however changes as the value of cos(θ∗π+)
increases. Measurements of Is and Ic show that both observables become larger as cos(θ∗π+)
approaches zero with some values approaching the maximum value of one. The magnitude
of the observables then begins to decrease as the value of cos(θ∗) moves towards +1.

5.2 Discussion of the Measurements of Is and Ic

5.2.1 Expected Behavior of Is and Ic

The polarization observables Is and Ic are predicted to have a certain behavior according
to theory. This expected behavior states that, as a function of φ∗, the observable Is should
be seen to be odd and Ic should be seen as even. The source of this behavior can be traced
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back to the kinematics of the reaction under investigation and how they relate to helicity
amplitudes (M ) [59, 60]. When considering helicity amplitudes for a 2-body final state,
a comparison of these amplitudes before and after a parity transformation of the reaction
kinematics shows that they are equivalent in magnitude. This relation can be written as:

M
−λγ
−λN−λN′

= ±Mλγ
λNλN′

, (5.1)

where λγ is the helicity of the photon, λN is the helicity of the target nucleon and λN ′ is
the helicity of the recoil nucleon.

For a 3-body final state however, this is not the case. When the parity transformation
is performed for this type of reaction, the magnitude of the helicity amplitudes are not
equivalent and require a rotation of π in φ∗ in order to be made equivalent (see Figure 5.12).
This means that the helicity amplitudes are related by:

M
−λγ
−λN−λN′

(φ∗) = ±Mλγ
λNλN′

(2π − φ∗) (5.2)

A consequence of this rotation in kinematic space is that some of the polarization ob-
servables will show themselves to be odd and the others even under the transformation
of φ∗ → 2π - φ∗. Furthermore, any observables that show/are-predicted-to-show an odd
behavior in 3-body final states are zero for 2-body final states as a result of their “oddness”.

5.2.2 Analysis of the Behavior of Is and Ic

As the observables are expected to exhibit certain behaviors, the behavior of the ex-
tracted values can be examined in order to verify this behavior. To demonstrate and carry
out this examination, the averaged observable measurements seen in Figures 5.2 and 5.7
(chosen just to provide an example) were fit with a Fourier expansion of sine (for Is) and
cosine (for Ic). In addition to this expansion, an additional term was added to the fit equa-
tion: cosφ∗ for the equation used to fit Is and sinφ∗ for the equation used to fit Ic. Therefore
the two fit equations used are:

Is(φ∗) = f(φ∗) = A0 + A1sin(φ∗) + A2sin(2φ∗) + A3sin(3φ∗) + A4sin(4φ∗)

+ A5sin(5φ∗) + A6sin(6φ∗) + A7sin(7φ∗) + A8cos(φ
∗) (5.3)

and

Ic(φ∗) = f(φ∗) = A0 + A1cos(φ
∗) + A2cos(2φ

∗) + A3cos(3φ
∗) + A4cos(4φ

∗)

+ A5cos(5φ
∗) + A6cos(6φ

∗) + A7cos(7φ
∗) + A8sin(φ∗) (5.4)

with the “0th” term of equation (5.4) being A0cos(0*φ∗).

For the observable Is, it is expected that the contribution to the fit of the extraction
be dominated by the A1sin(φ∗) term with some contribution from the A2sin(2φ∗), a small
contribution from the A3sin(3φ∗) term and no contribution from the A0, A4cos(φ∗) and the
higher-order terms [60]. The fit results seen Figure 5.13 show this type of behavior. The
contribution from the A1sin(φ∗) term is clearly shown to be dominant for almost all cos(θ∗)
bins. The A2sin(2φ∗) term shows it contributes in the region of −0.6 < cosθ∗ < −0.1 with its
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(a) (b)

(c)

Figure 5.12: Three diagrams showing the parity transformation leading to even and odd polarization
observable for a 3-body final state. In (a), a choice of axes is shown for spin orientations (top) and momentum
(bottom). The image seen in (b) shows the same system after a parity transformation (xi → −xi). Finally,
(c) shows the rotation of axes by the angle π around the y-axis. This rotation in φ∗ results in the momenta
of the final state particles being what they were before parity transformation. Image source: [59].
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contribution being smaller than the A1sin(φ∗) term for cosθ∗ > −0.1. A small contribution
from the A3sin(3φ∗) is seen in the early cosθ∗ bins with little to no contribution seen for
the A0, A4cos(φ∗) and higher order terms.

Figure 5.13: The results of the fitting of the averaged observable measurements with equation (5.3) showing
the contributions of the different terms to the fit as a function of cos(θ∗π+). The contribution from the A0

term is shown as the black squares, the A1sin(φ∗) contribution is shown by the red stars, the A2sin(2φ∗)
contribution is shown by the blue +’s, the contributions from the A3sin(3φ∗) through A7sin(7φ∗) terms are
shown by the triangles. Lastly, the A8cos(φ∗) contribution is shown by the black ◦’s.

The observable Ic (as a function of cosθ∗) is expected to show a dominant contribu-
tion from the A0 and A1cos(φ∗) terms with an additional contribution from the A2cos(2φ∗)
term. The contributions from the A3cos(3φ∗) through A7cos(7φ∗) terms and A8sin(φ∗) are
expected to be very small, almost zero [60]. This behavior is verified in Figure 5.14. Al-
though fluctuating and trading off who is more dominant, the A0, A1cos(φ∗) and A2cos(2φ∗)
terms show themselves to be the main contributors to the fit for all cosθ∗ bins. The contri-
bution from the A3cos(3φ∗) term shows itself mainly in the early cosθ∗ bins in the region of
−0.9 < cosθ∗ < −0.5 while in the other bins, it is on par with the higher order terms. These
higher order terms, as expected, show themselves to not contribute much to the fitting of
the extraction and the sine term shows itself to possess no influence.
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Figure 5.14: The results of the fitting of the averaged observable measurements with equation (5.4) showing
the contributions of the different terms to the fit as a function of cos(θ∗π+). The contribution from the A0

term is shown as the black squares, the A1cos(φ∗) contribution is shown by the red stars, the A2cos(2φ∗)
contribution is shown by the blue +’s, the contributions from the A3sin(3φ∗) through A7sin(7φ∗) terms are
shown by the triangles. Lastly, the A8cos(φ∗) contribution is shown by the black ◦’s.

The measurement results for (Is) and (Ic) can be checked via a fit of the measurement
values as a function of cosθ∗. This check was carried out by fitting the observable mea-
surements averaged across all final state topologies with an expansion of cosine (Ic) and
sine (Is). This fitting shows that overall, both observables exhibit their respective expected
behavior. For Is, the small modulations (or flatness) seen in the early cosθ∗ bins is reflected
in the fitting of the Is extraction. In these bins, all of the fit terms are close to zero. As
the observable begins to exhibit modulations however, the expected contributions coming
from the terms in the fit equation become very apparent. When considering Ic, it is ob-
served that for cosθ∗ < 0, the observable extractions show a more complicated behavior
than for later cosθ∗ bins. This shows itself in the fit results as a brief contribution from the
A3sin(3φ∗) term as well as a shifting in which one of the first three terms is dominant. For
cosθ∗ > 0, the observable measurements (as a function of φ∗) smooth out. This behavior
is also reflected in the fit results as a consistent contribution from the A0 and A1cos(φ∗)
terms. For both polarization observables, the higher order terms do not contribute much
to the overall fit.
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5.2.3 Is and Ic vs Invariant Mass: Comparison to Predictions

The absence of a complete set of Constituent Quark Model calculations to which the
measurements of Is and Ic can be compared makes an interpretation of the results a difficult
task. However, there does exist a few predictions to which these observables may be com-
pared as provided by Winston Roberts [60]. Two sets of these predictions may be found in
Figure 5.15 with the predicted value of the observables Is and Ic being plotted as a function
of the pπ+ invariant mass (mpπ+).

(a) Is v. mpπ+ (b) Ic v. mpπ+

Figure 5.15: Model calculations provided by Winston Roberts [4, 60] which show the predicted values
of the polarization observables Is (a) and Ic (b) for γp → p π+π− reactions as a function of mpπ+ . These
predictions are shown for various values of φ∗ with the inclusion or exclusion of certain resonances. The black
curve represents φ∗ ≈ 0, red represents φ∗ ≈ π

6
, green represents φ∗ ≈ 2π

3
, and blue represents φ∗ ≈ π. For

each color, the solid line represents a full model calculation including all resonances (the baryons considered
here have a spin of 3/2 or less), the dashed lines represent model calculations with the omission of the
S31(1900) ∆∗ resonance and the dot-dashed lines represent the omission of the P31(1910) ∆∗ resonance.
Here, the angle φ∗ (for a p π+π− final state) is defined as the angle between the plane formed by the two
pions and the reaction plane (measured with respect to one of the final state pions) (see Fig. 4.1).

In order to extract the polarization observables in the manner in which they are displayed
in Figure 5.15, new measurements were made with the data being re-binned in Eγ , φ∗π+ and
mpπ+ . The extracted values of the observables Is and Ic now as a function of invariant mass
can be seen in Figures 5.16 and 5.17. Here the average values of the observables (averaged
across all topologies post-extraction) are shown. The y-axis is once more the value of the
polarization observable while the x-axis represents the invariant mass of the pπ+ system
(mpπ+). Each individual box seen in the figures represents a single bin in φ∗π+ .

While the predicted values of the observables are presented in a manner different than
the extractions, a general comparison may still be discussed. It should be noted however,
that the extractions seen in Figures 5.16 and 5.17 cover an invariant mass range with a
maximum of ≈ 1.85 GeV while the predictions seen in Figure 5.15 covers and invariant
mass range up to ≈ 2.45 GeV. This difference therefore makes a discussion regarding the
comparison for mpπ+ > 1.85 GeV not feasible. In addition to this, the predicted values
of the observables seen in Figure 5.15 are for specific, singular values of φ∗π+ while the
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measurements are binned in φ∗π+ with each bin covering 0.314 radians. Therefore it should
not be expected that the predictions and the extractions as presented match exactly as the
extractions include contributions from the range of φ∗π+ contained in each bin.

The comparison between the magnitudes of the model predictions and the extractions
shows them to be rather similar. In general, the predictions show a magnitude that is
smaller than the observed magnitude of the observables. More importantly though, the
prediction that the observables will show themselves to be “large” (meaning that they are
not flat and in fact show an undeniable variation in magnitude) for some values of φ∗

and small for others has been shown to be true. For instance, a comparison between the
prediction for Is for φ∗ ≈ 0 seen in Figure 5.15(a) (the black line) to the measurement seen
in Figure 5.16 for φ ≈ 0 (the tenth and eleventh φ∗ bin) shows both observables to be rather
flat. Furthermore, a comparison between the prediction for Ic for φ∗ ≈ 0 (again denoted
by the black line) seen in Figure 5.15(b) and the extracted value as shown in Figure 5.17
for φ ≈ 0 (the tenth and eleventh φ∗ bin) both show the observable peaking at a large
value. The referred to prediction for Ic seen in Figure 5.15(b) peaks at a value of 0.4 while
the corresponding observable measurement peaks at a value of 0.7. While the observable
measurement in this example is larger than the predicted value, the point remains that
they both exhibit these large, non-zero values for the chosen value (or range) of φ∗. This
comparison may be carried out again, this time comparing the predictions for Is and Ic

seen in Figure 5.15 for φ∗ ≈ π (the blue curves) to the extracted values of Is and Ic seen
in the last φ∗ bin of Figures 5.16 and 5.17. The prediction for Is for this value of φ∗ says
that the observable should exhibit a small yet non-zero value in the invariant mass range in
which the observable is presented. The measurement seen in Figure 5.16 shows this small
yet non-zero magnitude. The differences in the shape of the observable in this example
have some root in the fact that a prediction for a fixed value of φ∗ is being compared to a
measurement for a range of φ∗. When comparing the prediction for Ic for φ∗ ≈ π to the
extracted value of Ic it can be seen that both observables exhibit a maximum magnitude
of ≈ 0.4 (although for different pπ invariant mass values). The early predictions for the
polarization observables Is and Ic, while generally possessing a smaller magnitude than the
extracted values, do show a level of agreement with the observable measurements presented
in this section.

The behavior of the extracted observables as a function of invariant mass may also be
compared to the theoretical predictions. Immediately one may notice that the flat, zero
value for Is for φ∗ ≈ 0 (seen as the black line in Figure 5.15(a)) is apparent in the data
(Figure 5.16). The shapes and behavior of the red, green, and blue curves (corresponding
to predictions for different fixed values of φ∗π+ seen in Figure 5.15(a)) can also be recognized
in the data (with these three values of φ∗π+ corresponding to bin numbers 12, 17 and 20 in
Figure 5.16). A comparison of the predictions seen in Figure 5.15(b) to the measurements
seen in Figure 5.17 shows a lesser amount of agreement. Firstly, there appears to be a
minus sign difference (inversion) between the predicted values and the measured quantities
for several values of φ∗π+ with the blue, red and black curves seen in Figure 5.15(b) being
examples of this (corresponding to φ∗π+ bin numbers 12, 17 and 20 in Figure 5.17). The
prediction for Ic for φ∗π+ = 2.0876 radians (the green curve) however does not seem to match
the data. Presently an explanation of this is not available but should be fleshed out once a
complete set of model calculations is made available.
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Figure 5.16: Measurement of the polarization observable Is averaged across all final state topologies for
1.60 < Eγ < 1.65 GeV. The errors bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size representing the measurement.
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Figure 5.17: Measurement of the polarization observable Ic averaged across all final state topologies for
1.60 < Eγ < 1.65 GeV. The errors bars for each data point represent the statistical error for the measurement.
For almost all of the data points, this error is smaller than the symbol size representing the measurement.

A further comparison between the theoretical predictions of the polarization observables
and the extracted measurements can be made through the examination of the behavior of
the observable versus invariant mass (or invariant mass squared). In this comparison, the
influence of certain intermediate states on the polarization observable may be seen when
inspecting the observable’s value at the mass (or mass squared) of the intermediate state.
As an example, Figure 5.18 shows a prediction of the polarization observable Ic plotted
versus the pπ+ invariant mass (mpπ+) [4, 60]. Here it can be seen that at the mass of
the ∆++(1232) (∆++ → pπ+), a feature in the value of the polarization observable for
all fixed values of φ∗. This feature presents itself as a bump in the observable value or
a highly negative slope. The set of plots seen in Figure 5.19 are measurements of the
polarization observable Ic produced by binning in photon energy (Eγ), φ∗π+ and m2

pπ+ . Here

at the mass squared of the ∆++(1232), features are also observed in the measurement of
the polarization observable. If this process is repeated again with the predicted value of the
observable Ic plotted as a function of the π+π− invariant mass (mπ+π−), the influence of the
ρ0(770) (ρ0 → π+π−) can also be seen (Figure 5.20). A comparison between this prediction
and the measurements produced by binning in Eγ), φ∗π+ and m2

π+π− shows the presence
of this intermediate state (the ρ0(770) through its effect on the polarization observable
(Figure 5.21). These effects are clear evidence of the presence of these intermediate states
in the γp → p π+π− reactions.
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Figure 5.18: Model calculations provided by Winston Roberts [4, 60] which show the predicted values
of the polarization observable Ic for γp → p π+π− reactions as a function of mpπ+ . On the mass axis,
at the mass of the ∆++(1232), a feature is observed in the predicted value of Ic for all fixed values of φ∗

(represented by the different colors). This feature presents itself as a bump in the distribution or a highly
negative slope.
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++(1232) ++(1232) ++(1232) ++(1232) ++(1232)

Figure 5.19: Measurements of Ic produced using a binning in Eγ), φ∗π+ and m2
pπ+ . Here

1.60 GeV < Eγ < 1.65 GeV. Each square represents a bin in φ∗π+ while the x-axis represents the bin-
ning in m2

pπ+ and the y-axis represents the extracted value of the polarization observable. At the point on

the x-axis corresponding to the square of the ∆++ mass, a feature is seen in the observable measurement.
This indicates the presence of this intermediate state.
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Figure 5.20: Model calculations provided by Winston Roberts [4, 60] which show the predicted values of
the polarization observable Ic for γp → p π+π− reactions as a function of mπ+π− . On the mass axis, at the
mass of the ρ0(770), a feature is observed in the predicted value of Ic for all fixed values of φ∗ (represented
by the different colors). This feature present itself as a rapid change in slope in the distribution.
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Figure 5.21: Measurements of Ic produced using a binning in Eγ), φ∗π+ and m2
π+π− . Here

1.60 GeV < Eγ < 1.65 GeV. Each square represents a bin in φ∗π+ while the x-axis represents the bin-
ning in m2

π+π− and the y-axis represents the extracted value of the polarization observable. At the point
on the x-axis corresponding to the square of the ρ0 mass, a feature is seen in the observable measurement.
This indicates the presence of this intermediate state.

105



CHAPTER 6

SUMMARY

The major focus of modern nuclear physics (and really, all of physics) is gaining an
understanding of the nature of the world around us. In Hadronic Nuclear Physics, the
focus is gaining an understanding of the two most fundamental systems found in nature:
the baryon and the meson. These two particle types are considered as bound states of quarks
with the baryon containing three quarks (qqq) and the mesons containing a quark, anti-quark
pair (qq̄). As these particles are systems, a study of their behaviors when excited can and
does reveal the underlying dynamics otherwise hidden from science. Presently, theoretical
predictions from a fundamental theory are not available to predict the behavior of these
systems (specifically, the baryon). However, calculations coming from model predictions
(Constituent Quarks Models) are possible and provide a “best estimate” in regards to
describing the excited spectrum of baryons.

A pressing issue in Hadronic Nuclear Physics has it origins in the comparison of model
predictions coming from the various Constituent Quark Models (CQMs) and experimental
findings (“various” because the different model calculations differ in how they treat the
short-range interactions between the quarks in the baryons). This discrepancy comes from
the fact that many more resonances are predicted to exist than have been experimentally
measured. This is the infamous missing resonance problem. This discrepancy is currently
one of the most driving motivations in Hadronic Nuclear Physics and the focus of many
experimental queries, starting with πN scattering and more recently, γN experiments.

This missing resonance problem is further compounded by the extremely short lifetimes
of the excited baryons. These short lifetimes lead to these resonances possessing mass
peaks which are both broad and overlapping. This causes a major issue in separating and
identifying specific resonances via a mass scale. Therefore measurable quantities that arise
when polarization is introduced (as in ~γN experiments), called polarization observables, are
sought after. These polarization observables are highly sensitive to which resonances are
produced/contained in the excited spectrum of the baryon. The measurement of two such
polarization observables which exist for ~γ p → p π+π− reactions called Is and Ic was the
focus of this work.

Measurements of Is and Ic were made using data gathered during the g8b run period
using the CLAS detector for incident polarized-photon energies of 1.1 GeV < Eγ < 2.3 GeV
for ~γ p→ p π+π− reactions. The statistics available in the g8b data set for the reaction under
investigation allowed for a binning in incident photon energy of 50 MeV and twenty bins in
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both cos(θ∗π+) and φ∗π+ . Using this binning, measurements of Ic and Is were conducted via
a fitting of event distributions as a function of φlab using the asymmetry between the two
polarization settings, PARA and PERP. This work therefore presents the first measurements
of Ic for a double-charged pion final state and the first measurements of Is for a double-pion
final state (let alone a final state with two charged pions).

The extractions of Is and Ic obtained for ~γ p→ p π+π− reactions show these observables
to be fairly large with values approaching one (the maximum value possible). These two
observables also show a dependence on the kinematic variables in which they are binned
and presented. With the measurements presented in the manner seen in this work, both
observables show an increase in magnitude as cos(θ∗) increases (starting from cos(θ∗) = −1).
The magnitude of the observables is seen to peak as cos(θ∗) approaches zero before it begins
to decrease again as the value of cos(θ∗) moves towards +1.

To carry out a check of the extracted values of Is and Ic, a fit of the extractions to a
function representing their respective predicted symmetries was conducted. The antisym-
metry of Is was checked by fitting the extracted values (as a function of φ∗π+) with a Fourier
expansion of sin(φ∗π+) (up to seven terms) as well as a cos(φ∗π+) function. The results of this
fit show that the behavior of this observable indeed does show a sin(φ∗π+) and sin(2φ∗π+) be-
havior with a temporary and small contribution from the sin(3φ∗π+) term. No contributions
from higher order sine terms as well as the cosine term were observed. The measured values
of Ic were also checked in the same manner but with a function containing an expansion
of cos(φ∗π+). This function contained a total of seven terms in the expansion of cosine and
an additional sin(φ∗π+) term. The fit results show that the dominant contribution of this
fitting comes mainly from the first three terms, a small contribution from the fourth therm
and no contribution from the higher-order terms or the sin(φ∗π+) term.

The measurement of these two polarization observables will serve to shed light on the
issue of the missing resonance problem encountered in Hadronic Nuclear Physics. The high
level of sensitivity of these quantities to resonance contributions will allow the theoreti-
cal community working on this problem to include or exclude certain resonances in their
respective Constituent Quark Model calculations. These model-based calculations of the
polarization observables can then be compared to experimental findings allowing for a pos-
sible refinement of the models. Subsequent PWA analyses may also take advantage of these
measurements and what they say regarding specific resonance states.

In addition to these polarization observables providing hints as to which resonances
are actually contained in the excited baryon spectrum, knowledge regarding the states
already known to the physics community may be refined through subsequent Partial Wave
Analyses (PWAs) using the measurements made in this work. In the low-energy regime
(W ≤ 1.7 GeV), the difference between the theoretical and experimental masses of the
well-known P11(1440) Roper resonance may be investigated. In the same energy region,
the contribution of the D13(1520) to the γ p → p π+π− cross section may be explored as
different model calculations result in differing magnitudes of contribution. The properties
of the P33(1600) resonance may also be further determined as this “Roper of the ∆’s” is
not well understood although its coupling to 2π appears to be small. In the medium-energy
region (1.7 GeV ≤ W ≤ 1.9 GeV), several states which have been seen in unpolarized
photoproduction data may be further investigated due to the information provided by the
polarization observables. These resonances are the: F15(1680), D13(1700), D33(1700), and
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P13(1720). Finally in the high-energy region (W ≥ 1.9 GeV), the question regarding the
quark-diquark structure of the baryon may be addressed as several of the high lying states
cannot be generated using a quark-diquark structure of the baryon. The confirmation or
exclusion of these resonances will serve to refine how physics considers the baryon.

The questions which confront modern physics are numerous to say the least. A world-
wide effort is (and has been) in play with the ultimate goal of understanding the most
basic and numerous of natural systems. This work, while not answering all the questions
regarding these building blocks of the universe, will serve to move humanity toward this
ultimate goal.
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APPENDIX A

THE FROST EXPERIMENT

A.1 The FROST Experiment

In 2003, an ambitious project for Hall B called the FROST experiment began at Jefferson
Lab. The goal of this project as well as subsequent analyses was to provide the hadronic
physics community with a plethora of new information which would reveal much about
the excited baryon spectrum. The potential importance of the data collected from this
experiment comes from its polarization capabilities. As with several other photoproduction
experiments carried out in Hall B, the photon beam used to produce the final state particles
is polarized. The defining characteristic of this experiment however is the FROST target
itself. This new target has the capability of not only polarizing the target material, Butanol
(C4H9OH), in four orthogonal directions but also to “freeze” this polarization (as FROST
stands for “Frozen Spin Target”) via a cooling of the target material and the use of a small
yet powerful magnet [61].

In order for the polarization setting to be “frozen” in place, very cold temperatures are
needed in the target cell, colder than the normal methods used to cool target materials
can reach. In order for the (spin) polarization of the target material to be frozen in place,
temperatures of 50 mK are needed (the use of LHe4 alone results in temperatures of ≈
4 mK). Therefore a process called “dilution refrigeration” is needed to reach these incredibly
low temperatures. Dilution refrigeration works on the principle that when a mixture of LHe4

and LHe3 (a fairly rare isotope of Helium) is cooled below 0.87 mK, these two isotopes
undergo a phase separation. This divides the mixture into a LHe3-rich region and a LHe3-
poor region. The LHe3 atoms then move from the LHe3-rich region to the LHe3-poor region
of the mixture. In doing this, as with evaporative cooling, heat energy is used. This process
occurs in the “mixing chamber” of the FROST target where the target cell itself resides
therefore meaning that when this “evaporation” of LHe3 into the LHe4 occurs, heat is taken
from the target material (the target material is cooled). The LHe3 which had moved to the
LHe3-poor region of the mixing chamber then moves to a part of the dilution refrigerator
called the “still”. Here the LHe3 evaporates out of the mixture at a rate 1000 times that
of the LHe4 and is removed, cleaned and recondensed via a system of pumps before being
returned to the dilution refrigerator. This process of evaporation along with the moving of
gas and liquid of different temperatures is made more complicated due to the orientation
of this target. The majority of dilution refrigerators operate in a vertical manner, taking
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Figure A.1: A cut-away diagram of the FROST target showing the major parts of the target [62].

advantage of the natural movement of “hot” and “cold”. The FROST target, however, is
oriented horizontally as required for its use with the CLAS detector. The consequence of
this was a complication in the manner in which the gases and liquid are transported and
the manner and methods used to construct the dilution refrigerator (and the rest of the
target) which were eventually overcome. A diagram of the FROST target can be seen in
Figure A.1.

In order to preserve the polarization of the target material contained in the FROST
target, extremely low temperatures are used in conjunction with relatively low-field “holding
magnets” (having a field strength of around 0.5 T). The holding magnets of FROST come
in two types, a solenoid which will produce a magnetic field either parallel (or anti-parallel)
to the beamline and second magnet with racetrack shaped coils which produces a magnetic
field perpendicular to the beamline (leading to four possible polarization orientation of
the target material). The purpose of using both low temperatures and a holding magnet
is minimize the amount of material between the target cell and the detectors of CLAS.
Typically, experiments using a polarized target material use a relatively large electromagnet
to maintain a large magnetic field in which the target material resides. The consequence
of this is the fact that the large magnet prevents the majority of the particles created
in the target cell from ever reaching the detectors, severely limiting the detection of final
state particles and any subsequent analyses. As this is never desirable and definitely not
acceptable for an experiment with ambitions such as those of FROST, the perpetual use of
such a magnet is not included in the FROST plans. When polarizing the target material,
the target cell is inserted into a large “polarizing magnet” which polarizes the free electrons
in a 5 T field (which the Butanol has been impregnated with) via brute force (at this

110



Figure A.2: A cartoon describing the polarization scedule for FROST. The time axis (the x-axis) represents
time as measured in days. The original goal was to only repolarize the FROST target every 3.25 days.
However, due to the supererb performance of the target, repolarization was needed only every 4-5 days.

point, dilution refrigeration and therefore LHe3 is not used and the target material is at
≈ 1 K). This magnet can be seen in the lower right-hand side of Figure A.6. Once this
process is complete and the polarization transferred from the free electrons to the protons
via microwaves, the target is set to “dilution mode” (LHe3 is pumped into the mixing
chamber). Simultaneously, the polarizing magnet is slowly ramped down while the holding
magnet (which is inside the target assembly, surrounding the target cell) is ramped up.
Once this process is complete, the spins of the protons in the target cell are all aligned in
one direction and held in place using a combination of the extremely low temperature and
the magnetic field of the holding magnet (the low temperatures reached while the target is in
dilution mode reduce the strength of the magnetic field needed to preserve polarization). By
polarizing the target material and preserving the polarization in this manner, the amount
of particles created in the target cell which reach the detectors is maximized along with
the relaxation time of the target material. Repolarization of the target material using this
method is only needed every 4-5 days meaning that much more time can be spent collecting
data instead of repolarizing the target material. A cartoon describing the repolarization
schedule may be seen in Figure A.2.

As the direction and type of polarization of the photon beam used for the FROST
experiment can be controlled as well as the direction of polarization of the target material,
there are several polarization combinations (of beam + target) possible. This capability
allows for an analysis of the data to have access to many polarization observables, the
measurements of which were made impossible by the lack of polarization in many past
experiments. This unprecedented access is the goal of the FROST program and the aim of
those involved and will serve to reveal a great deal about the excited baryon spectrum and
aide in the quest for a understanding of the physics of the baryon.

A.2 Hardware Contribution to FROST

In the summer of 2005, I began my work on the hardware components of the FROST
experiment, working with Youri Sharabian. My introduction into the program (and thusly
my first contribution to the FROST program) involved the transverse holding coil to be used
for run periods involving a transversely polarized target (polarization of the target material
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vertically, perpendicular to the beamline). The responsibility I undertook was to develop
two prototypes and a final version of the transverse holding coil as a superconducting
magnet of this type had not yet been fabricated. This entailed not only developing the
methods to be used for the fabrication of the magnet but also determining which materials
would be best for its construction. The support structure on which the superconducting
(Formvar-coated) Niobium wire was placed was a cylinder onto which grooves were cut.
These grooves were necessary to provide a secure place on which a subset of the wire coils
could reside as the design of the magnet was not a solenoid but rather a cylinder on which
two racetrack-shaped coils sat (one on top and the other on the bottom). The racetrack
coils each comprised of three layers of superconducting wire with the first layer being made
of 186 turns, the second having 166 turns, and the third 144 turns. Two pieces of thick
paper cut into semi-circles provided a template for forming the “180◦ turns” at each end
of the racetrack shape. The two coils, rather than being made from one continuous piece
of wire, were constructed using two separate pieces of superconducting wire. This was
done in case one coil failed, the whole apparatus would not have to be made again. When
energized, these two sets of racetrack-shaped coils would then produce individual magnetic
fields adding to each other to produce a larger magnetic field perpendicular to the axis
of the cylinder. When used during running, it is this magnetic field which preserves the
polarization of the target material, Butanol (C4H9OH). A close-up picture of part of the
first prototype produced can be seen in Figure A.3.

Figure A.3: A picture of the first prototype magnet showing the beginnings of one racetrack coil (a) and
approximately half of one coil with two full windings (b). The white substance is purified paraffin which the
wire is melted into thereby securing it in place. Visible in the right-hand side of (b) the picture is one of the
semi-circles used as a template for forming the 180◦ turns.

The construction of the magnet, while requiring a skilled hand, was a fairly straightfor-
ward process. The main components used were a system of pulleys, a manually rotating
table, a jig on which the cylinder was mounted, purified paraffin, a soldering iron, and a
microscope (Figure A.4). The superconducting wire used to make the coils needed to be
precisely guided to the cylinder while not having much tension placed upon it as it was
a fragile wire with a 0.0055 inch (0.1397 mm) diameter. To accomplish this, wire coming
off of the spool would go through a system of pulleys which placed just a small amount

112



of tension on the wire. This system of pulleys also guided the wire to the cylinder which
sat on a manually rotating table. The wire was put into the proper position with the aid
of a microscope along the straight portions of the cylinder. To secure the position of this
wire, a soldering iron was used to gently melt the wire into a layer of purified paraffin. In
order to construct the 180◦ turns seen at each end of the racetrack coil, the semi-circles
made of thick paper were used as templates for constructing a smooth curve with the wire
being secured to the cylinder in the same manner. As previously described, each coil was
comprised of three layers of wire with each coil being made from a single length of wire. The
first layer of these coils sits in the shallow grooves cut into the cylinder forming a steady
base. Each subsequent layer of wire then sat in the groove formed by two neighboring wires
in the previous layer. Transitions between layers were made by “bending” the wire up to
start the next layer. When beginning with a new layer, however, the placement of the coil
windings alternated. The first layer was constructed from the inside of the racetrack coil
to the outside, the second layer from the outside to the inside, and the third layer from
the inside to the outside. This arrangement was also carried out for the turns at each end
(although no grooves were cut for the 180◦ turns). For a single layer, each turn was placed
on the outside of the arc made by the previous turn (Fig A.4(b)). The arrangement of the
layers at each 180◦ turn was the same as the layers for the straight portions.

Figure A.4: A picture of the prototype magnet during its fabrication (a) as well as a magnification of one
of the 180◦ turns. Viewable in (a) is the majority of the setup used for fabrication. The bottom portion of
the spool of superconducting wire can be seen in the top, center of the photograph. Three of the pulleys
used to guide and place a small amount of tension on the wire can be seen in the right-hand side. In the
bottom of the photograph is the manually rotating table on which the cylinder-holding jig sat. This table
was rotated when making every 180◦ turn. This setup is again partially seen in (b). Several of the pulleys
used to provide the small amount of tension on the wire can be seen towards the center of the picture. The
small display right-center of the picture shows a magnification of one of the 180◦ turns with the camera used
to produce the image on the display being on the left-hand side of the picture. This magnification of one of
the 180◦ turns was done to show the small diameter of the superconducting wire as well as how these turns
are fabricated.

This design was ultimately put aside due to an overall modification of the design of the
FROST target. The technique developments and design developments that arose during
my time spent working on this magnet did not. The new transverse holding magnet used
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for FROST resides on a cylinder with a slightly larger diameter. The process has also been
changed from a manual one to a semi-automated one in which the coils are formed on a
rotating table using epoxy instead of purified paraffin. The resulting magnet using this
procedure can be seen in Figure A.5.

Figure A.5: A picture of the transverse holding coil produced using the semi-automated procedure. One
of the two racetrack-shaped coils is visible.

In the summer of 2006, I was offered the opportunity to work with the JLab Target
Group on the construction of the FROST dilution refrigerator. This opportunity was highly
beneficial as I was able to work on the FROST target from when it was just a few parts on
a table, to the testing of the target, all the way to its final installation in Hall B and doing
so under the tutelage of a great and skilled group of people. I learned many aspects of
hardware development during this time. My roles in the construction of FROST included
(but were not limited to):

• Fabrication of parts to be used for the construction of FROST.

• Machining parts and support structures for the gas handling system (Pump Cart).

• Machining valves, heat exchangers, tubing, supports, and flanges on the metal lathe
and mill.

• Leak checking all parts of FROST.

• Assembly of parts.

• Testing of assembly.

• Installation in Hall B.
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• Testing of the target in Hall B.

Due to the conditions under which the target and all of it parts must operate, all parts
as well as the completed assembly must be deemed leak-tight. Due to this highly important
requirement, each part of FROST was immediately leak-checked after any welds or joints
were made. These leak checks were performed using a a high-vacuum system and a helium
spectrometer. The piece under investigation was attached to the high-vacuum system and
pumped upon until the internal pressure reached about 10−5 Torr. Once this pressure was
reached, the helium spectrometer could be used. A canister of Helium gas was then tapped
and a very weak stream of helium gas was sprayed via a small tube and sprayer on weld
joints or any other type of interfaces. The highly sensitive helium spectrometer was used
to detect any helium that may have been sucked into the vacuum. Detection of helium by
the spectrometer would indicate that the tested piece is not leak tight and therefore must
be fixed. If no helium was detected, the piece was deemed leak-tight and became a part of
the FROST target.

Figure A.6: The final FROST assembly being tested in the Test Lab at JLab. The FROST dilution
refrigerator can be seen in the middle-right of the picture (the three cylinders decreasing in size from left to
right). The large platform on the left is the “Pump Cart” used to maintain a vacuum on the system and to
capture, recondense, and recirculate the helium (its purpose in terms of helium is to capture, recondense,
and recirculate the He3). Pictured in the bottom, right-hand corner is the polarizing magnet.
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My work with the FROST target continued with the final testing of the entire assembly
in the Test Lab at JLab (Fig A.6). Once the target repeatedly proved itself to work in all
stages of its operation, it was disassembled and taken to the experimental hall (Hall B).
Here the Pump Cart was reassembled and the dilution refrigerator very carefully placed into
position using the crane in Hall B. In-hall testing of the FROST target then began. It was
during this testing that problems related to the transportation of such a sensitive device
were discovered. Once these problems were discovered, the dilution refrigerator was removed
to the hall, taken back to the Test Lab and disassembled for investigation. This process
occurred twice, once because of an electrical connection made faulty during transport and
once due to an misaligned flange. After the target’s third trip to the hall, it showed itself to
be in perfect working order. The dilution refrigerator was repeatedly tested and the process
of repolarization practiced. This repolarization process involves moving the entire assembly
(the refrigerator and Pump Cart) one to two meters (back and forth) via wenches and a
metal track as well as a one to two meter sideways movement of the polarizing magnet.
This routine was practiced several times as to familiarize those responsible for repolarizing
the target material with the process in the interest of speed and safety (Figure A.7 shows
the insertion of the target into the polarizing magnet in Hall B). Once all of the pre-run
requirements were satisfied, the target was ready for the experiment.

Figure A.7: A picture of the FROST target after installation in Hall B. Here the entire assembly is slowly
being moved forward, toward the center of CLAS and into the polarizing magnet to begin the polarization
of the target material.
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A.3 Performance of the FROST target

The performance of the FROST target during both run periods (deemed “g9a” which
ran from 03 November 2007 to 12 Febuary 2008 and “g9b” which ran from 25 March 2010 to
01 April 2010) and the experiment as a whole was quite excellent. The temperature of the
target material during run conditions surpassed the goal of 50 mK, reaching a temperature
of 30 mK (28 mK when no beam was striking the target) in the target cell. This better-than-
expected performance meant that the relaxation time of the target material was extended to
3-5 times the expected amount, leading to fewer repolarizations (the expected polarization
degradation was 5% per day but under operation, this number was 1-1.5% per day) and
more data-taking. The target also was very stable during the FROST run with no major
problems being reported.

The two parts of the FROST experiment (deemed g9a and g9b) were both testaments
to the quality of skill brought to the table by those who contributed to the effort. The
first half of this experiment (g9a) boasts a data set that is 35 TB in size and contains 10.5
billion events using a polarized photon beam incident on a longitudinally polarized target.
The second part of the FROST experiment, g9b (using a polarized photon beam incident
on a transversely polarized target), has recently finished thus bringing a close to the data
gathering portion of the FROST program. Considering the wonderful performance of the
target, the quality of the polarized photon beam and the performance of CLAS, the FROST
experiment was a great success. Now the attention turns to the analyses from the FROST
group as there are several analyses presently underway which hold the potential for adding
much knowledge to the field of Hadronic Physics and answering many questions regarding
the missing resonances of the baryon spectrum.

117



APPENDIX B

φ-DISTRIBUTIONS

The following figures are a sampling of the φ-distributions used to produce the (averaged)
observable measurements shown in Chapter 5 (Figures 5.2 through 5.10). These figures
show the asymmetry between the PARA and PERP φ-distributions versus φlab of the π+.
Each set of φ-distributions (each figure) represents a single bin in k (Eγ) and a single bin
in φ∗π+ with each square representing a bin in cosθ∗π+ .

B.1 φ-distributions for p π+π− events

B.1.1 1.20 < Eγ < 1.25 GeV
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Figure B.1: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
−18◦ < φ∗π+ < −36◦.
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Figure B.2: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
36◦ < φ∗π+ < 54◦.
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Figure B.3: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
90◦ < φ∗π+ < 108◦.
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B.1.2 1.40 < Eγ < 1.45 GeV
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Figure B.4: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
−108◦ < φ∗π+ < −90◦.
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Figure B.5: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
36◦ < φ∗π+ < 54◦.
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Figure B.6: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
126◦ < φ∗π+ < 144◦.
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B.1.3 1.60 < Eγ < 1.65 GeV
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Figure B.7: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
−90◦ < φ∗π+ < −72◦.
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Figure B.8: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
−72◦ < φ∗π+ < −54◦.
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Figure B.9: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
90◦ < φ∗π+ < 108◦.
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B.1.4 2.00 < Eγ < 2.05 GeV
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Figure B.10: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
−90◦ < φ∗π+ < −72◦.
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Figure B.11: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
54◦ < φ∗π+ < 72◦.
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Figure B.12: A sampling of the φ-distributions used to extract Is and Ic for a p π+π− final state. Here,
108◦ < φ∗π+ < 126◦.
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B.2 φ-distributions for p π+(π−) events

B.2.1 1.20 < Eγ < 1.25 GeV
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Figure B.13: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
−72◦ < φ∗π+ < −54◦.
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Figure B.14: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
−36◦ < φ∗π+ < −18◦.
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Figure B.15: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
18◦ < φ∗π+ < 36◦.
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B.2.2 1.40 < Eγ < 1.45 GeV
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Figure B.16: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
−72◦ < φ∗π+ < −54◦.
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Figure B.17: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
−18◦ < φ∗π+ < 0◦.
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Figure B.18: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
54◦ < φ∗π+ < 72◦.
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B.2.3 1.60 < Eγ < 1.65 GeV
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Figure B.19: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
288◦ < φ∗π+ < 306◦.
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Figure B.20: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
−18◦ < φ∗π+ < 0◦.
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Figure B.21: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
36◦ < φ∗π+ < 54◦.
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B.2.4 2.00 < Eγ < 2.05 GeV
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Figure B.22: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
−90◦ < φ∗π+ < −72◦.
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Figure B.23: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
0◦ < φ∗π+ < 18◦.
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Figure B.24: A sampling of the φ-distributions used to extract Is and Ic for a p π+(π−) final state. Here,
72◦ < φ∗π+ < 90◦.
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