Measurement of polarization observables in $\vec{\gamma}\vec{\rho} \rightarrow \rho \pi^+ \pi^-$ with CLAS spectrometer at JLab

Sungkyun Park on the behalf of CLAS Collaboration

Florida State University

Feb. 22, 2013

イロト 不得下 イヨト イヨト

Outline

Introduction

• Why is $\pi^+\pi^-$ photoproduction needed

PROST Experiment

The FROzen-Spin Target (FROST)

3 Data Analysis

- Polarization Observables
- Basic event selection

The Preliminary Results

- Polarization Observable I^O
- Polarization Observable Pz
- Polarization Observable P^o_z

Why is $\pi^+\pi^-$ photoproduction needed

Why is $\pi^+\pi^-$ photoproduction needed

- Search for new baryon states that are predicted by quark models decaying to Δπ and p ρ.
- The most intense cross section contribution is from double pion production, especially (γ , $\pi^+ \pi^-$), in the second resonance region
- Polarization observables are important in the resonance extraction from data.

The FROzen-Spin Target (FROST)

The FRozen-Spin Target (FROST)

High magnetic field (5 T)

- (a) The longitudinal holding magnet. (0.56 T) (g9a: Nov. 2007 - Feb. 2008)
- (b) The transversal holding magnet. (0.50 T) (g9b : March 2010 - August 2010)
- (c) The polarizing magnet. (5 T)

28 mK (w/o beam) and 30mK (w/ beam)

Sungkyun Park

Polarization Observables Basic event selection

Photoproduction of $\pi^+\pi^-$ off the proton: Kinematics

• The π^+ π^- photoproduction require 5 independent variables.

Polarization Observables Basic event selection

The differential cross section for $\gamma p \rightarrow p \pi^+ \pi^-$

The differential cross section for $\gamma p \rightarrow p \pi^+ \pi^-$

(without measuring the polarization of the recoiling nucleon)

 $\frac{\mathrm{d}\sigma}{\mathrm{d}x_{i}} = \sigma_{0}\left\{\left(\mathbf{1} + \vec{\Lambda}_{i} \cdot \vec{\mathbf{P}}\right) + \delta_{\odot}\left(\mathbf{I}^{\odot} + \vec{\Lambda}_{i} \cdot \vec{\mathbf{P}}^{\odot}\right)\right\}$

+ δ_{l} [sin 2 β (l^s + $\vec{\Lambda}_{i} \cdot \vec{P}^{s}$) + cos 2 β (l^c + $\vec{\Lambda}_{i} \cdot \vec{P}^{c}$)]}

- σ_0 : The unpolarized cross section
- β : The angle between the direction of polarization and the x-axis
- $\delta_{\odot,I}$: The degree of polarizaton of the photon beam $\Rightarrow \delta_{\odot}$, and δ_{I}
- $\vec{\Lambda}_i$: The polarization of the initial nucleon $\Rightarrow (\Lambda_x, \Lambda_y, \Lambda_z)$
- $I^{\odot, s, c}$: The observable arising from use of polarized photons $\Rightarrow I^{\odot}, I^{s}, I^{c}$
- \vec{P} : The polarization observable \Rightarrow (P_x , P_y , P_z) (P_x^{\odot} , P_y^{\odot} , P_z^{\odot}) (P_x^s , P_y^s , P_z^s) (P_x^c , P_y^c , P_z^c) 15 Observables

<ロト < 同ト < 三ト < 三ト < 三 ・ つへぐ

Polarization Observables Basic event selection

Polarization observables

The data used for this research :

- 1. circularly-polarized beam
- 2. longitudinally-polarized target

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_{i}} = \sigma_{0} \left\{ \left(1 + \Lambda_{z} \left(\mathbf{P}_{z} \right) + \delta_{\odot} \left(\mathbf{I}^{\odot} + \Lambda_{z} \left(\mathbf{P}^{\odot}_{z} \right) \right) \right\}$$

- δ_{\odot} and $\vec{\Lambda}_z$: The degree of beam and target polarizaton
- \mathbf{P}_{z}^{\odot} , \mathbf{P}_{z} , and \mathbf{I}^{\odot} : The polarization observables

I $^{\odot}$: Phys.Rev.Lett. 95, 162003 (2005, CLAS Collaboration)

P 😳 : Eur.Phys.J. A 34, 11-21 (2007, GDH Collaboration)

- The helicity-dependent total cross-section difference

Polarization Observables Basic event selection

Basic event selection

Basic event selection

Basic event selection

The kinematic fitting

- Basic Cuts
 - photon selection
 - $|\Delta t_{TGPB}| < 1.2 \text{ ns}$
 - proton selection

:
$$|\beta_c - \beta_m| < 0.032$$

pion selection

 $|\beta_{c}-\beta_{m}| < 0.044$

- vertex cut (Butanol) $|Z_{MVRT}| < 3 \text{ cm}$
- accidental cut
 - : narf = 1 & taarid
- cofidence-level cut
 - : CL-cut > 5 %

Corrections

イロン イロン イヨン イヨン

- Energy-loss correction
- Photon-beam correction
- Momentum correction

Sungkyun Park

Polarization Observable I ⁽⁾ Polarization Observable P_z Polarization Observable P_z⁽⁾

Polarization observable I^o

$$\mathbf{I}^{\odot}(\mathbf{W}, \phi_{\pi^{+}}) = \frac{1}{\overline{\delta}_{\odot}(\mathbf{W})} \frac{\left\{ N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} - N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} \right\}}{\left\{ N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} + N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} \right\}}$$

 $\diamond \ \overline{\delta}_{\odot}(W)$: The average of the degree of the photon beam polarizations

 $\diamond \rightarrow (\leftarrow)$: the direction of the beam polarization is parallel (anti-parallel) to the beam.

example :

- Topology : $\gamma p
 ightarrow p \pi^+(\pi^-)$
- W: 1.60 GeV
- $\theta_{\rm c.m.}, \phi_{\pi^+}, \theta_{\pi^+}, M_{\pi^+ \pi^-}$ are integrated over.

イロン イボン イヨン 「注

Using the 5 % Coinfidence Level Cut

Polarization Observable I ^(c) Polarization Observable P_z Polarization Observable P_z^(c)

Polarization observable I^o with Q-factor

- The Q-factor method is used to subtract background (developed at CMU, arXiv:0804.3382v1):
 - The Q-factor is an event-based quality factor which describes the ration of hydrogen signal to butanol signal, i.e. an event-based dilution factor.
- From the butanol (C₄H₉OH) data, the free proton data is extracted on an event-by-event basis. No overall dilution factor is necessary.

Sungkyun Park

 $\begin{array}{l} \mbox{Polarization Observable I} \odot \\ \mbox{Polarization Observable P}_z \\ \mbox{Polarization Observable P}_z^{\mbox{O}} \end{array}$

Beam-Helicity Asymmetry I^o with the mirror image

Polarization Observable I [⊙] Polarization Observable P_z Polarization Observable P_z[°]

Beam-Helicity Asymmetry I^o with the published data

Polarization Observable I ^(c) Polarization Observable P_z Polarization Observable P_z^(c)

Beam-Helicity Asymmetry I^o

Polarization Observable I ©

The background effect in Beam-Helicity Asymmetry I^o

- Butanol data are composed of
 - free-proton data
 - bound-nucleon data & background data
- g9a dataset is not sensitive to distinguish between the beam asymmetry from free-proton, bound-nucleon and background data.

Fitting function : gaussian + Chebycheby

ヘロト 人間ト 人団ト 人団ト

Polarization Observable I ©

Missing mass distribution in several CL-cuts.

CL-cut > 0.05 CL-cuit < 0.05 0.15 0.2 0 2 Missing-Mass [GeV] 15 % CL-Cut Butanol-Data CL-cut > 0.15 CL-cut < 0.15 0.15 0.2 0.2 Missing-Mass [GeV]

Butanol-Data

Sungkyun Park

Polarization Observable I ⁽²⁾ Polarization Observable P_z Polarization Observable P_z⁽²⁾

Polarization observable I^o in several CLcuts.

Sungkyun Park

Polarization Observable I ⁽⁾ Polarization Observable P_z Polarization Observable P_z⁽⁾

Target Asymmetry **P**_z with the mirror image

Sungkyun Park

Polarization Observable I ⁽⁾ Polarization Observable P_z Polarization Observable P_z⁽⁾

Target Asymmetry Pz

Polarization Observable I ⁽⁾ Polarization Observable P_z Polarization Observable P_z⁽⁾

Target Asymmetry Pz

Sungkyun Park

Polarization Observable I ^O Polarization Observable P_z Polarization Observable P_z^O

Helicity Difference P_z^{\odot} with the mirror image

Sungkyun Park

Polarization Observable I ⁽²⁾ Polarization Observable P_z Polarization Observable P_z⁽²⁾

Helicity Difference P_z^o

Polarization Observable I ⁽²⁾ Polarization Observable P_z Polarization Observable P_z⁽²⁾

Helicity Difference P_z^o

Sungkyun Park

Polarization Observable I ^(c) Polarization Observable P_z Polarization Observable P_z^(c)

What is the next step for Q-factor method

- There is a hydrogen contamination problem in g9a carbon data
- Solution : use g9b carbon data for Q-factor method

Sungkyun Park Hadr

Summary

- ◇ Polarization Observable I[☉] using the FROST data is in good agreement with the previously published CLAS data.
 - The CLAS-analysis note for Observable I $^{\odot}$ will be prepared (95 %)
 - The systematic errors used for Observable I $^{\odot}$

Contribution	ΔI^{\odot}	$\Delta I^{\odot}/I^{\odot}$
Circular polarization of photon beam		< 1.8 %
Target polarization		< 4.33 %
Electron beam-charge asymmetry	< 0.004	

- ◊ Polarization Observables P_z and P_z[⊙] will be first-time measurements for double-pion photoproduction.
- The event-based dilution factor can separate the background from the butanol data efficiently.
 - The proper carbon data need to be used in g9a analysis

Polarization Observable I ^O Polarization Observable P_z Polarization Observable P_z^O

I am looking for Postdoc job.

Sungkyun Park Hadron Spectroscopy, Feb. 2013 at JLab

イロト 不得下 イヨト イヨト