Status of $\gamma p \rightarrow K^{+} \Sigma^{0}$ analysis of $G 11 A-$ Differential Cross Sections, Recoil Polarizations and some Physics

Biplab Dey
Curtis Meyer

Carnegie Mellon University
June $12^{\text {nd }}, 2009$
Hadron Spectroscopy Collaboration Meeting

Outline

(1) Introduction and Event Selection
(2) Differential Cross Sections
(3) Recoil Polarization
(4) Physics
(5) Summary

Outline

(1) Introduction and Event Selection

(2) Differential Cross Sections

(3) Recoil Polarization

(5) Summary

Introduction

Cebaf Large $A_{\text {ngle }} S_{\text {pectrometer }}$

- G11A dataset - unpolarized photoproduction
- 20 billion event triggers recorded by CLAS (May-July 2004)
- Liquid Hydrogen cryotarget - 40 cm long, 2 cm radius
- 6 azimuthal "sectors" in CLAS - at least two "sector-based" charged tracks in Start Counter for triggering
- CM energy 1.55 GeV to 2.84 GeV baryon spectroscopy for "missing" baryon resonances (amongst other physics goals)
- CMU PWA group is analysing $\gamma p \rightarrow K^{+} \Sigma^{0}, K^{+} \Lambda, p \omega, p \eta, p \eta^{\prime}, \ldots$

Introduction

Cebaf Large $A_{\text {ngle }} S_{\text {pectrometer }}$

- G11A dataset - unpolarized photoproduction
- 20 billion event triggers recorded by CLAS (May-July 2004)
- Liquid Hydrogen cryotarget - 40 cm long. 2 cm radius
- 6 azimuthal "sectors" in CLAS - at least two "sector-based" charged tracks in Start Counter for triggering
- CM energy 1.55 GeV to 2.84 GeV baryon spectroscopy for "missing" baryon resonances (amongst other physics goals)
- CMU PWA group is analysing
$\gamma p \rightarrow K^{+} \Sigma^{0}, K+\wedge, p \omega, p \eta, p \eta^{\prime}$

Event Selection - 2- and 3-Track "Topologies"

Utilize the decay $\Sigma^{0} \rightarrow \gamma \Lambda \rightarrow \gamma p \pi^{-}$

$$
\text { 3-track: } \gamma \boldsymbol{p} \rightarrow K^{+} p \pi^{-}\left(\gamma_{f}\right)
$$

$$
\text { 2-track: } \gamma p \rightarrow K^{+} p\left(\pi^{-} \gamma_{f}\right)
$$

- Demand "+:+:-" final state and Kinematically Fit to " $K^{+}: p: \pi-$ " / " $p: K^{+}: \pi^{-}$" with zero total missing mass (outgoing photon)
- KFit confidence level $\geq 1 \%$ and timing cuts for event selection
- Reconstruct γ_{f} from missing momentum
- All four final state 4-momenta, and thus both Σ^{0} and $\Lambda 4$-momenta are known
- \wedge decay vertex from tracking information - set this p / π^{-}for energy loss corrections
- "+:+" final state. " $K^{+}: p " /$ " $p: K^{+"}$ particle hypotheses with $0.15 \mathrm{GeV} \leq M M\left(K^{+}, p\right) \leq 0.28 \mathrm{GeV}$. NO Kinematic fitting
- Only timing cuts
- π^{-}and γ_{f} 4-momenta NOT known
- Only Σ^{0} can be reconstructed
- Set p / π^{-}vertices to event vertex

0

Event Selection - 2- and 3-TRack"Topologies"

Utilize the decay $\Sigma^{0} \rightarrow \gamma \Lambda \rightarrow \gamma p \pi^{-}$

$$
\text { 3-track: } \gamma p \rightarrow K^{+} p \pi^{-}\left(\gamma_{f}\right) \quad \text { 2-track: } \gamma p \rightarrow K^{+} p\left(\pi^{-} \gamma_{f}\right)
$$

- Demand "+:t:-" final state and Kinematically Fit to " $K^{+}: p: \pi-$ ' " $p: K^{+}: \pi^{-"}$ with zero total missing mass (outgoing photon)
- KFit confidence level $\geq 1 \%$ and timing
cuts for event selection
- Reconstruct γ_{f} from missing momentum
- All four final state 4-momenta, and thus both \sum^{0} and $\wedge 4$-momenta are known
- \wedge decay vertex from tracking information
- set this p / π^{-}for energy loss corrections
- $1.8 \mathrm{GeV} \leq \sqrt{s} \leq 2.84 \mathrm{GeV}$
- "+:+" final state.
particle hypotheses with
$0.15 \mathrm{GeV} \leq M M\left(K^{+}, p\right) \leq 0.28 \mathrm{GeV}$. NO Kinematic fitting
- Only timing cuts
- π^{-}and $\gamma_{f} 4$-momenta NOT known
- Only \sum^{0} can be reconstructed
- Set p / π^{-}vertices to event vertex
- $1.69 \mathrm{GeV} \leq \sqrt{s} \leq 2.84 \mathrm{GeV}$ and greater coverage in backward angles (yay!)

G11A Start Counter correction

- Start Counter sits $\approx 10 \mathrm{~cm}$ around target
- Requires 2 tracks to trigger
- $c \tau \approx 7.89 \mathrm{~cm}$ for \wedge
- A good \% of Λ 's decay outside the Start Counter. These events won't trigger in Data.
- Accepted Monte Carlo does not include this effect needs correction

Only on the Monte Carlo:

- Earlier (3-track) : Λ decay vertices not stored by GSIM but probability based cut from \vec{p}_{\wedge}
- 2-track - \vec{p}_{\wedge} not known. Needed to tweak GSIM code to produce Λ vertices directly (hard cut on the vertices at Start Counter boundary after this)

Outline

(1) Introduction and Event Selection

(2) Differential Cross Sections

(3) Recoil Polarization

(4) Physics

(5) Summary

Acceptance Calculation

- Fit Data using a large number of partial waves $J^{P}=\frac{1}{2}^{ \pm}, \ldots, \frac{11}{2}^{ \pm}$
- Accepted Monte Carlo weighted by the fit results should match the Data
- Use weighted Acc MC for (physics-weighted) acceptance calculation.
- Above PWA requires knowledge of all final state 4-momenta - not available in 2-track dataset. Use unweighted Monte Carlo for acceptance calculation.
- However, breakup momenta in both Σ^{0} and Λ decays are small
- Unweighted acceptance calculation (2-track) is a very good approximation to the physics-weighted acceptance calculation (3-track).

$d \sigma / d \cos \theta_{C M}^{K^{+}}: 2-$ AND 3 -TRACK RESULTS

- Even though they are from the same dataset, the two topologies employ widely different analysis techniques
- Agreement between the two results lends confirmation towards our overall understanding of the g11a systematics

Final g11a $d \sigma / d \cos \theta_{C M}^{K^{+}}$:

- Weighted average of the two results
- 10 MeV wide \sqrt{s} binning. Energy coverage: $1.69 \mathrm{GeV} \leq \sqrt{s} \leq 2.84 \mathrm{GeV}$
- 0.1 wide binning in $\cos \theta_{C M}^{K^{+}}$. Angular coverage: $-0.95 \leq \cos \theta_{C M}^{K+} \leq 0.95$
- Wide coverage in both energy and production angles - 2113 independent kinematic points

Systematic Uncertainties

- Kinematic Fitter Confidence Level (3-track) - 3\%
- 3-track PID - 0.62\%
- 2-track PID - 1.8\%
- Acceptance calculation - 4-6\% (\sqrt{s} dependent)
- $\Lambda \rightarrow p \pi^{-}$branching fraction (PDG) -0.5%
- Target characterestics: density -0.11%, length -0.125%
- Photon flux normalization - 7.3\%
- Live time - 3\%

$$
9-12 \% \text { estimated overall systematic uncertainty }
$$

Comparison with World Data

Backward angles

Comparison with World Data

Mid angles

Comparison with World Data

Forward angles

g11a $d \sigma / d \cos \theta_{C M}^{K^{+}}$RESULTS - PROMINENT FEATURES

- Backward angles:- excellent agreement with previous CLAS g1c. Confirms structure around $\sqrt{s} \approx 2.2 \mathrm{GeV}$. Absent in SAPHIR.
- Mid angles:- excellent agreement with g1c. Prominent peak at 1.9 GeV .
- Mid-forward angles:- possible "shoulder" at $\sim 2.1 \mathrm{GeV} .1 .9 \mathrm{GeV}$ peak still persistent. Fair to good agreement with previous world data.

g11a $d \sigma / d \cos \theta_{C M}^{K^{+}}$RESULTS - PROMINENT FEATURES

- Backward angles:- excellent agreement with previous CLAS g1c. Confirms structure around $\sqrt{s} \approx 2.2 \mathrm{GeV}$. Absent in SAPHIR.
- Mid angles:- excellent agreement with g1c. Prominent peak at 1.9 GeV .
- Mid-forward angles:- possible "shoulder" at $\sim 2.1 \mathrm{GeV} .1 .9 \mathrm{GeV}$ peak still persistent. Fair to good agreement with previous world data.

Note:- backward angle measurements were possible only with the (new!) 2-track analysis.

Outline

(1) Introduction and Event Selection

(2) Differential Cross Sections

(3) Recoil Polarization

4 PHYSICS

(5) Summary

Polarization Observables for $K^{+} \Sigma^{0}$

- General pseudo-scalar meson photoproduction - 4 complex CGLN amplitudes. Seems like, we need 7 independent quantities (4 magnitudes, 3 relative phases)

Polarization Observables for $K^{+} \Sigma^{0}$

- General pseudo-scalar meson photoproduction - 4 complex CGLN amplitudes. Seems like, we need 7 independent quantities (4 magnitudes, 3 relative phases)
- Barker-Donnachie-Storrow (Nucl. Phys. B95, 347, 1974) - to remove discrete ambiguities, 9 measurements

Polarization Observables for $K^{+} \Sigma^{0}$

- General pseudo-scalar meson photoproduction - 4 complex CGLN amplitudes. Seems like, we need 7 independent quantities (4 magnitudes, 3 relative phases)
- Barker-Donnachie-Storrow (Nucl. Phys. B95, 347, 1974) - to remove discrete ambiguities, 9 measurements
- Chiang-Tabakin (PRC 55, 2054, 1997) - 16 bilinears, but need only 8 measurements for a "complete set" out of:

Unpolarized: σ (diff. c-s), P (recoil pol.)
Single polarization: Σ (beam pol.), T (target pol.)
Double "transferred" polarization: $C_{x}, C_{z} / O_{x}, O_{z}$ (circ./lin. pol. beam)
Double "transferred" polarization: $T_{x}, T_{z}, L_{x}, L_{z}$ (pol. target)
Double polarization: G, H, E, F (pol. beam + pol. target)

Polarization Observables for $K^{+} \Sigma^{0}$

- General pseudo-scalar meson photoproduction - 4 complex CGLN amplitudes. Seems like, we need 7 independent quantities (4 magnitudes, 3 relative phases)
- Barker-Donnachie-Storrow (Nucl. Phys. B95, 347, 1974) - to remove discrete ambiguities, 9 measurements
- Chiang-Tabakin (PRC 55, 2054, 1997) - 16 bilinears, but need only 8 measurements for a "complete set" out of:

Unpolarized: σ (diff. c-s), P (recoil pol.)
Single polarization: Σ (beam pol.), T (target pol.)
Double "transferred" polarization: $C_{x}, C_{z} / O_{x}, O_{z}$ (circ./lin. pol. beam)
Double "transferred" polarization: $T_{x}, T_{z}, L_{x}, L_{z}$ (pol. target)
Double polarization: G, H, E, F (pol. beam + pol. target)

GRAAL, LEPS

Polarization Observables for $K^{+} \Sigma^{0}$

- General pseudo-scalar meson photoproduction - 4 complex CGLN amplitudes. Seems like, we need 7 independent quantities (4 magnitudes, 3 relative phases)
- Barker-Donnachie-Storrow (Nucl. Phys. B95, 347, 1974) - to remove discrete ambiguities, 9 measurements
- Chiang-Tabakin (PRC 55, 2054, 1997) - 16 bilinears, but need only 8 measurements for a "complete set" out of:

Unpolarized: σ (diff. c-s), P (recoil pol.)
Single polarization: Σ (beam pol.), T (target pol.)
Double "transferred" polarization: $C_{x}, C_{z} / O_{x}, O_{z}$ (circ./lin. pol. beam)
Double "transferred" polarization: $T_{x}, T_{z}, L_{x}, L_{z}$ (pol. target)
Double polarization: G, H, E, F (pol. beam + pol. target)

Polarization Observables for $K^{+} \Sigma^{0}$

- General pseudo-scalar meson photoproduction - 4 complex CGLN amplitudes. Seems like, we need 7 independent quantities (4 magnitudes, 3 relative phases)
- Barker-Donnachie-Storrow (Nucl. Phys. B95, 347, 1974) - to remove discrete ambiguities, 9 measurements
- Chiang-Tabakin (PRC 55, 2054, 1997) - 16 bilinears, but need only 8 measurements for a "complete set" out of:

Unpolarized: σ (diff. c-s), P (recoil pol.)
Single polarization: Σ (beam pol.), T (target pol.)
Double "transferred" polarization: $C_{x}, C_{z} / O_{x}, O_{z}$ (circ./lin. pol. beam)
Double "transferred" polarization: $T_{x}, T_{z}, L_{x}, L_{z}$ (pol. target)
Double polarization: G, H, E, F (pol. beam + pol. target)

CLAS g1, SAPHIR, GRAAL

Polarization Observables for $K^{+} \Sigma^{0}$

- General pseudo-scalar meson photoproduction - 4 complex CGLN amplitudes. Seems like, we need 7 independent quantities (4 magnitudes, 3 relative phases)
- Barker-Donnachie-Storrow (Nucl. Phys. B95, 347, 1974) - to remove discrete ambiguities, 9 measurements
- Chiang-Tabakin (PRC 55, 2054, 1997) - 16 bilinears, but need only 8 measurements for a "complete set" out of:

Unpolarized: σ (diff. c-s), P (recoil pol.)
Single polarization: Σ (beam pol.), T (target pol.)
Double "transferred" polarization: $C_{x}, C_{z} / O_{x}, O_{z}$ (circ./lin. pol. beam)
Double "transferred" polarization: $T_{x}, T_{z}, L_{x}, L_{z}$ (pol. target)
Double polarization: G, H, E, F (pol. beam + pol. target $)$

CLAS g1, SAPHIR, GRAAL
(new!) CLAS g11a - much higher statistics, wide kinematic coverage

Polarization Observables for $K^{+} \Sigma^{0}$

- General pseudo-scalar meson photoproduction - 4 complex CGLN amplitudes. Seems like, we need 7 independent quantities (4 magnitudes, 3 relative phases)
- Barker-Donnachie-Storrow (Nucl. Phys. B95, 347, 1974) - to remove discrete ambiguities, 9 measurements
- Chiang-Tabakin (PRC 55, 2054, 1997) - 16 bilinears, but need only 8 measurements for a "complete set" out of:

Unpolarized: σ (diff. c-s), P (recoil pol.)
Single polarization: Σ (beam pol.), T (target pol.)
Double "transferred" polarization: $C_{x}, C_{z} / O_{x}, O_{z}$ (circ./lin. pol. beam)
Double "transferred" polarization: $T_{x}, T_{z}, L_{x}, L_{z}$ (pol. target)
Double polarization: G, H, E, F (pol. beam + pol. target $)$
(upcoming!) CLAS g9 (FROST)

Recoil Polarization P_{Σ}

"Traditional" approach

$$
\begin{gathered}
\mathcal{I} \propto 1+\alpha\left\langle\vec{P}_{\Lambda}\right\rangle \cos \theta_{\Lambda_{H F}}^{p}= \\
1+\alpha\left(-\left\langle\vec{P}_{\Sigma^{0}}\right\rangle \cos \theta_{\Sigma_{H F}}^{\Lambda}\right) \cos \theta_{\Lambda_{H F}}^{p}
\end{gathered}
$$

"PWA" approach
PWA fit amplitudes carry $m_{\Sigma}= \pm \frac{1}{2}$ spin-projections.
Project out expectation value of $\sigma_{y}: P_{\Sigma}=\frac{\operatorname{Tr}\left[\rho \sigma_{y}\right]}{\operatorname{Tr}[\rho]}$

Recoil Polarization P_{Σ}

"Traditional" approach

Rotate z axis into Σ might dir. Boost to its RF. This is the $\boldsymbol{\Sigma}^{0}$ Helicity Frame.

$P_{\Lambda}=-P_{\Sigma} \cos \boldsymbol{\theta}_{\boldsymbol{\Sigma}_{H F}}^{A}$
If Λ is not measured (2-track analysis):

$$
\overline{\mathcal{I}} \propto 1-\frac{\alpha}{3.9}\left\langle\vec{P}_{\Sigma}\right\rangle \cos \theta_{\Sigma_{H F}}^{p}
$$

"PWA" approach
PWA fit amplitudes carry $m_{\Sigma}= \pm \frac{1}{2}$ spin-projections.
Project out expectation value of $\sigma_{y}: P_{\Sigma}=\frac{\operatorname{Tr}\left[\rho \sigma_{y}\right]}{\operatorname{Tr}[\rho]}$

Compare: PWA / Traditional method of Polarization extraction

Compare: P_{Σ} world data

$P_{\Sigma}:$ FEATURES

- P_{Σ} "tends towards" zero/negative values in the backward angles.
- Predominently positive with high degree of polarization in the forward direction.
- Data shows lots of structures.
- Systematic errors are estimated $\sim 3 \%$

Outline

(1) Introduction and Event Selection

(2) Differential Cross Sections

(3) Recoil Polarization

(4) PhYsics

(5) Summary

BaCKGround contributions: t-CHANNEL AND u-CHANNEL INTERPLAY

$$
t \text {-channel: }|t| \rightarrow 0 \text { (forward angles) }
$$

u-channel: $|u| \rightarrow 0$ (backward angles)

BaCKGROUND CONTRIBUTIONS: t-CHANNEL AND u-CHANNEL INTERPLAY

$$
t \text {-channel: }|t| \rightarrow 0 \text { (forward angles) }
$$

u-channel: $|u| \rightarrow 0$ (backward angles)

Strong presence of both t - and u-channel non-resonant background contributions.

SCALING BEHAVIOUR AT HIGH ENERGIES - t-CHANNEL

- At high s, Bradford et al (PRC 73, 035202) saw scaling of $d \sigma / d t$ with s^{2} in CLAS $g 1 c$ data.
- g1c went till $\sqrt{s} \approx 2.53 \mathrm{GeV}$. With g11a data, similar behavior seen at even higher s

Regge scaling - t-ChANNEL (CONTD.)

- Scaling is reminiscent of Regge behavior - $\frac{d \sigma}{d t} \sim D(t)\left(\frac{s}{s_{0}}\right)^{2 \alpha(t)-2}$
- Scaling power reveals what Regge exchanges occurring. s^{2} means $\alpha(t) \sim 0$ near $t \sim 0$
- Guidal, Laget and Vanderhaegan (Nucl. Phys. A627, 645): t-channel Regge exchanges in kaon photoproduction similar to pion production. Correspondence:

$$
\begin{aligned}
& \pi \leftrightarrow K^{+} \\
& \rho \leftrightarrow K^{*}(892)
\end{aligned}
$$

- Reasonable fits to both $K^{+} \Lambda$ and $K^{+} \Sigma^{0}$ at forward angle high \sqrt{s} using just K^{+}and $K^{*}(892)$ exchanges
- Bradford et al noted: $\alpha(t)_{K^{+}}+\alpha(t)_{K^{*}(892)} \sim 0$ near $t \sim 0$.
- Could explain why α is effectively zero around $t \sim 0$

REGGE SCALING - u-CHANNEL

- Guidal et al noted that similar Regge behavior can be expected in the u-channel (high energy, backward angles). Instead of $(2 \alpha(t)-2)$, we now have $(2 \alpha(u)-2)$

REGGE SCALING $-\boldsymbol{u}$-CHANNEL

- Guidal et al noted that similar Regge behavior can be expected in the u-channel (high energy, backward angles). Instead of $(2 \alpha(t)-2)$, we now have $(2 \alpha(u)-2)$
- Do we see scaling at high \sqrt{s} and $|u| \rightarrow 0$?

Regge scaling - u-Channel

- Guidal et al noted that similar Regge behavior can be expected in the u-channel (high energy, backward angles). Instead of $(2 \alpha(t)-2)$, we now have $(2 \alpha(u)-2)$
- Do we see scaling at high \sqrt{s} and $|u| \rightarrow 0$? Yes!

REGGE SCALING $-u$-CHANNEL (CONTD.)

- u-channel - hyperon exchanges. What are the Regge trajectories ?

$$
\begin{aligned}
& \alpha(t)_{\wedge} \sim-0.6+0.9 t \\
& \alpha(t)_{\Sigma} \sim-0.8+0.9 t
\end{aligned}
$$

- u-channel: $t \rightarrow u$, physical region: $u<0$
- At $|u| \rightarrow 0$:

$$
\begin{aligned}
& (2 \alpha-2)_{\wedge} \approx-3.2 \\
& (2 \alpha-2)_{\Sigma} \approx-3.6
\end{aligned}
$$

- It is thus conceivable that the scaling power $-(2 \alpha-2)$ be >2.

REGGE SCALING - u-CHANNEL (CONTD.)

- u-channel - hyperon exchanges. What are the Regge trajectories ?

$$
\begin{aligned}
& \alpha(t)_{\Lambda} \sim-0.6+0.9 t \\
& \alpha(t)_{\Sigma} \sim-0.8+0.9 t
\end{aligned}
$$

- u-channel: $t \rightarrow u$, physical region: $u<0$
- At $|u| \rightarrow 0$:

$$
\begin{aligned}
& (2 \alpha-2)_{\Lambda} \approx-3.2 \\
& (2 \alpha-2)_{\Sigma} \approx-3.6
\end{aligned}
$$

- It is thus conceivable that the scaling power $-(2 \alpha-2)$ be >2.

Questions:

- Do we need a Regge description (as opposed to usual Feynman propagators) for the u-channel?
- Theoretical difficulties from lowest pole $u=m_{\Lambda}^{2}$ being far removed from the physical region ($u<0$).
- Can we extract a best fit "effective" $\alpha(u)$ from the scaling behavior?

Outline

(1) Introduction and Event Selection

(2) Differential Cross Sections

(3) Recoil Polarization

(5) Summary

To summarize ...

- $K^{+} \Sigma^{0}$ differential cross sections from g11a from threshold (1.169 GeV) till 2.84 GeV and almost the entire angular range have been measured (allowed by newer 2-track topology measurements).
- Fair to excellent agreement with previous world data - besides higher statistics, $\sim 300 \mathrm{MeV}$ increase in energy coverage.
- Prominent structure at $\sim 1.9 \mathrm{GeV}$. We also confirm structure at $\sim 2.2 \mathrm{GeV}$ seen in CLAS g1c data in the backward angles.
- Our recoil polarizations $\left(P_{\Sigma}\right)$ measurements respresent a vast improvement over previous world data - in statistics, kinematic coverage and precision (intermediate Λ directions no longer summed over)
- P_{Σ} is large and positive at forward angles. "Tends towards" zero/negative values in backward directions. Lots of structures seen.
- Confirm scaling at forward angles, high \sqrt{s} seen in previous CLAS g1c data indicating t-channel Regge exchange.
- Results very strongly suggests presence of u-channel for $K+\Sigma^{0}$. For the first time, scaling seen at backward angles at high \sqrt{s} indicating u-channel Regge behavior. Needs further investigation
- Our differential cross-section and polarization results are almost ready to be submitted to the CLAS review committee. Begun running initial PWA to look for missing resonances.

To summarize ...

- $K+\Sigma^{0}$ differential cross sections from g11a from threshold (1.169 GeV) till 2.84 GeV and almost the entire angular range have been measured (allowed by newer 2-track topology measurements)
- Fair to excellent agreement with previous world data - besides higher statistics,
$\sim 300 \mathrm{MeV}$ increase in energy coverage
- Prominent structure at $\sim 1.9 \mathrm{GeV}$. We also confirm structure at $\sim 2.2 \mathrm{GeV}$ seen in CLAS g1c data in the backward angles
- Our recoil polarizations $\left(P_{\Sigma}\right)$ measurements respresent a vast improvement over previous world data - in statistics, kinematic coverage and precision (intermediate Λ directions no longer summed over)
- P_{Σ} is large and positive at forward angles. "Tends towards" zero/negative values in backward directions. Lots of structures seen.
- Confirm scaling at forward angles, high \sqrt{s} seen in previous CLAS g1c data indicating t-channel Regge exchange.
- Results very strongly suggests presence of u-channel for $K+\Sigma^{0}$. For the first time, scaling seen at backward angles at high \sqrt{s} indicating u-channel Regge behavior. Needs further investigation
- Our differential cross-section and polarization results are almost ready to be submitted to the CLAS review committee. Begun running initial PWA to look for missing resonances.

To summarize ...

- $K+\Sigma^{0}$ differential cross sections from g11a from threshold (1.169 GeV) till 2.84 GeV and almost the entire angular range have been measured (allowed by newer 2-track topology measurements)
- Fair to excellent agreement with previous world data - besides higher statistics, $\sim 300 \mathrm{MeV}$ increase in energy coverage
- Prominent structure at $\sim 1.9 \mathrm{GeV}$. We also confirm structure at $\sim 2.2 \mathrm{GeV}$ seen in CLAS glc data in the backward angles
- Our recoil polarizations $\left(P_{\Sigma}\right)$ measurements respresent a vast improvement over previous world data - in statistics, kinematic coverage and precision (intermediate Λ directions no longer summed over)
- P_{Σ} is large and positive at forward angles. "Tends towards" zero/negative values in backward directions. Lots of structures seen
- Confirm scaling at forward angles, high \sqrt{s} seen in previous CLAS $g 1 c$ data indicating t-channel Regge exchange.
- Results very strongly suggests presence of u-channel for $K^{+} \Sigma^{0}$. For the first time, scaling seen at backward angles at high \sqrt{s} indicating u-channel Regge behavior. Needs further investigation.
- Our differential cross-section and polarization results are almost ready to be submitted to the review CLAS committee. Begun running initial PWA to look for missing resonances.

To summarize ...

- $K+\Sigma^{0}$ differential cross sections from g11a from threshold (1.169 GeV) till 2.84 GeV and almost the entire angular range have been measured (allowed by newer 2-track topology measurements)
- Fair to excellent agreement with previous world data - besides higher statistics, $\sim 300 \mathrm{MeV}$ increase in energy coverage.
- Prominent structure at $\sim 1.9 \mathrm{GeV}$. We also confirm structure at $\sim 2.2 \mathrm{GeV}$ seen in CLAS glc data in the backward angles
- Our recoil polarizations (P_{Σ}) measurements respresent a vast improvement over previous world data - in statistics, kinematic coverage and precision (intermediate Λ directions no longer summed over)
- P_{Σ} is large and positive at forward angles. "Tends towards" zero/negative values in backward directions. Lots of structures seen.
- Confirm scaling at forward angles, high \sqrt{s} seen in previous CLAS g1c data indicating t-channel Regge exchange.
- Results very strongly suggests presence of u-channel for $K+\Sigma^{0}$. For the first time, scaling seen at backward angles at high \sqrt{s} indicating u-channel Regge behavior. Needs further investigation
- Our differential cross-section and polarization results are almost ready to be submitted to the CLAS review committee. Begun running initial PWA to look for missing resonances.

Event-background separation

"Quality factor" Q extracted for each event from event-based fits Weigh: signal (Q) background $(1-Q)$

2-track:

Timing Cuts

Three-track
Two-track

Dilution effect of averaging over intermediate Λ 's in measuring P_{Σ}

