$K^0\Lambda$ and $K^+\Sigma^*$

PHOTOPRODUCTION ON THE DEUTERON

Paul Mattione, Rice University

Advisors: Dan Carman, Jefferson Lab
Paul Padley, Rice University
Missing N* resonances
 - Coupling to Y and Y* decay channels to help find high mass states

\[\gamma D \rightarrow K^*0 \Lambda (p) \text{ and } \gamma D \rightarrow K^+ \Sigma^{*-} (p) \] have same final state (pK^+π^-π^-)
 - Calculate Cross Sections & Asymmetries for both

g13a experiment data (circularly polarized photons)

Perform reaction-specific particle ID to obtain a relatively clean K^+ signal

Preliminary Signals with 2% of g13a data, cooking now underway
Missing N^* resonances
- predicted by quark models
- hard to find (wide, overlapping resonances)

Most N^* data comes from πN analyses (π beams or decays into final state π’s)

Coupled-channels analysis of N^* decays
- Can be used to isolate the different N^* signals
- Y and Y^* decay channels are new

Several N^* predicted to decay non-negligibly to Y^* channels:

- $K^*\Lambda$
 - $[N7/2-]_1(2090) = N(2190)G_{17}^{****}$
 - $[N1/2-]_3(1945) = N(2090)S_{11}^*$
 - $[N1/2-]_5(2070)$

- Σ^*K^+
 - $[N5/2+]_2(1980)$
 - $[N3/2-]_3(2095)$

* Capstick, Roberts; Phys Rev D, 58 074011 (1998)
Cross-sections predominantly t-channel process (red lines)

However, in the s-channel calculations only the Born term is included
- No resonant s-channel terms included because not enough information yet on couplings

K⁺ Σ⁺⁻ Predictions and LEPS Data

- γ P Prediction shown, γ N on the way
- γ N LEPS/CLAS data forward/large angles
- Haiyun Lu: eg3, High Energy

* Hicks, et al. (LEPS); arxiv:0812.0771v1 (2008)
g13 Experiment Overview

- Ran between October 2006 and June 2007

g13a – Circularly Polarized Photons
- E_e 2.0 GeV, 84% γ polarization
- E_e 2.65 GeV, 78% γ polarization
- Trigger = 2 Sectors, Up to 10 kHz
- Statistics
 - 2×10^{10} Triggers
 - $> 2 \times 10^5$ Exclusive $K^0 \Lambda$ Events

g13b – Linearly Polarized Photons
- E_e 3.3 – 5.2 GeV
- E_γ 1.1 – 2.3 GeV
 - Six Settings
 - Polarization 70 – 90%
- Trigger = 1 Sector, 7 – 8 kHz
- Statistics
 - 3×10^{10} Triggers
 - $> 10^5$ Exclusive $K^0 \Lambda$ Events
Pass 1 of g13b cooking completed
 - Problem found with dc-alignment
 - No trip files
Pass 1 of g13a cooking underway (7.5%)
Analysis Outline

- Pass0 g13a Data, ~2% of g13a Total
- Reaction-Specific Particle Identification
- Wide-cut Event Candidate Skim
- p & π^- Identification
- Λ Event Selection
- K^+ Identification
- Missing Proton Event Selection
- K^*0, Σ^* Interference Cut
Event Candidate Skim

- Require at least 2 q^+ and 2 q^- tracks
- Test every possible track combination: all q^- tracks as π^-, all q^+ tracks as p and K^+
- The γ with time closest to the π^- at reaction vertex is selected
- Wide Timing Cuts
 - p, π^- within 8 ns at Λ decay vertex
 - K^+, π^- within 5 ns at reaction vertex
 - γ, π^- within 4 ns at reaction vertex
 - γ, K^+ within 6 ns at reaction vertex
- Wide Mass Cuts
 - $1.09 \text{ GeV} < \Lambda$ Invariant Mass $< 1.14 \text{ GeV}$
 - $0.7 \text{ GeV} < p$ Missing Mass $< 1.2 \text{ GeV}$
- 0.025% Data Remaining, Negligible Signal Loss
\(\pi^- \) Identification

- \(\Delta \beta \) Vs Momentum
 - Fit to Gaussians, 3\(\sigma \) Cut
Proton Identification

- $\Delta \beta$ Vs Momentum
 - Fit to Gaussians, 3 σ
 - Cut
Fit $t_p - t_{\pi^-}$ vs Proton momentum to Gaussians, Cut at 3σ

Fit $p\pi^-$ Invariant Mass to Gaussian + Flat Background, Cut at 3σ

Entries 34384
χ^2/ndf 42.06/36
Gaussian Height 604.8
Gaussian Mean 1.116
Gaussian Sigma 0.001675
p3 140.2
K⁺ Identification

- Δ β Vs Momentum
 - Fit to Gaussians, 3 σ Cut
Missing Proton Selection

- Fit Proton Missing Mass to Gaussian + Flat Background, Cut at 3σ
- 1.4% of events have > 1 successful track combination: the one with the smallest p, $\pi^- \Delta t$ is chosen
A π^+ misidentified as a K^+ will most likely manifest in K^0.

π^+, π^- invariant mass by forcing all K^+ as π^+.
Interference Cut

![Graph showing interference cut in a two-dimensional coordinate system withInvariant Mass (GeV/c^2) on the x-axis and K^+ Invariant Mass (GeV/c^2) on the y-axis. The graph is color-coded with a color bar indicating entries from 0 to 18.]
Signals, 2% g13a Data

- \[\sum^{*-} \]
 - 1798 Events
 - 10.9 Sig/Back Ratio

- K^*0
 - 179 Events
 - 1.1 Sig/Back Ratio

CLAS Collaboration Hadron Spectroscopy Group Meeting

June 12, 2009
KC\(^*\)0 ∨ Signal Binning

- 2% of g13a Data
- 25 Bins In Either Variable (1D), ~350 Counts/Bin
K$^+ \Sigma^*$ Signal Binning

- 2% of g13a Data
- 25 Bins in Either Variable (1D), ~3600 Counts/Bin
Major Ongoing/Future Work

- Acceptance Corrections
 - Using fsgen with t-channel model from Oh, Kim
 - Working on Matching Monte Carlo & Data
- Beam Energy & Momentum Corrections
 - $\gamma D \rightarrow pp \pi^-$ Kinematic Fit, Track Momentum Treated As Unknown (eg3)
- Photon Flux Determination (gflux)
- Reproduce a Known Cross-Section
- Systematic Error Studies
- Calculate $K^0 \Lambda$ and $K^+ \Sigma^-$ Cross Sections & Asymmetries