Corrections to the g1c Dataset In advance of a study of the density matrix elements for $\gamma \mathbf{p} \rightarrow \mathbf{p}\omega$

Brian Vernarsky

CMU

June 12, 2009

Brian Vernarsky (CMU)

Corrections to the g1c Dataset

OUTLINE

INTRODUCTION

- **2** TAGGER CORRECTIONS
 - Method
 - Results
- **3** Momentum Corrections
 - Method
 - Results
- 4 Tests
 - π^0 mass from ω
 - π^0 mass
 - n mass
 - Checks, and a solution

OUTLINE

1 INTRODUCTION

- - Method
 - Results
- - Method
 - Results
- - π^0 mass from ω
 - π^0 mass
 - n mass
 - Checks, and a solution

3

A B F A B F

INTRODUCTION

- The g1c dataset was taken from October 2 to November 30, 1999
- 7.5 terrabytes of data were collected and there were 4.5 billion triggers
- The target was unpolarized liquid H₂
- The run period studied here had an electron beam at an energy of 2.445 GeV which produced a circularly polarized tagged photon beam
- The beam was circularly polarized, allowing for study of different spin density matrix elements than g11 or FROST
 - g11a did not have a polarized beam or a polarized target
 - FROST has runs with a circularly polarized as well as linearly polarized beam and a polarized target

イロト 不得 トイヨト イヨト 二日

INTRODUCTION

- There was a single charged track trigger giving us access to the reactions $\gamma p \to p \pi^0$ and $\gamma p \to \pi^+ n$
- There are approximately 800,000 ω events to study after fiducial cuts
- Though the dataset has been studied before, a good set of momentum corrections was not available to us, thus we had to create our own before we can study the dataset in great detail

CLAS BACKGROUND

- CLAS has six sectors and two coordinate systems used in this analysis
- The lab system has z pointing in the direction of the beam, y straight up, and x to the center of sector 1
- θ_{lab} and ϕ_{lab} are the lab polar and azimuthal angles, binning is based on these variables
- The tracking system has x pointing in the direction of the beam, y passes through the center of the sector, and z is aligned with the average magnetic field in the sector.
- $\lambda_{tracking}$ is the dipolar angle and $\phi_{tracking}$ is the angle relative to the sector's plane, corrections are made to these variables
- The momentum tracking is done in terms of the ratio of charge to the magnitude of momentum q/p

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Corrections Background

Corrections

- Energy loss corrections already existed and were written by Eugene Pasyuk
- Tagger corrections are used to correct the misalignment of the tagger hodoscope first discovered by Mike Williams (CMU) in 2003
- Momentum corrections fix inaccurate magnetic field maps or drift chamber survey information
- Poor resolution for low momentum protons is solved with a simple cut
- Previous momentum and tagger corrections were more coarse than g11a and were not studied in as much detail
- The old corrections treated protons and π^+s as equivalent
- The new corrections here treat each particle separately and intend to be complete

OUTLINE

INTRODUCTION

- 2 TAGGER CORRECTIONS
 - Method
 - Results
- **3** Momentum Corrections
 - Method
 - Results
- 4 Test
 - π^0 mass from ω
 - π^0 mass
 - n mass
 - Checks, and a solution

3

GENERATING TAGGER CORRECTIONS

- First look at corrections to the tagged photon energy
- Start by choosing events of $\gamma p
 ightarrow p \pi^+ \pi^-$ with nothing missing
- Apply E-loss correction to the particles
- Get the measured energy of the photon $ightarrow E_{\gamma}^{meas}$
- Do a 3-C kinematic fit ignoring the measured photon energy $\rightarrow E_{\gamma}^{kfit}$
- Cuts
 - $\bullet\,$ Cut events with proton momentum less than 350 $\rm MeV/c$
 - Cut events with a missing p_{\perp} of greater than 25 $\rm MeV/c$
 - Make a 10 percent confidence level cut

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

GENERATING TAGGER CORRECTIONS

- Plot $(E_{\gamma}^{k\textit{fit}} E_{\gamma}^{meas})/$ Electron Beam Energy vs energy counter
- Fitting
 - Take each energy counter and generate 1-D histogram of relative tagger correction
 - Fit histogram with a Gaussian plus linear background

Results

GENERATING TAGGER CORRECTIONS

Results

GENERATING TAGGER CORRECTIONS

Brian Vernarsky (CMU)

Corrections to the g1c Dataset

Hadron Spectroscopy 9 / 25

Results

GENERATING TAGGER CORRECTIONS

Brian Vernarsky (CMU)

Corrections to the g1c Dataset

Hadron Spectroscopy 9 / 25

Results

GENERATING TAGGER CORRECTIONS

Hadron Spectroscopy 9

Results

GENERATING TAGGER CORRECTIONS

Corrected Tagger

Corrected Tagger

OUTLINE

- 2 TAGGER CORRECTIONS
 - Method
 - Results
- **3** Momentum Corrections
 - Method
 - Results

- π^0 mass from ω
- π^0 mass

• Checks, and a solution

- Start by choosing events of $\gamma p \to p \pi^+ \pi^-$ with nothing missing
- Apply E-loss to the particles and tagger corrections to the photon
- Apply momentum corrections to the particles if they have been generated
- \bullet Keep events with $|\textit{MM}| < 100~\textrm{MeV}/c^2$
- Kinematic Fit
 - Do a 1C kinematic fit ignoring the momentum of one particle
 - Record difference between fit and original p, $\lambda_{\textit{tracking}}$ and $\phi_{\textit{tracking}}$
 - $\Delta x = x^{kfit} x^{meas}$
- Repeat for all 3 particles, p, π^+ and π^-
- Cuts
 - $\bullet\,$ Cut events with proton momentum less than 350 $\rm MeV/c$
 - Cut events with a missing p_{\perp} of greater than 25 MeV/c
 - Make a 10% confidence level cut (i.e. all three particles below 10%)

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- The data is binned in the same way as g11
 - There are six sets of bins due to the six CLAS sectors
 - $\theta_{\textit{lab}}$ has 15 bins
 - Nine 5° bins from $[5^\circ, 50^\circ)$
 - Four 10° bins from $[50^\circ,90^\circ)$
 - Two 25° bins from [90°, 140°)
 - $\phi_{\textit{lab}}$ has twelve 5° bins
 - Magnitude of momentum is binned in equal sized 1/p bins because of tracking
- Each bin has nine plots: Δp , $\Delta \lambda_{tracking}$ and $\Delta \phi_{tracking}$ vs p for all three particles

- Fitting
 - Take each 1/p bin in and generate a 1-D histogram of Δx
 - Check that there are at least 100 events and a peak of at least 10 (due to binning)
 - Fit histogram with a Gaussian plus linear background

- The results of these fits are plotted vs p and then those points are fit with a polynomial
 - If there are no entries the bin is ignored
 - If there is one entry the fit takes its value
 - If there are two entries the bin is fit with a line
 - If there are three entries the bin is fit with a quadratic
 - If there are four or more entires the bin is fit with a third order polynomial

Method

GENERATING MOMENTUM CORRECTIONS

Method

GENERATING MOMENTUM CORRECTIONS

Brian Vernarsky (CMU)

Method

GENERATING MOMENTUM CORRECTIONS

Brian Vernarsky (CMU)

Method

GENERATING MOMENTUM CORRECTIONS

Brian Vernarsky (CMU)

Corrections to the g1c Dataset

Hadron Spectroscopy

15 / 25

Method

GENERATING MOMENTUM CORRECTIONS

Method

GENERATING MOMENTUM CORRECTIONS

- Once the Tagger and Momentum corrections are generated repeat process
 - Redo tagger correction with momentum and tagger corrections applied
 - Combine last iteration with the new correction
 - Redo momentum correction with previous iteration's momentum correction applied
 - Combine last iteration with the new correction
- Each iteration should get you closer to zero
- The 9 variables are correlated
 - Proton p tied closely to π^+ and $\pi^- \phi_{tracking}$
 - π^+ p tied closely to proton and $\pi^-~\phi_{\textit{tracking}},$ etc.
- Varying one variable changes others as well
- So change only one variable at a time

INITIAL CONDITIONS

Modified all variables

MODIFIED PROTON P

MODIFIED PROTON $\lambda_{tracking}$

Modified proton $\phi_{tracking}$

Modified π^+ p

MODIFIED $\pi^+ \lambda_{tracking}$

MODIFIED $\pi^+ \phi_{tracking}$

Modified π^- p

MODIFIED $\pi^- \lambda_{tracking}$

MODIFIED $\pi^- \phi_{tracking}$

Modified proton p

Modified proton $\phi_{tracking}$

Tests

OUTLINE

- 2 TAGGER CORRECTIONS
 - Method
 - Results
- - Method
 - Results
- - Tests
 - π^0 mass from ω
 - π^0 mass
 - n mass
 - Checks, and a solution

Tests

Tests of Momentum Corrections

- The corrections should yield proper masses for missing particles in a variety of reactions
- Since g1c had a one track trigger it is possible to check the reactions $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^-(\pi^0)$, $\gamma p \rightarrow p(\pi^0)$, and $\gamma p \rightarrow \pi^+(n)$
- Method
 - Start by choosing a reaction to study and choose events of that type
 - Apply E-loss, tagger and momentum corrections
 - $\bullet\,$ Cut events with proton momentum less than 350 MeV/c
 - Use COBRA to get the missing mass for the event
 - Plot all missing mass and missing mass vs. energy paddle id
 - Generate a histogram for each energy paddle and fit it with a Gaussian plus a linear background

Tests π^0 mass from ω

π^0 mass from ω

- The reaction $\gamma p \to p \omega \to p \pi^+ \pi^-(\pi^0)$ should show a mass peak at 0.13498 GeV/ c^2
- There is a problem when the missing mass is viewed vs photon energy

A B + A B +

Tests π^0 mass from ω

π^0 mass from ω

- The reaction $\gamma p \to p \omega \to p \pi^+ \pi^-(\pi^0)$ should show a mass peak at 0.13498 GeV/ c^2
- There is a problem when the missing mass is viewed vs photon energy

Tests π^0

mass from ω

π^0 mass from ω

- The reaction $\gamma p \to p \omega \to p \pi^+ \pi^-(\pi^0)$ should show a mass peak at 0.13498 GeV/ c^2
- There is a problem when the missing mass is viewed vs photon energy

Tests π^0 mass

- The reaction $\gamma p \rightarrow p(\pi^0)$ should show a mass peak at 0.13498 GeV/c^2
- The same problem exists when we view missing mass vs photon energy

3

Tests π^0 mass

- The reaction $\gamma p
 ightarrow p(\pi^0)$ should show a mass peak at 0.13498 GeV/ c^2
- The same problem exists when we view missing mass vs photon energy

Tests π^0 mass

- The reaction $\gamma p
 ightarrow p(\pi^0)$ should show a mass peak at 0.13498 GeV/ c^2
- The same problem exists when we view missing mass vs photon energy

NEUTRON MASS

- The reaction $\gamma p \rightarrow \pi^+(n)$ should show a mass peak at 0.93956 GeV/c^2
- The same problem exists when we view missing mass vs photon energy

- 4 同 6 4 日 6 4 日 6 - 日

NEUTRON MASS

- The reaction $\gamma p \rightarrow \pi^+(n)$ should show a mass peak at 0.93956 GeV/c^2
- The same problem exists when we view missing mass vs photon energy

n mass

NEUTRON MASS

- The reaction $\gamma p \rightarrow \pi^+(n)$ should show a mass peak at 0.93956 GeV/c^2
- The same problem exists when we view missing mass vs photon energy

< A >

CHECKS, AND A SOLUTION

- The masses are all a little high overall and some vary strongly with photon energy
- The π^0 mass from the reaction $\gamma p \rightarrow p\omega \rightarrow p\pi^+\pi^-(\pi^0)$ also increases as photon energy increases, to about 5 MeV high

Tests

- The π^0 mass from the reaction $\gamma p \rightarrow p(\pi^0)$ becomes about 25 MeV higher than it should at high photon energy
- The neutron mass increases for midrange photon energies but is close to expected at high and low energies
- A possible solution to this problem is to scale the photon energy
- Unfortunately the scale is different in each reaction, 99.85% works for ω reaction, but it is less in the other reactions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Corrected π^0 mass from ω

Tests

Checks, and a solution

CHECKS, AND A SOLUTION

• The fact that the scaling is reactions dependant suggests this may not be the final solution

Tests

- More work will probe whether it is the magnetic field that needs scaling and not the photon energy
- These corrections should be better than the corrections in any other channel and are sufficient for analysis

SUMMARY

- Momentum and tagger corrections have been generated and satisfy their methods very well
- However, implementing these corrections leads to problems with the masses of missing particles
- Checks showed that this problem could be averted by scaling the photon energy, or perhaps the magnetic field
- Now that this is done work can continue towards getting the spin density matrix elements for $\gamma p \rightarrow p\omega$