G13 Update

CLAS collaboration meeting

Newport News VA
June 12
2009

Danny Martinez

613

The experiment ran between October 2006 and June 2007 Liquid Deuterium target
g13a: Circularly polarized photons

- $\mathrm{Ee}=2.0 \mathrm{GeV}$ \& 84\% polarization
- $\mathrm{Ee}=2.6 \mathrm{GeV}$ \& 78\% polarization
- Trigger $=2$ sectors, up to 10 kHz
- 2×10^{10} triggers
- g13b: Linearly polarized photons
- $\mathrm{Ee}=3.3-5.2 \mathrm{GeV}$
- $\mathrm{Ey}=1.1-2.3 \mathrm{GeV}$
- Polarization 70\%-90\%
- Trigger $=1$ sector, 7-8 kHz
- 3×10^{10} triggers

CURRENT STATUS

- $g 13 a$ is being cooked for pass1
- g13b pass1 finished in early May
- Future presentations with preliminary results
- Normalization runs exist, but gflux has not been created
- No trip files for g13a-b
- A problem with neutral particles was corrected when ~2/3 of g13b data were already cooked

THE PROBLEM

- Events where the first track was neutral were thrown away by a small routine
- N-tuples did not have the problem, only BOS

CALIBRATION

Tagger - Russell Johnstone -
DC - Edwin Munevar -
ST - Daria Sokhan -

- TOF - Neil Hassall -
- EC - Paul Matione -
- LAC - Danny Martinez -
- PHOTON BEAM POLARIZATION - Charles Taylor -

DC CALIBRATION

- Achieved DC resolution:
- Protons : below 100 Microns
- Pions : below 300 Microns

Golden Runs
5333354392
5341054821
5346054968
53554
53570
53768
53144
54043
54197
54620
54675
55019

1) $53095-535321.987,3$	a) $54042-541451.3,3.302$
2) $53970-540351.996,3$	b) $54163-542281.3,3.914$
4) $53538-5386252.649,4$	c) $54607-54640$
4) $54042-54145$	$3.302,4$
d) $54641-54705$	$1.5,4.475$
5) $54163-542293.914,4$	e) $55011-550821.5,4.065$
7) $54325-546005.057,5$	g) $54229-543231.7,4.748$
8) $54607-546404.192,5$	h) $55087-551251.7,4.065$
10) $54707-552045.157,5$	j) $54505-54500-546002.1,5.057$
	k) $54707-547702.1,5.157$
	l) $54784-550012.3,5.157$

Notable Events
$53095 \mathrm{LH}_{2}$ in
$53165 \mathrm{LD}_{2}$ in
$53970 \mathrm{LH}_{2}{ }^{2}$ in
54042 LD $_{2}$ in
$55147 \mathrm{LH}_{2}$ in
54010 Linear Pol

* SuperLayer
* SuperLayer SuperLayer * SuperLayer SuperLayer

TOF CALIBRATION

- TOF is being monitored in detail in order to know which runs need an improvement
- Time of flight is using 911 timewalks

TOF CALIBRA TION

Sample from g13b

EC CALIBRATION

- A change to the code -packages/utilities/sc_calib/tdc_calib- was implemented in the fitting procedure for photon runs which resulted in an improvement of timing resolution by ~18\%

EC CALIBRA TION

EC CALIBRA TION

EC CALIBRA TION

EC CALIBRA TION

LAC CALIBRATION

In progress

\leftarrow ADC values for all stacks, layers and sectors

Projection in y axis and fitting \rightarrow

$$
\mathrm{Y}+n(p) \rightarrow \mathrm{K}^{+} \Sigma^{-}(\mathrm{p})
$$

Edwin Munevar -GWU-

- 1+, 1-, 1neut

Momentum for n recalculated according to Σ - decay vertex

- $K^{+} \pi-n$ assumed with no PID information
- Reaction identification
- $\Sigma^{-} \quad$ Invariant mass
- P spectator mass calculated by missing mass
- Quasi-free calculated state by missing momentum

$\mathrm{K}^{+} \Lambda(\mathrm{n}) ; \mathrm{K}^{+} \Sigma^{0}(\mathrm{n})$

 Russell Johnstone (Glasgow)- Aplication of standard cuts for particle identification
- Hyperons reconstructed by missing mass
- There is overlapping due to Fermi momentum
- Sigma asymmetry values will give considerable contamination to lambda asymmetry
- Asymmetry values for each hyperon over 8 angular bins in cos (θ)
\rightarrow Comparison with g8b data - Craig Paterson -

$\mathrm{K}^{0} \Lambda(\mathrm{p}) ; \mathrm{K}^{0} \Sigma^{0}(\mathrm{p})$

Neil Hassall (Glasgow)

- Estimate how much sigma contamination is under lambda particle - first graph - (black fit is a Voight function; is the sum of lambda fit and sigma fit)
- Photon asymmetry for the 1.9 GeV peak setting - second graph - (4 angular bins \& 1200 MeV energy bin)
- Asymmetry as a function of $\cos (\theta)$ - third graph -
- Estimation of systematic uncertainties ongoing

$\mathrm{K}^{0} \Lambda(\mathrm{p}), \mathrm{K}^{0} \Sigma^{0}(\mathrm{p})$ Neil Hassal (Glasgow)

5

Photon Asymmetry $1.9 \mathrm{GeV} \gamma \mathrm{n}->\mathrm{K}^{0} \Lambda$

PHD PROJECT STATUS

$\pi-p(p):$ Daria Sokhan (Edinburgh)

- completed -
$K+\Lambda(n) ; K^{+} \Sigma^{0}(n)$ Russell Johnstone Glasgow)
- almost completed -
$\mathrm{K}^{0} \Lambda(p) ; \mathrm{K}^{0} \Sigma^{0}(p)$ Neil Hassall (Glasgow)
- in progress -
$K^{+} \Sigma(\mathrm{p})$: Edwin Munevar (GWU)
- in progress -
$\mathrm{K}^{0} \wedge(\mathrm{p}) ; \mathrm{K}^{+} \Sigma^{*-}(\mathrm{p})$ Paul Mattione (RICE)
- in progress -
pw(n): Danny Martinez (ISU)
- starting -

Charles Taylor (ISU)

- to be determined -

THANKS

\author{

- NSF JLAB
 - CUA
 - GLASGOW
 - GWU
}
- EDINBURGH
- USC
- ISU
- RICE

