Photoproduction of **\$\phi_meson by** Using Linearly-Polarized Photons at Threshold Energies

Julian Salamanca, Philip L Cole and the CLAS Collaboration

CLAS Collaboration Meeting Newport News, VA June 12, 2009

Outline

Motivation

- OZI evading/respecting
- VMD (Vector Meson Dominance)
- Spin Density Matrix Elements
- **\$\phi\$-meson Photoproduction**
 - CEBAF (Continuous Electron Beam Accelerator Facility)
 - Coherent Bremsstrahlung Facility at CLAS (CEBAF Large Acceptance Spectrometer)
 - Event Selection
 - Background Subtraction
- Results for the 1.9 GeV Coherent-Edge
- Results for the 2.1 GeV Coherent-Edge

OZI evading/respecting process

Okubo Zweig Iizuka rule: In strong interaction processes where final states can only be reached via quarkantiquark annihilation are suppressed. You cannot cut gluon lines in the OZI picture.

• Experimentally this decay mode is: (15.3 ± 0.4)%

respectina.

Previous Measurements

FIG. 29. Reaction $\gamma p \rightarrow p \phi$ at 2.8, 4.7, and 9.3 GeV. Decay angular distribution of $K\overline{K}$ pairs in the helicity system in the ϕ mass region $1.00 \leq M_{K\overline{K}} \leq 1.04$ GeV and in the momentum-transfer interval $0.02 \leq |t| \leq 0.8$ GeV². The curves are calculated for an *s*-channel helicityconserving ϕ production amplitude.

J. Ballam, G. B. Chadwick et al., Phys. Rev. D 7 3150 (1972).

Previous Measurements

Spring-8 used a beam of linearly polarized photons (forward direction |t|<0.4 GeV ²)

- T. Mibe, "Measurement of φ meson photoproduction near production threshold with linearly polarized photons," PhD Thesis, Osaka University, Japan (2004), unpublished.
- T. Mibe *et al.*, Phys. Rev. Lett. 95, 182001 (2005).

FIG. 4: Decay angular distributions for $-0.2 < t + |t|_{min}$ in the Gottfried-Jackson frame. The solid curves are the fit to the data. The hatched histograms are systematic errors.

The Decay Angular Distribution Spin Density Matrix Elements

$$\begin{split} W(\cos\theta,\phi,\Phi) \ = \ W^0(\cos\theta,\phi,\rho^0_{\alpha\beta}) & - \ P_\gamma\cos2\Phi W^1(\cos\theta,\phi,\rho^1_{\alpha\beta}) \\ & - \ P_\gamma\sin2\Phi W^2(\cos\theta,\phi,\rho^2_{\alpha\beta}) \end{split}$$

where

$$\begin{split} W^{0}(\cos\theta,\phi,\rho_{\alpha\beta}^{0}) &= \frac{3}{4\pi} [\frac{1}{2}\sin^{2}\theta + \frac{1}{2}(3\cos^{2}\theta - 1)\rho_{00}^{0} \\ &-\sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\theta\cos\phi - \rho_{1-1}^{0}\sin^{2}\theta\cos2\phi] \\ W^{1}(\cos\theta,\phi,\rho_{\alpha\beta}^{1}) &= \frac{3}{4\pi} [\rho_{11}^{1}\sin^{2}\theta + \rho_{00}^{1}\cos^{2}\theta \\ &-\sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\theta\cos\phi - \rho_{1-1}^{1}\sin^{2}\theta\cos2\phi] \\ W^{2}(\cos\theta,\phi,\rho_{\alpha\beta}^{2}) &= \frac{3}{4\pi} [\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\theta\sin\phi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\theta\sin2\phi] \end{split}$$

Linearly polarization gives access to six more density matrix elements

*Those are calculated in ϕ rest frame (Helicity Frame)

Spin Density Matrix Elements

IF VMD:

- Density matrix elements should be equal to **ZERO but** ρ_{1-1}^1 and $Im\{\rho_{1-1}^2\}$
- ρ_{1-1}^{1} , $Im\{\rho_{1-1}^{2}\} = (1/2, -1/2 : Pomeron)$
- ρ_{1-1}^{1} , $Im\{\rho_{1-1}^{2}\} = (-1/2, 1/2 : Meson)$

φ-Photoproduction: g8b experiment

The Coherent Bremsstrahlung Facility at CLAS

The Coherent Bremsstrahlung Facility at CLAS

Experiments with Linear George Washington University

Mean polarization estimated to be ~70% from comparison with the coherent bremsstrahlung calculation*

* A. Natter. http://www.pit.physik.uni-tuebingen.de/grabmayr/software/brems/brems-analytic.html

$$\vec{\gamma} p \rightarrow p \phi \rightarrow p K^+ K^-$$

Mode: $p K^+(X) \rightarrow p K^+(K^-)$

i.e. 2.1GeV CohEdge

1.4

 $\times 10^3$ Entries 5.570135e+07 **Quality flags:** Events 009 TAGR status = 7 or 15 **EVNT** DC status > 0 EC status > 0 Status > 0 400 200 0<u>.2</u> 0.4 0.6 0.8 1.2 $m_{K^*}, m_p (GeV/c^2)$

> Loose cuts on p and K + masses. Applied cuts were $0.8 < m_n < 1.2 \text{ GeV}$ and $0.3 < m_{\kappa +} < 0.7 \text{ GeV}$.

Timing cuts base on proton vertex time

K^- missing mass cut A 5-sigma cut on the K^- missing mass was applied by using a Gaussian function + 2nd polynomial.

π^+ background subtraction

It seems the event selection we made was not enough to get rid of the π^+ background. The tails coming down from a maximum located around -4ns (1.9 GeV CohEdge) and -3ns (2.1 GeV CohEdge data) seem to be fully misidentified kaons. Applying the $t_p - t_{\pi^+} < -4$ ns (-3 ns) condition

improves our results.

Time difference between p and K⁺ vertex times.

Φ-meson reconstruction was fitted by a Breit-Wigner convoluted with a Gaussian + 2nd order polynomial (We fix Γ_{ϕ} = 4.26 MeV from PDG)

Event Selection

PARA

PERP

- → **Probabilistic Event** Weighting*
- Q-factor = Fs/(Fs+Fb)
- Fs (Signal): Voigtian
- **Fb (Background): 2nd order** • polynomial

SDME parametrization.

Results

Results

Momentum Corrections ?

i.e. 1.9 GeV CohEdge

i.e. 2.1 GeV CohEdge

Conclusions

- □ Polarization ~70%
- \Box Over 14000 ϕ -meson events were analyzed.
- Extract Spin Density Matrix Elements (SDMEs)
- Double check on Polarization calculation
- Study of systematic errors
- Compare to Spring-8^[1] data as well as J. Ballam et al.
- Urite up !!!

- [1] T. Mibe et al., Phys. Rev. Lett. 95, 182001 (2005).
- [2] J. Ballam, G. B. Chadwick, et al., Phys. Rev. D 7 3150 (1972).

g8 history so far...

g8b (6/20 - 9/01/05)

Tagged and Collimated γ beam in Hall B for beam-asymmetry studies for the reactions:

γρ ≕ p(π,η,ρ,ω,φ),Κ٨

<u>Coh. Peak</u>	<u>good evts</u>
1.3 GeV	(1.4 Billion)
1.5 GeV	(2.0 Billion)
1.7 GeV	(1.8 Billion)
1.9 GeV	(1.2 Billion)
2.1 GeV	(0.9 Billion)
Amorphous	(1.8 Billion)

 \rightarrow

 ρ^{0} at low |t | (< 0.30 GeV²)

Photon Polarization

