Measurement of the Induced Polarization of Electroproduced Λ(1116) with CLAS

Marianna Gabrielyan Florida International University September 26, 2009

- Analysis Update (E1F dataset).
- Current status and future work.
- These results will be presented at the upcoming DNP conference.

Kinematics Definitions

$$e + p \rightarrow e' + K^+ + (\Lambda \rightarrow \pi^- + p)$$

v=E-E'.....Energy transferred by virtual photon. $Q^2=-q^2=4EE'\sin^2(\theta_e/2)$Momentum of virtual photon. $W^2=M_p^2+2M_pv-Q^2$C.M. mass of intermediate state.

Analysis Method Summary

- Electron identification
 - Good EC fiducial cut
 - Good traceback to target
 - Fiducial cuts (flat acceptance region)
 - Momentum corrections
- Hadron (K,p) identification
 - Timing cut
 - Fiducial cuts
 - Momentum corrections
- Hyperon (Λ , Σ^0) identification
 - Reconstructed missing mass for $e+p \rightarrow e'K^+(Y)$
 - For recoil polarization observables $e+p \rightarrow e'K^+p(\pi^-)$ include π^- missing-mass cut

Study of Electron Cuts

Starting e⁻ sample ~296000.

All standard e cuts:

- CC cut (nphe > 25). (~56,000 events)
- 2. EC inner cut. (~5,000 events)
- 3. Trigger threshold. (~3,000 events)
- 4. Reef cut. (~49,000 events)
- 5. Sampling Fraction. (~5,000 events)
- 6. EC Fiducial cut.
- 7. Z-Vertex. 🗹

Number of Events with ALL standard cuts was ~193,000.

TOTAL Events Recovered ~89,000.

Study of Electron Cuts

Study of Electron Cuts

Timing cut to minimize $\Delta t = t_1 - t_2$

 Δt - Difference between the time t_1 it takes for hadron with momentum p to travel from vertex to SC and the time t_2 it takes for assumed particle with the same momentum to travel the same distance.

$$t_{1} = \frac{d}{\beta_{1}c}, \quad m_{1} = \frac{p}{\beta_{1}\gamma c}, \qquad d \text{ - distance from vertex to SC system}$$

$$t_{2} = \frac{d}{\beta_{2}c}, \quad \beta_{2} = \frac{p}{\sqrt{(m_{2}c)^{2} + p^{2}}}, \qquad m_{2} \text{ - is the assumed particle mass.}$$

$$\Delta t = t_{1} \left(1 - \sqrt{\frac{p^{2} + (m_{2}c)^{2}}{p^{2} + (m_{1}c)^{2}}} \right)$$

Minimum Δt identifies the hadron.

Minimum Δt identifies the hadron.

Minimum Δt identifies the hadron. ALL p and K (NO Λ or π missing mass cuts)

Hyperon Identification

Λ Polarization Extraction

Parity non-conservation in weak decay allows to extract recoil polarization from *p* angular distribution.

 $\frac{dN}{d\cos\theta_p^{RF}} = N(1 + \alpha P_{\Lambda}\cos\theta_p^{RF}),$

where: $\alpha = 0.642 \pm 0.013$ (PDG)

Two ways to extract polarization:

1. Calculating
$$P_{\Lambda} \sim (N_F - N_B) / (N_F + N_B)$$

2. Fitting a line to angular distribution.

The presented polarization results are CALCULATED via forwardbackward asymmetry.

Induced Polarization vs cos(θ_{K}^{CM})

Preliminary Results

1.71<W<1.87 (GeV) SUM over Q², Φ *W*: 1.6-2.2 (GeV), 50 MeV bins SUM over *Q*², Φ 1.873<W<2.152 (GeV) SUM over Q², Φ

Induced Polarization vs W

Induced Polarization vs W (photoproduction)

FIG. 12: (Color On-line) P_{Λ} vs \sqrt{s} (GeV) in bins of $\cos \theta_{K}^{c,m}$. Results of this analysis are represented by red circles, previous CLAS (McNabb, et al. [19]) results by blue triangles, SAPHIR 2004 (Glander, et al. [3]) by green triangles, and GRAAL 2007 (Lleres, et al. [20]) by black squares. Physical limits on P_{Λ} are indicated by dashed horizontal lines.

Figure from M. McCracken Dissertation

π Background Polarization vs W

- Geometrical fiducial cuts are finalized.
- e⁻ and hadron cuts are finalized.
- Final state identification cuts are finalized.
- Currently working on background subtraction using MC templates for fitting.

Polarized Σ contribution must be accounted for. Although the π and p backgrounds are unpolarized, they still have some dilution effect on polarization results.

Future Work

It is necessary to repeat induced polarization measurement by Simeon McAleer (FSU). Previous measurement combines data from 4 different data sets with different energies and torus currents.

E _{beam} (GeV)	W(GeV)	Q ² (GeV ²)	Ν _Λ	N_{Σ}
2.567	1.6-2.1	0.3-1.3	42000	8000
4.261	1.6-2.5	0.7-3.0	34000	6500
5.754	1.6-3.0	1.5-4.5	82000	16000
5.499	1.6-3.0	0.8-3.5	367000	?

NEXT...

- Determine acceptance corrections.
- Acceptance corrected polarization extraction.

Strong systematic check of our results is to show that the P_L and P_T components are consistent with 0.

- Systematic error analysis.
- Comparison to theory. M. Gabrielyan, Florida International University

P_L and P_T vs cos(θ_K^{CM})

No acceptance corrections. No background subtraction.

Fit Parameters for Background Polarization

π Polarization vs cos(θ_{K}^{CM})

PO	X ²
-0.07576 ± 0.03962	3.554/6
0.05041 ± 0.02858	4.425/6
0.02712 ± 0.02632	4.305/6
0.02177 ± 0.02774	2.648/6
-0.01067 ± 0.03036	6.47/6
0.03236 ± 0.03376	11.87/6
0.03690 ± 0.03814	6.608/6
0.0007358 ± 0.04443	7.11/6
0.0001337 ± 0.05175	2.059/5
0.07751 ± 0.06141	1.603/5
-0.1038 ± 0.07195	2.448/4
-0.04207 ± 0.08779	0.0814/2

π Polarization vs W

PO	X ²
0.02015 ± 0.01593	22.36/23
0.009249 ± 0.02339	12.6/20
0.0218 ± 0.03903	11.81/15
-0.02241 ± 0.03918	10.01/11
-0.005989 ± 0.04029	16.3/10
0.03934 ± 0.03914	4.454/8
-0.03334 ± 0.037755	10.35/7

π Background Polarization vs cos(θ_{K}^{CM})

Electron Cuts

Applied e⁻ cuts are shown on the plots.