Status of $K+\Sigma -$ analysis from g13

Edwin Munevar
The George Washington University

September 2009
Contents

- Previous work
- g13 features
- Analysis
- Conclusions
Previous work

- **g2**: Both inclusive and exclusive analysis.
 - Very low statistics!

- **g10**: Exclusive cross-section-measurement.
 - High statistics
 - Non-polarized beam!

- **LEPS spring 8**: Inclusive analysis.
 - Cross section and beam asymmetry
 - Very small angular coverage!
g13 Features

- Polarized photon beam: circular (g13a) and linear (g13b) polarization
- Photon energy range: 0.8-2.5 GeV
- Target: Liquid Deuterium (40-cm-length)
- Magnetic field negatively polarized
- About 52 billion triggers
Analysis: Goal

- Measurement of the cross section \((g13a)\)
- Determination of the beam asymmetry \((g13b)\)

That’s all what can be determined:
- Experimental issue \(\alpha = -0.068\) (PDG)
Analysis: \(\gamma d \rightarrow K^+ \Sigma^- (p) \rightarrow K^+ \pi^- n(p) \)

- K+, \pi-, n are detected. (p) is reconstructed by MM
- Events with “at least” 1(+), 1(-), 1(0)
- All possible track combinations for \(\gamma d \rightarrow K^+ \Sigma^- (p) \)
 - All (+) \(\rightarrow \) kaons
 - All (-) \(\rightarrow \) pions
 - All (0) \(\rightarrow \) neutrons
 - 5\(\sigma \) cut around \(M(\pi^-,n) \)
 - \(|\Delta T(\gamma,K^+)| < 5.0 \) ns
 - 5\(\sigma \) cut around MM\((K^+\pi^-,n) \)
Analysis: Bad SC paddles (P. Mattione)

Positives

Negatives
Analysis: Particle ID (pion)

Negative pions:

\[\Delta \beta = \beta_c - \beta_m \]

- \(\beta_c \) from \(|p|\)
- \(\beta_m \) from EVNT
Analysis: Particle ID (kaon)

Positive kaons:

\[\Delta \beta = \beta_c - \beta_m \]

- \(\beta_c \) from \(|p| \)
- \(\beta_m \) from EVNT

\[\Delta \beta \text{ vs momentum } K^+ \]

\(\Delta \beta \) vs Momentum K^+ (GeV/c)

Entries 123115

0.05
Analysis: Particle ID (neutron)

- Neutron path has to be corrected on both edges:
 - **Vertex (detached vertex from Σ-):**
 - VT(neutron) = VT(Kaon)
 - Vertex(neutron) = Vertex(Kaon)
 - **EC hit coordinates (z-axis):**
 - γd→π+π-pn is studied to find a global EC hit coord. corrections

- With the above corrections, β and p are re-calculated for the neutron
Analysis: Particle ID (neutron)
Analysis: After particle ID

Kaon

Pion

Neutron

\(\beta \) vs Momentum \(K^* \)
Entries 16906

\(\beta \) vs Momentum \(\pi^* \)
Entries 16906

\(\beta \) for neutrons
Entries 16906
Mean 0.7234

\(\theta \) vs \(\phi \) \(K^* \)

\(\phi \) vs \(\theta \) \(\pi^* \)

\(\phi \) vs \(\theta \) neutron
Analysis: ONE combination

Number of "good" combinations

Counts

Combinations/event

- 97.79%
- 2.19%
- 0.012%
Analysis: Photon selection

- The best photon is selected within $\pm 1.0\text{ns}$.

One photon = 96.81%
Two photons = 3.14%
Three photons = 0.044%
Spectator Proton

Momentum

Mass

\[\pi^0 + p \]
Spectator Proton

- Proton momentum cut (0.2 GeV/c)
- Quasi-free vs re-scattering
Spectator Proton

- $\text{MM}(\Sigma^-) \ vs \ \text{Momentum } K^+ \ helps \ getting \ rid \ of \ most \ of \ the \ background \ from \ \pi_0 + p$
Spectator Proton Mass

Isolated events
Final Σ^- Mass

![Final Σ^- Distribution Graph](image)

- Entries: 6108
Conclusions

- Analysis of the $K+\Sigma^-$ is in progress, focused on the determination of beam asymmetry and cross section.

- The current data look very promising. Based on this analysis (22 runs with 2.3 GeV in photon energy), it is predicted to end up having about 400,000 Σ^- events in total.