Status of K+ Σ - analysis from g13

Edwin Munevar The George Washington University

September 2009

Contents

- Previous work
- g13 features
- Analysis
- Conclusions

Previous work

- g2: Both inclusive and exclusive analysis.
 <u>Very low statistics</u>!
- g10: Exclusive cross-section-measurement.
 - High statistics
 - <u>Non-polarized beam</u>!
- LEPS spring 8: Inclusive analysis.
 - Cross section and beam asymmetry
 - Very small angular coverage!

About 52 billion triggers

Analysis: Goal

- Measurement of the cross section (g13a)
- Determination of the beam asymmetry (g13b)
- That's all what can be determined:
 - Experimental issue $\alpha = -0.068$ (PDG)

Analysis: $\gamma d \rightarrow K + \Sigma (p) \rightarrow K + \pi - n(p)$

• K+, π -, n are detected. (p) is reconstructed by MM

- Events with "at least" 1(+), 1(-), 1(0)
- All possible track combinations for $\gamma d \rightarrow K+\Sigma-(p)$
 - All (+) \rightarrow kaons
 - All (-) \rightarrow pions
 - All (0) \rightarrow neutrons
 - 5σ cut around M(π-,n)
 - |∆T(γ,K+)| < 5.0 ns
 - 5σ cut around MM(K+, π -,n)

Analysis: Bad SC paddles (P. Mattione)

Positives

Negatives

Analysis: Particle ID (pion)

Negative pions:

 $\Delta\beta = \beta c\text{-} \beta m$

- βc from |**p**|
- βm from **EVNT**

Analysis: Particle ID (kaon)

Positive kaons:

 $\Delta\beta = \beta c \text{-} \beta m$

- βc from |**p**|
- βm from **EVNT**

Analysis: Particle ID (neutron)

- Neutron path has to be corrected on both edges:
 - Vertex (detached vertex from Σ -):
 - VT(neutron) = VT(Kaon)
 - Vertex(neutron) = Vertex(Kaon)
 - EC hit coordinates (z-axis):
 - γd→π+π-pn is studied to find a global EC hit coord. corrections
- With the above corrections, β and p are recalculated for the neutron

Analysis: Particle ID (neutron)

11

Analysis: After particle ID

12

Analysis: ONE combination

Analysis: Photon selection

• The best photon is selected within ± 1.0 ns.

Spectator Proton

Momentum

Mass

Spectator Proton

- Proton momentum cut (0.2 GeV/c)
 - Quasi-free vs re-scattering

Spectator Proton

 MM(Σ-) vs Momentum K+ helps getting rid of most of the background from π₀+p

Spectator Proton Mass

Conclusions

- Analysis of the K+ Σ is in progress, focused on the determination of beam asymmetry and cross section.
- The current data look very promising. Based on this analysis (22 runs with 2.3 GeV in photon energy), it is predicted to end up having about 400.000 Σ- events in total.