Status of K+ Σ - analysis from g13

Edwin Munevar
The George Washington University

September 2009

Contents

- Previous work
- g13 features
- Analysis
- Conclusions

Previous work

- g2: Both inclusive and exclusive analysis.
- Very low statistics!
- g10: Exclusive cross-section-measurement.
- High statistics
- Non-polarized beam!
- LEPS spring 8: Inclusive analysis.
- Cross section and beam asymmetry
- Very small angular coverage!

g13 Features

- Polarized photon beam: circular (g13a) and linear (g13b) polarization
- Photon energy range: $0.8-2.5 \mathrm{GeV}$
- Target: Liquid Deuterium (40-cm-length)
- Magnetic field negatively polarized
- About 52 billion triggers

Analysis: Goal

- Measurement of the cross section (g13a)
- Determination of the beam asymmetry (g13b)
- That's all what can be determined:
- Experimental issue $a=-0.068$ (PDG)

Analysis: $\gamma \mathrm{d} \rightarrow \mathrm{K}+\underline{\underline{\Sigma}-(\mathrm{p})} \rightarrow \mathrm{K}+\boldsymbol{\pi}-\mathrm{n}(\mathrm{P})$

$K_{+}, \pi-, n$ are detected. (p) is reconstructed by MM

- Events with "at least" 1(+), 1(-), 1(0)
- All possible track combinations for $\gamma \mathrm{d} \rightarrow \mathrm{K}+\Sigma$-(p)
- All (+) \rightarrow kaons
- All (-) \rightarrow pions
- All (0) \rightarrow neutrons
- 5σ cut around $\mathrm{M}(\pi-, \mathrm{n})$
- $|\Delta \mathrm{T}(\gamma, \mathrm{K}+)|<5.0 \mathrm{~ns}$
- 5σ cut around MM(K+, $\pi-, n)$

Analysis: Bad SC paddles (P. Mattione)

Positives

Negatives

Analysis: Particle ID (pion)

Negative pions:

$\Delta \beta=\beta \mathrm{c}-\beta \mathrm{m}$

- β c from $|\mathbf{p}|$
- $\beta \mathrm{m}$ from EVNT

Analysis: Particle ID (kaon)

Positive kaons:

$\Delta \beta=\beta \mathrm{c}-\beta \mathrm{m}$

- $\beta \mathrm{c}$ from $|\mathbf{p}|$
- $\beta \mathrm{m}$ from EVNT
$\Delta \beta$ vs momentum K^{+}

Analysis: Particle ID (neutron)

- Neutron path has to be corrected on both edges:
- Vertex (detached vertex from Σ-):
- VT(neutron) = VT(Kaon)
- Vertex(neutron) = Vertex(Kaon)
- EC hit coordinates (z-axis):
- $\mathrm{Yd} \rightarrow \pi+\pi$-pn is studied to find a global EC hit coord. corrections
- With the above corrections, β and p are recalculated for the neutron

Analysis: Particle ID (neutron)

rdiff i

rdiff 0

Analysis: After particle ID

Kaon

β vs Momentum \mathbf{K}^{+}

Pion
β vs Momentum π^{-}

Neutron
β for neutrons

Analysis: ONE combination

Combinations/event

Analysis: Photon selection

- The best photon is selected within $\pm 1.0 \mathrm{~ns}$.

One photon $=96.81 \%$
Two photons = 3.14\%
Three photons $=0.044 \%$

Spectator Proton

Momentum

Mass

Spectator Mass Distribution

Spectator Proton

- Proton momentum cut ($0.2 \mathrm{GeV} / \mathrm{c}$)
- Quasi-free vs re-scattering

Spectator Proton

- MM($\Sigma-$) vs Momentum K+ helps getting rid of most of the background from $\pi_{0}+\mathrm{p}$

Spectator Proton Mass

Spectator Mass Distribution

Spectator Mass Distribution

Final Σ - Mass

Final Σ^{-}Distribution

Conclusions

- Analysis of the $\mathrm{K}+\Sigma$ - is in progress, focused on the determination of beam asymmetry and cross section.
- The current data look very promising. Based on this analysis (22 runs with 2.3 GeV in photon energy), it is predicted to end up having about 400.000Σ - events in total.

