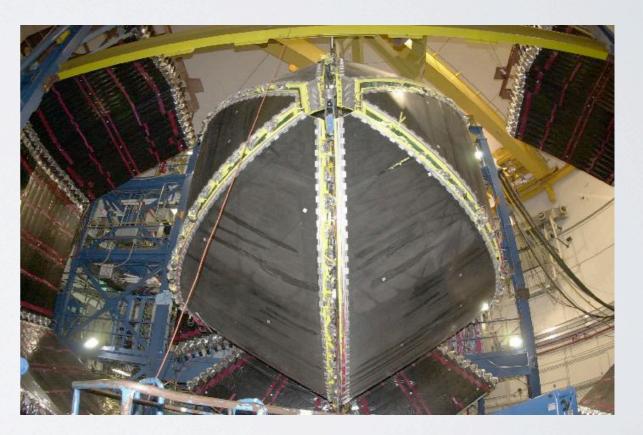
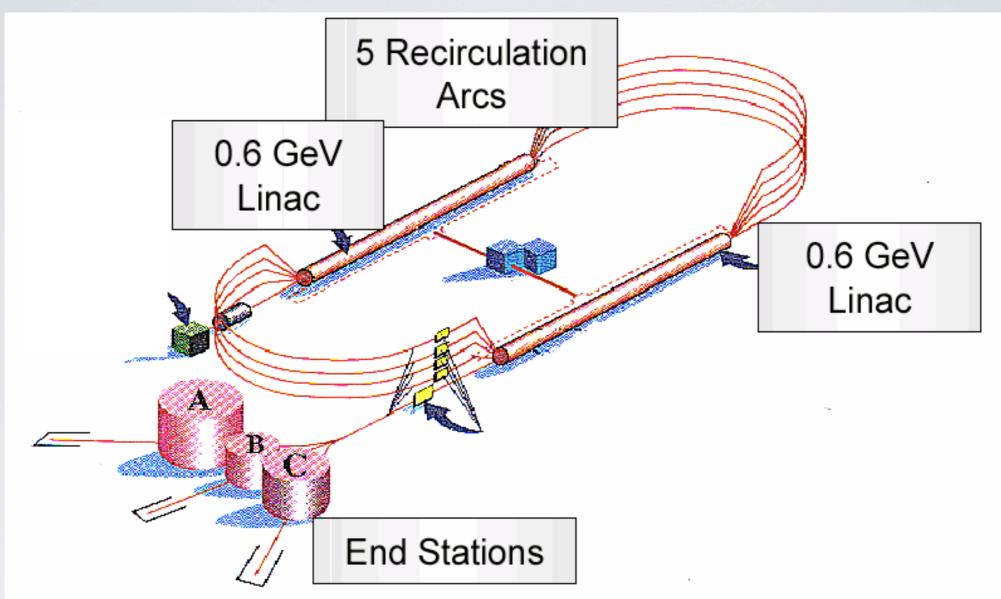
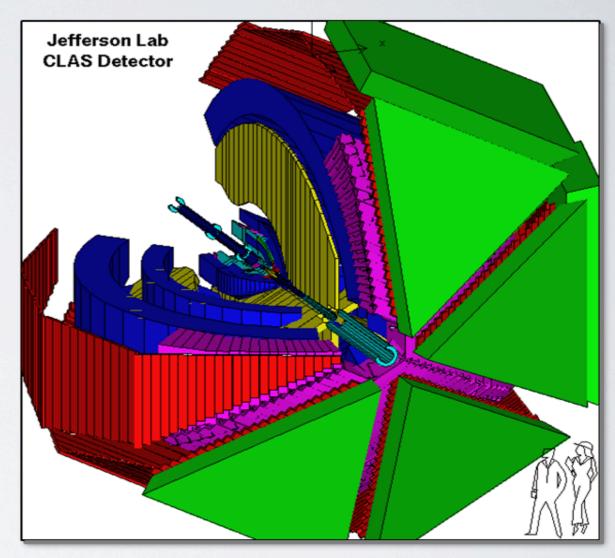
DETERMINATION OF THE LINEAR POLARIZATION FOR THE HALL-B PHOTON BEAM AT JLAB


Arthur A. Sabintsev For the CLAS Collaboration The George Washington University Washington, DC U.S.A.


CONTENTS

- ***Background Information**
 - * Hall-B at Jefferson Lab
 - * CLAS
 - *** FROST with CLAS**
 - * Linear Polarization
 - * Coherent Bremsstrahlung
- ***My Task**
 - *** Determination of Polarization**
 - * Results
 - * What's Next?


HALL-BAT JEFFERSON LAB

Accelerator Energy = 6 GeV Maximum Current = 200 μ A Duty Factor ~ 100% $\sigma E/E = 2.5 \cdot 10^{-5}$ Beam Polarization $\geq 80\%$ Tagged γ Energy = 0.5-5.8 GeV $E_{\gamma} = 0.20E_0$ to $0.95E_0$

CLAS CEBAF LARGE ACCEPTANCE SPECTROMETER

- Green = Electromagnetic Calorimeters
 - 1296 PMTs
- Red = Time of Flight Counters
 - Plastic Scintillators
 - •684 PMTs
- Purple = Gas Cherenkov Counters
 - Electron/Pion Separation
 - •256 PMTs
- Blue = Drift Chambers
 - 35,000 cells filled with Argon/CO₂
- Yellow = Torus Magnet
 - 6 Superconducting Coils
- Large aperture for detecting scattered particles (0.75 4π)

Courtesy of Eugene Pasyuk

FROST WITH CLAS

FROST = FROzen Spin Target

Polarized scattering experiments w/a nuclear-spin polarized target

- Designed for tagged photon experiments
- Circular and linear polarized photon beam: 0.5 2.4 GeV
- Longitudinally polarized target (g9a)

Three targets: Butanol, Carbon (¹²C), & Polyethylene (CH₂)

Butanol target (15mm x 50mm) is frozen at 30 mK

Run Time: Nov. 3, 2007 - February 12, 2008

FROST - TOTAL EVENTS

Linearly polarized beam

- 0.7 GeV 300M triggers
- 0.9 GeV 500M triggers
- I.I GeV 500M triggers
- I.3 GeV 600M triggers
- I.5 GeV 600M triggers
- I.7 GeV 850M triggers
- I.9 GeV 720M triggers
- 2.1 GeV 800M triggers
- 2.3 GeV 780M triggers

Circularly polarized beam

 $E_0=1.645 \text{ GeV}$ 1.1B triggers $E_0=2.478 \text{ GeV}$ 2.3B triggers

Total I 0 Billion Triggers

<u>Trigger</u> Charged Particle

FROST - LINEAR POLARIZATION

*****FROST uses **Linear** and **Circular** beam polarization.

 \bullet We use the polarization (P) to calculate the photon beam asymmetry (Σ)

♦ Differential cross section (for Polarized Beam): $\frac{d\sigma}{d\Omega} = \frac{d\sigma_0(\theta)}{d\Omega} [1 - P\Sigma \cos(2\phi)]$ ♦ Photon Beam Asymmetry: $\Sigma = \frac{d\sigma_{\parallel} - d\sigma_{\perp}}{d\sigma_{\parallel} + d\sigma_{\perp}}$

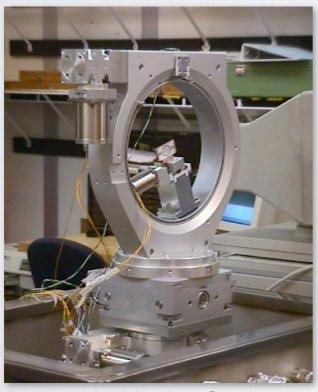
$$\begin{split} \rho_{f} \frac{d\sigma}{d\Omega} = & \frac{1}{2} \left(\frac{d\sigma}{d\Omega} \right)_{unpol} \{ 1 - P_{\gamma}^{lin} \Sigma \cos 2\phi + P_{x} (P_{\gamma}^{circ} F + P_{\gamma}^{lin} H \sin 2\phi) \\ & + P_{y} (T - P_{\gamma}^{lin} P \cos 2\phi) + P_{z} (P_{\gamma}^{circ} E + P_{\gamma}^{lin} G \sin 2\phi) \\ & + \sigma_{x}' [P_{\gamma}^{circ} C_{x} + P_{\gamma}^{lin} O_{x} \sin 2\phi + P_{x} (T_{x} - P_{\gamma}^{lin} L_{z} \cos 2\phi) \\ & + P_{y} (P_{\gamma}^{lin} C_{z} \sin 2\phi - P_{\gamma}^{circ} O_{z}) + P_{z} (L_{x} + P_{\gamma}^{lin} T_{z} \cos 2\phi) \\ & + \sigma_{y}' [P + P_{\gamma}^{lin} T \cos 2\phi + P_{x} (P_{\gamma}^{circ} G - P_{\gamma}^{lin} E \sin 2\phi) \\ & + P_{y} (\Sigma - P_{\gamma}^{lin} \cos 2\phi) + P_{z} (P_{\gamma}^{lin} F \sin 2\phi + P_{\gamma}^{circ} H)] \\ & + \sigma_{z}' [P_{\gamma}^{circ} C_{z} + P_{\gamma}^{lin} O_{z} \sin 2\phi + P_{x} (T_{z} + P_{\gamma}^{lin} L_{x} \cos 2\phi) \\ & + P_{y} (- P_{\gamma}^{lin} C_{x} \sin 2\phi - P_{\gamma}^{circ} O_{z}) + P_{z} (L_{z} + P_{\gamma}^{lin} T_{x} \cos 2\phi)] \} \end{split}$$

[Barker, Donnachie & Storrow. Nuclear Physics B95 (1975)]

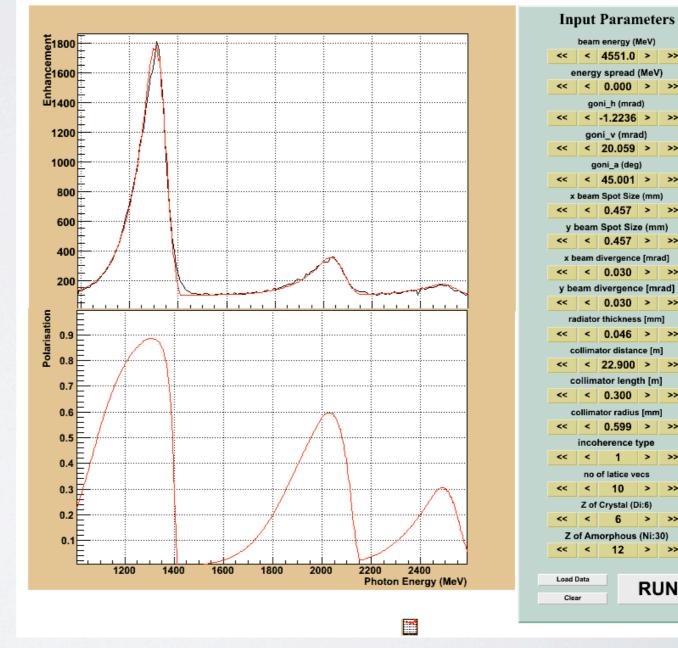
16 Observables (in Red)

- ➡ I Unpolarized Observable
- ➡3 Single Polarized Observables
- ➡3 Beam-Target Polarized Observables
- ➡3 Target-Recoil Polarized Observables
- ➡3 Beam-Recoil Polarized Observables

Courtesy of Ken Livingston


FROST - THE EXPERIMENTS					
$\bigstar E02-112 \qquad \gamma p \to KY(K^+\Lambda, K^+$	$\Sigma^0, K^0 \Sigma^0)$ P. Euginio, F. J. Klein, L. Todor				
♦ E03-I05/E04-I02 $\gamma p → \pi^0 p, \pi^+ n$	N. Benmouna, W.J. Briscoe, D.G. Crabb, M. Khandaker, G.V. O'Rielly, I. Strakovsky, S. Strauch, D.I. Sober				
$\bigstar E05-012 \qquad \gamma p \to \eta p, \eta' p$	M. Dugger, E. Pasyuk				
$\bigstar E06-013 \qquad \gamma p \to \pi^+ \pi^- p$	M. Bellis, V. Crede, S. Strauch				

Photon			Target			
	_	_	-	_		
	_	x	y	z		
unpolarized	σ_0	0	T	0		
linear pol.	$-\Sigma$	H	(-P)	-G		
circular pol.	0	F	0	-E		


Observables for FROST

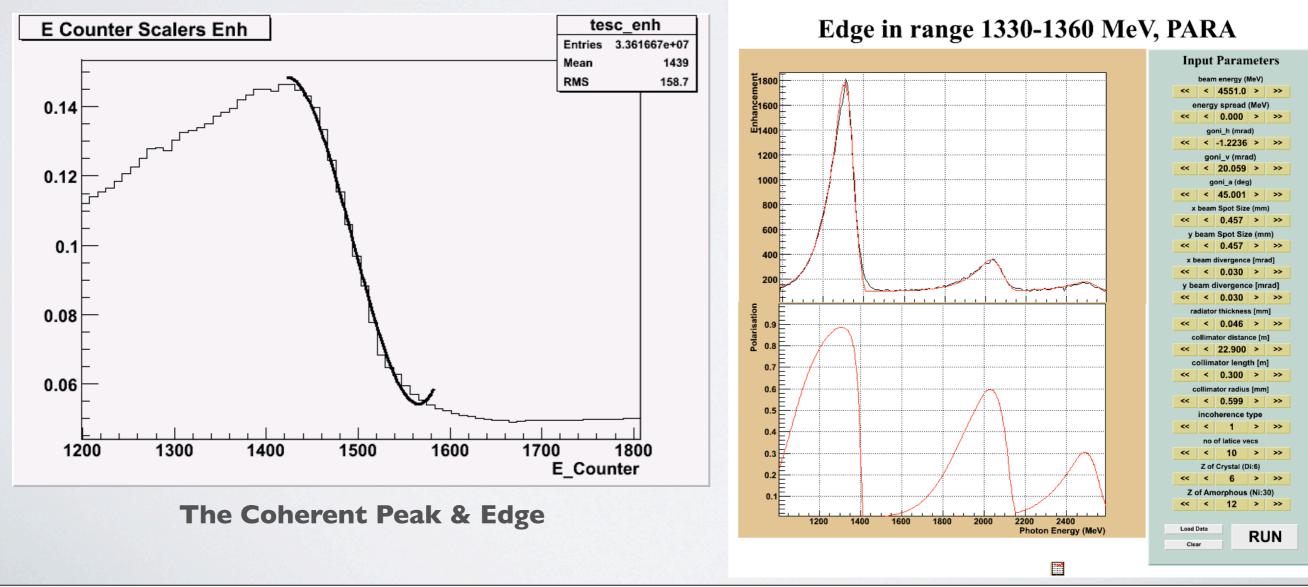
COHERENT BREMSSTRAHLUNG

- Definition: Electrons incident on an oriented diamond radiator yield an enhancement in the photon energy spectrum with respect to the amorphous radiator.
- Position of the peak depends on the angle between the crystal planes of the diamond and the energy of the electron beam bombarding the diamond.
- Energy flux that is incident on the diamond causes the position of the peak to waver slightly. (see slide 12)

Diamond inside the Goniometer

Edge in range 1330-1360 MeV, PARA²

[1] U.Timm, "Coherent Bremsstrahlung of Electrons in Crystals". Fortschritte der Physik 17, 765 (1969)


[2] A. Natter, et al.,"Monte Carlo simulation and analytical calculation of coherent bremsstrahlung and its polarisation". Nuc. Inst Meth B. 211, 465 (2003)

COHERENT BREMSSTRAHLUNG

Coherent Peak: Peak with the highest negative gradient. The highest degree of polarization is observed here.

Coherent Edge: Tailing slope of a coherent peak.

Tagged photon experiments allow us to determine the photon energy to the degree of polarization via Coherent Bremsstrahlung.

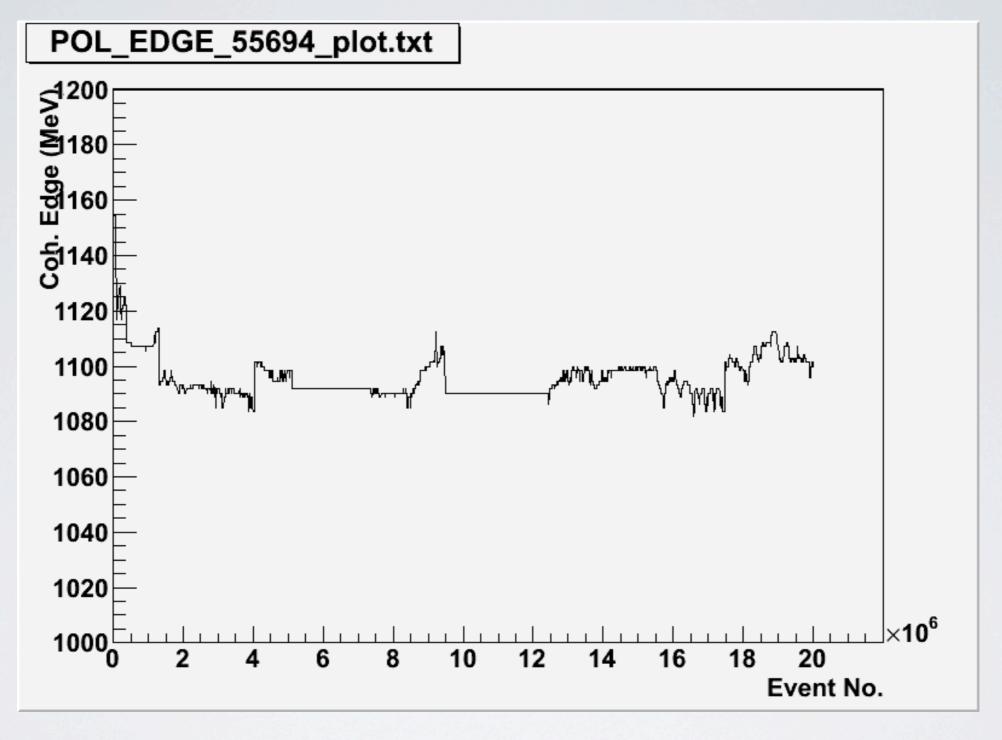
HOW TO: DETERMINATION OF THE POLARIZATION

Overall Goal

Analyze data from the photon tagger and produce a set of run tables relating the photon energy to the degree of linear polarization (g9a/FROST).

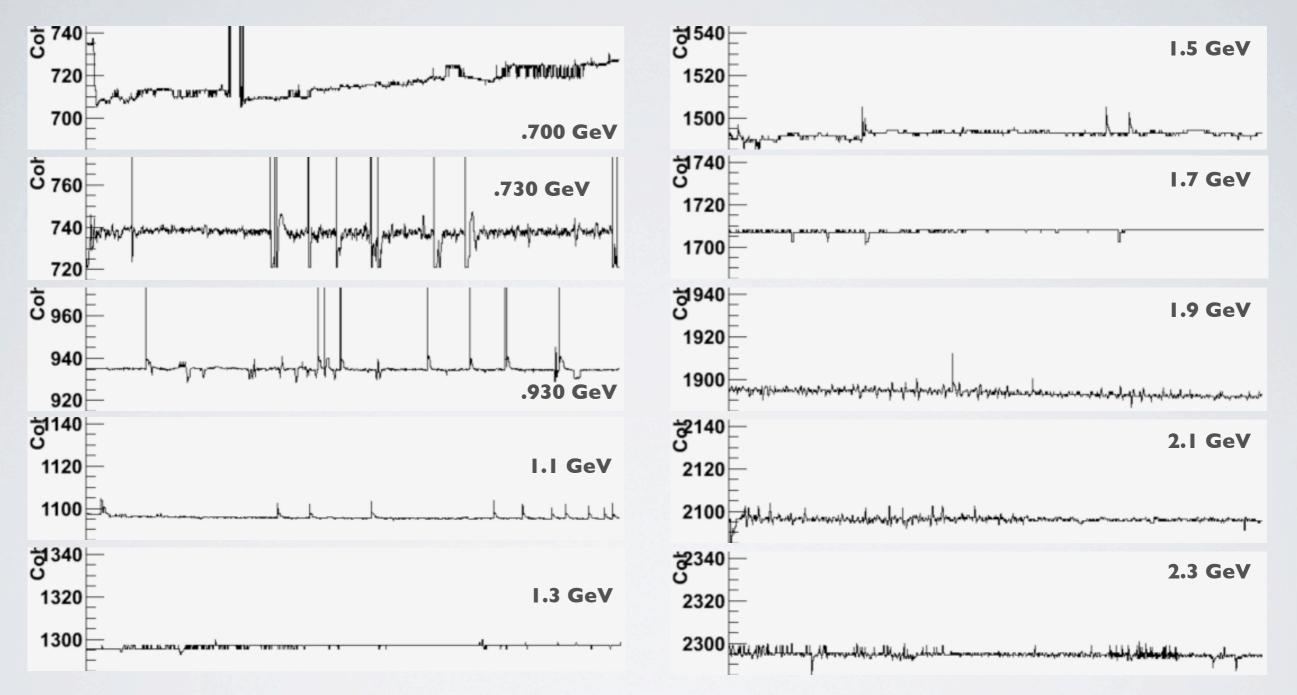
Create a software package that is modular; can be used in future JLab experiments performed in Hall-B (e.g. g9b/FROST)

Execution


Created a suite of software tools that extract the linear polarization data and produce enhancement plots for the analytic bremsstrahlung calculation.

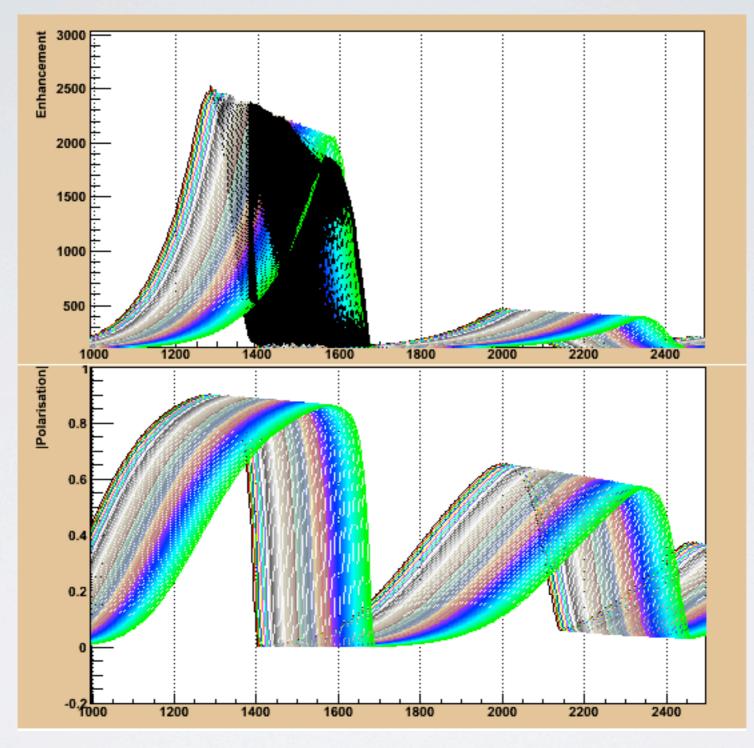
Enhancement Plots:

Visual delineation of the coherent peak of the linear polarization and its energy fluctuations.


Used to produce the photon energy vs. polarization tables via Analytic Bremsstrahlung calculations.

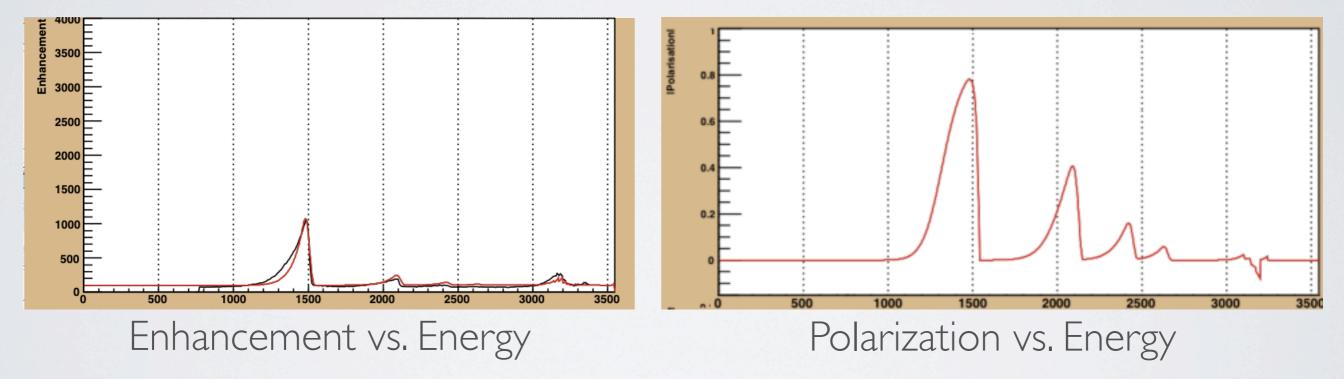
ENERGY vs. TIME (SAMPLE)

Parallel Polarization of Diamond Radiator @ I.I GeV


ENERGY vs. TIME - COMPARISON

As we increase the energy, we increase the goniometer angle. At large angles, the photon beam is less prone to energy fluctuations.

All plots are available at: <u>http://nuclear.gla.ac.uk/~arthurs/polPlot/</u>


COHERENT EDGE VARIATION

Different photon energy vs. linear polarization tables produced for each energy setting due to the variations of the coherent edge

ANB CALCULATION

• Analytic Bremsstrahlung¹ is software that compares the enhancement plot that is generated from the run-data to a theoretical bremsstrahlung calculation.

Analytic Bremsstrahlung Calculation for I.5 GeV

Black Line = Experimental Determination Red Line = Theoretical Calculation Generated By Analytic Bremsstrahlung

[1] A. Natter, et al.,"Monte Carlo simulation and analytical calculation of coherent bremsstrahlung and its polarisation". Nuc. Inst Meth B. 211, 465 (2003)

WHAT'S NEXT?

★ Finish the analytic bremsstrahlung calculations

★ Produce a software manual for the determination of the linear polarization.

★ Submit manual as internal report (JLab CLAS Note)

THANK YOU!

POLARIZATION OBSERVABLES • 4 Complex Invariant Amplitudes/Helicities $|b_i|^2$

Complete measurement from 8 Polarization Observables

	Polarization ^a of					
	Observable	γ	р	Λ		
	1. $\{d\sigma/d\Omega\}/\mathcal{N}$				$= b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2$	
	Single polarization					
	2. $P \cdot \{ d\sigma / d\Omega \} / \mathcal{N}$			y'	$= b_1 ^2- b_2 ^2+ b_3 ^2- b_4 ^2$	
	3. $\Sigma \cdot \{d\sigma/d\Omega\}/N$	р		-	$= b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2$	
	4. $T \cdot \{ d\sigma/d\Omega \} / \mathcal{N}$	-	у		$= b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2$	
	Double polarizaton					
	Beam-target					
	5. $E \cdot \{ d\sigma / d\Omega \} / N$	с	Z		$=2 \operatorname{Re}(b_1 b_3^* + b_2 b_4^*)$	
	6. $F \cdot \{ d\sigma / d\Omega \} / N$	с	x		$=2 \operatorname{Im}(b_1 b_3^* - b_2 b_4^*)$	
	7. $G \cdot \{d\sigma/d\Omega\}/\mathcal{N}$	t	Z		$=2 \operatorname{Im}(b_1 b_3^* + b_2 b_4^*)$	
	8. $H \cdot \{d\sigma/d\Omega\}/\mathcal{N}$	t	x		$= -2 \operatorname{Re}(b_1 b_3^* + b_2 b_4^*)$	
	Beam-recoil					
	9. $C_x \cdot \{d\sigma/d\Omega\}/\mathcal{N}$	с		x'	$= -2 \operatorname{Im}(b_1 b_4^* - b_2 b_3^*)$	
X	10. $C_v \cdot \{d\sigma/d\Omega\}/N$	с		z'	$=2 \operatorname{Re}(b_1 b_4^* + b_2 b_3^*)$	
	11. $O_x \cdot \{d\sigma/d\Omega\}/N$	t		x'	$=2 \operatorname{Re}(b_1 b_4^* - b_2 b_3^*)$	
	12. $O_z \cdot \{d\sigma/d\Omega\}/\mathcal{N}$	t		z'	$= 2 \operatorname{Im}(b_1 b_4^* + b_2 b_3^*)$	
	Target-recoil					
	13. $T_x \cdot \{d\sigma/d\Omega\}/\mathcal{N}$		x	<i>x'</i>	$=2 \operatorname{Re}(b_1 b_2^* - b_3 b_4^*)$	
X	14. $T_z \cdot \{ d\sigma / d\Omega \} / N$		x	z'	$= 2 \operatorname{Im}(b_1 b_2^* - b_3 b_4^*)$	
	15. $L_x \cdot \{d\sigma/d\Omega\}/N$		Z	x'	$= -2 \operatorname{Im}(b_1 b_2^* + b_3 b_4^*)$	
	16. $L_{z} \cdot \{d\sigma/d\Omega\}/\mathcal{N}$		z	z'	$= 2 \operatorname{Re}(b_1 b_2^* + b_3 b_4^*)$	

[Barker, Donnachie & Storrow. Nuclear Physics B95 (1975)]