Scaling phenomenology of meson photoproduction in new CLAS G11A results from CMU

> Biplab Dey Curtis Meyer

Carnegie Mellon University

Sep 26th, 2009 Hadron Spectroscopy Working Group Meeting Jefferson Lab

PWA Group (CMU)

CLAS g11a analysis

September 26 1 / 23

- **2** Scaling: Regge
- **3** SCALING: FIXED-ANGLE
- **4** PWA: INTERPOLATING TRAJECTORIES

5 SUMMARY

→ 3 → 4 3

OUTLINE

2 Scaling: Regge

- **3** Scaling: Fixed-angle
- **4** PWA: INTERPOLATING TRAJECTORIES

5 SUMMARY

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

INTRODUCTION

- CLAS G11A experiment unpolarized photoproduction on *lH*₂ target, two-prong trigger, mostly runs with electron beam energy 4.019 GeV.
- Missing baryon resonance problem look at non- $N\pi$ channels.
- CMU is analysing several of these channels $p\omega$ (M. Williams), $p\eta$, $p\eta'$ (M. Williams, Zeb Krahn), including strangeness production $K^+\Lambda$ (M. McCracken), $K^+\Sigma^0$ (B. Dey).
- Differential cross sections and polarizations \sqrt{s} from threshold till ~ 2.85 GeV in 10 MeV wide bins. Wide angular coverage -0.95 $\leq \cos \theta_{CM}^{meson} \leq 0.95$
- $p\omega$ PWA already done and nearing publication. PWA on other channels is in progress. Final goal – do a coupled channel analysis!
- Status of my $K^+\Sigma^0$ analysis $d\sigma/dt$ and P_{Σ} measurements are in collaboration Analysis Review review stage.
- I've shown these measurement results in previous talks, so, I'll focus on some of the new *physics* results that are beginning to emerge.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Universality in high \sqrt{s} behavior

 $\gamma p \rightarrow K^+ \Sigma^0$

イロト イポト イヨト イヨト

• Recap: at the June Users' Group meeting, I showed that for $\gamma p \rightarrow K^+ \Sigma^0$, $d\sigma/dt$ -vs-t shows a "dip" structure above $\sqrt{s} \approx 2.2$ GeV.

• Furthermore, at even higher energies, the "dip" separates into *two* separate "dips".

Universality in high \sqrt{s} behavior

Similar behavior can be seen in the other pseudoscalar mesons too (in varying degrees/kinematics).

-

UNIVERSALITY IN HIGH \sqrt{s} BEHAVIOR

 Similar behavior can be seen in the other pseudoscalar mesons too (in varying degrees/kinematics).

Anderson *et al*, PRD 14 (1976) 649 (plot: Guidal *et al*, Nucl. Phys. A 627 (1997) 645-678)

 Away from the resonance region, there seems to be a universality in the features for exclusive γp → PS + B (PS = π, K, η, η'; B = baryon) $\gamma p \rightarrow p + \eta'$

OUTLINE

2 Scaling: Regge

3 Scaling: Fixed-angle

4 PWA: INTERPOLATING TRAJECTORIES

5 SUMMARY

- 4 同 🕨 - 4 目 🕨 - 4 目

SCALING PART I: REGGE REGION

- Let's start by looking at large \sqrt{s} , $|t| \rightarrow 0$ (forward-angle) and $|u| \rightarrow 0$ (backward-angle). This's the "Regge region".
- Regge scaling: $d\sigma/dx \sim s^{2\alpha(x)-2}$, where x = u, t and $\alpha(x) = \alpha_0 + \alpha_1 x$ is the Regge trajectory for the particular exchange.
- Note: most previous high energy world data at are at |t| → 0. The new CLAS results are unique in having a wide angular coverage.
- We want to cover all three regions: forward-, mid- and backward-angles. This's important because we want to tie them all together finally.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Scaling: Regge

Regge scaling: both u and t channels

 $\gamma p \rightarrow K^+ \Sigma^0$

- Scaling powers different because exchange trajectories are different.
- Note: with multiple trajectories (at the amplitude level), expect only an "effective" scaling power for the differential cross-sections.

PWA Group (CMU)

CLAS g11a analysis

< □ > < 同 >

Scaling: Regge

Regge scaling: More examples

 $\gamma p \rightarrow K^+ \Lambda$

- Note: we don't quite go to the |t| → 0 or |u| → 0 limits (the extreme forward/backward angles).
- The onset of the Regge behavior is also channel dependent.

PWA Group (CMU)

CLAS g11a analysis

September 26 9 / 23

3

Regge scaling: the "powers"

- Guidal et al and later, Bradford and co-workers noted that for the hyperons, if the exchanges trajectories are K⁺ and K^{*}(892), then α(t)_{K⁺} + α(t)_{K^{*}(892)} ~ 0 near t ~ 0.
- If $\alpha_{eff} \sim 0$ then the scaling power $-2(\alpha 1) \sim 2$. This could explain the power law behavior.
- For the *u*-channel case, the exchanges are Λ/Σ . What are the Regge trajectories?

$$lpha(u)_{\Lambda} \sim -0.6 + 0.9u$$

 $lpha(u)_{\Sigma} \sim -0.8 + 0.9u$

• *u*-channel: $t \rightarrow u$, physical region: u < 0

• At $|u| \rightarrow 0$:

$$\begin{array}{l} (2\alpha - 2)_{\Lambda} \approx -3.2 \\ (2\alpha - 2)_{\Sigma} \approx -3.6 \end{array}$$

• It is thus conceivable that the scaling power $-(2\alpha - 2)$ be > 2.

= ∽Q(~

イロト イポト イヨト イヨト

Regge scaling: one last example

 $\gamma p
ightarrow p \eta'$ (Zeb Krahn's CMU thesis)

- t-channel Regge exchanges are the ω/ρ trajectories: $\alpha(t)_{\omega/\rho} \approx 0.5 + 0.9t$.
- Plot $\frac{d\sigma}{dt} \times s^{-2(\alpha(t)-1)}$ keeping the full t dependence. Include only points with $\sqrt{s} > 2.5$ GeV and $|t| \le 1$ GeV²

• After scaling, the differential cross-sections approximately line up.

PWA Group (CMU)

CLAS g11a analysis

September 26 11 / 23

OUTLINE

2 Scaling: Regge

4 PWA: INTERPOLATING TRAJECTORIES

5 SUMMARY

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Scaling: Fixed-angle

SCALING PART II: FIXED-ANGLE REGION

- Look at large s and large -t or -u, with constant t/s or u/s.
- In the high energy limit, $t/s \sim (1 \cos \theta)$, so $\cos \theta \approx \text{fixed}$. Take $\theta \sim 90^{\circ}$.
- Simplified picture: transfer momentum $p_T \sim \sqrt{|t|}$ sets the time scale: $\tau \sim 1/p_T$.

- Large p_T means constituents have very little time to interact. Hard scattering at the parton level (fixed-angle region)
- Small p_T means constituents have time to form intermediate bound states. Regge poles are exchanged (Regge region)
- Intermediate region? interpolating trajectories.

- 3

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FIXED-ANGLE SCALING LAWS

• Brodsky and Farrar (PRL 31 (1973), 1153): for exclusive scattering at $s \rightarrow \infty$, t/s fixed,

 $(d\sigma/dt)_{AB
ightarrow CD} \sim s^{2-n} f(t/s)$

- *n* is the total number of elementary fields participating in the hard scattering process.
- Note: a photon counts a single parton. However if it participates as VMD-like γ → qq̄, then it counts as 2 partons.
- So the prediction is: $d\sigma/dt_{\gamma p \to \pi p} \sim s^{-7}$. The same law should apply to the other pseudoscalar mesons ηp , $\eta' p$, $K^+ \Lambda$, $K^+ \Sigma^0$, and even the vector meson ωp .
- Again, under the VMD picture this should change to s⁻⁸. So in general, something between -7 and -8 is predicted.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

PREVIOUS EXPERIMENTS

BNL experiment Comparison of 20 exclusive reactions at large t, White et al, PRD 49 (1994), 58

No.	Interaction	Cross section		n-2
		E838	E755	$\left(\frac{d\sigma}{ds} \sim 1/s^{n-2}\right)$
1	$\pi^+ p \rightarrow p \pi^+$	132 ± 10	4.6 ± 0.3	6.7 ± 0.2
2	$\pi^- p \rightarrow p \pi^-$	73 ± 5	1.7 ± 0.2	7.5 ± 0.3
3	$K^+p \rightarrow pK^+$	219 ± 30	3.4 ± 1.4	8.3+0.6
4	$K^-p \rightarrow pK^-$	18 ± 6	0.9 ± 0.9	≥ 3.9
5	$\pi^+ p \rightarrow p \rho^+$	214 ± 30	3.4 ± 0.7	8.3 ± 0.5
6	$\pi^- p \rightarrow p \rho^-$	99 ± 13	1.3 ± 0.6	8.7 ± 1.0
13	$\pi^+ p \rightarrow \pi^+ \Delta^+$	45 ± 10	2.0 ± 0.6	6.2 ± 0.8
15	$\pi^- p \rightarrow \pi^+ \Delta^-$	24 ± 5	≤ 0.12	≥ 10.1
17	$pp \rightarrow pp$	3300 ± 40	48 ± 5	9.1 ± 0.2
18	$\overline{p}p ightarrow p\overline{p}$	75 ± 8	≤ 2.1	≥ 7.5

More or less good agreement with theory.

• CLAS experiment: ω photoproduction at large p_T , Battaglieri, PRL 90 (2003), 022002. Found power law behavior s^{-C} with $C \approx 7.2 \pm 0.8$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NEW CLAS G11A RESULTS

- Note the high precision for $p\omega$!
- Interesting that the Λ and Σ^0 results look similar and very close to the predicted s^{-7} .

September 26 15 / 23

э

< 口 > < 同 >

New CLAS G11A results: features

- It is interesting that fixed-angle scaling is visible in the new CLAS data for all the mesons, and lies around the predicted scaling behavior.
- The $p\eta$ and $p\eta'$ cases are limited by statistics, but still "point towards" a scaling behavior.
- For hard scattering, it seems that K⁺Λ and K⁺Σ⁰ behaves very similarly and well within the scaling-law prediction. Does the singlet/triplet structure of the (ud) diquark not matter here?
- Excellent statistics for $p\omega$ and the fit looks very good. The experimental power law approaches s^{-9} however, which's different from the prediction. So why is the vector meson different?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

OUTLINE

2 Scaling: Regge

3 Scaling: Fixed-angle

4 PWA: INTERPOLATING TRAJECTORIES

5 SUMMARY

3

- 4 同 🕨 - 4 目 🕨 - 4 目

PWA FITS

- "Scaling region" is high s ($\sqrt{s} > 2.5$ GeV). But, our main goal is to look for missing resonances (lower \sqrt{s}).
- However, to fix the "background processes" (non-resonant u- and t-channel exchanges), we look at the high \sqrt{s} region where there's presumably very little resonance contribution.
- Regge based approach has been quite successful to explain the high energy data.
- Chief attraction: simplicity and few parameters (no form-factors are involved).
- Theoretical difficuilties: replaces the Feynman propagators by a Regge propagator computed at the "first materialization" *m*₁.
- Assumption: m_1^2 not "too far" from the *physical region* (u, t < 0). Okay for $m_{K^+}^2 \approx 0.25$, but a stretch for m_p^2 , $m_A^2 \approx 1$ (*u*-channel exchanges).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

$p\eta'$ FITS

- Trial fit run over 2.6 GeV $\leq \sqrt{s} \leq 2.84$ GeV.
- "Reggized" ρ (t-channel) + p (u-channel) trajectories "rotating" or "constant" phase. Used "rotating" versions here (arbitary choice).
- A scale factor for each trajectory 2 fit parameters (note simplicity!). 10 iterations per fit.

- Forward and backward angles are being fit quite well.
- Obviously, mid-angle regions are not being described very well.

PWA Group (CMU)

SATURATED REGGE TRAJECTORIES

- We have seen earlier that the Regge region and fixed-angle region consists of very different *physics*. The only seeming connection is that both shows scaling, but scaling of completely different natures.
- Conventional Regge trajectories are linear while hard scattering scaling has a constant/flat exponent. In Regge language, the trajectories seem to get "saturated off" for large negative t or u.
- Following is from Brodsky et al, PRD 8 (1973), 4117: -u, -t, s all large with u/s and t/s fixed A_{AB→CD} ~ sF_A(-s)F_C(u)F_D(t) ~ s^{1-A}(-u)^{-C}(-t)^{-D} where the form-factors F_M(x) ~ (-x)^{-M}; M = 1, 2 for mesons and baryons resp. in photoproduction, A = A_µk^T_µ where k_T ~ √s. Propagator ~ 1/t, so M = 1.
- These reproduce the fixed-angle scaling laws. Next, cast them in the Regge form: $\mathcal{A} \sim \beta(t)(-u)^{\alpha(t)}$ OR $\mathcal{A} \sim \beta(u)(-t)^{\alpha(u)}$
- Then, in the Regge form, the "saturated" trajectories for $\gamma p \rightarrow PScalar + Baryon$:

$$\alpha(u)_{-u\to\infty}=-2, \qquad \alpha(t)_{-t\to\infty}=-1$$

PWA Group (CMU)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

INTERPOLATING TRAJECTORIES

- Join the linear and flat saturated parts smoothly by an *interpolating trajectory*.
- Theoretical (analytic) expression was given by Sergeenko (Z. Phys. C 64 (1994), 315), but only for quarkonia. Guidal *at al* used the formula for ρ trajectory in their π⁺n analysis.
- Try the simple but adhoc construction: join the two limits by an circular arc. Make the linear parts to be tangents to this circle.
- Shown below for the ω case:

Refit $\rho\eta'$ using interpolting trajectories

Marked improvement!

• Works best at higher \sqrt{s} – just as expected.

Regge fits - overview

- Overall, the Regge description seems like a very compact way of describing the data.
- Using interpolating trajectories, the high energy data can be fit quite well (*works for the other mesons as well*).
- The radius of the "arc" becomes as new fit variable now.
- Caveat: overcounting could occur from "duality", if we use resonances *and* the Reggeized background contributions, at the *intermediate* energies. So one needs to be careful.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

OUTLINE

- INTRODUCTION AND OVERVIEW
- 2 Scaling: Regge
- **3** Scaling: Fixed-angle
- 4 PWA: INTERPOLATING TRAJECTORIES

5 SUMMARY

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SUMMARY AND WORK IN PROGRESS

- We have found some very interesting *universal* features for exclusive pseudoscalar meson photoproduction. Given that spin-parity-wise they are equivalent, it is probably not too unexpected.
- We confirm fixed-angle scaling in these reactions, as predicted by Brodsky and co-workers.

- Saturating the Regge trajectories in a manner dictated by the fixed-angle behavior, we were able to fit the high energy data over almost the entire angular spectrum.
- The saturated Regge fits need to be further tuned and finalized. Also, they have to be compared with Feynman pole fits (with form factors).
- Our final goal is to do perform a coupled channel PWA using the *K*-matrix formalism on all these channels, to look for missing baryon resonances.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●