Photoproduction of the $\Phi(1020)$ meson on neutron

Anna Micherdzinska

The George Washington University, Washington DC

- Motivation
- Previous Results
- Ongoing analyses
- JLab g13 experiment
- Summary

Motivation: study of Φ production mechanism

- Φ(ss) => q's exchange between N is suppressed; unique system to study multi gluon exchange
- At W > 10 GeV mechanism via pomeron exchange describes well experimental data.
- At low energies (W < 2 GeV) this does not work => <u>the mechanism</u> of the Φ-photoproduction is not <u>understood</u>

Possible mechanisms: pomeron exchange (with additional trajectories); scalar meson exchanges (f0(500),f0(980),a0(980)); glueball exchange; excitation of nuclear resonances; ϕ knockout from the nucleon; $\omega \rightarrow \phi$ transition; ...

Motivation: study of Φ production mechanism

- Φ(ss) q's exchange between N
 is suppressed; unique system to
 study multi gluon exchange
- At W > 10 GeV mechanism via pomeron exchange describes well experimental data.
- At low energies (W < 2 GeV) this does not work => <u>the mechanism</u> of the Φ-photoproduction is not <u>understood</u>

Possible mechanisms: pomeron exchange (with additional trajectories); scalar meson exchanges (f0(500),f0(980),a0(980)); glueball exchange; excitation of nuclear resonances; $\omega \rightarrow \phi$ transition; ...

Diff. cs at $E_{\gamma} = 2 \text{ GeV}$ for pomeron exchange model A.I.Titov et al. Phys. Rev. C 60 035205 (1999)

Motivation: study of Φ production mechanism

Sensitivity of the spin-denisity matrix elements for photoproduction on the proton and the neutron to three reaction mechanisms. A.I.Titov et al. Phys. Rev. C 60 035205 (1999)

Previous Analyses (SAPHIR, ELSA (Bonn, GERMANY))

- LH target: $\gamma p \rightarrow \Phi p (E_{\gamma} < 2.6 \text{ GeV})$
 - exponential drop of dσ/dt; angular distributions differs from the results at higher energies ⇒ excludes s-channel resonance contribution, so probably t-channel exchanges pi, eta exchange.

Previous Analyses (LEPS/SPRING-8 (JAPAN))

- LH, LD target linearly polarized photons (1.9 GeV < E_{γ} < 2.4 GeV)
 - Differential cs at t=-|tmin| from proton target increase non-monotonically as a function of E_Y and show local maximum at 2.GeV; The polar angle distribution W(cos th) behave similar as the result for protons;

W.C. Chang et al. arXiv:0907.1705v1

Previous Analyses (LEPS/SPRING-8 (JAPAN))

- LH, LD target linearly polarized photons (1.9 GeV < E_{γ} < 2.4 GeV)
 - Differential cs at t=-|tmin| from proton target increase non-monotonically as a function of E_Y and show local maximum at 2.GeV; The polar angle distribution W(cos th) behave similar as the result for protons

W.C. Chang et al. arXiv:0907.1705v1

Previous Analyses (LEPS/SPRING-8 (JAPAN))

- LH target (yp → Φp), LD target (yp → Φp) linearly polarized photons (1.9 GeV < Ey < 2.4 GeV)
 - Differential cs at t=-|tmin| from proton target increase non-monotonically as a function of E_Y and show local maximum at 2.GeV; The polar angle distribution W(cos th) behave similar as the result for protons.

W.C. Chang et al. arXiv:0907.1705v1

Previous Analyses (CLAS/JLab (USA))

 G1c: LH target (yp → Φp), good agreement with pomeron exchange for -t < 1 GeV2, for -t =1.8 GeV2 possible 2 gluon couples to to any quark in the proton and in Φ.

G8: LH target ($\gamma p \rightarrow \Phi p$), linearly polarized photons

Preliminary results @ 2.1 GeV Coherent Peak

SDMEs for PARA and PERP $E_{\gamma}^{CP} = 2.1$ GeV data.

Number of bins: 30		
A2 conditions		
	$E_{\gamma}^{CP} = 2.1 \mathrm{GeV}$	
SDME	PARA	PERP
ρ^1	$0.0539 {\pm} 0.0214$	0.0642 ± 0.0227
$ ho^2$	-0.1342 ± 0.0259	-0.1130 ± 0.0262
$ ho^3$	$0.1967 {\pm} 0.0392$	$0.2044{\pm}0.0375$
$ ho^4$	$0.0496 {\pm} 0.0405$	$0.0759 {\pm} 0.0385$
Number of bins: 30		
$ ho^5$	0.0142 ± 0.0371	

Julian Salamanca, Philip L Cole and the CLAS Collaboration

Previous Analyses (CLAS/JLab (USA))

- G11 LH target $(\gamma p \rightarrow \Phi p)$ and g10 LD target $(\gamma d \rightarrow \Phi d)$, unpolarized photons
 - Differential cross section at large t exhibit a contribution from double scattering. The decay
 angular distributions follow the prediction from helicity conservation Disagreement between
 SAPHIR and g10/g11 cross section.

G13 experiment (CLAS/JLab (USA))

Data collected between October 2006 and June 2007

Circular Photons

Linear Photons

- $E_{\gamma} = 0.4 1.9 \text{ GeV}$
 - \Box E_e = 2.0 GeV, polarization 84%
- $E_{\gamma} = 0.5 2.5 \text{ GeV}$
 - \Box E_e = 2.6 GeV, polarization 78%
- Trigger
 - two charged tracks
 - rate up to 10 kHz
- Statistics
 - $2 \cdot 10^{10} \text{ LD}_2$ events

- E_e = 3.3 5.2 GeV
- E_γ = 1.1 2.3 GeV
 - six photon energy settings
 - polarization 70-90%
- Trigger
 - single charged track
 - rate 7-8 kHz
- Statistics
 - 3.10^{10} LD_2 events

Summary

- No polarized Φ photoproduction data on the NEUTRON
- The g13 experiment can provide such a data
 - Advantages: huge statistic
 - Challenges: experiment used reversed magnetic field (positive particles were inbending) =>reduced acceptance for deuterons and K+
- Feasibility studies to extract density matrix elements for *Φ* photoproduction on the neutron are ongoing.