π⁺ Photoproduction from FROST Analysis Update

Steffen Strauch University of South Carolina

CLAS Hadron Spectroscopy Group Meeting, JLab, September 26, 2009

Single- and Double Polarization Observables

Polarized cross section (beam/target polarization)
 g9 Experiment

$$= 1 - P_T \Sigma \cos(2\phi)$$

 $+P_{X}[-P_{T}H\sin(2\phi) + P_{\circ}F]$ $-P_{Y}[-T + P_{T}P\cos(2\phi)]$ $-P_{Z}[-P_{T}G\sin(2\phi) + P_{\circ}E]$

- \bigcirc P_T : transverse beam polarization
- ${\ensuremath{ \ o \ }}\ P_{\odot}$: degree of circular beam polarization
- \bigcirc P_X, P_Y : transverse target polarization
- Pz : longitudinal target polarization

I.S. Barker, A. Donnachie, and J.K. Storrow, Nucl. Phys. B75, 347 (1975)

Polarization Observable E

Circularly polarized beam / longitudinally polarized target

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{unpol}} \left(1 - P_Z P_\circ E\right)$$
beam ta spin s
$$\chi_{\text{c}} = +1 \quad \longrightarrow \quad -$$

 $x_{i} = -1$

Stimator

 $\hat{E} = -\frac{\sum x_i}{hP_Z P_\circ \sum x_i^2}$ $\sigma^2(E) \ge \frac{1 - h^2 P_Z^2 P_\circ^2 E^2}{h^2 P_Z^2 P_\circ^2 N}$

The sum is running over all events from the <u>butanol target</u>
Bound-nucleon background is accounted for by the dilution factor h.

rget

pin

π^+ Photoproduction – Event Selection

One and only one positively charged particle detected with: > hit in ST, SC, and DC > β > 0, p > 0, and l > 0 > crude pion ID No negatively charged particles detected Photon with good tagger status, and vertex time closest to that of the pion No energy-loss correction, yet

 $\vec{\gamma}\vec{p} \rightarrow \pi^+ n$

Particle Identification and Photon Selection

Reaction Vertex

Butanol events from Z ∈ [-3, 3] cm, r < 2 cm
Carbon events from Z ∈ [5, 7.5] cm, r < 2 cm
Butanol background under carbon ≈ 1.3% of total

$\gamma(p,\pi^+)X$ – Missing Mass Distribution

 π + production off free and bound nucleons

Identification of reaction channel; $M_X \approx M_N$ Background from reactions off bound (unpolarized) nucleons \Rightarrow quenching of the asymmetry signal

Dilution Factor

Dilution factor

$$h = \frac{S}{B} = 1 - \frac{C}{B}$$

For the butanol target (C₄H₀OH) the simple estimate is ≈ 10/74 ≈ 0.14
 Statistical uncertainty in E scales as

$$\sigma_{_E} \propto rac{1}{\sqrt{F}}$$

 Figure of merit

$$F = h^2 B$$

Summer project, UG student Garry Hollis (USC)

Butanol/Carbon Normalization

Missing mass distributions for butanol and carbon data are of the same shape up to 0.8 GeV. Relatively more butanol events at \approx m_N (expected) Depletion at 0.8 -0.9 GeV?

Energy Dependence of Normalization

Normalization factor is energy independent within $\pm 5\%$ Ø Fit X²/d.o.f = 35/20Angular dependence not studied, yet

Free-Proton Missing Momentum Distribution

Carbon data normalized to butanol data for m_X < 0.8 GeV</p>

The difference distribution is for illustration only and not used in the further analysis.

Dilution Factor

 h ≈ 0.51; i.e. factor four improvement in this reaction
 Dilution factor

- decreases for larger W
- Modulation of dilution factor not yet understood
- Angular dependence of the dilution factor to be tested

g9a Runs with Circularly Polarized Beam

#	Run Numbers	EO (GeV)	Pe (?)	HWP	Holding Field	Target Polarization
1	55521 - 55536	1.645	-	+	+	-
2	55537 - 55555	1.645	-	-	+	-
3	55556 - 55595	1.645	-	+	+	+
4	55604 - 55625	2.478	+	+	-	+
5	55630 - 55678	2.478	+	+		-
6	56164 - 56193	2.478	+	+	+	+
7	56196 - 56233	2.478	+	+	+	-

Confirm Polarization Orientations

- Status of half-wave plate, helicity signal, sign of electron-beam polarization, proton-target spin orientation understood on a per run base (up to an even number of sign changes).
- Pion data may help study the time dependence of electron / target polarization

Beam and Target Polarizations

0.5

Photon Beam Energy (E, / E,

1.0

0.0 <mark>k</u> 0.0</mark> Solution
Photon beam polarization $P_e \approx 85\%$ $P_{\gamma} = P_e \frac{4x - x^2}{4 - 4x + 3x^2}$

 $P_{Z} \approx 80\%$

Beam-Charge Asymmetry

Helicity-gated beam-charge signals from the synchrotron light monitor in the HLS bank @ All runs have beam-charge asymmetries within $\pm 0.5\%$.

Preliminary Results (I)

17

Preliminary Results (II)

18

Preliminary Results (III)

19

Preliminary Results (IV)

Very preliminary results for E in π⁺ photoproduction covering a wide energy and angular range.
 -0.9 < cos(θ_π^{cm}) < +0.9

 1.20 GeV < W < 2.25 GeV

 Presently more than 730 data points.

Systematic Uncertainties

present best guesses

Quantity	Uncertainty
Electron-beam polarization	5%
Beam-charge asymmetry	< 0.5%
Photon-beam polarization from P_e	?
Target polarization	?
Dilution factor	5%
Kinematics (W, cos(θ))	?
Total	< 10%

Summary

 \odot Very preliminary results for E in π^+ photoproduction

Issues:

- > Obtain improved values for electron beam and target polarizations on a per run-period base
- > Study of systematic effects in dilution factor (carbon/butanol normalization, butanol contamination of carbon data, energy and angular dependence)
- > Implement energy-loss corrections and study of the reconstruction of event kinematics