
CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 12

8.2 Contents of Monte Carlo Input Bank

To evaluate the combined effect of detector emulation and event reconstruction, the Monte
Carlo procedures should supply the kinematic track parameters obtained from the event
generator. This information has to be stored in the ‘MCIN’ bank which has the following
structure:

MCIN: X1 X2 X3 C1 C2 C3 P M Q LID
 with Xi = event coordinate at target location (x, y, z in section 2)
 Ci = direction cosines
 P = momentum
 M = mass
 Q = charge
 LID = Lund particle ID

For n generated particles there are n such rows in the MCIN bank. The format of the bank
has to be declared as ‘9F,I’. The particle ID for the electron for example can be obtained
by the function call LID = JPCODE(‘e-’). This function is an Entry to the PMASS subrou-
tine in libh1util.a. Other standard particle character strings are ‘e+’, ‘pi-’, ‘pi+’, ‘p+’, ‘n’,
‘gamma’ etc.

CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 11

The HEAD bank consists only of Integers and is followed by other banks. The Version
Number will initially be set to zero. Experimentally triggered and simulated events supply
the raw event banks discussed above. In the experimental setting one will have a number
of “control” events interspersed with “physics” events (raw data). Some of these control
events may arise from the CODA control sequence and are identified as shown in the table
above.

Column

 (word)

Parameter Format Description

 1

 2

 3

 4

 5

 6

 7

 8

Version Number

Run Number

Event Number

Event Time

Event Type

ROC Status

Event Class

Event Weight

 I

 I

 I

 I

 I

 I

 I

 I

Version of event format

Monotonically increasing

Starting with 1 at run begin

Unix time = seconds as of January 1, 1970

Defined by on-line system or MC run:

=0 Control Records

>0 Triggered (Physics) Events

<0 Monte Carlo Events:
-1 = SDA
-2 = GEANT
-3 = ClasSim

32 bit readout controller status*

Event Classification from event builder
containing the 4 bit trigger code plus user
defined bits.* This translates into physics
events from 1 to 15 and CODA control
flow records with values greater than 15.
1-15 Physics Events
 16 Sync Event
 17 Prestart Event
 18 Go Event
 19 Pause Event
 20 End Event

Prescale factor for this Event Class (Trig-
ger Type) = Number of triggers to get an
event.

HEAD Bank

* See the Appendices in the CODA manual for details.

CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 10

8.0 Definition of Related Banks

An important feature of BOS/FPACK is to access events or other data selectively. On an
external medium (disk or tape) the events carry a logical records header, followed by a set
(group) of data segments (see FPACK manual). With the data segment headers stripped
off and converted to bank headers, this set (list) of banks is presented to the user in the
Common BCS as an event or other collection of data elements. The selection process can
occur before the event is read in completely by using information in the logical record
header. This information consists of the run type, run number, event number and event
classification. The run type is a string of up to 8 characters, e.g. ‘RUNEVENT’, ‘RUN-
CALIB’, ‘RUNTEST’, ‘MCEVENT’ etc.. Run and event numbers are integers and the
event classification is a bit string (up to 31) which will be defined later and may contain
some hardware and software “trigger” bits.

Some of the information in the logical record header is available to the user in the Event
Header Bank which by convention is the first bank to be packed into or extracted from a
logical record. This HEAD bank contains additional information which is of central
importance for the event and which can be used to further classify or select the events.

In the following, the contents of the HEAD bank will be presented as well as the contents
of the MCIN bank which describes the kinematic input to Monte Carlo programs which in
turn produce “simulated” raw event banks.

8.1 Contents of the Event Header Bank

This section describes the format of the event headers to be used with CLAS events writ-
ten in the BOS format. The major considerations involved in setting this format are pro-
viding for the begin-run, end-run and control data processing desired and being able to use
some of the functionality for automatic event sequencing provided by the FSEQx routines
(x = R or W for Read or Write).

BOS treats records as the basic building blocks for I/O on secondary storage, CODA I/O
operates over network links where it uses event streams which contain event banks. In our
event processing applications we deal with logical records, which contain a collection or
set of banks, which we refer to as “events”.

The FSEQx routines place some restrictions on the contents of event headers, namely,
they must contain the Run number and the event number. CODA puts several different
types of events in the event stream. These include physics events, prestart events, go
events, pause events and end events. Which of these events ends up on the output stream is
user configurable and will be decided by the on-line standard operating procedures.

To accommodate all of these event types, the BOS bank contents shown in the table on the
next page will be used. This bank is named ‘HEAD’, and by convention is the first bank
in a logical record.

CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 9

#---
This variable lists ALL libraries that must be loaded.

 LIBS = $(BOSLIBS) $(CERNLIBS) $(STDLIBS)

#---
#program name

 PROGRAM = ber

#---
#the source files that make up the application

 SRCS = bos_main.c bos_utilities.c bos_event.c

#---
The object files (via macro substitution)

 OBJS = ${SRCS:.c=.o}

#---
#how to make a .o file from a .c file

.c.o :
$(CC) $(INCLUDES) $(CFLAGS) $<

#---
This rule generates the (optimized) executable using the object files and libraries.

 $(PROGRAM): $(OBJS)
cc -o $@ $(OBJS) $(LIBS)

#---
#additional dependencies

bos_main.o: bos.h
bos_utilities.o: bos.h
bos_event.o: bos.h

CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 8

ber consists of the three files: bos_main.c, bos_utilities.c, and bos_event.c. The Makefile
shows how the BOS/FPACK libraries libh1util.a, libbos.a, libfpack.a, as well as the
CERN library libpacklib.a are linked.

This Makefile has been tested only on the HP system. Potential machine dependencies are:

1) The library libcl.a is an HP-specific library required by “C” programs that
make FORTRAN calls.

2) On some systems, it may be necessary to use f77 rather than cc to link all the
object modules into an executable.

#---
#define the C compiler

 CC = cc
#---
This variable contains the flags passed to cc

 CFLAGS = -O -c
#---
This variable points to the main library directory

 LIBDIR = /usr/lib

#---
This variable points to the main include directory

 INCLUDEDIR = /usr/include

#---
This variable lists the standard C libraries that must be loaded. (note that libcl.a
 is required for the fortran-C interface)

 STDLIBS = -lcl -lm

#---
These variables list bos path and libraries

 BOSPATH = /usr/site4/classw/bosfp/lib.hp [to be changed with new directory structure]
 BOSLIBS = -L$(BOSPATH) -lh1util -lbos -lfpack

#---
These variables list cern path and libraries.

 CERNPATH = /usr/site3/cern/hp700_ux90/94a/lib
 CERNLIBS = -L$(CERNPATH) -lpacklib

CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 7

fseqr_(dataname, &iret, strlen(dataname); /* calls FPACK FESQR */

ind = nlink_(“DC ”, &j, 4); /* calls BOS NLINK to get index to j’th named bank */

fparm_(command, strlen(command)); /*call the FPACK interpreter FPARM*/

7.2.1.3 Effective use of pointer casting for easy data access.

The data in the banks can be accessed elegantly by declaring a structure that matches the
definitions of the banks. However, some knowledge of the byte ordering is necessary. For
example, the declaration

typedef struct dcdata *DCDataPtr;

typedef struct dcdata
{
 unsigned char layer;
 unsigned char wire;
 unsigned short tdc;
 unsigned short adc;
} DCData;

allows us to do the following:

DCDataPtr dchits;
int ind;
int i, j;
int banksize;
int numhits;

ind = nlink_(“DC ”, &j, 4); /* index to jth bank */
banksize = bcs_.iw[ind-1]; /*get the bank size*/
numhits = banksize/sizeof(DCData); /*see how many hits*/
dchits = (DCDataPtr)bcs_.iw[ind]; /* cast first data word*/

then the data for the i’th hit can be accessed as:

dchits[i].layer
dchits[i].wire
dchits[i].tdc
dchits[i].adc

7.2.2 Sample Makefile for linking BOS and FPACK to a “C” program

Listed below is a Makefile for creating the application ber, a bOS eVENT rEADER.

CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 6

argument in the FORTRAN subroutine the “C” implementation must add an addi-
tional argument: the length of the string. The lengths which are passed by value,
always appear at the end of the argument list in the same order as the strings them-
selves. For example

SUBROUTINE MySub(STR1, ARG2, ARG3, STR2) in FORTRAN is called
via:

mysub_(str1, &arg2, &arg3, str2, strlen(str1), strlen(str2)) in “C”.

5) COMMON blocks in FORTRAN become global structures in “C”.

6) (Not applicable for BOS/FPACK but included for completeness) The storage of
arrays is column-major in FORTRAN and row-major in “C”. Thus the indices
must be reversed.

In the next subsection we provide some examples of these rules.

7.2.1 Sample of “C” code calling BOS and FPACK subroutines

7.2.1.1 BOS Banks and COMMON Blocks

Here is how the main BOS bank, which is stored in a COMMON block named BCS, can
be implemented in “C”.

a) First define a BOSBank data type:

#define NDIM 20000
typedef struct bosbank {
 int iw[NDIM];
} BOSBank;

then declare a global variable:

BOSBank bcs_; /* corresponds to COMMON BCS */

Data can then be accessed directly, e.g. bcs_.iw[9] gives the tenth word stored in the
COMMON block. The size of a bank whose index is ind is in bcs_.iw[ind - 1].

7.2.1.2 Three more examples

char *dataname = “BOSINPUT.DAT”;
char *command;
int iret, ind;
int j = 3;

CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 5

7.1 Using BOS and FPACK from Fortran Programs

In this example we use the high-level routine FSEQR - for sequential reading of events -
to illustrate the basic use of BOS:

 PARAMETR NBCS=500000
 COMMON /BCS/ IW(NBCS)
 EQUIVALENCE (IW(1),RW(1))

 CALL BOS(IW,NBCS) ! initialize BOS
 CALL FPARM(‘OPEN BOSINPUT FILE=”...” READ ‘) ! open for input

10 CALL FSEQR(‘BOSINPUT’,IRET) ! read event
 IF (IRET.lt.0) GOTO 100

 IND = NLINK(‘MCIN’,0) ! find MC input track bank
 ND = IW(IND) ! get length of data array inside of bank
 FIRST = RW(IND+1) ! access first word in data array as floating point

 GOTO 10

100 CALL FPARM(‘CLOSE’) ! close files

7.2 Calling BOS and FPACK from “C” Programs

It is possible to make direct calls from “C” to the BOS/FPACK libraries. By “direct” call-
ing we mean that no additional FORTRAN wrapper is required.

There are six rules to keep in mind:

1) All FORTRAN names, including subroutine, function and COMMON block
names are converted by a preprocessor to lower case. Thus regardless of how they
appear in the BOS and FPACK user manuals, the “C” code must access them via
exclusively lower case names.

2) All FORTRAN names, including subroutine, function and COMMON block
names receive an appended underscore character “_” . The “C” code must explic-
itly attach the underscore.

3) FORTRAN expects all arguments to be passed by reference, thus the “C” calls
must use pointers.

4) Character strings must be handled with extreme care. For every character string

CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 4

6.0 Bank Format and Table Dimensions

The raw event data - as described in the previous section - are always packed in 16-bit
words, or in the parlance of BOS have the format B16. It is anticipated that all reconstruc-
tion and analysis results will be stored in 32-bit words, either integer or floating point -
and, of course, one can mix integer and floating point in one bank. However, it is impor-
tant that one declares - by a call to BKFMT(Name,Fmt) - the format of any newly created
bank if one wants to store it on disk or tape. FPACK needs this information to make the
I/O truly platform-independent.

All experimental data will be kept in tabular form. We already discussed this for the raw
data in the previous section. The important parameter for a bank is the number of columns,
NCol, which determines the number of parameters per hit, track, cluster and so on. The
number of rows - which can be derived from NCol and the total number of data words,
ND, in a bank - simply gives the number of hits, tracks or clusters. One can declare NCol
for a bank by a call to BKCOL(Name,NCol) [routine to be written]. If one wants to find
out the number of columns in a bank, one can use the function NCol = NBCOL(Name)
[function to be written].

When one declares the format (integer and/or floating point) of a bank, one only has to do
it for NCol items in the first row. BOS/FPACK implies that this format is repeated indefi-
nitely for all the hits, tracks etc. in a bank. One should also keep in mind that all banks
with the same name (but different numbers) can only have one format and always have the
same number of columns. From an organizational point of view it is, of course, simplest if
one avoids mixed formats and declares a bank to be either integer or floating point. Then
one only needs a single character - I or F - to declare the format of a whole bank.

7.0 Linking Libraries and a Simple Examples

To build a program with BOS/FPACK calls, one needs the libraries libh1util.a, libbos.a
and libfpack.a in CLAS_lib (one of the symbolic Unix links defining the CLAS environ-
ment). There are several high-level routines which presently reside in libh1util and com-
bine a number of functional calls to libbos and libfpack. These can be used to custom-
tailor the management of data structures for CLAS. For instance, one may want to custom-
ize the print-out of the collection of banks in an event.

In the following two sections we shall discuss how to use BOS/FPACK within Fortran and
“C” programs. The Fortran example is shorter because BOS/FPACK was designed for a
Fortran environment. But the “C” example is quite instructive and shows how convenient
C structures can be.

CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 3

5.0 Contents of Raw Event Banks

The experimental data are stored inside the banks in tabular form, where the number of
columns NCOL is determined by the number of parameters, which characterize a detector
component, and successive rows are filled with successive hits in that particular detector
volume. The size of the table (NCOL,NROW) is kept in the data segment header of that
bank. All raw event data are packed/stored as 16-bit integers.

Here we list the above bank names again, followed by the parameters for the detector ele-
ments. NCOL is either 3 or 5 for the banks considered. The first column always contains
the address ID of the hit detector element.

DC: ID TDC ADC
 with ID = 256*L + W & L = 1...36 (layer #), W = 1...192 (wire #)

Note: Superlayers are made up of 6 Layers (however L = 5 & 6 do not exist).
 Wires with the same number are intended to line up radially in the same
 superlayer. To achieve this, the numbering starts with W=4 for L=1&7,
 W=3 for L=2,3,8,9 and W=2 for L=4,10,11. All other layers start with W=1.

CC: ID TDC ADC
 with ID = 1...36 & Odd/Even = Left/Right (Low Φ / High Φ seen along beam)

CC1: same format as for CC

SC: ID TDCL ADCL TDCR ADCR
 with ID = 1....48

EC: ID TDC ADC
 with ID = 256*L + S & L = 1....6 (ganged layers u,v,w,u,v,w)
 S = 1....36 (strip #)

EC1: ID TDCL ADCL TDCR ADCR
 with ID = 256*L + S & L = 1....4 (ganged layers x,y,x,y)
 S = 1....40 (x strips for L odd)
 S = 1... 24 (y strips for L even)

TG: *** format to be decided later ***

TA: *** format to be decided later ***

CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 2

The communication between modules will be done exclusively by BOS banks; and if an
application produces information for any CLAS data stream or data set, it has to be in the
form of BOS banks. In order to achieve and maintain a modular structure of the CLAS
software, one should strictly avoid to exchange information between application modules
by passing parameters in function or subroutine calls or by using special common blocks.
Never should any experiment-specific information be buried in Fortran data statements.

The CREATION of banks is assigned to specifically designated program modules and
other modules should never change a bank received for input. The raw data banks are cre-
ated by the on-line “Event Builder”, or in case of detector simulation by the originating
Monte Carlo program.

4.0 Types of Raw Event Banks

It is customary to start the array of raw data banks with a header bank (name: HEAD,
number: 0). The contents of the header bank will be discussed in section 8.1 where the
control and status information is reviewed which accompanies individual events.

For CLAS the various detector components are associated with the following bank names
and numbers. Further banks are added as needed.

An event is then given by a set (ensemble) of banks with at least one data item (hit) each.
Empty banks are omitted.

For Input/Output to external media the banks are packed in data segments and the set of
data segments, which form an “event”, are preceded by a logical record header (see
FPACK manual). This logical record header contains - as part of a search key - the run
type (up to 8 characters), e.g. ‘RUNEVENT’ or ‘MCEVENT’, as well as the run number
and event number.

Detector Components NAME NR. (sectors)

Drift Chamber

Cerenkov Counter (forward)

Cerenkov Counter (large angle)

Scintillation Counter (time-of-flight)

Electromagnetic Calorimeter (forward)

Electrom. Calorimeter (large angle)

TriGger

TAgger

 DC

 CC

 CC1

 SC

 EC

 EC1

 TG

 TA

 1....6

 1....6

 1....6

 1....6

 1....6

 1....6

 0

 0

CLAS Event Format with BOS Version 1.00 (October 1, 1994) March 20, 1995 1

CLAS Event Format with BOS
Version 1.00 (October 1, 1994)

Dieter Cords1, Larry Dennis3, Dave Heddle2, Bogdan Niczyporuk1

1 CEBAF, 2 Christopher Newport University, 3Florida State University

1.0 Introduction

For a detector of the complexity of CLAS, which is expected to operate over many years,
one needs a scheme for dynamically managing data structures. These data structures, in
the end, will contain information on raw events, detector status, geometry and calibration
constants, reconstruction results for tracks and clusters, as well as analysis results the user
chooses to append. This note describes the structure of raw events, i.e. a naming conven-
tion for major detector components and a numbering scheme which reflects the arrange-
ment of the smallest detector elements.

2.0 Numbering Scheme

The numbering scheme follows the convention adopted by the CLAS collaboration some
time ago. Based on a right-handed coordinate system with Z along the beam and Y up, the
detector elements are numbered in the order of increasing R, polar angle Θ, and azimuth
angle Φ (ranging from 0 to 2π). As usual, Θ counts from the Z-axis and Φ from the X-axis
(in a clockwise sense when viewed along the Z-axis)

.

3.0 Management of Data Structures

The package for managing data structures for CLAS is BOS with FPACK as its I/O front
end. The basic unit of information is contained in a bank which is identified by a name (up
to 4 characters) and optionally a number. For details the reader is referred to the manuals
in CLAS_doc (one of the symbolic Unix links defining the CLAS environment). The
module libraries differ for various machine architectures and can be found in CLAS_lib
which points to a platform-dependent section of the Unix directory.

It is anticipated that application modules - ranging in seize from a small set of routines
(e.g. for histogramming detector hits) to complex packages (for track or cluster recon-
struction) - will receive all experiment-specific information in the form of BOS banks.

CLAS-NOTE 94-012

