CLAS-NOTE 2000-008

CLAS Calibration Database Specification

L. Dennis, A. Freyberger, G. Gavalian, M. Holtrop, M. Ito,
G. Riccardi, R. Suleiman, D. Weygand

November 30, 2000

1 Introduction

This document is a programming specification for the CLAS calibration database. The
database contains all the necessary calibration constants needed to analyze CLAS data. As
such, its primary function is to respond to queries for these constants. The values returned
will in general depend on the run number of the data being analyzed.

The database is implemented in MySQL[1]. There are user-interface functions for both
analysis programs and detector calibrators.

The Mapmanager|2] is the system we are currently using to hold and retrieve the cali-
bration constants. The calibration database enhances the functionality of the Mapmanager.

2 Features

Run indexed lookup of constants by analysis jobs.

Ability for users to use and modify private copies of the run index without copying the
constants themselves.

Keep a change log: user, date, time, comment.

Backward compatibility with Mapmanager.

Optimization for speed of access by analysis jobs, not by database updaters.

3 Interface Routines for Analysis Jobs

In the initial stages, we continue to use the unmodified analysis code by dynamically gen-
erating the Map files from the database. The next step will be to write Map-like wrappers
for direct DB access, so that the intermediate step of a disk file could be eliminated. Even-
tually, the code should evolve to invoke native DB-oriented routines to directly exploit the
capabilities of the database.

To facilitate this development path we wrote both a utility to generate the database from
the Map files, and one to do the reverse, generate Map files from the database.

runmap.pl runmin= 18495 runmax= 18502

4 Interface Routines for Detector Calibrators

There will be a set of application programmer interface (API) routines to access and modify
the constants. We list some prototype functions that will be provided. At a minimum, we
will need routines for perl and C, and probably C++ eventually.

4.1 Read Routines

Read Constants: Dumps constants for a particular item from a specified version of the
database as of a specified date.

Inputs Output

run number constant values
index table name

date

system

subsystem

item

Show Constant Sets: Shows the constant set id’s for all items that are relevant for a
particular run from a specified version of the database as of a specified date.

Inputs Outputs (per item)
run number system

index table name subsystem

date item

item value id
starting run
ending run
author
creation date
comment

Show Run Ranges: Shows all run ranges for a particular item from a specified version of
the database as of a specified date.

Inputs Outputs (per run range)
system item value id
subsystem starting run
item ending run
index table name author
date creation date
comment

Show Item History: Shows all constant sets that were ever valid for a specified item and
run for a specified version of the database.

Inputs Outputs (per constant set)

system item value id
subsystem date of validity
item starting run
run number ending run
author
creation date
comment

4.2 Write Routines

Write Constants Set: Makes a new set of constants (item value). Does not link the con-
stants to any run number. Author and creation date are entered automatically.

Input Output
constant set item value id
source starting run

source ending run

comment

Link Constants To Run Range: Makes the correspondence between a particular set of
constants and a particular run range for a specified item and version of the database.

Input Output
item value id none
starting run

ending run

system

subsystem

item

index table name

5 Database Tables

The database tables are shown schematically in Fig. 1 and are listed explicitly in Tables 1-2.
Notes on this structure:

Intermediate level of referencing. Run numbers are not kept in the same table as the
constants. Different versions of the calibration constants are simply different instances
of the run index table.

“Freeze” by saving a version of the run index table. There is no need to duplicate
the constants themselves. Having a run index table is a form of documentation; one
knows exactly which constants are referenced in the frozen version.

System

systemld*
systemName
description

RunPeriod

name*
description
beginRun
endRun
startDate
endDate

SubSystem Item
subsystemld* itemld*
itemName
subsystemName subsystemid
systemld {eng h
- ype
description description
Runlndex
Runlndex!d*
minRun
maxRun
itemld
itemValueld
officer
time
comment

item_name VALUE

itemValuel d*

minRunSource
maxRunSource

vaue o o
author
time
comment

Figure 1: Schematic drawing of the database tables.

RunPeriod
column name ‘ type ‘ example ‘ comment
name varchar | “ela” Primary key
description text
beginRun int 7374
endRun int 8110
startDate date 1997-12-09
endDate date 1997-12-24
System
column name ‘ type ‘ example ‘ comment
systemld int 1 Primary key auto increment
systemName | varchar | “CALL_CALIB”
description text
SubSystem
column name ‘ type ‘ example ‘ comment
subsystemId int 1 Primary key auto increment
subsystemName | varchar | “RFoffset”
systemId int 1 Foreign key reference System
description text
Item
column name ‘ type ‘ example ‘ comment
itemId int 1 Primary key auto increment
itemName varchar | “rf2rf1Offset”
subsystemlId | int 1 Foreign key reference SubSystem
length int 1 Number of elements
type varchar | “float”
description text

Table 1: Informational tables.

Runlndex

column name ‘ type example ‘ comment
RunlndexId | int 1 Primary key auto increment
minRun int 10865
maxRun int 100000
itemId int 1 Foreign key reference Item
itemValueld | int 1 Foreign key reference item_name_VALUE
officer varchar “dbmanager”
time timestamp | 20000502165717
comment text
CALL_CALIB_RFoffset_rf2rf1Offset_VALUE

column name ‘ type ‘ example ‘ comment

itemValueld int 1 Primary key auto increment

minRunSource | int 10865

maxRunSource | int 10870

value_1 “foat” 1.82

author varchar “smith”

time timestamp | 20000502165717

comment text

Table 2: Functional tables.

Constants are “never” deleted from the database. By keeping old constants, any fro-
zen version will remain viable. The default would be to keep all constants for all time.
The only deletions would be for obvious mistakes.

Private/custom versions of constants are easy to make. Individual users can copy
and modify a run index table for private use. This is especially useful when doing
code development where one wants a stable set of constants. Also developers of new
calibration schemes can modify their private tables to use prototype sets of constants
without affecting the rest of the collaboration.

6 Private and Frozen Versions of Constants
There are many cases where independent versions of the calibration constants are desirable.

Freeze constants for large production runs. This allows us to reproduce results at a
later time.

Private code development. Changes to test results can be limited to changes induced by
the code. The calibration constants will be stable.

Private calibration constants development. Changes to test results can be limited to
only those induced by the constants under study. All of the other calibration constants
can be kept stable. In addition, changes made to the constants during testing will not
affect other users.

There are also several features that would be convenient to have when creating an inde-
pendent version of the constants. Among these are an option to select certain run ranges
for the version, so that information for irrelevant runs can be dropped, and the ability to
modify and correct each independent version, independently of the others.

One solution that we considered and rejected as too unwieldy was to add “tag” columns
to the run index table. Instead, we propose creation of independent versions by making
new tables which are copies of selected rows of the run index table. These copies can be
used in place of the run index to look up appropriate calibration constants. The identity
of each copy is managed via the name of the table. This method automatically gives us
the desired features mentioned above. The modification history of an independent copy can
be tracked in exactly the same way as for the main run index table without any additional
programming.

7 Access Privileges
There are several different levels of access to the database:
1. database manager (1 or 2 people)

2. experts (1 or 2 per calibration system)

user table
Host User ‘ Password ‘ Privileges
jlabsl dbmanager | non-NULL | none
jlabsl expert_1 non-NULL | none
jlabsl expert_2 non-NULL | none
jlab% NULL NULL none
claspc% NULL NULL none
einstein.sr.unh.edu | NULL NULL none

Table 3: MySQL user table. Any user from any CLAS designated host can connect to the
database. Passwords must be set for users that need to be identified.

3. users
Further, there are several features which are built into the access system:
e Individuals can, without approval

— create their own item_name_VALUE tables

— insert constants to the db

— create private run index tables

— modify (i. e., insert, update, delete) private run index tables
— drop or modify run index tables of others

— read anything in the database
e Individuals cannot

— delete constants from the public item_name_VALUE tables
— drop or modify the public run index table

e Designated experts can, in addition

— delete constants from the public item_name_VALUE tables
— modify the public run index table

e Designated experts cannot

— drop item_name_VALUE tables from the db

— drop the public run index
e Database manager can do anything to the database

The MySQL access tables shown in Tables 3-5 accomplish these goals.

db table
Host ‘ Db ‘ User ‘ Privileges
% calib | dbmanager | all
% calib | % select

Table 4: MySQL db table. The dbmanager has all privileges in the calib database. Any user
that can connect can read any of the tables in the calib database.

tables_priv table
Host ‘ Db ‘ User ‘ Table_name ‘ Table_priv
% calib | expert_1 | RunIndex select,insert,update,delete
% calib | expert_1 | item_name_VALUE select,insert,update,delete
% calib | % RunIndexUser% all
% calib | % item_name_VALUE select,insert
% calib | % item_name_VALUEUser% | all

Table 5: MySQL tables_priv table. An expert can modify the Runlndex table. An expert
can modify an item_name VALUE table. Any user can create a private Runlndex Any user

can read or add to an item_name_VALUE table. Any user can create and modify private
item_name_VALUE tables.

8 Database Deployment

There will be one authoritative version of the database. All write operations must be per-
formed on this JLab-resident copy. If remote copies are necessary, they should be downloaded
from JLab.

References

[1] http://www.mysql.org

[2] http://www.jlab.org/ manak/packages/Map/mapmanager.html

$Id: cal_db_spec.tex,v 2.15 2000/12/04 20:50:18 marki Exp $

