CLAS-NOTE 2003-004

CVS: docs/clas_notes/new_tagger_calib
Original: March 17, 2003

Version: 1.0

The New Tagger Calibration Program
J1 L1

1 Introduction

Timing is the cornerstone of particle identification and any other off-line data analysis
that follow. Its importance can never be over-emphasized. For photon experiments,
timing calibration and reconstruction are more difficult than for electron experiments
in the sense that the accelerator RF time is not directly used. The time of the beam
photon is measured by the CLAS Bremsstrahlung tagging system(Tagger) and then
corrected for the phase difference between the tagger time and the RF time. The
alignment of those two times is the most important aspect of the tagger calibration.

In this note, I will briefly describe the procedure for the tagger calibration. For
more details on tagger reconstruction and calibration, please refer to CLAS_NOTE
1999-04. Detailed information about implementation and running of the calibration
program photonTcal is given.

2 Tagger calibration procedure

Four sets of constants are being used in the tagger reconstruction software, as shown in
table 1. All the constants are kept in TAG_CALIB.map under $CLAS_ PARMS/Maps
directory!'. Another set of constants, which are used in RF time reconstruction, are
kept in RF_OFFSETS.map under the same directory.

The goal of the tagger calibration is to adjust all these constants, so that the beam
photon timing can be reconstructed correctly, and eventually allows substitution of
the tagger time with the accelerator RF time on an event by event basis. Therefore
the calibration consists of 5 major steps each corresponds to one of the 5 sets of
constants. The formalism used in these steps is well documented in CLAS_NOTE
1999-04. T will not go through them here and strongly recommend any serious tagger
calibrator to read that note. Also, there are dependencies among these steps, thus
they have to be carried out in the following order:

1. RF calibration
There are two things regarding the RF calibration that the calibrators should
be aware of,

! Map refers to both the calibration map and the database.

| Number of constants | Map entry (subsystem/item)

2 x 61 constants for L/R T-counter TDCs, | tag_t/slope_left/right
1 constant for E-counter TDCs

2 x 61 constants for L/R T-counter TDCs, | tag_e/dt; tag_t/dt_left/right
384 constants for E-counter TDCs

121 constants, one for each T-bin tag t/ci

1 constant tag2tof/value

4 x 6 + 1 constants for 4 regions of RF time | F(1-4)/low/high/p(1-4); offset/value

Table 1: Constants used in the tagger timing reconstruction.

(a) The RF signal from the accelerator is prescaled by a factor of 40 for photon
runs, then divided into two identical signals. The choice of RF1 or RF2 is
arbitrary. It would have been ideal to use the average of the two signals
in computing the RF time. However, study showed that using the average
did not make much difference.?

(b) Due to the physical property of the RF TDCs, the reconstructed RF time
is divided into 4 regions. This is why in RF_OFFSETS.map we have four
regions. The ‘edge-finding’ for those regions can not be easily automated.
The way I did it was I zeroed out(meaning setting all the constants to
zero) all the constants in the map for all the four regions, then processed
some events with a small program that reconstructs RF time and tagger
time. Then I plotted Ttag-Trf vs. Trf. I am not including that program
here, because the same thing can be done with photon_mon, histograms
h72, h78 and h74. Fortunately, this need not be done very often. To check
if this re-division is needed, one can proceed with the old constants and
take a look at those three histograms. If the edges are improperly set, you
will see obvious wiggles around the edges.

2. TDC base peak positions

The T-counter TDCs work in common start mode. The CLAS trigger sets the
start signal and the electron hit sets the stop signal. Since the tagger signal
itself is also part of the CLAS trigger, the T-counter TDCs are working in a
so-called ‘self timed‘ mode. This means the same signal starts and stops the
TDC at different times. Because the cable lengths and the electronics delays
are constant, the raw TDC spectrum shows a sharp peak. By convention, this
amount of time is subtracted from the TDC value in calculating the tagger time,
so the absolute value of the tagger time is close to zero. The E-counter TDCs
are also working in essentially the same way even though they are in common
stop mode. This step of the calibration is to find the centroid of the peak in
the TDC spectra for each individual TDC.

3. TDC slopes
The E-counter TDC slopes are fixed at 500ps/channel. The T-counter TDC
slopes are close to 50ps/channel. However, they vary slightly from counter to

2Personal communication with Dr. Elton Smith.

counter. The goal of this calibration is to find the correct slope for each T-
counter TDC, both left and right. The slopes for the left/right TDCs on the
same T-counter also need to be balanced so that the position of the hit on the
hodoscope does not bias the timing.

4. Alignment of the tagger time and the RF time(Ci)
As mentioned earlier, there is a phase difference between the tagger time and
the accelerator RF time. This phase difference is represented by the set of
so-called ‘Ci’ constants. Upon correctly determining these constants, one can
substitute the tagger time with the more accurate RF time.

5. Alignment to CLAS(tag2tof)
This constant represents the fixed relative delay between the tagger and the
time-of-flight counter.

3 Implementation and compilation of the program

photonTcal is written in C++ by calling standard ROOT libraries. fpack is used
for BOS I/O. All the histogram filling and fitting are done within the program. This
program was originally developed on a RedHat Linux7.1 platform, with g+-+-2.96
and ROOT 3.01/05. It also has been compiled successfully on RedHat Linux6.2, with
eges 2.91.66 and ROOT 3.01/06. A few words are in order on compilation. People
have been debating that ROOT based programs tend to be more unstable and harder
to compile on different platforms. One realizes though, this is the nature of any
dynamically linked program. There should be no problem with compilation if one is
careful enough with the shared libraries. Just keep this in mind, you have to compile
your ROOT libraries and photonTcal with the same compiler and libraries, packlib
say.

Before compile the program, some environment variables must be setup correctly?:

$ROOTSYS This is THE most important variable concerning ROOT. It should be
set to your ROOT directory.

$LD LIBRARY PATH Shared library path, should include your SROOTSYS/lib.

$CERN_ROOT CERN library path, make sure it points to the same location that
you built your ROOT libraries with.

Here is an example how I setup those variables when I built photonTcal on
ifarml1 (tcsh).

ifarmli>setenv ROOTSYS /u/group/clasdev/root
ifarmli>setenv CERN_ROOT /apps/cernlib/pc_linux/99
ifarmli>setenv LD_LIBRARY_PATH $RO0TSYS/lib:/apps/egcs/egcs-1.1.1-shared/1ib

Once you setup these variables, you can check out photonTcal via CVS and compile
it. At command line, type

ifarmli>cvs co /packages/utilities/photonTcal

31 take it here that all the CLAS related variables have already been setup properly. Otherwise
please refer to the Hall-B software FAQ.

ifarmli>cd packages/utilities/photonTcal
ifarmli>make 1lib
ifarmli>make photonTcal main

If everything went well, you should see photonTcal main under current directory.

4 Running photonTcal

photonTcal works on raw BOS data. The behavior of photonTcal is controlled by
command line flags. Type

ifarmli>photonTcal_main -h
you can see the help page that comes with the program.

photonTcal main
options are:

-0 output ROOT file name, .root extension recommended.

-t# trigger mask.

-M# process maximum # of events.

-S# scale number of events for creating control histogram(default=1).
-i quiet mode (no counter).

-s# wuse this number for bank sector(default = 0)

-P# Bitwise Process flags, as defined below:

Ox1 Rough adjustment of E-T peak position.
0x2 T-counter slope calibration.
0x4 E-T peak position calibration.
0x8 RF timing calibration.
0x10 Ci calibration.
0x20 TOF timing calibration.
0x40 Creat control histograms.
-R# specify reference detector(default = ST). TBI=To Be Implemented
0 ST
1 TOF
2 TAC(TBI)
3 PS(TBI)
4 EC(TBI)

-h print the above
For more information, please see help.html under photonTcal directory.

For a normal calibration run*, I would like to recommend the following sequence
of running photonTcal

e Calibrate the RF first
ifarmli>photonTcal_main -P0x49 -orunl2345.root clas_012345.A00

e (Calibrate the tagger
ifarmli>photonTcal_main -P0x57 -orunl2345.root clas_012345.A00

4From our experience, a special run taken with low photon flux, 5nA on a 10~* radiator for
instance, is desirable for the tagger calibration. A couple of million events should suffice the job.

Usually 300,000 events is the bottom line for calibrating a normal run, 500,000
events will give you a better fitting result. The dependencies of each calibration
step are described in Tagger calibration procedure. In general, earlier step will affect
later step(s). The dependencies have been hard-coded in the program. Which means
you do not have to worry about things like missing a step. For instance, if you
choose to run with -P0x2, the program will also do 0x5c for you. The reason that we
setup this process flag is because some of the constants stay stable during a certain
period of time, thus you do not have to recalibrate them very often. Nevertheless,
photonTcal runs pretty fast, it would not burden you too much if you do the whole
thing. My suggestion is to run with the flag -P0x57, this means do everything except
RF calibration which is believed to be stable. If the running condition did not change,
you should not need to calibrate every run. One way to determine the necessity of
calibration for a given run is to run photonTcal with -P0x41 flag. This will create
the control histograms with the old constants. Check the histograms and see if any
calibration needs to be done on that run. Another commonly used program serving
the same purpose is photon_mon. This is the standard cooking monitoring routine
located at packages/utilities/photon_mon.

photonTcal writes out one ROOT file and several ASCII files. The ROOT file
contains all the histograms that photonTcal uses to do the fits as well as control
histograms for calibration quality checking. The ASCII files contain all the new
constants that will go into the calibration map. The base-names of the ASCII files
are fixed, while the extension is the run number. To look at the histograms, one
needs to open a ROOT interactive session. If your $ROOTSYS and $PATH are
setup correctly, typing root at command line will do it. Once you are in ROOT, you
have to open the ROOT file created by photonTcal first, followed by opening ROOT
Object Browser®, see figure 1.

BR-1 AOGT Giyjest Srowser BIEE]
File ¥iew Options Help

Symnzattiroot v s [s

All Folders [Contents of "/ROOT Files/run9171.root"

(oot Cacin [Cdcontroll COPeak;t [CPret [ZARF [Sope; 1
[Cl/arenasicalib
(IROOT Files

B Ohiects.
L | /A

Figure 1: Illustration of a ROOT object viewer.

Among those 6 folders, Control is of the most importance. It contains all the
quality control histograms. The other folders contain all the intermediate histograms

SPlease find instructions for ROOT at http://root.cern.ch

used by photonTcal to do the fittings for different calibration steps, as indicated by
the names of the folders. They are designed for expert use. How to interpret the
control histograms is described in section 5. As stated above, the new calibration
constants are stored in several ASCII files:

tagposEpeak.new.12345 E-counter TDC peak position, 2 columns x 384 rows
tagposTpeak.new.12345 T-counter TDC peak position, 3 columns x 61 rows
tagTDCCal.new.12345 T-counter TDC slopes, 3 columns x 61 rows
tagCalCi.new.12345 Ci, 2 columns x 121 rows

A shell script putConst . sh is included to facilitate putting the new constants into
TAG_CALIB.map. This script takes 2 arguments, the first one is the run number and
the second one is $CLAS_PARMS.

5 Calibration quality control
The quality of the calibration is controlled by checking several histograms. Double-

click on the Control folder, you will see the histograms contained in that folder as
shown in figure 2.

B4 AooT Cyect Browser IBEIE]
Eile Miew Options Help
{3 Control - A
all Foldars [Contents of "YROOT Files/tunz3171.rootCantral®
[ract en I reFein | Yl |da ToRF;1 I Ttao_Tphovsern 1
[varenadicalib i Ttag_Tphow/Srf1;2 i tele_LwsR_T10;1 tele_LwsR_T11;1 tele_LwsF_T12;1 i tele_LwsF_T13;1
D ROOT Files Bt tvsr g By toe_Lvshoms B toc_LwsRiTien B tde_LvsRTi7 g tde_LvsR_Tis;
E‘";"””%‘?‘ root By toe_Lvsr_mian tele_LvsR_T1;0 tele_LwsRi_T20:1 tele_LvsR_T21:1 tele_LvsR_T22:1
i tde_LvsR_T231 iy tdo_LveR_T241 [y tee_LvsRT2s [toe_LveR T2 B tok_LvsRT27
h toe_LwsR_T28,1 tole_LwsR_T29;1 tole_LwsR_T2;1 tode_LwsR_T30;1 tode_LwsR_T31;1
tde_LvsR_T32;1 Jj tde_LvsR 1331 M toe_LvsRTad [toc_LveR_T3s [tee_LvsR_T3;1
h toe_LwsR_T37,1 tole_LwsR_T38;1 tele_LwsR_T39;1 tole_LwsR_T3;1 tode_LwsR_T40;1
tde_LvsR_T41;1 Jj tde_LvsR_Taz M toe_LvsRTaz g toc_LvsR_Tad [toe_LvsR_Tas;
h toe_LwsR_T4E;1 toe_LwsR_T47;1 tole_LwsR_T48;1 tode_LwsR_T49;1 tole_LwsR_T4;1
tde_LvsR_TS0;1 B tde_LvsRTSt;1 M toe_LvsRTszt g toc_LvsR_TS3 [tee_LvsR_TS4;1
h tode_LvsR_TES;1 toe_LvsR_TSE;1 tele_LwvsR_TS7;1 tods_LwsR_TS8;1 teds_LwsR_TE9;1
tode_LvsR_TS;1 tole_LvsR_Te0O;1 tele_LvsR_TB1;1 tode_LwsR_TE;1 i tede_LwsR_T7;1
tde_LvsRTa;t Mg toe_LvsRTat g timesTrn T tmesT1;2 | da time_TAGF1
|ha time_TAG_REF;1 | g time_T_ST;1 | da timne_Tpha_ST;1
?3I Ohjects | Control Histograms : //A

Figure 2: Contents of the control histogram folder.

The T-counter Left/Right TDC slope balance is controlled by 61 two-dimensional
histograms, labled tdc_LvsR_T+#, where # is the paddle number. The Y-axis in these
plots is (tRight - tLeft)/2, while the X-axis is (tRight + tLeft)/2. If the L/R TDCs
are well balanced for each T-counter, one should see a horizontal band around zero,
as shown in the letf plot below. In the right plot in figure 3, one clearly sees that left
TDC(or maybe PMT) is dead on that counter.

The E-T time coincidence is reflected in histogram ET. In this historgram, the Y-
axis is the difference between E-counter time and T-counter time, X-axis is E-bin ID.
If the calibration is good, we expect to see a horizontal bar around zero, which means
the E-couters and T-counters are in time and there is no systematic dependency in

ilﬁl@l -ILeﬂirz V5. IMeani tde_LveR_T41 ilﬁl@l -ILeﬂirz V5. IMeani [tde_Lver_Ta |
4 i Nent= 15910 4 . i Nent = 5436
Mean x= 2411 T Mean x= 239

r Mean y= 01288 ¥ Mean y = 0,1854

3 RMS x = 4536 3 » RMS x = 4784
L RMS y =0.1703 + RMSy = 132

2 2 s

1 1 o

[} [} f

A A=

2 2

3 3

4 1 1 4 1 1

50 0 50 100 160 200 50 0 50 100 160 200

Figure 3: T-counter left/right TDC balance.

E-bin. One has to bear in mind that there is a hard-cut in the tagger reconstruction
package, which is +/-10 ns for this time window at the time this document is written.
As long as the hit falls within this window, the time of the beam photon is determined
solely by T-counter time and eventually by the RF time.

| TTime-ETimeVSEID | ET
30 Nent= 514516
Mean x = 544.1
Mean y = 0.09982
RMS x = 174.2
20 RMSy = 1.873

10

IIII|III|_1_

30 L | L | L | | L | L | L | L
100 200 300 400 500 600 700

Figure 4: E/T-counter timing alignment.

The RF offset calibration is checked by looking at histogram Ttag-TphoVSrfl.
Y-axis is Ttag - Tpho, X-axis is RF1. For a good calibration, one should see no
slopes or offsets in any of the 4 regions.

The alignment between tagger time and RF time is checked with three histograms,
as listed in table 2.

Histograms RF and TagRF show how good the PHASE SHIFT between tagger
time and RF time is determined by the Ci constants. RF also shows that this align-
ment should not depend on T-bin after a good calibration. The sigma of TagRF
reflects the intrinsic time resolution of the T-counters.

However, these two plots are not enough to determine the alignment of T-counters
and RF time, because T-counters can possibly be alignment to a wrong RF time
bucket. Specifically, even if these two plots look perfect, some T-counters can be
off by multiples of 2.004ns. Alignment to the right RF time bucket is checked with

| Ttag-Tphovs.rfl | Ttag_TphoVSrf1
Nent = 607833
1= Meanx= 51.23
B Mean y = 0.003663
B RMS x = 23.08
B RMS y =0.2093
05—
0 —
05—
= L L | L L L | L L L | L L L | L L L
0 20 40 60 80 100

Figure 5: Calibrated RF time.

Histogram Name | Y-axis / X-axis

RF Ttag - Tpho / T-bin ID
TagRF Events / Ttag - Tpho
REF _ci Tpho - Tstl / T-bin ID

Table 2: Histograms for checking tagger/RF time alignment.

histogram REF _ci. This plot shows directly the delay of each T-counter relative to
the reference detector®. Therefore it tells you if any of the T-counters is off by one or
several time bucket, see picture 7.

The Tagger-CLAS offset is controlled by one constant(tag2tof) in the tagger recon-
struction software. Previously, this constant is determined in the tagger calibration
by comparing the tagger time and the start counter time. However, there is another
offset between start counter and CLAS. Besides, there is no procedure to calibrate
the start counter. So at this point, [am taking tag2tof out of tagger calibration and
combining it with the TOF paddle2paddle delay calibration.

6Usually the start counter is used as the reference detector. In special cases, other detector can
be used. See the -R option.

[Tagger Time - RF Time Vs T ID 3 T§§§er Time - RF time | TagRF

Nent = 514516 J Nent= 514516

1 1; i Meanx= 77.94
I [Mean = 001678
- L 25000 RMS =0.2306
F = Chi2 Indf= 2424 /39
Ik Constant = 2669e+04 +47.62
05— 20000 — Mean = 002062 +0.0002761
L Sigma =0.1882 & 0.0002361
16000
10000
05
E000
e —
ol = ——, 1
20 40 (] B0 100 120 -1 06 0 08 1

|_Tagger Time - RF Time Vs T ID before ci cal

RF_ci_py
—_— = Nent=7715
F r Mean =0.00485
16000 RMS =03533
E Chi2 Indf=72156 138
14000 — Constant = 1.639e+04 + 33564
F Mean =-001691 +0.0005081
12000 (- Sigma =02827 + 00005577
10000 —
8000 [—
6000 —
4000 |-
E i
2000 o
Q T =
E] 05 (] 06 1

Figure 6: The alignment between the tagger time and the RF time.

| Tagger Time - ST Time Vs T ID after ci cal | REF_ci

Nent = 937845

Meanx= 758

Meany=-11.79

RMS x = 23.97

20 ; RMSy = 17.6
A Sen

301

10

-30*
20 40 60 80 100 20

Figure 7: Relative delay between the tagger and the start counter. The two bands
are due to the two triggers used in the experiment.

