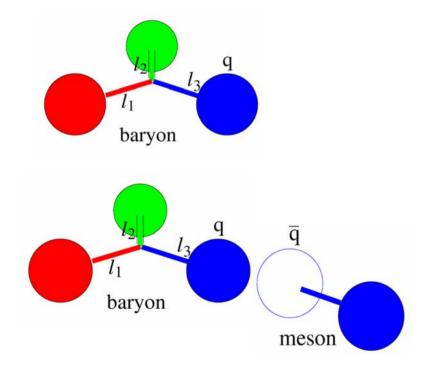


Nucleon Excited States-Theoretical Issues

- Overview: why study nucleon and meson excited states?
- Four QCD-based models of hadron structure
- How experiments can help resolve theoretical issues: salient examples
- Urgently needed theoretical developments

Why study nucleon and meson excited states?

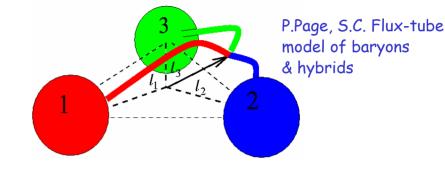
- Uniqueness: bound states of strongly-interacting, relativistic confined systems
- Identification of important effective degrees of freedom in low-energy QCD
- 3. Potential discovery of entirely new forms of matter: glueballs, hybrids

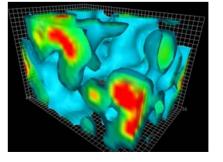


Uniqueness

- Unique?
- Nucleons interact strongly in nuclei...
 - Can isolate relevant low-energy d.f. (nucleons)
 - Can directly probe two-body potential in experiment
 - Few body systems of most A exist to test model N-N, N-N-N,... potentials
 - Can systematically expand around nonrelativistic limit
 - Heavy effective degrees of freedom
 - Relatively large states

Uniqueness...

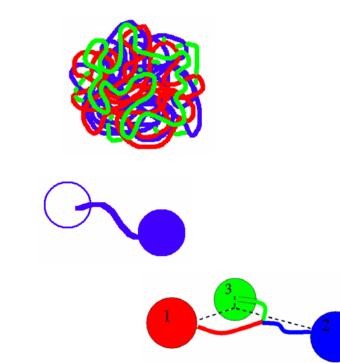

- Elementary d.f. are confined
 - Can only indirectly infer low-energy interaction
- Only qqq, $q\overline{q}$, $(qqqq\overline{q}')$ exist as bound states
- Not non-relativistic systems (unless all quarks heavy)



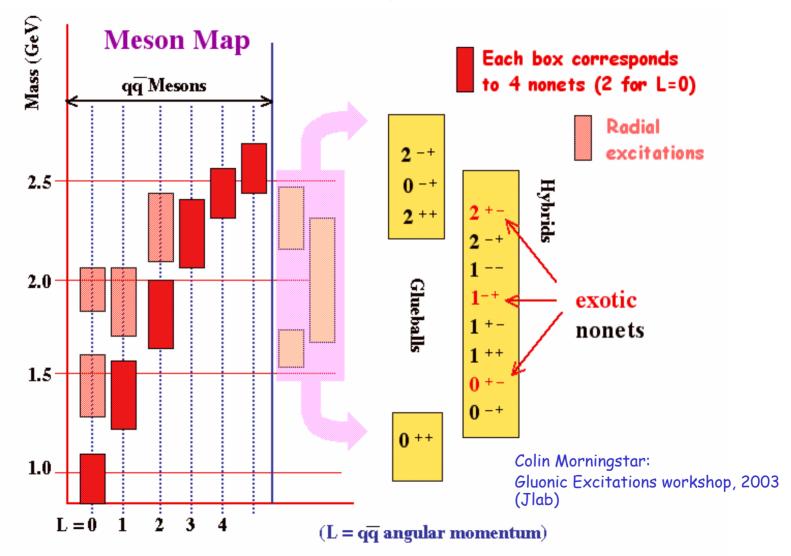
Effective degrees of freedom

Low-energy QCD:

- Constituent quarks (CQs), confined by flux tubes?
- Confined CQs, elementary meson fields?
- Confined CQs, gas of instantons?

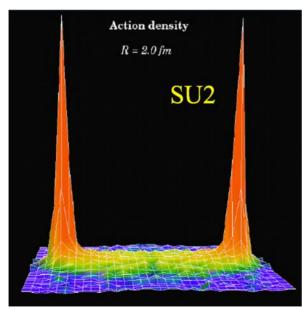


D. Leinweber et al. QCD vacuum action density

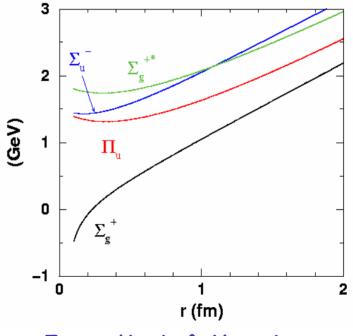

Entirely new forms of matter

- Gauge-field configurations provide confining potential
 - States of pure glue exist
 - Exotic states not light
 - \cdot Others mix with qar q
 - Glue may not be in ground state
 - Hybrid mesons: exotic quantum numbers
 - Hybrid baryons: no exotics, mix with qqq

Glueballs and hybrid mesons


QCD-based models of hadron structure

- Why do we need models?
- Can solve for certain quantities in QCD using lattice gauge theory
 - Masses of lightest few states with given quantum numbers (especially pure glue)
 - Hadronic matrix elements of electroweak operators
 - Especially heavy-quark hadrons: $f_B, f_D, ...$
 - Heavy-quark potentials



Why do we need models?

- Heavy quark potentials in mesons
 - Action density has flux-tube at large r
 - Potentials deviate from flux-tube expectations at small r 3

Bali et al.

Juge, Kuti, & Morningstar

Heavy quark potentials in baryons

4

3Q potential [GeV] ა ა

1

0

 Abelian action distribution of gluons and light guarks nr. QQQ

Ichie, Bornyakov, Struer & Schierholz

Takahashi & Suganuma:

- Calculate $L_{min} = I_1 + I_2 + I_3$
- plot ground and first excited state energies of glue ($V_{\rm R}$ and $V_{\rm H1}$) vs. L_{min}

._{min} [fm]

0.5

1st E.S.

1.5

G.S.

Why do we need models...?

- Description of full spectrum requires models based on QCD
 - Quarks are confined
 - pair-wise linear confinement
 - string potential L_{min} , scale set by meson string tension
 - Spin and flavor-dependent "hyperfine" interactions are present between quarks
 - Models differ in mechanism for short-distance, spindependent interactions
 - Different pictures of the important physics!

Gluon-exchange models

- Emphasize:
 - Connection to heavy-quark limit
 - Universality of meson and baryon physics
- Quarks exchange gluons at short distance
 - color-magnetic hyperfine interactions
 - e.g. DeRujula, Georgi, Glashow (ground states) $M = \sum_{i=1}^{3} m_i + \frac{2\alpha_s}{3} \frac{8\pi}{3} \langle \delta^3(\mathbf{r}) \rangle \sum_{i < j=1}^{3} \frac{\mathbf{S}_i \cdot \mathbf{S}_j}{m_i m_j}$

Gluon-exchange models...

Predict presence of additional tensor interactions

$$H_{\rm hyp}^{ij} = \frac{2\alpha_s}{3m_im_j} \left\{ \frac{8\pi}{3} \mathbf{S}_i \cdot \mathbf{S}_j \delta^3(\mathbf{r}_{ij}) + \frac{1}{r_{ij}^3} \left[\frac{3(\mathbf{S}_i \cdot \mathbf{r}_{ij})(\mathbf{S}_j \cdot \mathbf{r}_{ij})}{r_{ij}^2} - \mathbf{S}_i \cdot \mathbf{S}_j \right] \right\}$$

- Tensor
 - mixes states split by contact interaction
 - D-waves in the nucleon and Δ
- Where are spin-orbit interactions?

One-boson exchange models

• Emphasize:

- aspects of QCD at low momenta imposed by chiral symmetry
- Goldstone-boson nature of $\pi,\,K,\,\eta,...$ fields
- Bosons exchanged between quarks

$$H_{\chi} \sim -\sum_{i < j} rac{V(\mathbf{r}_{ij})}{m_i m_j} \boldsymbol{\lambda}_i^{\mathrm{F}} \cdot \boldsymbol{\lambda}_j^{\mathrm{F}} \, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j$$

- No spin-orbit from OBE (confinement?)

Instanton-based model

- Another flavor-dependent possibility: instanton-induced interactions
- Present if qq in S-wave, I=0, S=0 state $\langle q^2; S, L, T | W | q^2; S, L, T \rangle = -4g \, \delta_{S,0} \, \delta_{L,0} \, \delta_{T,0} \mathcal{W}$
- W is a contact interaction (has range λ)

 - No tensor interaction, or spin-orbit forces
- Applied to excited states
 - Blask, Bohn, Huber, Metsch & Petry
 - solve Bethe-Salpeter equation

Instanton-induced interactions

Quarks confined by linear q-q potential

 $V(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}) = A_{3} + B_{3} \sum_{i < j} |\mathbf{r}_{i} - \mathbf{r}_{j}|$

 Relativistic treatment, so need to choose Dirac structure of potential

$$\begin{aligned} \mathbf{A}_{3} &= \mathbf{a} \; \frac{3}{4} \bigg[\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + \gamma^{0} \otimes \gamma^{0} \otimes \mathbb{I} + \gamma^{0} \otimes \mathbb{I} \otimes \gamma^{0} + \mathbb{I} \otimes \gamma^{0} \otimes \gamma^{0} \bigg] \\ \mathbf{B}_{3} &= \mathbf{b} \; \frac{1}{2} \bigg[-\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + \gamma^{0} \otimes \gamma^{0} \otimes \mathbb{I} + \gamma^{0} \otimes \mathbb{I} \otimes \gamma^{0} + \mathbb{I} \otimes \gamma^{0} \otimes \gamma^{0} \bigg] \end{aligned}$$

- Form chosen to reduce spin-orbit effects
- Reproduces correct "Regge trajectories"

Dynamical approaches

- Are all (or many) excited baryon states dynamically generated?
 - States are poles in scattering matrix
 - Potentials chosen to reproduce lowenergy scattering data (chiral dynamics)
 - Generate poles by iterating interaction based on potentials, coupled channels
 - E. Oset et al., M. Lutz, S. Krewald et al.

Important required developments

- Experiment + theoretical analysis:
 - Will ultimately sort out (or synthesize) these pictures
 - Steer lattice groups toward important quantities to calculate

Important required developments

- 1. Better determination of properties of states known to exist (say PDG 4*, 3*)
- 2. Verification/removal of poorly determined states, discovery of "missing" resonances
- 3. Evidence of overpopulation of states in some partial waves, decay signatures?
 - Hybrids
 - Possible N, Σ partners of S=+1 pentaguarks
- 4. Development of coupled-channel analysis (required for 1.-3.)

1. Properties of existing states

- E.g.: some models predict (tensor) mixing between S_{11} and D_{13} (N*1/2-,N*3/2-) states
 - Mixing angles differ in different approaches (no mixing at all with instantons)
- Theory: calculate mixing angles, effects on decays to:
 - Νπ, Νη, ΛΚ, Νππ (Νρ, Δ π,...)
- Experiment + analysis: find accurate partial widths

Mixing angles

Physical states are admixtures of two possible L,S combinations

 $N(1535)1/2^{-} = cos(\theta_{s}) N^{2}P1/2^{-} - sin(\theta_{s}) N^{4}P1/2^{-}$

 $N(1650)1/2^{-} = sin(\theta_{s}) N^{2}P1/2^{-} + cos(\theta_{s}) N^{4}P1/2^{-}$

 $N(1520)3/2^{-} = cos(\theta_{D}) N^{2}P3/2^{-} - sin(\theta_{D}) N^{4}P3/2^{-}$ $N(1700)3/2^{-} = sin(\theta_{D}) N^{2}P3/2^{-} + cos(\theta_{D}) N^{4}P3/2^{-}$

- Lattice QCD should also be able to determine θ_{S} and θ_{D}
 - enough time (CPU and elapsed!)
 - clever choice of correlators...

Properties of existing states...

- E.g. is the Roper resonance:
 - A qqq (radial) excitation?
 - Dynamically-generated bound state?
 - \bullet S. Krewald et al., iterated No interaction
 - no elementary excitation needed to fit data!
 - Hybrid? Pentaquark?
 - Bag/flux-tube models: lightest hybrids include P₁₁ (N1/2⁺) states at 1500/1900 MeV
 - Chiral-soliton picture anti-decuplet N(1647)
 - More than one of the above?

Roper resonance

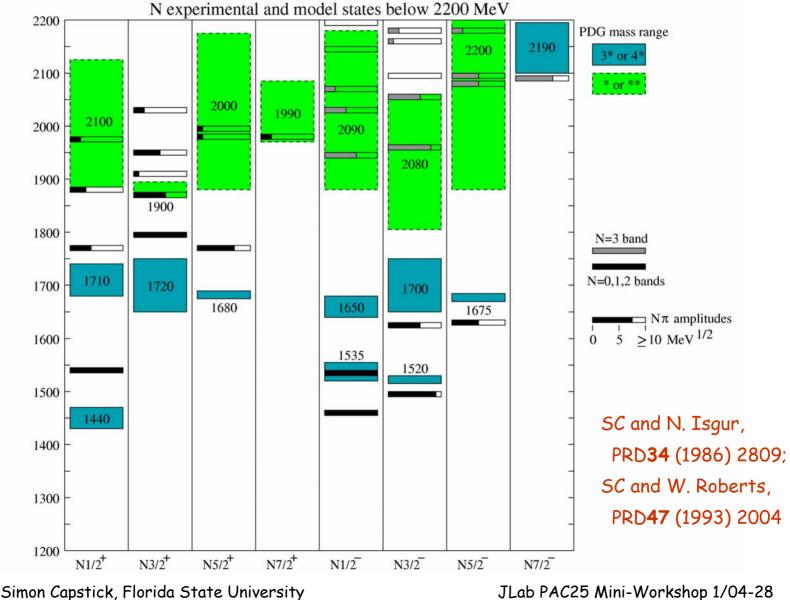
- Photo-couplings incompatible with (OGE) qqq interpretation
 - Accurate determinations of photo-couplings (in coupled-channel analysis) required
- EM form factor from e-N
 - Should fall off rapidly if state is predominantly a baryon-meson effect
- Focus on P_{11} partial wave (also other states)
- Lattice:
 - Roper heavy in quenched calculations, lighter (threshold?) as pion mass is lowered: more development needed!

2. Missing and 1*, 2* states

- Why bother finding new states or confirming/removing old ones?
 - E.g.: current debate about chiral-symmetry restoration in spectrum
 - Prediction of pairing of +ve/-ve parity states with same J higher in spectrum
 - 1* states N1/2+(2100) & N1/2-(2090)
 identified as doublet (Cohen and Glozman)
 PDG: S11(2090) "any structure above 1800 MeV"
 1. 1885 +/- 30 MeV vs. 1928 +/- 59 (43 MeV)
 - 2. 2125 +/- 75 vs. 2180 +/- 80 (55 MeV)
 - 3. 2050 +/- 20 vs. 1880 +/- 20 (-165 MeV)

Missing resonances

- Symmetric (qqq) potential models:
 - Agree on **number** of excited states of a given character
 - Disagree on their **place** in spectrum, especially at higher energy
 - many positive (and doubly-excited negative) parity states not seen in analyses of data: "missing" resonances
- Largest differences in predictions for (formation &) decay-channel couplings
 - Model proponents **must** calculate baryon-meson (all open channels) and photo- couplings



Missing resonances

- Finding several missing (+ve parity) resonances:
 - Would verify symmetric qqq correct picture
- PDG states established in analyses of $\ensuremath{\mathsf{N}}\pi$ elastic scattering
 - States which couple weakly to $N\pi$ will be "missing"
 - Evidence for them should show up in other $(N\pi\pi, \Lambda K,...)$ final states, excited with EM probes from nucleon targets (make N^{*} or Δ^*)
 - Their existence will be **established** in multichannel analyses of several final states

Nucleon model states and $N\pi$ couplings

3. Unconventional states

- All baryon J^P quantum numbers possible with qqq: no exotic hybrids
 - Light hybrid baryon states (flux-tube):
 - S_{qqq}=1/2 states: N1/2+, N3/2+ at ~1870 +/-100 MeV
 - S_{qqq}=3/2 states: D1/2⁺, D3/2⁺, D5/2⁺ approx. 2075 +/- 100 MeV
 - Theory needs to examine decays
 - Easily identified decay signatures?
 - Electromagnetic couplings? (Burkert and Li)

Unconventional states...

- Partners N, Σ of Θ^+ with $J^P=1/2^+$
 - will mix with conventional states
 - May have significant hidden strangeness: decays?
- Because of mixing, discovery may require overpopulation of states
 - Another important reason to carefully study P₁₁ (P₁₃, P₃₁, P₃₃, F₃₅) partial wave!

4. Development of coupled-channel analysis

- Grand challenge for hadron structure physics:
 - Extraction of model-independent information about overlapping, broad resonances from EM-production and hadron scattering data

Analysis of N* (and meson) data

Masses, widths, decay branches, photocouplings, EM form factors from

Partial wave data in many (all open) channels; multipoles in γN from Scattering data

Analysis of N* (and meson) data...

- Necessary ingredients?
- Coupled-channel unitarity
 - E.g. K-matrix approach: (D.M. Manley, KSU)

$$T = \frac{1 + iK}{1 - iK}, \ K = K^{\dagger}$$

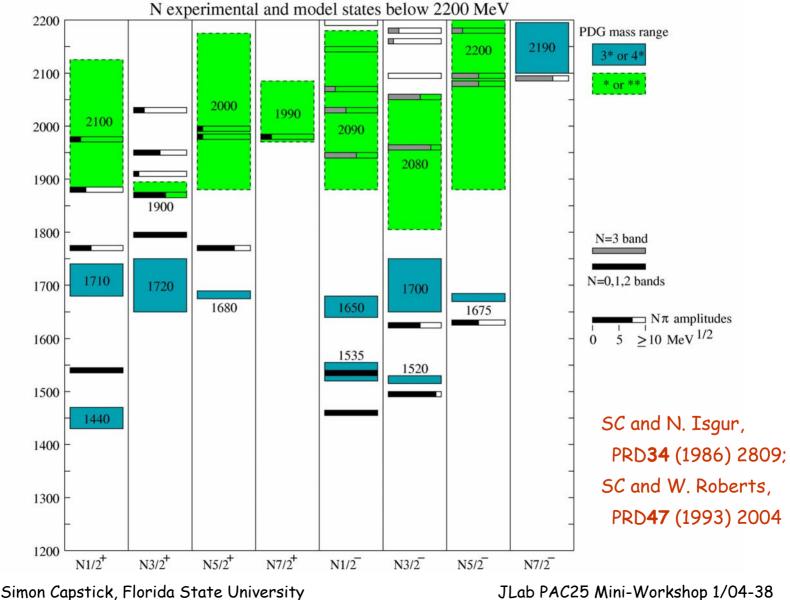
- K contains resonance information, background terms
- CMB (Cutkosky; Vrana, Dytman and Lee) model:
 - all channels re-scatter into all others via loops
- Effective Lagrangians: T. Sato and T.-S. H. Lee; GWU group: C. Bennhold, H. Haberzettl; Mainz group: L. Tiator, D. Drechsel,...

Analysis of N* (and meson) data...

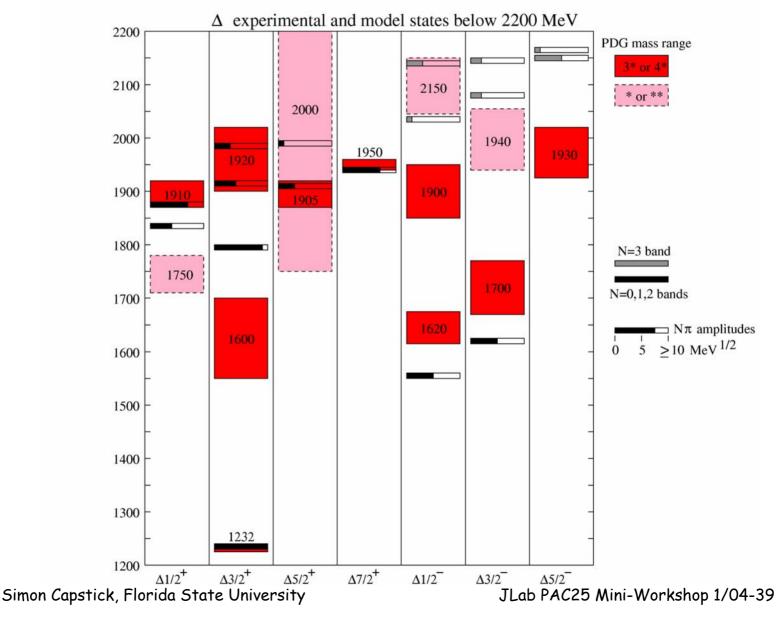
- Fitting ambiguities can be lessened by imposing necessary analytic structure of amplitudes
 - Resonances appear as poles
 - Thresholds cause branch cuts, amplitudes on various sheets related
 - Analytic structure can be made compatible with unitarity (CMB model)

Analysis of N* (and meson) data...

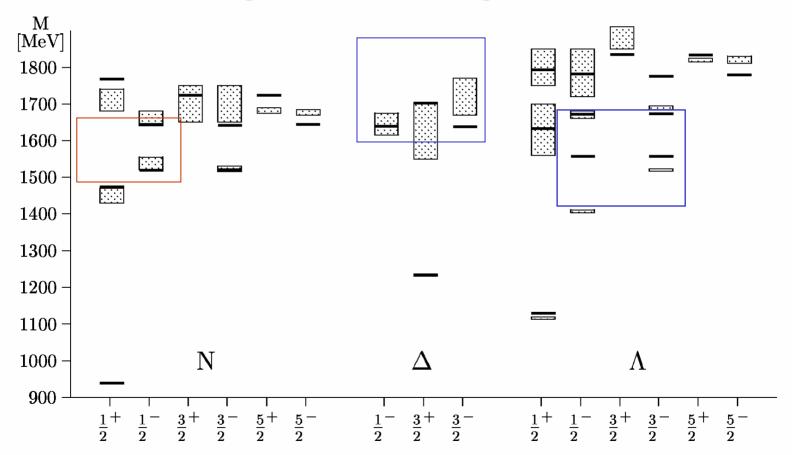
- Theory must provide:
 - Strong form factors: e.g. N(1535) to Nη as a function of decay momentum (for loops)
 - $\pi N \rightarrow N(1535) \rightarrow N(-k)\eta(k) \rightarrow N(1535) \rightarrow \pi N$
 - Open threshold causes cusp in $N\pi$ elastic scattering amplitude
 - Amplitude is integral, involves form factor: not an observable!


Theoretical ingredients...

- Theory must provide:
 - Technique for constraining background amplitudes
 - Based on physics of competing processes
 e.g. t-channel (meson) exchange
 - Consistent with unitarity, analyticity, gauge invariance

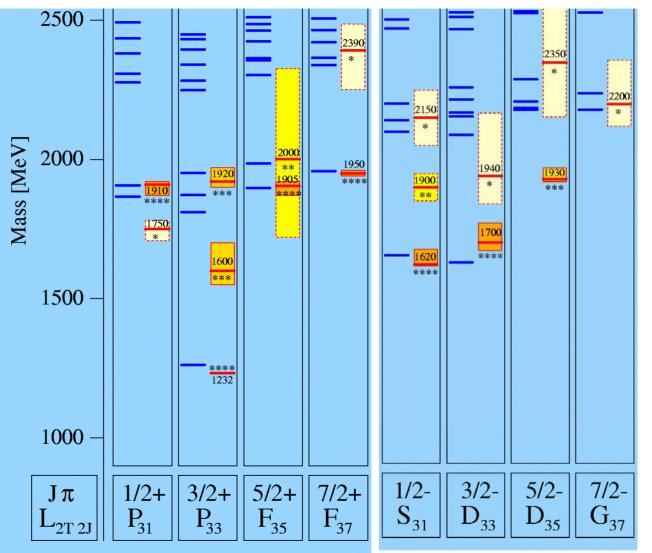


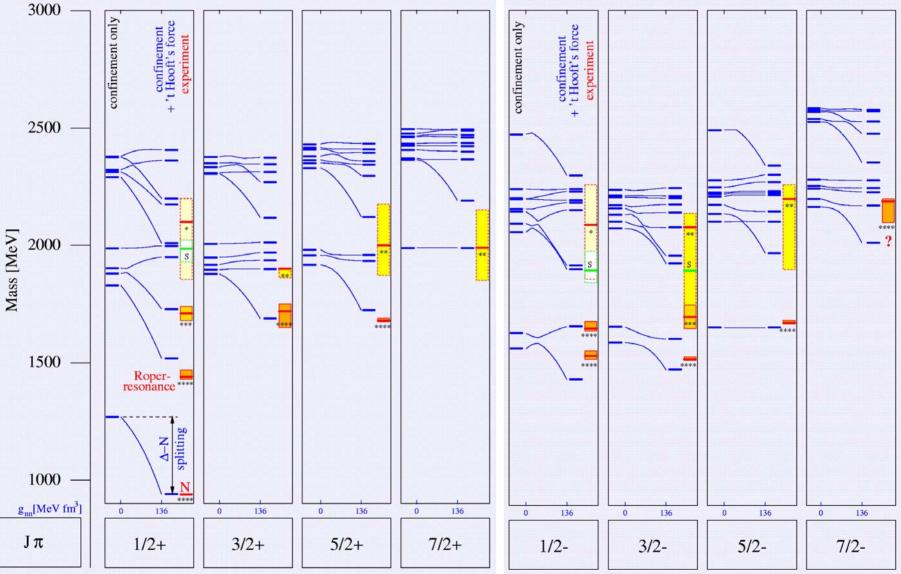
Nucleon model states and $N\pi$ couplings



Δ model states and N π couplings

OBE spectrum...


- OBE Results for spectrum: Glozman, Plessas, Theussl, Wagenbrunn, & Varga


Instanton-induced interactions...

- spectrum
 of ∆* only
 from
 confining
 potential
- Blask, Bohn, Huber, Metsch & Petry

N* spectrum from 't Hooft's force

Simon Capstick, Florida State University