Measuring the Target Asymmetry in $p\pi^0\eta$ Photoproduction

Andrew Wilson

Florida State University Tallahassee, Florida

Collaboration Meeting

July 2, 2009

Andrew Wilson Measuring the Target Asymmetry in $p\pi^0\eta$ Photoproduction

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖

- 2 Calculating P_z for $\gamma p \rightarrow p \pi^0 \eta$
 - Selecting the Reaction $\gamma p \rightarrow p \pi^0 \eta$
 - Factoring in Target Polarization
 - Photon Flux
 - Results

3 Things to Improve

→ Ξ →

Target Asymmetry Pz

Calculating P_z for $\gamma p \rightarrow p \pi^0 \eta$

- Selecting the Reaction $\gamma p \rightarrow p \pi^0 \eta$
- Factoring in Target Polarization
- Photon Flux
- Results

3 Things to Improve

・ 同 ト ・ ヨ ト ・ ヨ

Target Asymmetry P_z Calculating P_z for $\gamma p \rightarrow p \pi^0 \eta$ Things

Polarization Observables (November 2007 Beamtime)

November 2007 Beamtime

Circularly Polarized Photons, Longitudinally Polarized Target

Polarization Observables possible

(Two Mesons in the final state)

$$\frac{\partial \sigma}{\partial x_{i}} = \frac{\partial \sigma_{0}}{\partial x_{i}} (1 + \Lambda_{z} P_{z} + \delta_{\odot} I^{\odot} + \delta_{\odot} \Lambda_{z} E)$$

Ultimate Goal \Rightarrow E First Attempt \Rightarrow P_z

1) Target Asymmetry P_z

- 2 Calculating P_z for $\gamma p \rightarrow p \pi^0 \eta$
 - Selecting the Reaction $\gamma p \rightarrow p \pi^0 \eta$
 - Factoring in Target Polarization
 - Photon Flux
 - Results

3 Things to Improve

▲ 伊 ▶ ▲ 国 ▶ ▲

Calculating P_z

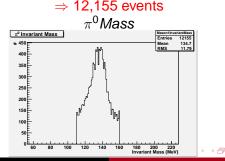
After Solving for P_z : (\Rightarrow means Positive Target Polarization)

$$\longrightarrow P_{z}(x_{i}) = \frac{1}{2 \Lambda_{z}} \frac{\frac{\partial \sigma_{\Rightarrow}}{\partial x_{i}} - \frac{\partial \sigma_{\Leftarrow}}{\partial x_{i}}}{\frac{\partial \sigma_{\Rightarrow}}{\partial x_{i}} + \frac{\partial \sigma_{\Leftarrow}}{\partial x_{i}}} = \frac{1}{2} \frac{\frac{N_{\Rightarrow}}{\Lambda_{z}} \frac{1}{Flux_{\Rightarrow}} - \frac{N_{\Leftarrow}}{\Lambda_{z}}}{\frac{N_{\Rightarrow}}{Flux_{\Rightarrow}} + \frac{N_{\Leftarrow}}{Flux_{\Leftarrow}}}$$
Need

- Number of Reconstructed $p\pi^0\eta$ events under each polarization.
- Photon Flux under each polarization.
- Target Polarization for each event.

Only binning in CM Energy (Integrating over all other Kinematic Variables)

(4) E > (4) E >


Target Asymmetry Pz

- 2
 - Calculating P_z for $\gamma p \rightarrow p \pi^0 \eta$
 - Selecting the Reaction $\gamma p \rightarrow p \pi^0 \eta$
 - Factoring in Target Polarization
 - Photon Flux
 - Results
 - 3 Things to Improve

$$P_{z} = \frac{1}{2} \frac{\frac{N \Rightarrow}{\Lambda_{z}^{\pm}} \frac{1}{Flux \Rightarrow} - \frac{N \Rightarrow}{\Lambda_{z}^{\pm}} \frac{1}{Flux \Rightarrow}}{\frac{N \Rightarrow}{Flux \Rightarrow} + \frac{N \Rightarrow}{Flux \Rightarrow}}$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Data	November 2007 Beamtime
	(Nov 24, 2007 - Dec 19, 2007)
Particles	1 charged, 4 uncharged
π^0 mass	{110,160} MeV
η mass	{500,600} MeV
Missing Mass (proton)	{750,1150} MeV
Coplanarity	±20°
Reaction Time	{-5,5} ns

And rew Wilson Measuring the Target Asymmetry in $p\pi^0\eta$ Photoproduction

3 k 3

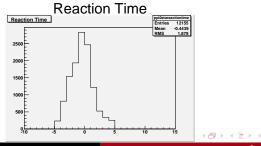
Data	November 2007 Beamtime
	(Nov 24, 2007 - Dec 19, 2007)
Particles	1 charged, 4 uncharged
π^0 mass	{110,160} MeV
η mass	{500,600} MeV
Missing Mass (proton)	{750,1150} MeV
Coplanarity	±20°
Reaction Time	{-5,5} ns

Andrew Wilson Measuring the Target Asymmetry in $p\pi^0\eta$ Photoproduction

Data	November 2007 Beamtime
	(Nov 24, 2007 - Dec 19, 2007)
Particles	1 charged, 4 uncharged
π^0 mass	{110,160} MeV
η mass	{500,600} MeV
Missing Mass (proton)	{750,1150} MeV
Coplanarity	±20°
Reaction Time	{-5,5} ns

\Rightarrow 12,155 events

Missing Mass (Proton)

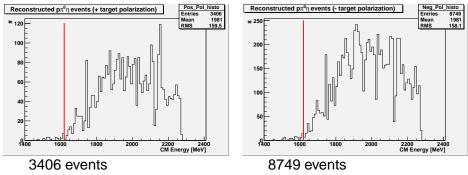

Measuring the Target Asymmetry in $p\pi^0\eta$ Photoproduction Andrew Wilson

∍

-

Data	November 2007 Beamtime
	(Nov 24, 2007 - Dec 19, 2007)
Particles	1 charged, 4 uncharged
π^0 mass	{110,160} MeV
η mass	{500,600} MeV
Missing Mass (proton)	{750,1150} MeV
Coplanarity	±20°
Reaction Time	{-5,5} ns

\Rightarrow 12,155 events


And rew Wilson Measuring the Target Asymmetry in $p\pi^0\eta$ Photoproduction

3 k 3

Reconstructed $p\pi^0\eta$ Events

Positive Target Polarization (N_{\Rightarrow})

Negative Target Polarization (N_{\leftarrow})

 $p\pi^0\eta$ Threshold \approx 1620 MeV (red line)

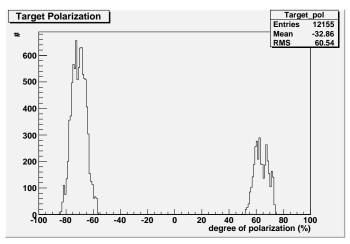
Andrew Wilson Measuring the Target Asymmetry in $p\pi^0\eta$ Photoproduction

Target Asymmetry P_z

Calculating P_z for $\gamma p \rightarrow p \pi^0 \eta$

• Selecting the Reaction $\gamma p \rightarrow p \pi^0 \eta$

Factoring in Target Polarization


- Photon Flux
- Results

3 Things to Improve

$$P_{z} = rac{1}{2} rac{rac{N \Rightarrow}{\Lambda_{z}^{\pm}} rac{1}{Flux \Rightarrow} - rac{N_{z}^{\pm}}{\Lambda_{z}^{\pm}} rac{1}{Flux \Leftarrow}}{rac{N \Rightarrow}{Flux \Rightarrow} + rac{Flux}{Flux \Leftarrow}}$$

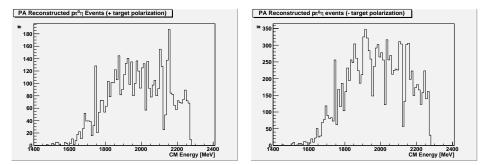
(日)

Target Polarization

Unequal Beamtime from each Target Polarization Setting

Andrew Wilson Measuring the Target Asymmetry in $p\pi^0\eta$ Photoproduction

< □ > < 同 >


(4) E > (4) E >

Target Asymmetry P_Z Calculating P_Z for $\gamma \rho \rightarrow \rho \pi^0 \eta$ Things Selecting the Reaction $\gamma \rho \rightarrow \rho \pi^0 \eta$ Factoring in Target Polarize

Polarization Adjusted Reconstructed $p\pi^0\eta$ Events

Positive Target Polarization $\left(\frac{N}{\Lambda \Rightarrow}\right)$

Negative Target Polarization $\left(\frac{N_{\pm}}{\Lambda_{\mp}}\right)$

Histograms filled with each event divided by its degree of polarization.

Target Asymmetry P

Calculating P_z for $\gamma p \rightarrow p \pi^0 \eta$

- Selecting the Reaction $\gamma p \rightarrow p \pi^0 \eta$
- Factoring in Target Polarization
- Photon Flux
- Results
- 3 Things to Improve

$$P_z = rac{1}{2} rac{rac{N \Rightarrow}{\Lambda_z^{\pm}} rac{1}{Flux \Rightarrow} - rac{N_{z^{\pm}}}{\Lambda_z^{\pm}} rac{1}{Flux \Leftarrow}}{rac{N \Rightarrow}{Flux \Rightarrow} + rac{Flux \Leftarrow}{Flux \Leftarrow}}$$

(日)

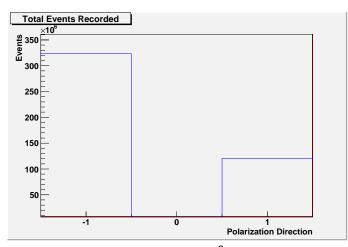
Target Asymmetry P_Z Calculating P_Z for $\gamma p \rightarrow p \pi^0 \eta$ Things Selecting the Reaction $\gamma p \rightarrow p \pi^0 \eta$ Factoring in Target Polarization

Photon Flux Quick Fix

Need a Normalization Factor

Perfect world \rightarrow Photon Flux. My World \rightarrow Total Events Recorded.

Total Events Recorded


Dominated by 2 body final state reactions and unpolarized events (unpolarized nucleons).

Largely invariant to change in target polarization.

(4 同) (4 回) (4 回)

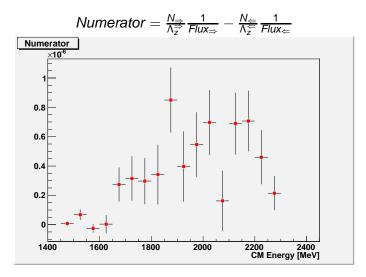
Target Asymmetry P_z Calculating P_z for $\gamma p \to p \pi^0 \eta$ Things Selecting the Reaction $\gamma p \to p \pi^0 \eta$ Factoring in Target Polarize

Total Events Recorded

Positive Polarization 1.20×10^8 events recorded Negative Polarization 3.23×10^8 events recorded

Target Asymmetry P

Calculating P_z for $\gamma p \rightarrow p \pi^0 \eta$


- Selecting the Reaction $\gamma p \rightarrow p \pi^0 \eta$
- Factoring in Target Polarization
- Photon Flux
- Results
- 3 Things to Improve

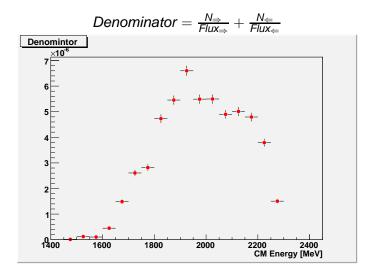
$$P_{z} = rac{1}{2} rac{rac{N \Rightarrow}{\Lambda_{z}^{\pm}} rac{1}{Flux \Rightarrow} - rac{N_{z}^{\pm}}{\Lambda_{z}^{\pm}} rac{1}{Flux \Leftarrow}}{rac{N \Rightarrow}{Flux \Rightarrow} + rac{Flux}{Flux \Leftarrow}}$$

(日)

Target Asymmetry P_z Calculating P_z for $\gamma p \to \rho \pi^0 \eta$ Things Selecting the Reaction $\gamma p \to \rho \pi^0 \eta$ Factoring in Target Polarize

Numerator

Andrew Wilson Measuring the Target Asymmetry in $p\pi^0\eta$ Photoproduction

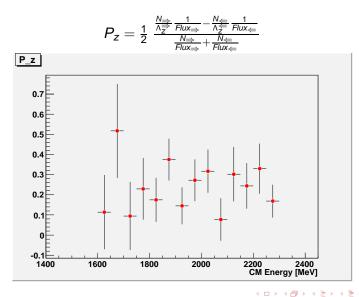

< □ > < 同 >

э

.

∍

Denominator


Andrew Wilson Measuring the Target Asymmetry in $p\pi^0\eta$ Photoproduction

(日)

∃ ∽ ९ ୯

Target Asymmetry P_z Calculating P_z for $\gamma \rho \rightarrow \rho \pi^0 \eta$ Things Selecting the Reaction $\gamma \rho \rightarrow \rho \pi^0 \eta$ Factoring in Target Polarize

 P_z

Andrew Wilson Measuring the Target Asymmetry in $p\pi^0\eta$ Photoproduction

æ

1) Target Asymmetry P_z

Calculating P_z for $\gamma p \rightarrow p \pi^0 \eta$

- Selecting the Reaction $\gamma p \rightarrow p \pi^0 \eta$
- Factoring in Target Polarization
- Photon Flux
- Results

3 Things to Improve

・ 同 ト ・ ヨ ト ・ ヨ

Work to be done

- Include the Correct Photon Flux
- Improve the Reconstruction Efficiency
- Include the Summer? 2009 Data
- Include Acceptance and Efficiency Effects
- Incorporate Beam Polarization to Calculate the Helicity Difference (E)

E 5.