Development of a Frozen Spin Target for CLAS

Chris Keith Target Group Jefferson Lab

June 4, 2005 Miltenberg

Jefferson Lab Milestones

1976 CEBAF proposed

1983 DOE awards contract to SURA

1987 Groundbreaking for accelerator

1993 1st Experiments commence

1996 Name changed to Th. Jefferson Nat'l Accelerator Facility

1997 5-pass beam (4 GeV) simultaeously delivered to all 3 Halls

2000 6 GeV enhanced design goal met

LARGE ACCEPTANCE SPECTROMETER

The Conventional Hall B Polarized Target

Protons (and deuterons) in $^{15}NH_3$ ($^{15}ND_3$) are **continuously** polarized by 140 GHz microwaves at 5 Tesla, 1 Kelvin

Used for several experiments (beam current ~ 3 nA) over a 10 month period during 1999, and 2000-2001

Proton polarization: ~75 - 85% Deuteron polarization: ~25 - 35%

The Current Hall B Polarized Target

The Current Hall B Polarized Target

Problem:

We have a " 4π " detector. We need a " 4π " target!

Frozen Spin Polarized Targets

Two steps

- 1. Polarize target material (NH $_3$, C $_4$ H $_9$ OH, 6 LiD, ...) at high field (2.5 5.0 T) and moderate temperature (.2 .4 K)
- 2. Reduce target temperature to ~ 50 mK, and hold polarization with reduced field (0.3 0.5 T)

The target polarization then decays exponentially during the data acquisition phase of the experiment.

The target must be re-polarized (step 1) every few days.

Specifications for the Hall B Frozen Spin Target

Beam: Tagged photons

Target: Ø15 mm × 50 mm butanol ($C_{\Delta}H_{Q}OH$) $\mathcal{L} \sim 10^{30} - 10^{31}/\text{s cm}^{2}$

Polarizing Magnet: 5 Tesla warm bore solenoid

Holding Magnet: 0.3 – 0.5 Tesla internal solenoid

Refrigerator: ${}^{3}\text{He}/{}^{4}\text{He}$ dilution 'fridge $Q \sim 20 \text{ mW} @ 0.3 \text{ K}$

 $Q \sim 10 \,\mu W @ 0.05 \,K$

Physics Program with Polarized Target and Tagged Photons

Approved Experiments

E02-112: Missing Resonance Search in Hyperon Photoproduction

E01-104: Helicity Structure of Pion Photoproduction

E03-105: Pion Photoproduction from a Polarized Target

Letter of Intent

LOI-020104: Photoproduction Using Polarized Beam and Target

Polarizing Magnet

Max. Field: 5.1 T

 $\Delta B/B: < 3 \times 10^{-5}$

Bore: Ø127 mm

Cryomagnetics, Inc. Oak Ridge, TN, USA

A. Dzyubak, priv. comm..

Holding Magnet, Longitudinal

Wire: Ø.1 mm multifilament NbTi, three layers

Dimensions: \emptyset 50 × 110 Max. Field: 0.42 Tesla

Homogeneity: $\Delta B/B \sim 3 \cdot 10^{-3}$

Holding Magnet, Transverse (Prototype)

Wire: Ø.1 mm multifilament NbTi, three layers

Dimensions: \emptyset 40 × 355 mm

Max. Field: 0.27 Tesla

Homogeneity: $\Delta B/B \sim 5 \cdot 10^{-3}$

³He/⁴He Dilution Refrigeration

- below 0.8 K, a ³He/⁴He mixture will separate into two phases

- if ³He atoms are removed (distilled) from lower phase ³He atoms from upper phase will cross the phase boundary to reestablish equilibrium
- ⁻³He will absorb energy when it dissolves into the dilute phase.
- heat absorbed by n moles is: $Q = n \left[H_d(T_m) H_c(T_m) \right]$ $= n \left[94.5 \ T^2 12.5 \ T^2 \right] = 82 \ n \ T^2 \quad J/mol \ K^2$

Continuous Dilution Refrigeration

- ³He is "distilled" from the lower, dilute phase of the mixing chamber
- after distillation, the 3 He is recondensed in a LHe bath at ~ 1.5 K and returned to mixer at elevated temperature T_c
- the cooling power and min. temperature depend strongly on heat exchange between the conc. (warm) and dil. (cold) fluid streams

$$\dot{Q}(T_m) = \dot{n}[H_d(T_m^2) - H_c(T_c^2)] = \dot{n}[94.5T_m^2 - 12.5T_c^2]$$

Performance of HX determines T_c

<u>Heat Exchange between Concentrated and Dilute Phases</u>

At low temperatures, the main impediment to heat transfer is the thermal boundary (Kapitza) resistance R_{ν} between the helium and the HX walls

Only a small fraction of phonons from liquid will enter the HX walls
$$\frac{\rho_1 V_1^3}{\rho_2 V_2^3} \propto 10^{-5} \implies \dot{Q_K} = \frac{A}{2R_K} [T_2^4 - T_1^4]$$

Or a more familiar form: $\dot{Q}_K = \frac{\Delta T}{R} = \frac{AT^3}{R_L} \Delta T$ Heat transfer drops fast at low T!

Performance of an "Ideal" Heat Exchanger

(Giorgio Frossati, 1986)

dilute side
$$S_d \frac{d}{dx} [\kappa_d(T) \frac{dT_d}{dx}] + \eta_d \dot{V}_d^2 \frac{dZ_d}{dx} + \frac{dA}{dx} \frac{(T_c^4 - T_d^4)}{4R_{kT}} = \dot{n} C_d \frac{dT_d}{dx}$$

conc. side $S_c \frac{d}{dx} [\kappa_c(T) \frac{dT_c}{dx}] + \eta_c \dot{V}_c^2 \frac{dZ_c}{dx} + \frac{dA}{dx} \frac{(T_c^4 - T_d^4)}{4R_{kT}} = -\dot{n} C_c \frac{dT_d}{dx}$

$$C_c \sim 25 \cdot T \text{ J/K}$$

Axial conduction $S_c = S_c = S_c$

Frossati: design HX so that 1st and 2nd terms are small compared to the 3rd

$$T_c^2 = \frac{2.25}{(1-(25/107)^2)} \frac{R_{kT}}{A} \dot{n} \approx 50 \frac{R_{kT}}{A} \dot{n}$$

Temperature of ³He_c entering mixing chamber

Cooling Power with Ideal Heat Exchanger

(Giorgio Frossati, 1986)

Cooling power, assuming "ideal" heat exchange is determined by molar flow rate and $R_{\mathbf{k}}/A$ of heat exchanger

$$\dot{Q}(T_m) = \dot{n} \left[94.5T_m^2 - 12.5T_c^2 \right]$$

$$= \dot{n} \left[94.5T_m^2 - 625 \frac{R_{kT}}{A} \dot{n} \right]$$
Build

Build HX with low R_{kT} OR, large <u>Area</u>

ptimization of Heat Exchanger Geometry

To optimize heat exchangers, must consider heat leaks due to both axial conduction and frictional heating

$$Q_{cond} = \frac{\pi D^2}{4L} \int \kappa(T) dT$$
$$= aD^2$$

$$Q_{fric} = \eta (\frac{128L}{\pi D^4})(\dot{n}V)^2$$
$$= bD^{-4}$$

Minimize
$$Q_{con} + Q_{fric} : \frac{d}{dD}(aD^2 + bD^{-4}) = 0$$
 $D_{opt} = (2b/a)^{1/6}$

$$\frac{d}{dD}(aD^2 + bD^{-4}) = 0$$

$$D_{opt} = (2b/a)^{1/6}$$

Intrinsic heat leak as a function of tube diameter

HX Length: 1.5 m

Flow rate: 1 mmol/s

Inlet temperature: 200 mK

Outlet temperature: 20 mK

Sintered Silver Heat Exchangers

- large surface areas are necessary to overcome Kapitza resistance
- use sinters of ultra-fine silver powder to provide several m² of area

JLab: Use 5 identical segments (in series) between Still and Mixer

each segment:

1 micron Ag powder

Sinter at 250 °C \longrightarrow 0.5 m²/g

Dil. = $15 g = 7.5 m^2$

Conc.= $8.5 g = 4.2 m^2$

5 segments: Dil. = 37.5 m^2

Conc. = 21 m^2

CoolingPower, "Ideal" Heat Exchanger

An example of a commercial, vertical dilution refrigerator

© Leiden Cryogenics, BV

Very nice, but it won't fit inside CLAS...

Horizontal Dilution Refrigerator for Frozen Spin Target

T.O. Niinikoski, CERN 1971

Dilution Unit

1K Pot

4K Pot

Still

Tube-in-Shell HX

Vacuum Load Lock

Outer Vacuum Jacket

The Frozen Spin Waltz

Step 1: Polarizing

- Target is fully retracted, magnet is lifted to beam height
- Target is inserted into magnet, magnet energized, microwaves on

Step 2: Beam On

- Microwaves off, magnet off, holding coil on
- Target is fully retracted, magnet is lowered
- -Target is fully inserted into CLAS

Summary

- A frozen spin polarized target for tagged photon experiments is under development at Jefferson Lab.
- 5 Tesla polarizing magnet is in house.
 - Superconducting holding coils (~1mm thick) are under development.
 - longitudinal solenoid (0.4 Tesla) constructed and tested
 - prototype of transverse dipole has been tested (0.3 Tesla)
- Horizontal dilution refrigerator is under construction.
- Positioning system for Hall B is still in conceptual design stage.