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Jefferson I.ab Milestones

1976 CEBAF proposed

1983 DOE anerds contract to SURA

1987 Groundreaking for acoelerator

1993 1% Bxperiments commence

1996 Name changed to Th. Jefferson Nat'| Acodlerator Fadllity
1997 5-pass beam (4 GeV) simuitaeously delivered to all 3 Halls
2000 6 GeV enhanced design goal et
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The Conventional Hall B Polarized Target

Protons (and deuterons) in 15NH3 (15ND3) are continuously polarized
by 140 GHz microwaves at 5 Tesla, 1 Kelvin

Used for several experiments (beam current ~ 3 nA)
over a 10 month period during 1999, and 2000-2001

Proton polarization: ~75 - 85%
Deuteron polarization: ~25 - 35%




The Current Hall B Polarized Target
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The Current Hall B Polarized Target

Problem:

Electromaanetic Calonimeters
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We have a “4nt” detector. We need a “4mn” target!



Frozen Spin Polarized Targets

Two steps
1. Polarize target material (NH_, C H OH, °LiD, ...)
at high field (2.5 - 5.0 T) and moderate temperature (.2 - .4 K)

2. Reduce target temperature to ~ 50 mK, and hold polarization
with reduced field (0.3 - 0.5 T)

The target polarization then
decays exponentially during
the data acquisition phase of
the experiment.

Folarize Folarize
F< | ake Beam /Take Beamﬁ/\ /\\

Days

The target must be re-polarized
(step 1) every few days.

Polarization
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Specifications for the Hall B Frozen Spin Target

Beam: Tagged photons

Target: J15 mm X 50 mm butanol (C4H90H)

L~ 103 -103%/s cm?

Polarizing Magnet: 5 Tesla warm bore solenoid

Holding Magnet: 0.3 — 0.5 Tesla internal solenoid

Refrigerator: 3He/*He dilution 'fridge
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| Ch. Bradtke
] PhD Thesis, Univ. Bonn, 1999



Physics Program with Polarized Target and Tagged Photons

Approved Experiments

E02-112: Missing Resonance Search in Hyperon Photoproduction
E01-104: Helicity Structure of Pion Photoproduction

E03-105: Pion Photoproduction from a Polarized Target

Letter of Intent
LOI-020104: Photoproduction Using Polarized Beam and Target



Polarizing Magnet

Max. Field: 5.1 T

AB/B: < 3x10°

Bore: 127 mm

Cryomagnetics, Inc.
Oak Ridge, TN, USA
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Holding Magnet, Longitudinal

Wire: 0.1 mm multifilament NbTi, three layers

Dimensions: @ 50x 110
Max. Field: 0.42 Tesla
Homogeneity: AB/B ~ 3 107

Proten (CH2) NMR Signal
Longitudinal Helding Magnet, 11.9 MHz
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Holding Magnet, Transverse (Prototype)

Wire: .1 mm multifilament NbTi, three layers
Dimensions: © 40 x 355 mm
Max. Field: 0.27 Tesla

Homogeneity: AB/B ~ 5 10°




‘He/*He Dilution Refrigeration

- below 0.8 K, a *"He/*He mixture will separate into two phases

—— 3He Fermi LIQUID
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- if *He atoms are removed (distilled) from lower phase *He atoms from upper
phase will cross the phase boundary to reestablish equilibrium

3He will absorb energy when it dissolves into the dilute phase.

- heat absorbed by n molesis: Q = n [Hd(Tm) - HC(Tm)]
=n[94.5T*-12.5T*] =82nT* J/mol K?



Continuous Dilution Refrigeration

- 3He is “distilled” from the lower,
dilute phase of the mixing chamber

- after distillation, the *He is recondensed
in a LHe bath at ~1.5K and returned to mixer
at elevated temperature T

- the cooling power and min. temperature
depend strongly on heat exchange between
the conc. (warm) and dil. (cold) fluid streams

Q(T ) = A[Hy(Tp)=H(TE)]

m C

=n[94.5T% - 12.5T¢]

4He Pump, 300 k.

Condensar,
15K

Flow restriction

—onc. Phase

Dil. Phase

Performance of HX
determines Tc

!

JHe Pump, 300 K

Vacuum Jacket

. | Distillation

Heater

Chamber, 0.7 K

Heat Exchanger

hizing
Chamhber,
005 K



Heat Exchange between Concentrated and Dilute Phases

dilute concentrated

IN _* IN

F'—'df

ouT

concentrated
ouT

0 - HX length L

Heat Flow: 3Hec—> HX walls —> 3Hed

At low temperatures, the main impediment to heat transfer
is the thermal boundary (Kapitza) resistance R . between the helium

and the HX walls

3
Only a small fraction of phonons P1Vy

from liquid will enter the HX walls \/2

A
Ry

105—>QK2 [T5-T,]

- AT AT
Or a more familiar form: Q= R TR AT  Heat transfer drops fast at low T !
k




Performance of an “Ideal” Heat Exchanger
(Giorgio Frossati, 1986)

- d dT, 20dZ, dA(T-Ty) . dT,
dilute side deX[Kd(T) X | +n,Vy I dx iR, nC, dx
u C,~ 107-T J/K

T:-T: aT
L dAl ) __pe 9Ta

conc. side S d —— [k (T |+ n V
°dx | ©° dx T dx 4R+ © dx
/ / \ %Cc ~ 25T J/K

Axial conduction Frictional heat Kapitza conduction Enthalpy change
s = sectional area n = viscosity A = HX area (mean) C = specific heat
kK = thermal cond. Z = flow impedance R, = total Kap. resistivity

V = molar volume

Frossati: design HX so that 1st and 2nd terms are
small compared to the 3rd

T2 _ 2-25 Rer . Rer Temperature of *He
C = : n ~ 50 n . o c
(1-(25/107)°) A A entering mixing chamber




Cooling Power with Ideal Heat Exchanger
(Giorgio Frossati, 1986)

Cooling power, assuming “ideal” heat exchange is
determined by molar flow rate and R /A of heat exchanger

Q(T.) = n [94.5T%-12.5T]

R
= [94.573—625%:‘7}

L Build HX with low RkT

OR, large Area



Optimization of Heat Exchanger Geometry

To optimize heat exchangers, must consider heat leaks due to both
axial conduction and frictional heating
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Intrinsic heat leak as a function of tube diameter

HX Length: 1.5 m

Flow rate: 1 mmol/s

Inlet temperature: 200 mK

Outlet temperature: 20 mK
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Sintered Silver Heat Exchangers

- large surface areas are necessary to overcome Kapitza resistance

- use sinters of ultra-fine silver powder to provide several m? of area

dilute concentrated

[N * 1.4cm sintered silver powder IN

o)

-
v Jp

ouT

0.48cm

concentrated
ouT

- 2hem =

JLab: Use 5 identical segments (in series) between Still and Mixer



MR R A Ra A

80 9|0 100 110

1 micron Ag powder
Sinter at 250 °C = 0.5 m*/g

Dil. = 15 g = 7.5 m?

h t:
CaL SEIMEIY conc.= 8.5 g=4.2 m?

Dil. = 37.5 m’

5 ts:
SEgMEnts Conc. = 21 m?




CoolingPower, "ldeal" Heat Exchanger

*He circ. rate: 1 - 6 mmol/s
-1 L T T L | L T T L L T L L | L L
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Cooling Power (W)

0.0001

107

0.01 0.1
Temperature (K)



An example of a commercial, vertical dilution refrigerator

4He Pump, 300 K

dHe Pump, 300 K
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ondensor,
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© Leiden Cryogenics, BV

Very nice, but it won't fit inside CLAS...



Horizontal Dilution Refrigerator for Frozen Spin Target
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Polrizing Magnat
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Dilution Unit

Sintered HX
3He Pump Tube

Tube-in-Shell HX

Mixer

Target Cup
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Outer Vacuum Jacket




Gas/Gas HX

4K Pot
*He Precooling

Stages
1K Pot

e

Distillation Chamber

Tube-in-Shell HX
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The Frozen Spin Waltz

Step 1: Polarizing

- Target is fully retracted,
magnet is lifted to beam height

- Target is inserted into magnet,
magnet energized, microwaves on

Step 2: Beam On

- Microwaves off, magnet off,
holding coil on

- Target is fully retracted,
magnet is lowered

-Target is fully inserted into CLAS

:

Beamn Direclion




Summary

- A frozen spin polarized target for tagged photon experiments
is under development at Jefferson Lab.

- 5 Tesla polarizing magnet is in house.

- Superconducting holding coils (~1mm thick) are under development.

- longitudinal solenoid (0.4 Tesla) constructed and tested

- prototype of transverse dipole has been tested (0.3 Tesla)

- Horizontal dilution refrigerator is under construction.

- Positioning system for Hall B is still in conceptual design stage.



