Differential Cross-Sections and Recoil Polarizations for $\gamma p \rightarrow K^+\Sigma^0$ from CLAS at Jefferson Lab

Biplab Dey

Department of Physics
Carnegie Mellon University

May 2nd, 2009

APS Meeting, Denver
Outline

1. Introduction/Motivation
2. Event Selection
3. Differential Cross-sections
4. Recoil Polarizations
5. Summary
Search for “Missing” Baryons in the Strange Sector

- Constituent quark models predict many more nucleon resonances than observed in $N\pi$ partial wave analyses
- Koniuk & Isgur (1980) – “missing” resonances exist, but don’t couple to $N\pi$
- Study non-$N\pi$ channels ($N\eta, N\omega, \Delta\pi, K\Lambda, K\Sigma, \ldots$)
- Capstick & Roberts (1998) – appreciable strength for several un-observed negative parity baryons decaying into the strange sector
- Experiments at Jefferson Lab (CLAS), Bonn (SAPHIR), Grenoble (GRAAL), Osaka (LEPS) are looking for these “missing” baryons in Kaon electro- and photo-production
Search for “Missing” Baryons in the Strange Sector

- Constituent quark models predict many more nucleon resonances than observed in $N\pi$ partial wave analyses
- Koniuk & Isgur (1980) – “missing” resonances exist, but don’t couple to $N\pi$
- Study non-$N\pi$ channels ($N\eta$, $N\omega$, $\Delta\pi$, $K\Lambda$, $K\Sigma$, . . .)
- Capstick & Roberts (1998) – appreciable strength for several un-observed negative parity baryons decaying into the strange sector
- Experiments at Jefferson Lab (CLAS), Bonn (SAPHIR) and Osaka (LEPS) are looking for these “missing” baryons in Kaon electro- and photo-production

We report new measurements for $\gamma p \rightarrow K^+\Sigma^0$ from CLAS (g11a dataset) at Jefferson Lab
Event Selection Overview

\(\gamma p \rightarrow K^+ \Sigma^0 \) event selection utilizes the \(\Sigma^0 \rightarrow \gamma_{out} \Lambda \rightarrow \gamma_{out} p \pi^- \) decay

- **Three-track topology:** \(\gamma p \rightarrow K^+ p \pi^- (\gamma) \)
 - detect all charged tracks \((K^+ p \pi^-) \)
 - \(\gamma_{out} \) from missing momentum (via kinematic fitting)
 - Excellent PID

- **Two-track topology:** \(\gamma p \rightarrow K^+ p (\pi^- \gamma) \)
 - detect \(K^+ p \)
 - \(\gamma_{out} \) and \(\pi^- \) momenta remain unknown
 - Larger Acceptance (esp. in Backward Angles)
Event Selection Overview

\[\gamma p \rightarrow K^+\Sigma^0 \] event selection utilizes the \[\Sigma^0 \rightarrow \gamma_{out}\Lambda \rightarrow \gamma_{out}p\pi^- \] decay

- **Three-track topology**: \[\gamma p \rightarrow K^+p\pi^- (\gamma) \]
 - detect all charged tracks \(K^+p\pi^- \)
 - \(\gamma_{out} \) from missing momentum (via kinematic fitting)
 - Excellent PID

- **Two-track topology**: \[\gamma p \rightarrow K^+p(\pi^-\gamma) \]
 - detect \(K^+p \)
 - \(\gamma_{out} \) and \(\pi^- \) momenta remain unknown
 - Larger Acceptance (esp. in Backward Angles)

- **Timing cuts**
- Select \(\Sigma \)'s using an *event-based* background separation method
Event Selection Overview

$\gamma p \rightarrow K^+ \Sigma^0$ event selection utilizes the $\Sigma^0 \rightarrow \gamma_{out} \Lambda \rightarrow \gamma_{out} p\pi^-$ decay

- **Three-track topology**: $\gamma p \rightarrow K^+ p\pi^- (\gamma)$
 - detect all charged tracks ($K^+ p\pi^-$)
 - γ_{out} from missing momentum (via kinematic fitting)
 - Excellent PID
 - $\sim 0.65 \text{million}$ events

- **Two-track topology**: $\gamma p \rightarrow K^+ p(\pi^- \gamma)$
 - detect $K^+ p$
 - γ_{out} and π^- momenta remain unknown
 - Larger Acceptance (esp. in Backward Angles)
 - $\sim 1.61 \text{million}$ events

- Timing cuts

- Select Σ's using an event-based background separation method
COMPARE: TWO- AND THREE-TRACK RESULTS

Different event-selection, particle identification, analysis techniques. No Kinematic Fitting in two-track topology. Agreement is very satisfactory.

Final g_{11a} cross-sections: weighted average of two results
CROSS-SECTIONS – BACKWARD ANGLES

\[-0.85 < \cos \theta_{CM}^{K^+} < -0.75\]

- **CLAS g11a**
- **CLAS g1c (2005)**
- **SAPHIR (2004)**

\[g11a \text{ and } g1c – \text{very good agreement}\]

SAPHIR does not show “hump” at ~ 2.2 GeV
Differential Cross-sections

Cross-sections – Mid Angles

\[-0.05 < \cos \theta_{CM}^{K^+} < 0.05\]

- \(\text{CLAS g11a}\)
- \(\text{CLAS g1c (2005)}\)
- \(\text{SAPHIR (2004)}\)

\(g_{11a}\) and \(g_{1c}\) – very good agreement

SAPHIR “slightly” low
CROSS-SECTIONS – FORWARD ANGLES

\[0.65 < \cos \theta^{K^+}_{CM} < 0.75 \]

- CLAS g11a
- CLAS g1c (2005)
- SAPHIR (2004)
- LEPS (2005)

\(g_{11a} \) “slightly” lower than both \(g_{1c} \) and SAPHIR
LEPS doesn’t really resolve the discrepancy
Recoil Polarizations

- full characterization of $\gamma p \rightarrow K^+ \Sigma^0$ require differential cross sections plus 7 polarization measurements

- polarizations measurable from the self-analysing nature of Σ^0 and Λ decays

- $g11a$ had unpolarized beam and unpolarized target: recoil polarization (P_Σ) only. (others will be available from FROST)

- previous P_Σ world data is scarce: present analysis offers wide kinematic coverage and a many fold increase in statistics

- additional precision: $\Sigma^0-\Lambda$ spin transfer correlation is preserved in this analysis
Recoil Polarizations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>-0.55 < $\cos \theta_{CM}$ < -0.45</td>
<td>-0.45 < $\cos \theta_{CM}$ < -0.35</td>
<td>-0.35 < $\cos \theta_{CM}$ < -0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.25 < $\cos \theta_{CM}$ < -0.15</td>
<td>-0.15 < $\cos \theta_{CM}$ < -0.05</td>
<td>-0.05 < $\cos \theta_{CM}$ < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05 < $\cos \theta_{CM}$ < 0.15</td>
<td>0.15 < $\cos \theta_{CM}$ < 0.25</td>
<td>0.25 < $\cos \theta_{CM}$ < 0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35 < $\cos \theta_{CM}$ < 0.45</td>
<td>0.45 < $\cos \theta_{CM}$ < 0.55</td>
<td>0.55 < $\cos \theta_{CM}$ < 0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.65 < $\cos \theta_{CM}$ < 0.75</td>
<td>0.75 < $\cos \theta_{CM}$ < 0.85</td>
<td>0.85 < $\cos \theta_{CM}$ < 0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preliminary
Summary

- \(\frac{d\sigma}{\cos \theta_{CM}^{K^+}} \) measured for \(\gamma p \rightarrow K^+\Sigma^0 \) from threshold till 2.84 GeV with wide angular coverage from the CLAS \(g11a \) dataset.

- Two-track analysis allows us to confirm structure around \(\sim 2.2 \) GeV earlier seen in CLAS \(g1c \) at backward angles.

- *Slightly* lower than CLAS \(g1c \) and SAPHIR in a few mid-forward mid-energy bins.

- \(P_\Sigma \) measured for \(\sqrt{s} \) from 1.8 to 2.85 GeV and \(\cos \theta_{CM}^{K^+} > -0.5 \). *Greatly extends* \(P_\Sigma \) world data in both precision and kinematic coverage.
Summary

Summary

- \(\frac{d\sigma}{\cos \theta_{CM}^{K^+}} \) measured for \(\gamma p \rightarrow K^+ \Sigma^0 \) from threshold till 2.84 GeV with wide angular coverage from the CLAS \(g11a \) dataset

- Two-track analysis allows us to confirm structure around \(\sim 2.2 \) GeV earlier seen in CLAS \(g1c \) at backward angles

- Slightly lower than CLAS \(g1c \) and SAPHIR in a few mid-forward mid-energy bins

- \(P_{\Sigma} \) measured for \(\sqrt{s} \) from 1.8 to 2.85 GeV and \(\cos \theta_{CM}^{K^+} > -0.5 \). Greatly extends \(P_{\Sigma} \) world data in both precision and kinematic coverage.

- PWA for missing baryon resonance searches using these measurements is in progress

- Simultaneously, publish present results
Timing Cuts

Three-track Two-track

PWA Group (CMU) CLAS g11a analysis May 2
Signal-background Separation

Three-track

1.9 GeV/c^2 ≤ √s ≤ 2.1 GeV/c^2

2.3 GeV/c^2 ≤ √s ≤ 2.5 GeV/c^2

2.7 GeV/c^2 ≤ √s ≤ 2.84 GeV/c^2
Signal-background Separation

Two-track

1.9 GeV/c² ≤ √s ≤ 2.1 GeV/c²

2.3 GeV/c² ≤ √s ≤ 2.5 GeV/c²

2.7 GeV/c² ≤ √s ≤ 2.84 GeV/c²

Signal Background
Quality of PWA fits

\[\sqrt{s} = 2.005 \text{ GeV/c}^2 \]

\[\sqrt{s} = 2.705 \text{ GeV/c}^2 \]

(Three-track topology only)
Extraction of P_Σ

CM frame

Similarly, next, go to the Λ Helicity Frame

$C \propto 1 + \alpha \langle \vec{P}_\Lambda \rangle \cos \theta_{\Lambda HF}^p = 1 + \alpha \left(-\langle \vec{P}_{\Sigma^0} \rangle \cos \theta_{\Sigma HF}^\Lambda \right) \cos \theta_{\Lambda HF}^p$

If γ not observed,

$P_\Lambda = -P_{\Sigma} \cos \theta_{\Sigma HF}^\Lambda$

Λ decay is *self-analysing*