The status of the FROST experiment

Sungkyun Park on behalf of the FROST run group

Florida State University

ъ

< □ > < 同 > < 回 > <

Hadron Spectroscopy Group Meeting October 31, 2008

Outline

- Motivation
- g9a run summary
- The manpower list of cooking and calibration
- 2 Calibration Overview
 - Tagger/TOF
 - ST/DC/EC
- 3 Sample analysis
 - Sample analysis $\gamma p \rightarrow \pi^+ n$
 - Summary

(日)

Motivation g9a run summary The manpower list of cooking and calibration

Outline

- Motivation
- g9a run summary
- The manpower list of cooking and calibration
- Calibration Overview
 - Tagger/TOF
 - ST/DC/EC
- 3 Sample analysis
 - Sample analysis $\gamma p \rightarrow \pi^+ n$
 - Summary

(日)

Motivation g9a run summary The manpower list of cooking and calibration

• $E_{\gamma} = 0.9 - 2.1 \text{ GeV Linearly polarized beam}$

Polarization Observables: Σ , P, T, O_{\star}/O_{\star}

ヘロト 人間 とくほとくほとう

3

The g8 experiment

The motivation for the FROST

The g1 experiment

- $E_{\gamma} = 0.5 2.9 \text{ GeV}$ Circularly polarized beam
- Polarization Observables: σ₀, P, C_x/C_z

The g13 experiment

- $E_{\gamma} = 1.1 2.3 \text{ GeV Linearly/Circularly polarized beam}$
- Target: unpolarized deuterium

The experiment using the polarized target is needed to find Observables related to the target. The FROST satisfies this condition for "Complete" experiment.

 $\pi N \rightarrow \pi N, \ \eta N, \ \pi \pi N, \ \Lambda K$, etc.

Four possible combinations of beam-target polarization:

g9a (Nov. 3, 2007 - Feb. 12, 2008)

- Circularly polarized beam, Longitudinally polarized target (CL)
- Linearly polarized beam, Longitudinally polarized target (LL)

- Circularly polarized beam, Transversely polarized target (CT)
- Linearly polarized beam, Transversely polarized target (LT

Motivation g9a run summary The manpower list of cooking and calibration

• $E_{\gamma} = 0.9 - 2.1 \text{ GeV Linearly polarized beam}$

Polarization Observables: Σ , P, T, O_{\star}/O_{\star}

The g8 experiment

The motivation for the FROST

The g1 experiment

- $E_{\gamma} = 0.5 2.9 \text{ GeV}$ Circularly polarized beam
- Polarization Observables: σ₀, P, C_x/C_z

The g13 experiment

- $E_{\gamma} = 1.1 2.3 \text{ GeV Linearly/Circularly polarized beam}$
- Target: unpolarized deuterium

The experiment using the polarized target is needed to find Observables related to the target.

The FROST satisfies this condition for "Complete" experiment.

 $\pi N \rightarrow \pi N, \eta N, \pi \pi N, \Lambda K$, etc.

Four possible combinations of beam-target polarization:

g9a (Nov. 3, 2007 - Feb. 12, 2008)

Circularly polarized beam, Longitudinally polarized target (CL)

Linearly polarized beam, Longitudinally polarized target (LL)

- Circularly polarized beam, Transversely polarized target (CT)
- Linearly polarized beam, Transversely polarized target (LT

Motivation g9a run summary The manpower list of cooking and calibration

• $E_{\gamma} = 0.9 - 2.1 \text{ GeV Linearly polarized beam}$

Polarization Observables:Σ, P, T, O_x/O₂

The g8 experiment

The motivation for the FROST

The g1 experiment

- $E_{\gamma} = 0.5 2.9 \text{ GeV}$ Circularly polarized beam
- Polarization Observables: σ_0 , P, $C_{\acute{x}}/C_{\acute{z}}$

The g13 experiment

- $E_{\gamma} = 1.1 2.3 \text{ GeV Linearly/Circularly polarized beam}$
- Target: unpolarized deuterium

The experiment using the polarized target is needed to find Observables related to the target. The FROST satisfies this condition for "Complete" experiment.

 $\pi N \rightarrow \pi N, \ \eta N, \ \pi \pi N, \ \Lambda K$, etc.

Four possible combinations of beam-target polarization:

g9a (Nov. 3, 2007 - Feb. 12, 2008)

Circularly polarized beam, Longitudinally polarized target (CL)

Linearly polarized beam, Longitudinally polarized target (LL)

- Circularly polarized beam, Transversely polarized target (CT)
- Linearly polarized beam, Transversely polarized target (LT

Motivation g9a run summary The manpower list of cooking and calibration

• $E_{\gamma} = 0.9 - 2.1 \text{ GeV Linearly polarized beam}$

(日) (字) (日) (日) (日)

Polarization Observables:Σ, P, T, O_x/O₂

The g8 experiment

The motivation for the FROST

The g1 experiment

- $E_{\gamma} = 0.5 2.9 \text{ GeV}$ Circularly polarized beam
- Polarization Observables: σ_0 , P, $C_{\acute{x}}/C_{\acute{z}}$

The g13 experiment

- $E_{\gamma} = 1.1 2.3 \text{ GeV Linearly/Circularly polarized beam}$
- Target: unpolarized deuterium

The experiment using the polarized target is needed to find Observables related to the target. The FROST satisfies this condition for "Complete" experiment.

 $\pi N \rightarrow \pi N, \ \eta N, \ \pi \pi N, \ \Lambda K$, etc.

Four possible combinations of beam-target polarization:

g9a (Nov. 3, 2007 - Feb. 12, 2008)

- Circularly polarized beam, Longitudinally polarized target (CL)
- Linearly polarized beam, Longitudinally polarized target (LL)

- Circularly polarized beam, Transversely polarized target (CT)
- Linearly polarized beam, Transversely polarized target (LT)

 FROST Overview
 Motivation

 Calibration Overview
 g9a run summary

 Sample analysis
 The manpower list of coc

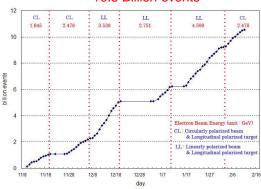
g9a run summary

g9a run period: Nov. 3, 2007 - Feb. 12, 2008 Data set: 603 Runs, 17,676 files, 35 TBytes The current calibration: pass 0, version 3

Production Data

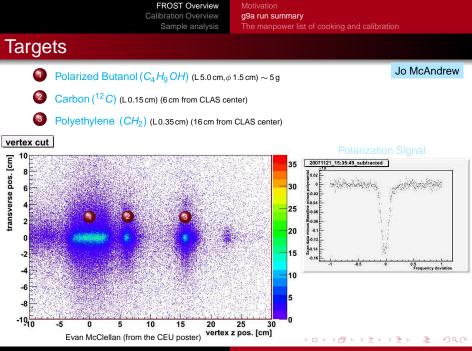
Beam current: 15 nA

Torus current: 1920 A


Target:

- Longitudinal polarized target
- Average target polarization \sim 80 %

Photon beam:


Circularly and linearly polarized photon beam 0.5 - 2.4 GeV

Electron beam polarization \sim 85 %

10.5 Billion events

Sungkyun Park

Sungkyun Park

Motivation g9a run summary The manpower list of cooking and calibration

The manpower list of cooking and calibration

Item	Contact	Prerequisite
Cooking	Sungkyun Park (FSU)	all calibrated
Tagger Calibration	Liam Casey (CUA), Franz Klein (CUA)	none
TOF Calibration	Robert Coyne (UMASS), Hideko Iwamoto (GWU), Arthur Sabintsev (GWU)	TAG
ST Calibration	Mukesh Saini (FSU)	TAG
DC Calibration	Sean Kuvin (FSU), Evan McClellan (FSU)	TOF
	Sungkyun Park (FSU), Volker Crede (FSU)	
EC Calibration	Simona Malace (USC)	TOF
Beam Polarization (Lin.)	Stuart Fegan (Uof Glasgow)	none
Target Polarization	Jo McAndrew (Uof Edinburgh)	none
DC Alignment	Sungkyun Park (FSU)	DC
Energy loss corrections	Jo McAndrew (Uof Edinburgh)	none

Eugene Pasyuk (ASU)

Steffen Strauch (USC): Official Analysis Coordinator

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

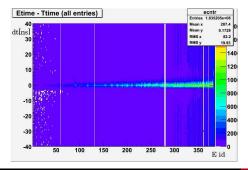
3

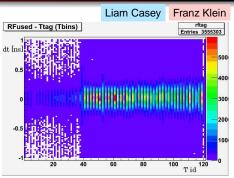
Tagger/TOF ST/DC/EC

Outline

FROST Overview

- Motivation
- g9a run summary
- The manpower list of cooking and calibration
- 2 Calibration Overview
 - Tagger/TOF
 - ST/DC/EC
 - ³ Sample analysis
 - Sample analysis $\gamma p \rightarrow \pi^+ n$
 - Summary


(日)


Tagger/TOF ST/DC/EC

Tagger Calibration

The RF-Tcounter alignment

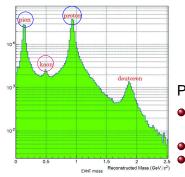
- dt = (Time reconstructed in the tagger at the target center)
 (RF time identified nearest bucket at the target center)
- T counter is matched to the RF bucket.

E/T counter timing alignment

- dt = (E-counter time) (T-counter time)
- The E-counter and T-counter are near in time.

< 一型

∃ → ∢


Sungkyun Park

Tagger/TOF ST/DC/EC

TOF Calibration

π^- resolution for run 55739

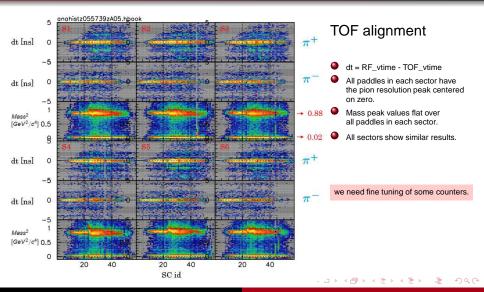
- The time-of-flight times are corrected for the flight time back to the target.
- dt = RF_vtime TOF_vtime

◆□ → ◆圖 → ◆臣 → ◆臣 → ○

Eugene Pasyuk

э

Hideko Iwamoto


Particle identification

- Particle identification in CLAS relies on the combination of measured charged-particle momenta (from DC) and the flight time from the target to the respective TOF counters.
 - TOF mass shows the distribution of masses for all reconstructed hadrons.
 - A small kaon peak is visible between the two.

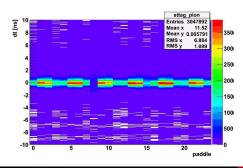
Sungkyun Park The status of the FROST experiment

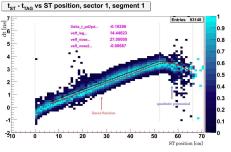
Tagger/TOF ST/DC/EC

TOF Calibration

Sungkyun Park The status of the FROST experiment

Sungkyun Park


Tagger/TOF ST/DC/EC

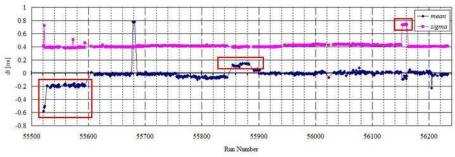

ST Calibration

The time-delay calibration for each paddle

Mukesh Saini

- dt = (ST hit time) (RF hit time)
- The fit comes as linear function in the leg, but in the nose, it behaves as quadratic polynomial.

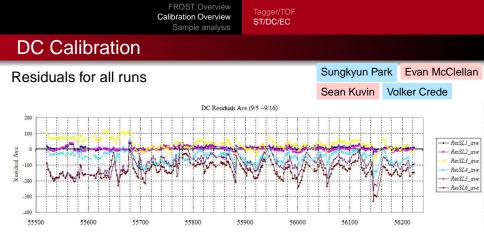
The st-tag histogram for run 55605


- dt = (RF vertex time) (ST vertex time)
- offsets are around zero.

Tagger/TOF ST/DC/EC

ST Calibration

The π^- ST offset for all runs


ST Pi-

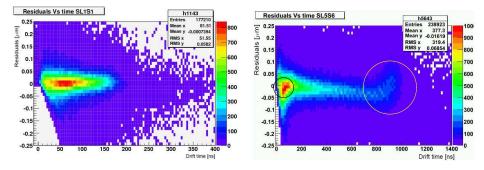
- Values of mean and sigma are stable.
- We need to adjust means in some ranges.

∃ ► < ∃ ►

Image: Image:

э

- Residual = calculated DOCA fitted DOCA
- The region 3 of DC need to be improved.

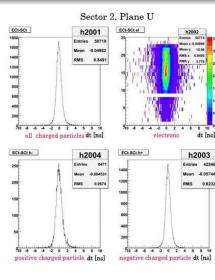

Image: Image:

э

Tagger/TOF ST/DC/EC

DC Calibration

Residuals vs The drift time

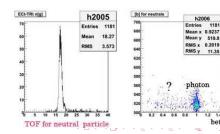


- The suggested solution is to adjust the value of Tzero and Tmax in SL5 and SL6.
- In the superlayer 5, there are residuals in the larger drift times and residual peaks that are not centered around zero.
- There are big problems with the calibration software, trk_mon for DC calibration.

(日)

ST/DC/EC

EC Calibration



EC time calibration

- ۰ EC time is calibrated against SC time.
- ٠ dt = (EC time) - (SC time) for charged particles.

Identifing the neutron

- ۰ neutrals → photon and neutron
- neutrals with $\beta < 0.9$ are neutrons and photons otherwise.

dt [ns]

0.8232

Simona Malace

118

519.8

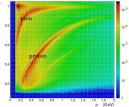
beta

Sample analysis $\gamma p o \pi^+ n$ Summary

Outline

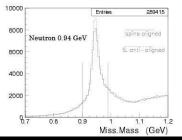
1 FROST Overview

- Motivation
- g9a run summary
- The manpower list of cooking and calibration
- 2 Calibration Overview
 - Tagger/TOF
 - ST/DC/EC
- Sample analysis
 - Sample analysis $\gamma p \rightarrow \pi^+ n$
 - Summary

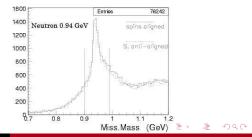

(日)

э

Sample analysis $\gamma p \rightarrow \pi^+ n$ Summary


Sample analysis $\gamma p \rightarrow \pi^+ n$

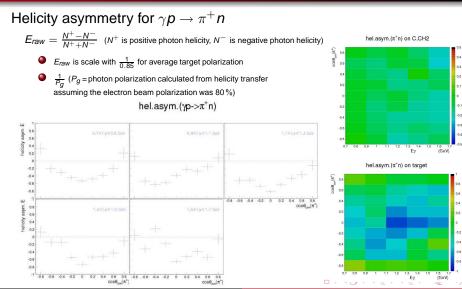
β vs. p cut


The data used

- All runs with circularly polarized beam (A05) from pass0/v2 + runs 55521 - 55676 (A01, A10, and A15) from pass0/v1 (for enough statistics)
- using 5% of the total statistics with circularly polarized beam.

 $\gamma p \rightarrow \pi^+ X$ (for target)

 $\gamma p \rightarrow \pi^+ X$ (for C,CH2)



Franz Klein

Sungkyun Park

Sample analysis $\gamma p \rightarrow \pi^+ n$ Summary

Sample analysis $\gamma p \rightarrow \pi^+ n$

The status of the FROST experiment

Sungkyun Park

Sample analysis $\gamma p \rightarrow \pi^+ n$ Summary

Summary

Tagger calibration	It is in good condition.
TOF calibration	It is good overall but still needs some more fine tuning.
ST calibration	We need to adjust values of mean in some ranges.
DC calibration	After fixing the software, trk_mon,
	the residual averages of the region 3 need to be improved.
EC calibration	EC time calibration is good.
	EC part needs to investigate the existence of the neutron.

We anticipate to be ready for pass1 cooking in December.

・ コット ふぼう ふほう トレール