The current status of the FROST analysis

Sungkyun Park Graduate Student
Florida State University
HNP Group Meeting
August 18, 2009

Outline

(9) The Observable to measure
(2) Selecting the data for the analysis

- Several cuts to select the data
- find the beam polarization
- The asymmetry plot
(3) The work to do

Outline

(1) The Observable to measure

(2) Selecting the data for the analysis

- Several cuts to select the data
- find the beam polarization
- The asymmetry plot
(3) The work to do

The FROST Data

The FROST run period: Nov. 3, 2007 - Feb. 12, 2008
Data set: 35 TBytes

The longitudinal polarized target and the circularly polarized beam

- Groups of runs with similar conditions

period	Electron Beam Energy	run range	Target Pol.	\# files
1	1.645 GeV	$55521-55536$	$\mathrm{~L}+(<=)$	266
2	1.645 GeV	$55537-55555$	$\mathrm{~L}-(<=)$	377
3	1.645 GeV	$55556-55595$	$\mathrm{~L}++(=>)$	806
4	2.478 GeV	$55604-55625$	$\mathrm{~L}-+(<=)$	382
5	2.478 GeV	$55630-55676$	$\mathrm{~L}-(=>)$	971
6	2.478 GeV	$56164-56193$	$\mathrm{~L}++(=>)$	681
7	2.478 GeV	$56196-56233$	$\mathrm{~L}+(<=)$	766

The longitudinal polarized target and the linearly polarized beam

- PARA, PERP, AMO

Electron Beam Energy	run range
3.539 GeV	$55678-55844$
2.751 GeV	$55854-55938$
4.599 GeV	$55945-56152$

The Observable to measure

The differential cross section for $\gamma p \rightarrow p \pi^{+} \pi^{-}$(without measuring the polarization of the reciliing nucleon)

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} \mathrm{x}_{\mathbf{i}}}= \sigma_{0}\left\{\left(1+\vec{\Lambda}_{i} \cdot \overrightarrow{\mathbf{P}}\right)+\delta \odot\left(\mathbf{I}^{\odot}+\vec{\Lambda}_{i} \cdot \overrightarrow{\mathbf{P}} \odot\right)+\delta_{I}\left[\sin 2 \beta\left(\mathbf{I}^{\mathbf{s}}+\vec{\Lambda}_{i} \cdot \overrightarrow{\mathbf{P}} \mathbf{s}\right)+\cos 2 \beta\left(\mathbf{I}^{\mathbf{c}}+\vec{\Lambda}_{i} \cdot \overrightarrow{\mathbf{P}} \mathbf{c}\right)\right]\right\} \\
& \sigma_{0}: \text { The unpolarized cross section } \\
& \beta: \text { The angle between the direction of polarization and the x-axis } \\
& \delta_{\odot}, I \text { : The degree of polarizaton of the photon beam } \Rightarrow \delta \odot, \text { and } \delta_{l} \\
& \vec{\Lambda}_{j}: \text { The polarization of the initial nucleon } \Rightarrow\left(\Lambda_{x}, \Lambda_{y}, \Lambda_{z}\right) \\
& \mathbf{I}^{\odot}, \mathbf{s}, \mathbf{c}: \text { The observable arising from use of polarized photons } \Rightarrow \mathbf{I}^{\odot}, \mathbf{I}^{\mathbf{s}}, \mathbf{I}^{\mathbf{c}} \\
& \overrightarrow{\mathbf{P}: \text { The polarization observable } \Rightarrow\left(\mathbf{P}_{\mathbf{x}}, \mathbf{P}_{\mathbf{y}}, \mathbf{P}_{z}\right)\left(\mathbf{P}_{x}^{\odot}, \mathbf{P}_{y}^{\odot}, \mathbf{P}_{z}^{\odot}\right)\left(\mathbf{P}_{x}^{s}, \mathbf{P}_{y}^{s}, \mathbf{P}_{z}^{s}\right)\left(\mathbf{P}_{\mathbf{x}}^{\mathbf{c}}, \mathbf{P}_{\mathbf{y}}^{\mathbf{c}}, \mathbf{P}_{\mathbf{z}}^{\mathbf{c}}\right)}
\end{aligned}
$$

\downarrow
The circularly-polarized beam
The longitudinally-polarized target
$\frac{\mathrm{d} \sigma}{\mathrm{d} \mathrm{x}_{\mathrm{i}}}=\sigma_{0}\left\{1+\Lambda_{z} \mathbf{P}_{\mathbf{z}}+\delta_{\odot} \mathbf{I} \odot+\delta_{\odot} \Lambda_{z} \mathbf{P}_{\mathbf{z}} \odot\right\}$

The Observable $\mathbf{P}_{\mathbf{z}}{ }^{\circ}$

- If $\delta \odot$ and Λ_{z} in each condition are same,
- S - overall sign
- f-dilution factor

We need to measure the following to make the asymmetry plot
(9) $\frac{d \sigma}{d \Omega}$ in each beam and target polarization situation
(2) The dilution factor $=\frac{1}{\text { scaling factor }}$
(3) The degree of the photon beam polarization, $\delta \odot$
(4) The degree of the target polarization, Λ_{z}

5 the data nomarization
6 The exact S sign

Outline

(4) The Observable to measure

(2) Selecting the data for the analysis

- Several cuts to select the data
- find the beam polarization
- The asymmetry plot
(3) The work to do

The Observable to measure
Selecting the data for the analysis
The work to do

Several cuts to select the data find the beam polarization
The asymmetry plot

The beta difference cut

- The beta calculated(Pmag/E) - The beta measured from TOF
- $-0.05<$ Beta-Betam <0.05
After the beta different cut, we can find more clear particle peak.
- I need only Proton, π^{+}, and π^{-}for this analysis.

The Observable to measure
Selecting the data for the analysis
The work to do

The my current topology

Topolosy $\gamma P \rightarrow P \pi^{+}\left(\pi^{-}\right)$

Topolosy $\gamma P \rightarrow \pi^{+} \pi^{-}(P)$

Topolosy $\gamma P \rightarrow P \pi^{-}\left(\pi^{+}\right)$

Topolosy $\gamma P \rightarrow P \pi^{+} \pi^{-}()$

Several cuts to select the data find the beam polarization
The asymmetry plot

The other cuts

- $0<$ SC calibrated time for this track (ns) <35
- $\mathrm{ngrf}<2$
- The Z difference of the vertex in particles $<5 \mathrm{~cm}$

selecting the target

Butanol target

Carbon target

- The green part:
the data after beta difference cut
- The yellow part:
the data included in my topologies
The blue part
- the Z vertex difference cut
- the three kinds of targets

The target	X and Y axis	Z axis
Butanol	radius 3	$[-4.5,-4.5]$
		$[5,10]$
Carbon		$[14,18]$

The photon beam polarization, δ_{\circ}

The degree of circularly polarization of the photon beam, $P_{\gamma} \propto$ the electron-beam polarization, P_{e}.

$$
\text { If } P_{e}: 0.85, E_{e}: 1.645 \mathrm{GeV}
$$

$$
\frac{\mathrm{P}_{\gamma}}{\mathrm{P}_{\mathrm{e}}}=\frac{4 \mathrm{x}-\mathrm{x}^{2}}{4-4 x+3 x^{2}} \quad x=\frac{E_{\gamma}}{E_{e}}
$$

$$
P_{\gamma}=P_{e} \cdot \frac{\left(\frac{4}{E_{e}}\right) E_{\gamma}-\left(\frac{4}{E_{e}}\right)^{2} E_{\gamma}^{2}}{4-\left(\frac{4}{E_{e}}\right) E_{\gamma}+3\left(\frac{4}{E_{e}}\right)^{2} E_{\gamma}^{2}}
$$

the photon beam polarization, δ_{\odot}

Whenever the photon energy changes, the circular polarization of the photon beam is changed.
We find the average circular polarization of the photon beam from each section of the photon energy.

The photon energy $[\mathrm{GeV}]$	The photon polarization
$[0.3,0.4]$	0.209
$[0.4,0.5]$	0.277
$[0.5,0.6]$	0.348
$[0.6,0.7]$	0.419
$[0.7,0.8]$	0.490
$[0.8,0.9]$	0.559
$[.9,1.0]$	0.624
$[1.0,1.1]$	0.683
$[1.1,1.2]$	0.734
$[1.2,1.3]$	0.777
$[1.3,1.4]$	0.810
$[1.4,1.5]$	0.833
$[1.5,1.6]$	0.846

The overall sign, S problem

The overall sign, S is related to the beam polarization.
If S is positive,
the helicity bit, 1 means that the beam polarization is parallel to the beam.

If S is negative,
the helicity bit, 0 means that the beam polarization is parallel to the beam.

period	period 1	period 2	period 3	period 4	period 5	period 6	period 7
Sungkyun	-	+	-	+	+	+	+
Brian	-	+	+	+	-	-	+
Liam	+	-	-	+	-	-	+
Steffen				+	-	-	+

Selecting the data

The character of the files I used

- The electron beam energy: $1.645[\mathrm{GeV}]$
- The photon energy: 0.329-1.563 [GeV]
- The electron beam polarization, $P_{e} \sim 0.85$
- The averge target polarization, $\Lambda_{z} \sim 0.8$

- using the 484 files, 11% of the data with the circular polarized beam
- The period 2 (The target polarization: <=, 242 files) $\operatorname{Normal}(\leftarrow \Leftarrow)=81,276,895$ and $\operatorname{Normal}(\rightarrow \Leftarrow)=80,697,118$
- The period 3 (The target polarization: =>, 242 files $\operatorname{Normal}(\leftarrow \Rightarrow)=79,718,043$ and $\operatorname{Normal}(\rightarrow \Rightarrow)=79,370,992$

My equation I used to find the asymmetry plot for $\mathbf{P}_{\mathbf{z}}{ }^{\circ}$

- The overall sign, S period 2: + and period 3: +
- I do not use the filution factor, f. so $f=1$
- The target polarization, $\Lambda_{z} \sim 0.8$
$\left.\mathbf{P}_{\mathbf{z}}^{\odot}=\frac{S}{\delta_{\odot} \cdot(0.8)}\left\{\frac{\left(\frac{\frac{d \sigma(\rightarrow \Rightarrow)}{d \Omega}}{(79,370,992)}+\frac{d \sigma(\leftarrow \Leftarrow)}{d(81,276,895)}\right)-\left(\frac{\frac{d \sigma(\rightarrow \Leftarrow)}{d \Omega}}{(80,697,118)}+\frac{d \sigma(\leftarrow \Rightarrow)}{(79,718,043)}\right)}{\left(\frac{d \sigma(\rightarrow \Rightarrow)}{(7 \Omega \Omega}\right.}+\frac{\frac{d \sigma(\leftarrow \Leftarrow)}{d, 370,992)}}{(81,276,895)}\right)+\left(\frac{d \sigma(\rightarrow \Leftarrow)}{(80,697,118)}+\frac{d \sigma(\leftarrow \Rightarrow)}{(79,718,043)}\right) ~\right\}$

The work to do

The asymmetry plot for $\mathbf{P}_{\mathbf{z}}{ }^{\circ}$

The topology $\gamma P \rightarrow P \pi^{+}\left(\pi^{-}\right)$with period 2 \& 3 (Energy Bin $1100 \mathrm{MeV}-1200 \mathrm{MeV}$)

Outline

(1) The Observable to measure

(2) Selecting the data for the analysis

- Several cuts to select the data
- find the beam polarization
- The asymmetry plot
(3) The work to do

The work to do

1 Finding the exact overall sign, S
2 Finding the degree of polarization, δ. and Λ_{z}
3 Finding the proper normalization constant.
4 Finding the dilution factor.

