

New generation of CLAS photoproduction experiments with FROzen Spin Polarized Target (FROST)

• E02-112:

$$\gamma p \rightarrow KY (K^+\Lambda, K^+\Sigma^0, K^0\Sigma^+)$$

- E03-105/E04-102: $\gamma p \rightarrow \pi^0 p, \pi^+ n$
- E05-012:
 E06-013:
 - $\gamma p \rightarrow \eta p$ $\gamma p \rightarrow \pi^+ \pi^- p$

Goal: study of exited baryons.

Next step (after g1 and g8) towards "complete experiment"

Running configurations

Four possible combinations of beam-target polarization: g9a this fall:

- circularly polarized beam, longitudinally polarized target
- linearly polarized beam, longitudinally polarized target
 g9b in 2009:
- circularly polarized beam, transversely polarized target
- linearly polarized beam, transversely polarized target

FROzen Spin Target

- Target material: butanol (C₄H₉OH) 50 mm long, 15 mm diameter
- Dynamical polarization using microwaves outside of CLAS in high magnetic field (5T) at a temperature of about 1K.
- Switch to "Frozen" mode: temperature < 50 mK, holding magnetic field ~0.5T.
- Relaxation time of the order of a few hundreds hours.

FROST running configuration

FROST polarizing configuration

Polarized photon beam on polarized target

$rac{1}{\sigma_0}\cdot rac{d\sigma}{d\Omega}$	1
	$-P_{\odot}P_Z^{ ext{lab}}\cdot {\color{black} E}$
	$+P_{XY}^{ ext{lab}}\cdot \sin(eta-\phi)\cdot oldsymbol{T}$
	$+P_{\odot}P_{XY}^{ ext{lab}}\cdot \cos(eta-\phi)\cdot F$
	$-P_T \cdot \cos 2(lpha-\phi) \cdot \Sigma$
	$+P_TP_Z^{ ext{lab}}\cdot\sin2(lpha-\phi)\cdot oldsymbol{G}$
	$-P_T P_{XY}^{ ext{lab}} \cdot \cos(eta - \phi) \sin 2(lpha - \phi) \cdot oldsymbol{H}$
	$-P_T P_{XY}^{ ext{lab}} \cdot \sin(eta - \phi) \cos 2(lpha - \phi) \cdot P$

Photon			Target		Recoil			Target + Recoil			
	_	_	_	_	x'	y'	z'	x'	x'	z'	z'
	_	x	y	z	—	_	—	x	z	x	z
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$^{-\mathrm{L}_{x'}}$	$T_{z'}$	$L_{z'}$
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$\left(\text{-L}_{z'} \right)$	$({\rm T}_{z'})$	$(\operatorname{-L}_{x'})$	$(\text{-}\mathbf{T}_{x'})$
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0

Circularly Polarized photon beam on longitudinally polarized target

$$\begin{array}{lcl} \displaystyle \frac{1}{\sigma_0} \cdot \frac{d\sigma}{d\Omega} &=& 1 \\ & \displaystyle -P_{\odot} P_Z^{\rm lab} \cdot E \\ & \displaystyle +P_{XY}^{\rm lab} \cdot \sin(\beta - \phi) \cdot T \\ & \displaystyle +P_{\odot} P_{XY}^{\rm lab} \cdot \cos(\beta - \phi) \cdot F \\ & \displaystyle -P_T \cdot \cos 2(\alpha - \phi) \cdot \Sigma \\ & \displaystyle +P_T P_Z^{\rm lab} \cdot \sin 2(\alpha - \phi) \cdot G \\ & \displaystyle -P_T P_{XY}^{\rm lab} \cdot \cos(\beta - \phi) \sin 2(\alpha - \phi) \cdot H \\ & \displaystyle -P_T P_{XY}^{\rm lab} \cdot \sin(\beta - \phi) \cos 2(\alpha - \phi) \cdot P \end{array}$$

Photon			Target		Recoil			Target + Recoil			
	_	_	_	_	x'	y'	z'	x'	x'	z'	z'
	_	x	y	z	—	_	_	x	z	x	z
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$-\mathbf{L}_{x'}$	$T_{z'}$	$L_{z'}$
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$\left(\text{-L}_{z'} \right)$	$({\rm T}_{z'})$	$(\text{-L}_{x'})$	$(\text{-}\mathbf{T}_{x'})$
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0

Linearly Polarized photon beam on longitudinally polarized target

$$\begin{array}{lcl} \displaystyle \frac{1}{\sigma_0} \cdot \frac{d\sigma}{d\Omega} &=& 1 \\ & \displaystyle -P_{\odot}P_Z^{\mathrm{lab}} \cdot E \\ \displaystyle & \displaystyle +P_{XY}^{\mathrm{lab}} \cdot \sin(\beta-\phi) \cdot T \\ \displaystyle & \displaystyle +P_{\odot}P_{XY}^{\mathrm{lab}} \cdot \cos(\beta-\phi) \cdot F \\ \displaystyle & \displaystyle -P_T \cdot \cos 2(\alpha-\phi) \cdot \Sigma \\ \displaystyle & \displaystyle +P_T P_Z^{\mathrm{lab}} \cdot \sin 2(\alpha-\phi) \cdot G \\ \displaystyle & \displaystyle -P_T P_{XY}^{\mathrm{lab}} \cdot \cos(\beta-\phi) \sin 2(\alpha-\phi) \cdot H \\ \displaystyle & \displaystyle -P_T P_{XY}^{\mathrm{lab}} \cdot \sin(\beta-\phi) \cos 2(\alpha-\phi) \cdot P \end{array}$$

Photon			Target			Recoil			Target + Recoil			
	_	_	_	_	x'	y'	z'	x'	x'	z'	z'	
	_	x	\boldsymbol{y}	z	_	_	_	x	z	x	z	
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$-\mathbf{L}_{x'}$	$T_{z'}$	$L_{z'}$	
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(\text{-L}_{z'})$	$(\mathbf{T}_{z'})$	$(\operatorname{-L}_{x'})$	$(\text{-}\mathbf{T}_{x'})$	
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0	

 $\pi^{\dagger}\pi^{-}$

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,x_i} = \sigma_0\left\{\left(1 + \Lambda_z \cdot \mathbf{P}_z\right) + \delta_\odot\left(\mathbf{I}^\odot + \Lambda_z \cdot \mathbf{P}_z^\odot\right)\right\}$$

$$(\rightarrow \Rightarrow - \leftarrow \Rightarrow) := \frac{\mathrm{d}\,\sigma(\rightarrow \Rightarrow)}{\mathrm{d}\,x_i} - \frac{\mathrm{d}\,\sigma(\leftarrow \Rightarrow)}{\mathrm{d}\,x_i} = 2 \cdot \sigma_0 \left\{ \delta_{\odot} \left(\mathbf{I}^{\odot} + \Lambda_z \cdot \mathbf{P}_z^{\odot} \right) \right\}$$
$$(\leftarrow \leftarrow \rightarrow \leftarrow) := \frac{\mathrm{d}\,\sigma(\leftarrow \Leftarrow)}{\mathrm{d}\,x_i} - \frac{\mathrm{d}\,\sigma(\rightarrow \Leftarrow)}{\mathrm{d}\,x_i} = 2 \cdot \sigma_0 \left\{ \delta_{\odot} \left(-\mathbf{I}^{\odot} + \Lambda_z \cdot \mathbf{P}_z^{\odot} \right) \right\}$$

1)
$$(\rightarrow \Rightarrow - \leftarrow \Rightarrow) + (\leftarrow \Leftarrow - \rightarrow \Leftarrow) := \frac{d \sigma_{3/2}}{d x_i} - \frac{d \sigma_{1/2}}{d x_i} = 4 \cdot \sigma_0 \cdot \delta_{\odot} \cdot (\Lambda_z \cdot \mathbf{P}_z^{\odot})$$

2) $(\leftarrow \Leftarrow - \leftarrow \Rightarrow) - (\rightarrow \Rightarrow - \rightarrow \Leftarrow) := -4 \cdot \sigma_0 \cdot (\Lambda_z \cdot \mathbf{P}_z)$

Experiment configuration

- Torus current 1920 A. Out bending positive particles.
- Three targets:
 - 5 cm long polarized butanol at nominal CLAS center
 - 1.5 mm thick ¹²C disk, 6 cm downstream of CLAS center
 - 3.5 mm thick CH2 disk, 16 cm downstream of CLAS center
- Trigger: at least one charged particle in CLAS
 - L1: ST.AND.TOF.AND.L2 sector based
- 2.6 mm collimator for circularly polarized beam
- 2 mm collimator for linearly polarized beam

- Take everything out of the beam line: radiator, collimator, converter, TAC, photon profiler.
- Verify with MCC that they have set up machine fast shutdown interlock from the tagger magnet.
- Let MCC establish beam in the Hall and tune it on the tagger dump.
- Ask MCC to set up digitizer on the tagger dump viewer to monitor electron beam position on the dump. Have strip-chart running for that.
- Set the beam current to 5 nA.
- Harp scans. Have width better than 150 µm and shoulder-to-peak ratio better than 10-4 on the tagger harp.
- Put the 10-4 r.l. radiator in.
- Ramp up pair spectrometer magnet and put converter in.
- Do photon harp scan with no collimation and 6.4 mm collimator.
- Center beam on the collimator using rates in the start counter and rates in the pair spectrometer with and without collimation. Use the larger collimator (6.4 mm) for alignment. Do a horizontal scan of the collimator position. After it is centered horizontally, do a vertical scan with MCC steering the beam vertically. If it turns out that when beam is centered on the collimator but off-center on the target, we would need to adjust the height of the collimator box using its supporting screws.
- Insert 2.6 mm collimator and recheck its alignment.
- Plateau tagger HV if necessary.
- Calibrate the SLM.
- Make sure MCC gives us control of the attenuator and adjust the beam charge asymmetry to 0.
- Perform a Moller run.

- Have all CLAS detectors ON and ready.
- Check that the L2 segment collectors are working.
- Start DAQ and make sure that we have data coming from all detectors.
- Check all on-line histograms. Pay special attention to the TOF decoupled paddles (at back angles). Establish a reference histogram set for monitoring.
- Check trigger rates.
- In fast reconstruction, check that we see three targets: the main one (5-cm long butanol) located at the nominal CLAS center, ¹²C about 6 cm downstream of the CLAS center, and CH₂ about 16 cm downstream of the CLAS center.
- Choose beam intensity. Some factors to consider include:
 - Trigger rate. Live time >80%
 - Tagger rate. Singles rate of T-counters <4 MHz.
 - DC occupancy <2%.
- As soon as we have some data taken, cook the files and perform a TOF calibration to see if all software modifications work as expected

Commissioning

October 23 - October 26 at 2.705 GeV/p 5 pass October 27 Linac Energy change to 0.5 GeV October 27- October 29 at 2.528 GeV/p 5 pass Production October 30 - November 5 at 2.528 GeV/p 5 pass November 6 Linac Energy change to 0.8 GeV November 6 at 2.445 GeV/p 3 pass November 7 pass change to 2 pass November 7 - November 19 at 1.645 GeV/p November 20 - November 26 Holiday. Down. November 27 Linac Energy change to 0.611 GeV November 27 - December 6 at 2.478 GeV/p 4 pass December 7 Linac Energy change to 0.7 GeV December 7 - December 20 at 3.539 GeV 5 pass linearly polarized beam December 21 - January 3 Holidays. Down. January 4 Linac Energy change to 0.9 GeV January 4 - January 10 at 1.851 GeV/p 2 pass January 11 Linac Energy change to 0.379 GeV January 11 - January 14 Down. Unusable beam. January 15 Linac Energy change to 0.908 GeV January 15 - January 30 at 4.591 GeV 5 pass linearly polarized beam January 31 Shutdown

Running pattern

- Polarize target
- Do polarization measurement with NMR in high field
- Switch to frozen mode
- Take data for 4 days
- Monitor polarization with NMR in low field
- Do special runs (Moller, normalization)
- Measure residual polarization in high field
- Repolarize target, flip polarization (~ 1 shift)
- •

.

Coordinate repolarization with energy changes and beam studies

General beam parameters

- Instability of the electron beam energy <10⁻⁴
- Beam spot size at 2C21A and 2C24A σ_x <150 µm, σ_v <150 µm
- Beam position instabilities at 2C21A and 2C24A <100 μm
- Beam halo at the tagger harp (shoulder/peak) ~10⁻⁴
- Beam current ~20 nA
- Instability of beam current <5%
- In no circumstances beam spot position on the tagger dump should be adjusted by changing tagger magnet current!
- <u>Machine fast shutdown interlocked with the tagger</u> <u>magnet.</u>

Circularly polarized beam

- 10⁻⁴ radiation length radiator at 2C24A
- 2.6 mm collimator.
- Maximum polarization of the electron beam.
- Beam charge asymmetry <5x10⁻⁴
- Bleedthrough from other halls <10⁻³
- Beam halo at the tagger harp (shoulder/peak) ~10⁻⁴
- Half-wave plate IN-OUT periodically
- Møller runs every few days
- Normalization runs with Total Absorption Counter in the beam at very low intensity (<50 pA) every few days.

Linearly polarized beam

- 50 μm Diamond radiator on the goniometer at 2C21A
- 2 mm collimator
- All magnets between 2C21A and tagger degaussed and OFF!
- Equal spot size at 2C21A and 2C24A
- Position stability is very important.

Holding magnets

FROST in EEL

Installation in Hall B

