Measurement of Double-Polarization Observables in $\vec{\gamma} \vec{p} \rightarrow p \pi^+ \pi^-$

V. Credé1, M. Bellis2, S. Strauch3, and the CLAS Collaboration

1Florida State University, Tallahassee, Florida
2Carnegie Mellon University, Pittsburgh, PA
3University of South Carolina, Columbia, SC

Meeting of PAC 29, 1/12/2005
Outline

1. Introduction
 - Baryon Spectroscopy

2. Double-Pion Photoproduction
 - Scientific Motivation
 - Previous Measurements
 - Double-Polarization Experiments

3. Analysis Techniques

4. Count Rate Estimate
 - Sensitivity Studies
 - Background and Dilution Factor
 - Beam Time Request
Outline

1. Introduction
 - Baryon Spectroscopy

2. Double-Pion Photoproduction
 - Scientific Motivation
 - Previous Measurements
 - Double-Polarization Experiments

3. Analysis Techniques

4. Count Rate Estimate
 - Sensitivity Studies
 - Background and Dilution Factor
 - Beam Time Request
Atomic spectra allow access to QED

- Discrete spectrum of absorption and emission lines

⇒ Does excitation spectrum of nucleon provide access to QCD?
The Challenges in Baryon Spectroscopy

Unfortunately, N^* spectral lines look more like

\Rightarrow Baryons are broad and overlapping

- Rescattering Effects
 \Rightarrow Require Coupled-Channel Analysis
 (need to measure as many final states as possible)
- Polarization (need complete experiments)
Introduction
Double-Pion Photoproduction
Analysis Techniques
Count Rate Estimate

Baryon Spectroscopy

E_{\gamma} [GeV]

Reaction Thresholds

W [GeV/c^2]

Existing Facilities

BONN
CLAS
MAMI-C
GRAAL
LEGS

V. Credé
Double-Polarization Observables in $\gamma p \rightarrow p \pi^+ \pi^-$
Why have the missing resonances not been discovered, yet?

- Investigated mass region was mainly below 1800 MeV/c²
Why have the missing resonances not been discovered, yet?

- Investigated mass region was mainly below 1800 MeV/c^2
- Polarization (essentially) only available at low energies
Why have the missing resonances not been discovered, yet?

- Investigated mass region was mainly below 1800 MeV/c²
- Polarization (essentially) only available at low energies
- Channels with more than one meson still not explored
Great Chance ...

The Double-Polarization Program (FROST) at JLab:

- E 02-112 \Rightarrow Photoproduction of Hyperons
- E 03-105 \Rightarrow π Photoproduction
- E 04-102
- E 05-012 \Rightarrow η Photoproduction
- PR 06-013 \Rightarrow $\pi^+\pi^-$ Photoproduction (same exp. setup)

The Double-Polarization Program at ELSA (Crystal Barrel Experiment):
(among many other proposals)

- ELSA 6/2005 \Rightarrow $\pi^0\pi^0$ Photoproduction
- ELSA 7/2005 \Rightarrow $\pi^0\eta$ Photoproduction
Outline

1. Introduction
 - Baryon Spectroscopy

2. Double-Pion Photoproduction
 - Scientific Motivation
 - Previous Measurements
 - Double-Polarization Experiments

3. Analysis Techniques

4. Count Rate Estimate
 - Sensitivity Studies
 - Background and Dilution Factor
 - Beam Time Request
Motivation: Low-Energy Regime

- $P_{11}(1440)$ (*Roper Resonance*) \rightarrow too low in mass?
 - dynamically-generated resonance effect
 - state with a strong gluonic component
 - small (qqq)-component with a substantial contribution from the meson cloud
 - Parameters depend strongly on data and analysis

- Contribution of $D_{13}(1520)$ to $\gamma p \rightarrow p \pi^+ \pi^-$ cross section
 - Different interpretations of $\gamma p \rightarrow p \pi^+ \pi^-$ total cross section data
 - Oset et al.: $D_{13}(1520) \rightarrow \Delta \pi$ dominant contribution
 - Laget et al.: $P_{11}(1440) \rightarrow p\sigma$ dominant
 - $D_{13}(1520) \rightarrow \Delta \pi$ in D-wave (PDG: 10–14%) and S-wave (5–12%)?

- $P_{33}(1600)$ (*Roper Resonance of Δ system*) \rightarrow too low in mass?
Motivation: Medium-Energy Regime

3rd resonance region

- $F_{15}(1680)$
- $D_{13}(1700)$
- $D_{33}(1700)$
- $P_{13}(1720)$

How to disentangle?

Discrepancy of CLAS $P_{13}(1720)$ with PDG: two close-by P_{13} states?

⇒ This would be in contradiction with quark models!
Motivation: High-Energy Regime $\rightarrow N^*$ Spectrum

- Missing Resonances

U. Löhring et al., EPJ A10, 395 (2001)
Motivation: High-Energy Regime $\rightarrow \Delta^*$ Spectrum

- Missing Resonances
- Negative-Parity Δ Resonances at 1900 MeV/c²
Motivation: High-Energy Regime

- Reactions with two or more mesons in the final state account for most of the cross section at $W \geq 2 \text{ GeV}/c^2$
- Large efforts at ELSA for neutral decay modes: $\pi^0\pi^0$, $\pi^0\eta$, etc. $\Rightarrow \pi^+\pi^-$ at CLAS!
- There is certainly resonance production above 2 GeV/c^2
 But: resonances broad and overlapping \Rightarrow Big Challenge

\Rightarrow Ultimate goal: coupled-channel analysis including pol. constraints to nail down these resonances
Outline

1. Introduction
 - Baryon Spectroscopy

2. Double-Pion Photoproduction
 - Scientific Motivation
 - Previous Measurements
 - Double-Polarization Experiments

3. Analysis Techniques

4. Count Rate Estimate
 - Sensitivity Studies
 - Background and Dilution Factor
 - Beam Time Request
Helicity Dependence of the Reaction $\gamma p \rightarrow n \pi^0 \pi^+$

GDH Collaboration (Mainz):
- Largest contribution from $\sigma = \frac{3}{2}$
- Nacher et al. underestimates $\sigma = \frac{1}{2}$
Beam Asymmetry I° in $\gamma p \rightarrow p \pi^+ \pi^-$

CLAS Measurements
(S. Strauch et al.)

and model calculations:

- Mokeev et al. (solid)
- Fix and Arenhövel (dashed)
Outline

1. Introduction
 - Baryon Spectroscopy

2. Double-Pion Photoproduction
 - Scientific Motivation
 - Previous Measurements
 - Double-Polarization Experiments

3. Analysis Techniques

4. Count Rate Estimate
 - Sensitivity Studies
 - Background and Dilution Factor
 - Beam Time Request

Double-Polarization Observables in $\gamma p \rightarrow p \pi^+ \pi^-$
Double-Pion Photoproduction Analysis Techniques

Count Rate Estimate

Scientific Motivation

Previous Measurements

Double-Polarization Experiments

Beam-Target Polarization Observables

\[
\frac{d\sigma}{d\Omega} = \sigma_0 \left\{ 1 - \delta_1 \sum \cos 2\phi \right. \\
+ \Lambda_x (-\delta_1 H \sin 2\phi + \delta_\odot F) \\
- \Lambda_y (-T + \delta_1 P \cos 2\phi) \\
- \Lambda_z (-\delta_1 G \sin 2\phi + \delta_\odot E) \left\} \Rightarrow \text{Single-Meson Final States} \right. \\
\text{(7 Observables)}
\]

Two-Meson Final States \Rightarrow \text{(15 Observables)}

\[
I = I_0 \left\{ (1 + \tilde{\Lambda}_j \cdot \vec{P}) \\
+ \delta_\odot (I^\odot + \tilde{\Lambda}_j \cdot \vec{P}^\odot) \\
+ \delta_1 \left[\sin 2\beta (I^s + \tilde{\Lambda}_j \cdot \vec{P}^s) \\
\cos 2\beta (I^c + \tilde{\Lambda}_j \cdot \vec{P}^c) \right] \right\}
\]
Circular Beam and Longitudinal Target Polarization

\[
\frac{d\sigma}{d\chi_i} = \sigma_0 \{ (1 + \Lambda_z \cdot P_z) + \delta_\circ (I_\circ + \Lambda_z \cdot P_z^\circ) \}
\]

\[
(\rightarrow\rightarrow - \leftarrow\leftarrow) := \frac{d\sigma(\rightarrow\rightarrow)}{d\chi_i} - \frac{d\sigma(\leftarrow\leftarrow)}{d\chi_i} = 2 \cdot \sigma_0 \{\delta_\circ (I_\circ + \Lambda_z \cdot P_z^\circ)\}
\]

\[
(\leftarrow\leftarrow - \rightarrow\rightarrow) := \frac{d\sigma(\leftarrow\leftarrow)}{d\chi_i} - \frac{d\sigma(\rightarrow\rightarrow)}{d\chi_i} = 2 \cdot \sigma_0 \{\delta_\circ (-I_\circ + \Lambda_z \cdot P_z^\circ)\}
\]

1) \((\rightarrow\rightarrow - \leftarrow\leftarrow) + (\leftarrow\leftarrow - \rightarrow\rightarrow) := \frac{d\sigma_{3/2}}{d\chi_i} - \frac{d\sigma_{1/2}}{d\chi_i} = 4 \cdot \sigma_0 \cdot \delta_\circ \cdot (\Lambda_z \cdot P_z^\circ)\)

2) \((\leftarrow\leftarrow - \leftarrow\leftarrow) - (\rightarrow\rightarrow - \rightarrow\rightarrow) := -4 \cdot \sigma_0 \cdot (\Lambda_z \cdot P_z)\)
Model Calculations of P_z^\odot (known as E) by A. Fix

Can clearly distinguish between solutions if $\Delta A \leq 0.05$

Reality will be a mixture of S-/D-wave!

Needs very small errors to distinguish between different contributions!
Model Calculations of P_x^\odot by W. Roberts

$\phi = 0.0035 \text{ rad (almost 0)}, \phi = 0.56 \text{ rad}, \phi = 2.09 \text{ rad}, \phi = 3.04 \text{ rad (almost } \pi)\)$

Circ. Beam \rightarrow Trans. Target

- **Solid Line**
 - Full Calculation
- **Dashed Line**
 - $S_{11}(1900)$ Omitted
- **Dashed-Dotted Line**
 - $P_{31}(1910)$ Omitted

$W = 2 \text{ GeV}$

\Rightarrow goal: $\Delta P_z^c \leq 0.05$
Model Calculations of P_y^\ominus by W. Roberts

$\phi = 0.0035$ rad (almost 0), $\phi = 0.56$ rad, $\phi = 2.09$ rad, $\phi = 3.04$ rad (almost π)

$W = 2$ GeV

Circ. Beam \rightarrow Trans. Target

- **Solid Line**
 - Full Calculation
- **Dashed Line**
 - $S_{11}(1900)$ Omitted
- **Dashed-Dotted Line**
 - $P_{31}(1910)$ Omitted

\Rightarrow goal: $\Delta P_{c}^{z} \leq 0.05$
Outline

1. Introduction
 - Baryon Spectroscopy

2. Double-Pion Photoproduction
 - Scientific Motivation
 - Previous Measurements
 - Double-Polarization Experiments

3. Analysis Techniques

4. Count Rate Estimate
 - Sensitivity Studies
 - Background and Dilution Factor
 - Beam Time Request

V. Credé

Double-Polarization Observables in $\tilde{\gamma} p \rightarrow p \pi^+ \pi^-$
Background Estimate

\begin{align*}
\text{(a)} & \quad p\pi^+\pi^- X \\
\text{(b)} & \quad \pi^+\pi^- X \\
\text{(c)} & \quad p\pi^+ X \\
\text{(d)} & \quad p\pi^- X
\end{align*}

g1c Data Set (\(\vec{\gamma} p\))

- At least two particles detected
- Distributions essentially background free

\[10^6 \text{ Counts/Channel}\]
Estimate of an Effective Dilution Factor

- **Solid Line**: total number of events
- **Dashed Line**: polarized hydrogen
- **Dotted Line**: unpolarized nucleons

\[D \text{ solid} = 0.05 \quad D \text{ dashed} = 0.27 \]
\[D \text{ dotted} = 0.44 \quad D \text{ dotted} = 0.29 \]

\[D_{\text{eff}} = 0.38 \]
Outline

1. Introduction
 - Baryon Spectroscopy

2. Double-Pion Photoproduction
 - Scientific Motivation
 - Previous Measurements
 - Double-Polarization Experiments

3. Analysis Techniques

4. Count Rate Estimate
 - Sensitivity Studies
 - Background and Dilution Factor
 - Beam Time Request
Statistical Uncertainties of the Measurements

The asymmetry is given by

$$A_z^\odot = \frac{1}{D_{\text{eff}} \cdot \delta_\odot \cdot \Lambda_z} \frac{N_\parallel - N_\perp}{N_\parallel + N_\perp}$$

and the statistical error by

$$\Delta A_z^\odot (\text{stat.}) \approx \frac{1}{D_{\text{eff}} \cdot \delta_\odot \cdot \Lambda_z} \frac{1}{\sqrt{N_\parallel + N_\perp}}$$

The total number of counts required to reach a certain precision \(\Delta A_z^\odot (\text{stat.})\):

$$\Rightarrow N_\parallel + N_\perp \approx \left(\frac{1}{D_{\text{eff}} \cdot \delta_\odot \cdot \Lambda_z \cdot \Delta A_z^\odot (\text{stat.})} \right)^2$$

and thus, the beam time needed to reach a certain statistical accuracy \(\Delta A_z^\odot\):

$$T = \frac{1}{\dot{N}_\gamma(E)} \cdot \frac{1}{(\Delta A_z^\odot)^2} \cdot \frac{1}{\sigma_{\text{unpol}}} \cdot \frac{1}{\rho_{\text{target}} \cdot \epsilon} \cdot \frac{D_{\text{eff}}^{-1}}{(\delta_\odot \cdot \Lambda_z)^2} \cdot N_{\text{bins}}$$
FROST Experiments

<table>
<thead>
<tr>
<th>Setting</th>
<th>Lin/trans</th>
<th>0.4-0.8</th>
<th>0.6-0.8</th>
<th>0.8-1.0</th>
<th>1.0-1.2</th>
<th>1.2-1.4</th>
<th>1.4-1.8</th>
<th>1.6-1.8</th>
<th>1.8-2.0</th>
<th>2.0-2.2</th>
<th>2.2-2.4</th>
<th>2.4-2.8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E03-105</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>48</td>
<td>48</td>
<td>96</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>E05-012</td>
<td>98</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>E02-112</td>
<td></td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>32</td>
<td>98</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setting</th>
<th>Circ/trans</th>
<th>0.4-0.8</th>
<th>0.6-0.8</th>
<th>0.8-1.0</th>
<th>1.0-1.2</th>
<th>1.2-1.4</th>
<th>1.4-1.8</th>
<th>1.6-1.8</th>
<th>1.8-2.0</th>
<th>2.0-2.2</th>
<th>2.2-2.4</th>
<th>2.4-2.8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E03-105</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>E05-012</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td></td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setting</th>
<th>Lin/long</th>
<th>0.4-0.8</th>
<th>0.6-0.8</th>
<th>0.8-1.0</th>
<th>1.0-1.2</th>
<th>1.2-1.4</th>
<th>1.4-1.8</th>
<th>1.6-1.8</th>
<th>1.8-2.0</th>
<th>2.0-2.2</th>
<th>2.2-2.4</th>
<th>2.4-2.8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E03-105</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>32</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>E05-012</td>
<td>48</td>
<td>48</td>
<td>60</td>
<td>60</td>
<td>72</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>8</td>
<td>48</td>
<td>48</td>
<td>60</td>
<td>60</td>
<td>72</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setting</th>
<th>Circ/long</th>
<th>0.4-0.8</th>
<th>0.6-0.8</th>
<th>0.8-1.0</th>
<th>1.0-1.2</th>
<th>1.2-1.4</th>
<th>1.4-1.8</th>
<th>1.6-1.8</th>
<th>1.8-2.0</th>
<th>2.0-2.2</th>
<th>2.2-2.4</th>
<th>2.4-2.8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E04-102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192</td>
<td>168</td>
<td></td>
<td></td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>E05-012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>140</td>
<td></td>
<td></td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>F02-112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>480</td>
<td>480</td>
<td></td>
<td></td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>580</td>
<td>480</td>
<td></td>
<td></td>
<td>480</td>
</tr>
</tbody>
</table>

- **V. Credé**
- **Double-Polarization Observables in $\gamma p \rightarrow p \pi^+ \pi^-$**
Beam Time Request

<table>
<thead>
<tr>
<th>Setting</th>
<th>Energy [GeV]</th>
<th>(\sigma_{\text{tot}}^p) [(\mu b)]</th>
<th>(\dot{N}_\gamma) [MHz]</th>
<th>(N_{\text{bins}})</th>
<th>(\delta_{\odot} / \delta_I)</th>
<th>(\Lambda_{tg})</th>
<th>(\Delta A)</th>
<th>T [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>circ/trans</td>
<td>(E_{e^-} = 3.1)</td>
<td>(\approx 35)</td>
<td>(\approx 3)</td>
<td>2000</td>
<td>0.82</td>
<td>0.85</td>
<td>0.05</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lin/long</td>
<td>(E_\gamma = 2.0)</td>
<td>(\approx 40)</td>
<td>(\approx 5)</td>
<td>2000</td>
<td>0.7</td>
<td>0.85</td>
<td>0.05</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>(E_\gamma = 2.2)</td>
<td>(\approx 35)</td>
<td>(\approx 5)</td>
<td>2000</td>
<td>0.7</td>
<td>0.85</td>
<td>0.05</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>(E_\gamma = 2.4)</td>
<td>(\approx 35)</td>
<td>(\approx 5)</td>
<td>2000</td>
<td>0.7</td>
<td>0.85</td>
<td>0.05</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>(E_\gamma = 2.6)</td>
<td>(\approx 35)</td>
<td>(\approx 5)</td>
<td>2000</td>
<td>0.7</td>
<td>0.85</td>
<td>0.05</td>
<td>83</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>circ/long</td>
<td>(E_{e^-} = 3.1)</td>
<td>(\approx 35)</td>
<td>(\approx 3)</td>
<td>2000</td>
<td>0.82</td>
<td>0.85</td>
<td>0.05</td>
<td>100</td>
</tr>
</tbody>
</table>

\(\Sigma 27 \text{ d} \)

Required beam time to study \(\gamma p \rightarrow p \pi^+ \pi^- \) at and above 2 GeV/c^2
Beam Time Request

<table>
<thead>
<tr>
<th>Setting</th>
<th>Energy [GeV]</th>
<th>$\sigma_{\text{tot}}^p [\mu b]$</th>
<th>\dot{N}_γ [MHz]</th>
<th>N_{bins}</th>
<th>$\delta_\odot / \delta_\ell$</th>
<th>Λ_{tg}</th>
<th>ΔA</th>
<th>T [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>$E_{e^-} = 3.1$</td>
<td>≈ 35</td>
<td>≈ 3</td>
<td>2000</td>
<td>0.82</td>
<td>0.85</td>
<td>0.05</td>
<td>100</td>
</tr>
<tr>
<td>B circ/trans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>$E_\gamma = 2.0$</td>
<td>≈ 40</td>
<td>≈ 5</td>
<td>2000</td>
<td>0.7</td>
<td>0.85</td>
<td>0.05</td>
<td>72</td>
</tr>
<tr>
<td>C lin/long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$E_\gamma = 2.2$</td>
<td>≈ 35</td>
<td>≈ 5</td>
<td>2000</td>
<td>0.7</td>
<td>0.85</td>
<td>0.05</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>$E_\gamma = 2.4$</td>
<td>≈ 35</td>
<td>≈ 5</td>
<td>2000</td>
<td>0.7</td>
<td>0.85</td>
<td>0.05</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>$E_\gamma = 2.6$</td>
<td>≈ 35</td>
<td>≈ 5</td>
<td>2000</td>
<td>0.7</td>
<td>0.85</td>
<td>0.05</td>
<td>83</td>
</tr>
<tr>
<td>D</td>
<td>$E_{e^-} = 3.1$</td>
<td>≈ 35</td>
<td>≈ 3</td>
<td>2000</td>
<td>0.82</td>
<td>0.85</td>
<td>0.05</td>
<td>100</td>
</tr>
<tr>
<td>D circ/long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAC 29 Beam Time Request: 4 days for setting B

⇒ Will prove success of FROST and come back later ...