First Measurement of Differential Photoproduction Cross Sections and Lineshapes of the $\Lambda(1405)$ Using CLAS

Kei Moriya Reinhard Schumacher

Carnegie Mellon University

May 4, 2009

- ullet well-established resonance just below $N\overline{K}$ threshold
- Iong-standing peculiarity on what its nature is:
 - assignment of L = 1 SU(3)-singlet within constituent quark model
 - ullet unstable $N\overline{K}$ bound state
 - dynamically generated resonance in unitary meson-baryon channel coupling
- as a signal of its "peculiar nature", past experiments have found the lineshape (= invariant mass distribution) to be distorted from a simple Breit-Wigner form

theory prediction from unitary chiral approach

J. C. Nacher et al.,

Nucl. Phys. B455, 55

prediction:

not only is the lineshape distorted from a Breit-Wigner form,

it is different for each $\Sigma\pi$ decay mode

K. Moriya (CMU)

overview of data

• data was taken at Jefferson Lab in Newport News, VA

- Hall B, CLAS detector
- ullet photoproduction on a proton target with $E_\gamma < 3.84$ GeV
- ullet large data set with ~ 20 B triggers

aerial view of Jefferson Lab

opened CLAS detector

reaction of interest

reaction of interest

M²(π⁻,n)

K. Moriya (CMU)

$\Lambda(1405)$ Using CLAS

May 2009 5 / 10

"nominal" $\Lambda(1405)$

- Monte Carlo generated with PDG values of mass, width
- all Monte Carlo was processed through detector simulation

K. Moriya (CMU)

$\Sigma(1385)$

- ullet strong overlap with $\Lambda(1405)$ due to close mass and width
- $\Lambda\pi^0$ decay mode was used to fix yield in $\Sigma\pi$ decay modes
- Monte Carlo generated with PDG values of mass, width

K. Moriya (CMU)

$\Lambda(1520)$

- Monte Carlo generated with PDG values of mass, width
- well-established Breit-Wigner lineshape

K. Moriya (CMU)

 K^{*0}

- strong kinematic overlap with $\Lambda(1405)$
- Monte Carlo generated with PDG values of mass, width

K. Moriya (CMU)

 \Rightarrow after fitting with the above templates, we subtracted off contributions from the $\Sigma(1385),\,\Lambda(1520)$, K^{*0} , and assigned the remaining contribution to the $\Lambda(1405)$.

results of lineshape after acceptance correction

different lineshapes for each $\Sigma\pi$ decay mode

- ullet lineshapes do appear different for each $\Sigma\pi$ decay mode
- $\Sigma^+\pi^-$ decay mode has peak at highest mass, most narrow

K. Moriya (CMU)

theory prediction from chiral unitary approach

$$\frac{d\sigma(\pi^{*}\Sigma^{-})}{dM_{i}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} + \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$

$$\frac{d\sigma(\pi^{*}\Sigma^{*})}{dM_{i}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} - \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$

$$\frac{d\sigma(\pi^{0}\Sigma^{0})}{dM_{i}} \propto \frac{1}{3} |T^{(0)}|^{2} + O(T^{(2)})$$

J. C. Nacher et al., Nucl. Phys. B455, 55

- $\Sigma^{-}\pi^{+}$ decay mode peaks at highest mass, most narrow
- difference in lineshapes is due to interference of isospin terms in calculation $(T^{(I)}$ represents amplitude of isospin I term)

differential cross sections

- summing over the lineshape gives differential cross section
- $\Lambda(1520)$ serves as a check of systematics
- at lower energies where lineshape is different, difference in $\frac{\mathrm{d}\sigma}{\mathrm{d}t}$ is observed

$$1.56 < E_{\gamma} < 1.77~({
m GeV})$$

 $\Lambda(1520)$

differential cross sections

- summing over the lineshape gives differential cross section
- $\Lambda(1520)$ serves as a check of systematics
- at lower energies where lineshape is different, difference in $\frac{\mathrm{d}\sigma}{\mathrm{d}t}$ is observed

$$3.27 < E_{\gamma} < 3.56~({
m GeV})$$

 $\Lambda(1520)$

 $\Lambda(1405)$

- high statistics measurement of $\Lambda(1405)$ photoproduction
- difference in lineshape for different decay modes has been observed
- difference in cross section for different decay modes has been observed
- working to test dynamical resonances generated in chiral unitary models
- \Rightarrow first clues of a possible deviation from a simple qqq-structure.

final states chosen

example: $K^+, \pi^+ \pi^-, (n)$ channel

fit to neutron

example: $K^+, \pi^+ \pi^-, (n)$ channel

example: $K^+, \pi^+ \pi^-, (n)$ channel

example: $K^+, \pi^+ \pi^-, (n)$ channel

lineshape for Σ^+ channel lineshape for Σ^- channel \Rightarrow end up with $MM(\gamma, K^+)$ spectrum for each decay mode

K^*

cannot separate due to strong overlap (kinematically separated at higher energy bins)

 $\Sigma(1385)$

cannot distinguish with close mass and width

	$\Lambda(1405)$	$\Sigma(1385)$
mass	~ 1405	~ 1385
width	~ 50	~ 35

 \Rightarrow use MC to model both backgrounds. scale of $\Sigma(1385)$ fixed by $\Lambda\pi^0$ decay mode.