Properties of the $\Lambda(1405)$ Hyperon Measured at CLAS

Kei Moriya with Reinhard Schumacher

Carnegie Mellon University

September 15, 2009

Outline

Introduction

- motivation for the study of the $\Lambda(1405)$ what is it?
- theory of the $\Lambda(1405)$
- goals of this analysis

2 CLAS Analysis

- the g11a data set in CLAS at Jlab
- cuts to the data
- background
- fits to the lineshape

3 Results

- lineshape
- cross section
- spin-parity

4 Conclusion

what is the $\Lambda(1405)$?

- **** resonance just below $N\overline{K}$ threshold
- $J^P = \frac{1}{2}^-$ (experimentally unconfirmed)
- can only be observed by reconstructing $(\Sigma\pi)^0$ spectrum
- has always been a puzzle on what the nature of the state is
 - past experiments have found the lineshape (= invariant $\Sigma\pi$ mass distribution) to be distorted from a simple Breit-Wigner form
- what is the nature of this distorted lineshape?
 - "normal" qqq-baryon resonance
 - L = 1 SU(3) singlet in constituent quark model
 - molecular $N\overline{K}$ bound state
 - uds singlet coupled to S-wave meson-baryon systems
 - udsg hybrid, $qqqq\overline{q}$
 - dynamically generated resonance in unitary coupled channel approach

unitary coupled channel approach

K. Moriya (CMU)

(1405)

difference in lineshape

$$\frac{d\sigma(\pi^{+}\Sigma^{-})}{dM_{I}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} + \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^{-}\Sigma^{+})}{dM_{I}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} - \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^{0}\Sigma^{0})}{dM_{I}} \propto \frac{1}{3} |T^{(0)}|^{2} + O(T^{(2)})$$

- J. C. Nacher et al., Nucl. Phys. B455, 55
 - difference in lineshapes is due to interference of isospin terms in calculation $(T^{(I)}$ represents amplitude of isospin I term)

goals of $\Lambda(1405)$ analysis

- measure the lineshape in the three $\Sigma\pi$ channels $(\Sigma^+\pi^-, \Sigma^0\pi^0, \Sigma^-\pi^+)$
- determine the differential cross section (what kind of angular/Mandelstam t dependence?)
- if distortion of lineshape is observed, this could be the first observation of a non-qqq baryonic structure
- determine the spin and parity

the g11a data set taken at CLAS

- ran from May to July 2004
- photoproduction experiment on a proton target
- photon energies from below $\Lambda(1405)$ threshold to $3.84~{
 m GeV}$
- large dataset with ~ 20 billion triggers
- current estimates of reconstructed $\Lambda(1405)$ events: $\sim 272 {\rm K}$ (from fits shown later)

data is binned in:

- 10 bins of 100 MeV wide *W* bins
- ~ 20 bins of t in each W bin

reaction of interest

- 3 $\Sigma\pi$ decay channels (2 decay modes for $\Sigma^+\pi^-)$
- This will be the first experimental result to compare all 3 $\Sigma\pi$ decay modes

decay channel selection cut

example in 1 bin:

- $\gamma + \mathbf{p} \rightarrow K^+ \pi^+ \pi^-(n)$
- detect K^+,π^+,π^- , reconstruct missing neutron
- fit to Gaussian and select $\pm 3\sigma$ around neutron peak

intermediate ground state hyperon

example in 1 bin:

- neutron combined with π^\pm reconstructs Σ^\pm
- project on each axis, select $\pm 2\sigma$, exclude other hyperon
- diagonal band $(K^0$ from $\pi^+\pi^-)$ is also excluded

background (1) – $\Sigma(1385)$

- close in mass and width to $\Lambda(1405)$
- decays primarily to $\Lambda\pi^0$ (B.R. $\sim 88\%$)
- small B.R. to $\Sigma^{\pm}\pi^{\mp}:\sim 6\%$ each

 \Rightarrow calculate $\Sigma(1385)$ cross section in each bin from $\Lambda\pi^0$ channel, then scale down by B.R. to extract yield in $\Sigma\pi$ channels

background (1) – $\Sigma(1385)$

- close in mass and width to $\Lambda(1405)$
- decays primarily to $\Lambda\pi^0$ (B.R. $\sim 88\%$)
- small B.R. to $\Sigma^{\pm}\pi^{\mp}:\sim 6\%$ each

 \Rightarrow calculate $\Sigma(1385)$ cross section in each bin from $\Lambda \pi^0$ channel, then scale down by B.R. to extract yield in $\Sigma \pi$ channels

K. Moriya (CMU)

background (2) – $K^{*0}\Sigma^+$

- $\Gamma \sim 50~{
 m MeV}$
- strong overlap with $\Lambda(1405)$ in lower W bins, separated at higher energies
- \Rightarrow generated MC and subtract off incoherently

(checks need to be done for interference)

low energy bin

high energy bin

K. Moriya (CMU)

"nominal" $\Lambda(1405)$

- Monte Carlo generated with PDG values of mass, width
- all Monte Carlo was processed through detector simulation

$\Sigma(1385)$

- strong overlap with $\Lambda(1405)$ due to close mass and width
- $\Lambda\pi^0$ decay mode was used to fix yield in $\Sigma\pi$ decay modes
- Monte Carlo generated with PDG values of mass, width

K. Moriya (CMU)

$\Lambda(1520)$

- Monte Carlo generated with PDG values of mass, width
- well-established Breit-Wigner lineshape

K^{*0}

- strong kinematic overlap with $\Lambda(1405)$
- Monte Carlo generated with PDG values of mass, width

 \Rightarrow after fitting with the above templates, we subtracted off contributions from the $\Sigma(1385),\,\Lambda(1520)$, K^{*0} , and assigned the remaining contribution to the $\Lambda(1405)$.

acceptance correction

- after subtracting background contributions, we are left with "residual" spectrum
- to correct for dependence of the lineshape on acceptance, we have calculated the acceptance as a function of lineshape
- our lineshape results are summed over the t bins in each energy bin

results of lineshape after acceptance correction

different lineshapes for each $\Sigma\pi$ decay mode

- lineshapes do appear different for each $\Sigma\pi$ decay mode
- $\Sigma^+\pi^-$ decay mode has peak at highest mass, most narrow

K. Moriya (CMU)

results of lineshape after acceptance correction

different lineshapes for each $\Sigma\pi$ decay mode

- lineshapes do appear different for each $\Sigma\pi$ decay mode
- $\Sigma^+\pi^-$ decay mode has peak at highest mass, most narrow

K. Moriya (CMU)

results of lineshape after acceptance correction

different lineshapes for each $\Sigma\pi$ decay mode

- lineshapes do appear different for each $\Sigma\pi$ decay mode
- $\Sigma^+\pi^-$ decay mode has peak at highest mass, most narrow

K. Moriya (CMU)

theory prediction from chiral unitary approach

J. C. Nacher et al., Nucl. Phys. B455, 55

- $\Sigma^-\pi^+$ decay mode peaks at highest mass, most narrow
- difference in lineshapes is due to interference of isospin terms in calculation $(T^{(I)}$ represents amplitude of isospin I term)

differential cross sections

- summing over the lineshape gives differential cross section
- $\Lambda(1520)$ serves as a check of systematics
- at lower energies where lineshapes differ, differences in $\frac{\mathrm{d}\sigma}{\mathrm{d}t}$ are observed

$$rac{\mathrm{d}\sigma}{\mathrm{d}t}[\mu b/\mathrm{GeV}^2]$$
 for $2.050 < W < 2.150$ (GeV)

 $\Lambda(1405)$

 $\Lambda(1520)$

differential cross sections

- summing over the lineshape gives differential cross section
- $\Lambda(1520)$ serves as a check of systematics
- at lower energies where lineshapes differ, differences in $\frac{\mathrm{d}\sigma}{\mathrm{d}t}$ are observed

$$rac{\mathrm{d}\sigma}{\mathrm{d}t}[\mu b/\mathrm{GeV}^2]$$
 for $2.350 < W < 2.450$ (GeV)

 $\Lambda(1520)$

0.7 0.09 Preliminar Σ⁺ π⁻ average $\Sigma^{+} \pi^{-}$ average 0.6 0.08 0.5 0.07 **-**Σ⁻π+ 0.06 0.4 0.05 0.3 0.04 0.03 0.2 0.02 0.1 0.01 Pro 0.5 1.5 2 2.5 0.5 1 $1_{t}5_{t}$

differential cross sections

- summing over the lineshape gives differential cross section
- $\Lambda(1520)$ serves as a check of systematics
- at lower energies where lineshapes differ, differences in $\frac{\mathrm{d}\sigma}{\mathrm{d}t}$ are observed

$$rac{\mathrm{d}\sigma}{\mathrm{d}t}[\mu b/\mathrm{GeV}^2]$$
 for $2.750 < W < 2.840$ (GeV)

 $\Lambda(1520)$

 $\Lambda(1405)$

J^P of $\Lambda(1405)$

no previous **direct experimental evidence** for the spin and parity of the $\Lambda(1405)$ (PDG assumes $1/2^{-}$) How do we measure these quantities?

- spin measure distribution into $\Sigma\pi$
 - flat distribution is best evidence possible for J=1/2
- parity measure polarization of Σ from $\Lambda(1405)$
 - Polarization direction as a function of Σ decay angle will be determined by J^P of $\Lambda(1405)$

s-wave, p-wave scenario

 $egin{aligned} \Lambda(1405) & o \Sigma \pi ext{ is s-wave} \ &\Leftrightarrow J^P = 1/2^- \end{aligned}$

 $egin{aligned} \Lambda(1405) & o \Sigma \pi ext{ is } p ext{-wave} \ &\Leftrightarrow J^P = 1/2^+ \end{aligned}$

determination of spin of $\Lambda(1405)$

- fits to $J=rac{1}{2}$ and $J=rac{3}{2}$ distributions done to
 - $\Lambda(1405) \rightarrow \Sigma^+\pi^-$
 - $\Sigma(1385) \rightarrow \Lambda \pi^0$
 - 3 bins of W centered at 2.6, 2.7, 2.8 GeV with forward K⁺angles
 - selected region has kinematic separation from K^{*0} bg

with J=3/2 fit, $\chi^2/{
m ndf}$ is reduced for $\Sigma(1385)$, but almost no reduction for $\Lambda(1405)$

determination of spin of $\Lambda(1405)$

- fits to $J=rac{1}{2}$ and $J=rac{3}{2}$ distributions done to
 - $\Lambda(1405) \rightarrow \Sigma^+\pi^-$
 - $\Sigma(1385) \rightarrow \Lambda \pi^0$
 - 3 bins of W centered at 2.6, 2.7, 2.8 GeV with forward K⁺angles
 - selected region has kinematic separation from $K^{st 0}$ bg

with J=3/2 fit, $\chi^2/{
m ndf}$ is reduced for $\Sigma(1385)$, but almost no reduction for $\Lambda(1405)$

 \Rightarrow best possible evidence for J=1/2

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- W = 2.6 GeV
- forward K^+ angles
- use reaction: $\Lambda(1405) \rightarrow \Sigma^+ \pi^-,$ $\Sigma^+ \rightarrow p \pi^0$
- very large hyperon decay parameter lpha=-0.98

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- W = 2.6 GeV
- forward K^+ angles
- use reaction: $\Lambda(1405) \rightarrow \Sigma^+ \pi^-,$ $\Sigma^+ \rightarrow p \pi^0$
- very large hyperon decay parameter lpha=-0.98

polarization does not change with Σ^+ angle $(heta_{\Sigma^+})$

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- W = 2.6 GeV
- forward K^+ angles
- use reaction: $\Lambda(1405) \rightarrow \Sigma^+ \pi^-,$ $\Sigma^+ \rightarrow p \pi^0$
- very large hyperon decay parameter lpha=-0.98

polarization does not change with Σ^+ angle $(heta_{\Sigma^+})$ $\Rightarrow J^P = 1/2^- ext{ is confirmed}$

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- $W=2.6~{
 m GeV}$
- forward K^+ angles
- use reaction: $\Lambda(1405) \rightarrow \Sigma^+ \pi^-,$ $\Sigma^+ \rightarrow p \pi^0$
- very large hyperon decay parameter lpha=-0.98

polarization does not change with Σ^+ angle $(heta_{\Sigma^+})$

 $\Rightarrow J^P = 1/2^-$ is confirmed

furthermore, this measured Σ^+ polarization is the $\Lambda(1405)$ polarization

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- $W=2.6~{
 m GeV}$
- forward K^+ angles
- use reaction: $\Lambda(1405) \rightarrow \Sigma^+ \pi^-,$ $\Sigma^+ \rightarrow p \pi^0$
- very large hyperon decay parameter lpha=-0.98

polarization does not change with Σ^+ angle $(heta_{\Sigma^+})$

 $\Rightarrow J^P = 1/2^-$ is confirmed

furthermore, this measured Σ^+ polarization is the $\Lambda(1405)$ polarization

 $\Rightarrow \Lambda(1405)$ is produced with $\sim 40\%$ polarization

K. Moriya (CMU)

conclusion

- high statistics measurement of $\Lambda(1405)$ photoproduction has been done with CLAS at Jlab
- difference in lineshape for different decay modes has been observed
- difference in cross section for different decay modes has been observed
- spin and parity are experimentally established for the first time
- as a bonus, polarization of $\Lambda(1405)$ is found to be $\sim 40\%$ at $W\sim 2.6$ GeV, forward K^+ angles

 \Rightarrow best evidence to date of possible deviation from a simple qqq-structure.