Properties of the $\Lambda(1405)$ Hyperon Measured at CLAS

Kei Moriya
with
Reinhard Schumacher
Carnegie Mellon University

September 15, 2009

Outline

(1) Introduction

- motivation for the study of the $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$ - what is it?
- theory of the $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$
- goals of this analysis
(2) CLAS Analysis
- the g11a data set in CLAS at Jlab
- cuts to the data
- background
- fits to the lineshape
(3) Results
- lineshape
- cross section
- spin-parity

4) Conclusion

what is the $\Lambda(1405)$?

- **** resonance just below $N \bar{K}$ threshold
- $\boldsymbol{J}^{\boldsymbol{P}}=\frac{1}{2}^{-}$(experimentally unconfirmed)
- can only be observed by reconstructing $(\Sigma \pi)^{0}$ spectrum
- has always been a puzzle on what the nature of the state is
- past experiments have found the lineshape (= invariant $\Sigma \pi$ mass distribution) to be distorted from a simple Breit-Wigner form
- what is the nature of this distorted lineshape?
- "normal" $\boldsymbol{q q q}$-baryon resonance
- $L=1 \mathrm{SU}(3)$ singlet in constituent quark model
- molecular $N \bar{K}$ bound state
- uds singlet coupled to S-wave meson-baryon systems
- udsg hybrid, $q q q q \bar{q}$
- dynamically generated resonance in unitary coupled channel approach

unitary coupled channel approach

dynamically generate $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$

J. C. Nacher et al., Phys. Lett. B455, 55 (1999)

difference in lineshape

$$
\begin{aligned}
& \frac{d \sigma\left(\pi^{+} \Sigma^{-}\right)}{d M_{I}} \propto \frac{1}{2}\left|T^{(1)}\right|^{2}+\frac{1}{3}\left|T^{(0)}\right|^{2}++\frac{2}{\sqrt{6}} \operatorname{Re}\left(T^{(0)} T^{(1)^{*}}\right)+O\left(T^{(2)}\right) \\
& \frac{d \sigma\left(\pi^{-} \Sigma^{+}\right)}{d M_{I}} \propto \frac{1}{2}\left|T^{(1)}\right|^{2}+\frac{1}{3}\left|T^{(0)}\right|^{2}--\frac{2}{\sqrt{6}} \operatorname{Re}\left(T^{(0)} T^{\left.()^{*}\right)}\right)+O\left(T^{(2)}\right) \\
& \frac{d \sigma\left(\pi^{0} \Sigma^{0}\right)}{d M_{I}} \propto \\
& \quad \frac{1}{3}\left|T^{(0)}\right|^{2}
\end{aligned}
$$

J. C. Nacher et al., Nucl. Phys. B455, 55

- difference in lineshapes is due to interference of isospin terms in calculation ($T^{(I)}$ represents amplitude of isospin I term)

goals of $\Lambda(1405)$ analysis

- measure the lineshape in the three $\boldsymbol{\Sigma} \boldsymbol{\pi}$ channels $\left(\boldsymbol{\Sigma}^{+} \boldsymbol{\pi}^{-}, \boldsymbol{\Sigma}^{0} \boldsymbol{\pi}^{0}, \boldsymbol{\Sigma}^{-} \boldsymbol{\pi}^{+}\right)$
- determine the differential cross section (what kind of angular/Mandelstam t dependence?)
- if distortion of lineshape is observed, this could be the first observation of a non- $\boldsymbol{q q q}$ baryonic structure
- determine the spin and parity

the g11a data set taken at CLAS

- ran from May to July 2004
- photoproduction experiment on a proton target
- photon energies from below $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$ threshold to 3.84 GeV
- large dataset with ~ 20 billion triggers
- current estimates of reconstructed $\Lambda(1405)$ events: $\sim 272 \mathrm{~K}$ (from fits shown later)
data is binned in:
- $\mathbf{1 0}$ bins of $\mathbf{1 0 0 ~ M e V}$ wide \boldsymbol{W} bins
- ~ 20 bins of t in each W bin

reaction of interest

$\gamma+p \longrightarrow K^{+}+\Lambda(1405) \xrightarrow{\left[\begin{array}{l}3 \\ \hline\end{array}\right.} \Sigma^{+} \pi^{-} \xrightarrow{52 \%} p\left(\pi^{0}\right) \pi^{-}$

- $3 \boldsymbol{\Sigma} \boldsymbol{\pi}$ decay channels ($\mathbf{2}$ decay modes for $\boldsymbol{\Sigma}^{+} \boldsymbol{\pi}^{-}$)
- This will be the first experimental result to compare all $\mathbf{3} \boldsymbol{\Sigma} \boldsymbol{\pi}$ decay modes

decay channel selection cut

example in $\mathbf{1}$ bin:

- $\gamma+\mathbf{p} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}(\boldsymbol{n})$
- detect $\boldsymbol{K}^{+}, \boldsymbol{\pi}^{+}, \boldsymbol{\pi}^{-}$, reconstruct missing neutron
- fit to Gaussian and select $\pm \mathbf{3 \sigma}$ around neutron peak

intermediate ground state hyperon

 example in 1 bin:- neutron combined with $\pi^{ \pm}$reconstructs $\boldsymbol{\Sigma}^{ \pm}$
- project on each axis, select $\pm \mathbf{2 \sigma}$, exclude other hyperon
- diagonal band (\boldsymbol{K}^{0} from $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$) is also excluded

background (1) $-\Sigma(1385)$

- close in mass and width to $\Lambda(\mathbf{1 4 0 5})$
- decays primarily to $\Lambda \pi^{0}$ (B.R. $\sim \mathbf{8 8 \%}$)
- small B.R. to $\Sigma^{ \pm} \pi^{\mp}: \sim \mathbf{6 \%}$ each
\Rightarrow calculate $\Sigma(\mathbf{1 3 8 5})$ cross section in each bin from $\Lambda \pi^{0}$ channel, then scale down by B.R. to extract yield in $\Sigma \boldsymbol{\pi}$ channels

background (1) $-\Sigma(1385)$

- close in mass and width to $\Lambda(\mathbf{1 4 0 5})$
- decays primarily to $\Lambda \pi^{0}$ (B.R. $\sim \mathbf{8 8 \%}$)
- small B.R. to $\Sigma^{ \pm} \pi^{\mp}$: $\sim \mathbf{6 \%}$ each
\Rightarrow calculate $\Sigma(\mathbf{1 3 8 5})$ cross section in each bin from $\Lambda \pi^{0}$ channel, then scale down by B.R. to extract yield in $\Sigma \boldsymbol{\pi}$ channels

background (2) $-K^{* 0} \Sigma^{+}$

- $\Gamma \sim 50 \mathrm{MeV}$
- strong overlap with $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$ in lower W bins, separated at higher energies
\Rightarrow generated MC and subtract off incoherently (checks need to be done for interference)
low energy bin

high energy bin

example of fit to lineshape

reaction:

$$
\begin{aligned}
\gamma+p \rightarrow K^{+} & +\Lambda(1405) \\
& \rightarrow \Sigma^{+}+\pi^{-} \\
& \rightarrow n+\pi^{+}
\end{aligned}
$$

"nominal" $\Lambda(1405)$

- Monte Carlo generated with PDG values of mass, width
- all Monte Carlo was processed through detector simulation

example of fit to lineshape

reaction:

$$
\begin{aligned}
\gamma+p \rightarrow K^{+} & +\Lambda(1405) \\
& \rightarrow \Sigma^{+}+\pi^{-} \\
& \rightarrow n+\pi^{+}
\end{aligned}
$$

$\Sigma(1385)$

- strong overlap with $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$ due to close mass and width
- $\boldsymbol{\Lambda} \boldsymbol{\pi}^{\mathbf{0}}$ decay mode was used to fix yield in $\boldsymbol{\Sigma} \boldsymbol{\pi}$ decay modes
- Monte Carlo generated with PDG values of mass, width

example of fit to lineshape

reaction:

$$
\begin{aligned}
\gamma+p \rightarrow K^{+} & +\Lambda(1405) \\
& \rightarrow \Sigma^{+}+\pi^{-} \\
& \rightarrow n+\pi^{+}
\end{aligned}
$$

$\Lambda(1520)$

- Monte Carlo generated with PDG values of mass, width
- well-established Breit-Wigner lineshape

example of fit to lineshape

reaction:

$$
\begin{aligned}
\gamma+p \rightarrow K^{+} & +\Lambda(1405) \\
& \rightarrow \Sigma^{+}+\pi^{-} \\
& \rightarrow n+\pi^{+}
\end{aligned}
$$

$\boldsymbol{K}^{* 0}$

- strong kinematic overlap with $\boldsymbol{\Lambda}$ (1405)
- Monte Carlo generated with PDG values of mass, width

example of fit to lineshape

reaction:

$$
\begin{aligned}
\gamma+p \rightarrow K^{+} & +\Lambda(1405) \\
& \rightarrow \Sigma^{+}+\pi^{-} \\
& \rightarrow n+\pi^{+}
\end{aligned}
$$

\Rightarrow after fitting with the above templates, we subtracted off contributions from the $\Sigma(1385), \Lambda(1520), K^{* 0}$, and assigned the remaining contribution to the $\Lambda(\mathbf{1 4 0 5})$.

acceptance correction

- after subtracting background contributions, we are left with "residual" spectrum
- to correct for dependence of the lineshape on acceptance, we have calculated the acceptance as a function of lineshape
- our lineshape results are summed over the \boldsymbol{t} bins in each energy bin

results of lineshape after acceptance correction

different lineshapes for each $\boldsymbol{\Sigma} \boldsymbol{\pi}$ decay mode

- lineshapes do appear different for each $\boldsymbol{\Sigma} \boldsymbol{\pi}$ decay mode
- $\Sigma^{+} \pi^{-}$decay mode has peak at highest mass, most narrow

results of lineshape after acceptance correction

different lineshapes for each $\boldsymbol{\Sigma} \boldsymbol{\pi}$ decay mode

- lineshapes do appear different for each $\boldsymbol{\Sigma} \boldsymbol{\pi}$ decay mode
- $\Sigma^{+} \pi^{-}$decay mode has peak at highest mass, most narrow

results of lineshape after acceptance correction

different lineshapes for each $\boldsymbol{\Sigma} \boldsymbol{\pi}$ decay mode

- lineshapes do appear different for each $\boldsymbol{\Sigma} \boldsymbol{\pi}$ decay mode
- $\Sigma^{+} \pi^{-}$decay mode has peak at highest mass, most narrow

theory prediction from chiral unitary approach

$$
\begin{aligned}
& \frac{d \sigma\left(\pi^{+} \Sigma^{-}\right)}{d M_{I}} \propto \frac{1}{2}\left|T^{(1)}\right|^{2}+\frac{1}{3}\left|T^{(0)}\right|^{2}++\frac{2}{\sqrt{6}} \operatorname{Re}\left(T^{(0)} T^{\left.()^{*}\right)}\right)+O\left(T^{(2)}\right) \\
& \frac{d \sigma\left(\pi^{-} \Sigma^{+}\right)}{d M_{I}} \propto \frac{1}{2}\left|T^{(1)}\right|^{2}+\frac{1}{3}\left|T^{(0)}\right|^{2}-\frac{2}{\sqrt{6}} \operatorname{Re}\left(T^{(0)} T^{\left.()^{*}\right)}\right)+O\left(T^{(2)}\right) \\
& \frac{d \sigma\left(\pi^{0} \Sigma^{0}\right)}{d M_{I}} \propto \quad+O\left(T^{(2)}\right)
\end{aligned}
$$

J. C. Nacher et al., Nucl. Phys. B455, 55

- $\Sigma^{-} \pi^{+}$decay mode peaks at highest mass, most narrow
- difference in lineshapes is due to interference of isospin terms in calculation ($\boldsymbol{T}^{(\boldsymbol{I})}$ represents amplitude of isospin I term)

differential cross sections

- summing over the lineshape gives differential cross section
- $\boldsymbol{\Lambda}(\mathbf{1 5 2 0})$ serves as a check of systematics
- at lower energies where lineshapes differ, differences in $\frac{\mathrm{d} \sigma}{\mathrm{d} t}$ are observed

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left[\mu b / \mathrm{GeV}^{2}\right] \text { for } 2.050<W<2.150(\mathrm{GeV})
$$

$\Lambda(1405)$

$\Lambda(1520)$

differential cross sections

- summing over the lineshape gives differential cross section
- $\boldsymbol{\Lambda}(\mathbf{1 5 2 0})$ serves as a check of systematics
- at lower energies where lineshapes differ, differences in $\frac{\mathrm{d} \sigma}{\mathrm{d} t}$ are observed

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left[\mu b / \mathrm{GeV}^{2}\right] \text { for } 2.350<W<2.450(\mathrm{GeV})
$$

$\underline{\Lambda(1405)}$

$\Lambda(1520)$

differential cross sections

- summing over the lineshape gives differential cross section
- $\boldsymbol{\Lambda}(\mathbf{1 5 2 0})$ serves as a check of systematics
- at lower energies where lineshapes differ, differences in $\frac{\mathrm{d} \sigma}{\mathrm{d} t}$ are observed

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left[\mu b / \mathrm{GeV}^{2}\right] \text { for } 2.750<W<2.840(\mathrm{GeV})
$$

$\Lambda(1405)$

$\underline{\Lambda(1520)}$

J^{P} of $\Lambda(1405)$

no previous direct experimental evidence for the spin and parity of the $\Lambda(1405)$ (PDG assumes $1 / 2^{-}$) How do we measure these quantities?

- $\boldsymbol{s p i n}$ - measure distribution into $\boldsymbol{\Sigma} \boldsymbol{\pi}$
- flat distribution is best evidence possible for $J=1 / 2$
- parity - measure polarization of $\boldsymbol{\Sigma}$ from $\Lambda(1405)$
- Polarization direction as a function of $\boldsymbol{\Sigma}$ decay angle will be determined by J^{P} of $\boldsymbol{\Lambda}(\mathbf{1 4 0 5)}$

determination of spin of $\Lambda(1405)$

fits to $J=\frac{1}{2}$ and $J=\frac{3}{2}$
distributions done to

- $\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$
- $\Sigma(1385) \rightarrow \Lambda \pi^{0}$
- $\mathbf{3}$ bins of W centered at $2.6,2.7,2.8 \mathrm{GeV}$ with forward \boldsymbol{K}^{+}angles
- selected region has kinematic
 separation from $K^{* 0}$ bg

> with $J=3 / 2$ fit, $\chi^{2} /$ ndf is reduced for $\Sigma(1385)$, but almost no reduction for $\Lambda(\mathbf{1 4 0 5})$

determination of spin of $\Lambda(1405)$

fits to $J=\frac{1}{2}$ and $J=\frac{3}{2}$
distributions done to

- $\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$
- $\Sigma(1385) \rightarrow \Lambda \pi^{0}$
- 3 bins of W centered at $2.6,2.7,2.8 \mathrm{GeV}$ with forward \boldsymbol{K}^{+}angles
- selected region has kinematic
 separation from $\boldsymbol{K}^{* 0} \mathrm{bg}$
with $J=3 / 2$ fit, $\chi^{2} /$ ndf is reduced for $\Sigma(1385)$, but almost no reduction for $\Lambda(1405)$
\Rightarrow best possible evidence for $J=1 / 2$

determination of parity

polarization of $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$ in direction \perp to production plane is measured

- $\boldsymbol{W}=2.6 \mathrm{GeV}$
- forward \boldsymbol{K}^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\alpha=-\mathbf{0 . 9 8}$

determination of parity

polarization of $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$ in direction \perp to production plane is measured

- $\boldsymbol{W}=2.6 \mathrm{GeV}$
- forward \boldsymbol{K}^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\boldsymbol{\alpha}=\mathbf{- 0 . 9 8}$
 polarization does not change with $\boldsymbol{\Sigma}^{+}$angle $\left(\boldsymbol{\theta}_{\boldsymbol{\Sigma}}{ }^{+}\right)$

determination of parity

polarization of $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$ in direction \perp to production plane is measured

- $\boldsymbol{W}=2.6 \mathrm{GeV}$
- forward \boldsymbol{K}^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\alpha=-\mathbf{0 . 9 8}$

polarization does not change with $\boldsymbol{\Sigma}^{+}$angle $\left(\boldsymbol{\theta}_{\boldsymbol{\Sigma}^{+}}\right)$

$$
\Rightarrow J^{P}=1 / 2^{-} \text {is confirmed }
$$

determination of parity

polarization of $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$ in direction \perp to production plane is measured

- $\boldsymbol{W}=2.6 \mathrm{GeV}$
- forward \boldsymbol{K}^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\alpha=-\mathbf{0 . 9 8}$

polarization does not change with $\boldsymbol{\Sigma}^{+}$angle $\left(\boldsymbol{\theta}_{\boldsymbol{\Sigma}}{ }^{+}\right)$

$$
\Rightarrow J^{P}=1 / 2^{-} \text {is confirmed }
$$

furthermore, this measured Σ^{+}polarization is the $\Lambda(1405)$ polarization

determination of parity

polarization of $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$ in direction \perp to production plane is measured

- $\boldsymbol{W}=\mathbf{2 . 6} \mathrm{GeV}$
- forward \boldsymbol{K}^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\alpha=\mathbf{- 0 . 9 8}$

polarization does not change with $\boldsymbol{\Sigma}^{+}$angle $\left(\boldsymbol{\theta}_{\boldsymbol{\Sigma}+}\right)$

$$
\Rightarrow J^{P}=1 / 2^{-} \text {is confirmed }
$$

furthermore, this measured Σ^{+}polarization is the $\Lambda(1405)$ polarization $\Rightarrow \Lambda(1405)$ is produced with $\sim 40 \%$ polarization

conclusion

- high statistics measurement of $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$ photoproduction has been done with CLAS at Jlab
- difference in lineshape for different decay modes has been observed
- difference in cross section for different decay modes has been observed
- spin and parity are experimentally established for the first time
- as a bonus, polarization of $\Lambda(1405)$ is found to be $\sim 40 \%$ at $W \sim 2.6 \mathrm{GeV}$, forward K^{+}angles
\Rightarrow best evidence to date of possible deviation from a simple $q q q$-structure.

