
Nuclear Physics B95 (1975) 347-356 

0 North-Holland Publishing Company 

COMPLETE EXPERIMENTS IN PSEUDOSCALAR PHOTOPRODUCTION 

I.S. BARKER and A. DONNACHIE 
Department of Physics, University of Manchester 

J.K. STORROW 
Department of Physics, University of Manchester and Daresbury Laboratory 

Received 21 April 1975 

Necessary and sufficient conditions are derived for three double polarisation measure- 

ments to complement cross section and single polarisation measurements in pseudoscalar 

meson photoproduction to enable amplitudes to be determined up to discrete ambiguities. 

Rules for choosing two further measurements to resolve the discrete ambiguities are given 

and practical applications of the rules to particular reactions are discussed. 

1. Introduction 

There have been many investigations, both theoretical and experimental, of 
pseudoscalar meson photoproduction off nucleons. In recent years there has been a 
large increase in polarisation information, by using both polarised beams and polar- 
ised targets and by measuring recoil polarisations. For example in the reaction 
yp + nap we now have data on differential cross sections, do/dt, linearly polarised 
photon asymmetries, Z, recoil baryon polarisations, P, and polarised target asymme- 
tries, T *. Proposals have been made to carry out measurements of double polarisa- 
tion parameters by the simultaneous use of a polarised beam and a polarised target 
[3]. It is well known that we need 7 measurements to determine the amplitudes up 
to an overall phase and up to discrete ambiguities. It is clearly of interest to be able 
to decide whether a given set of three double polarisation measurements will enable 
an amplitude analysis to be carried out when taken in conjunction with do/dt, T, P 
and X. There is confusion in the existing literature on this point. In a recent publi- 
cation Goldstein et al. [4] give a set of rules for deciding whether a set of seven 
measurements give complete information **. Their rules are in contradiction with 
earlier work by Worden [5] in that it appears from ref. [4] that one can obtain a 
complete set of measurements with a polarised target and polarised beams. Worden 
[5] claims that this is not so, but does not give any prescription for obtaining a 
complete set. Other work [6] on the subject is incomplete. To clarify this situation 

* See ref. [l] for a list of high-energy data and ref. [2] for low-energy data. 

** As always, up to quadrant ambiguities. 
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we have derived necessary and sufficient conditions for three double polarisation 
measurements to complement the information given by da/dt, P, Z and T. (These 
four measurements we call the set S.) The conditions can be stated as follows. 

There are twelve double polarisation measurements which give new information. 
In addition double polarisation measurements using a target polarised perpendicular 
to the reaction plane or measuring recoil polarisation perpendicular to the reaction 
plane are equivalent to single polarisation measurements. The twelve new measure- 
ments can be divided into three sets of  four, the sets being characterised as beam- 
target (BT), target-recoil (TR) and beam-recoil (BR) with obvious connotations. 
Then a necessary and sufficient condition that three measurements give complete 
information up to an overall phase and up to discrete ambiguities when taken to- 
gether with do/dt, E, P and T is that the three measurements are not all taken from 
the same set. 

To eliminate the discrete ambiguities we show that two further measurements 
will suffice, provided that of  the five double polarisation measurements performed, 
no four come from the same set 

In sect. 2 we give the formalism necessary for deriving our results, in sect. 3 we 
give a proof of  our main result, in sect. 4 we discuss discrete ambiguities and in sect. 
5 we discuss implications. 

2. Formalism 

Although the result can be stated economically without any formalism to derive 
it we must define amplitudes. It turns out that the derivation in terms of  transvers- 
ity amplitudes is both transparent and instructive. We first define s-channel helicity 
amplitudes N, S1, S 2 and D as in a previous paper [1] where N is a no-flip amplitude 
S 1 and S 2 single-flip amplitudes and D a double flip amplitude. We then define the 
following transversity amplitudes *" 

b 1 = ~ [ ( S I + S 2 ) + i ( N - D ) ] ,  b 3 = ~ [ ( S 1 - S 2 ) - i ( N + D ) ] ,  

b 2 = ~ [ ( S I + S 2 ) - i ( N - D )  ], b 4 = ~ [ ( S 1 - S 2 ) + i ( N + D ) ] .  (1) 

To define our axes we adopt the usual Basel convention with the z-axis being the 
beam direction and the y axis the normal to the reaction plane (fig. 1). The z' axis 
is in the direction of  the scattered meson. We now define the sixteen observables in 
terms of both helicity and transversity amplitudes in table 1. The precise relation 
between observables and the experiments we consider is as follows. 

* bl, b2, b3 and b 4 are Von Gehlen's [7] Y+, Y_, X+ and X__ respectively apart from a factor. 
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Fig. 1. Definition of axes. lf  k is the incoming pho ton  m o m e n t u m a n d  q the outgoing mesonmo-  
m e n t u m ( b o t h  in the c.m. sy s t em ) then  the axes are defined by 

z=k/Ik[, y =k×q/Ik×ql, x =y×z,  
z'= q/Iql, y '=y,  x '=y  ×z'. 

Table 1 
Observables 

Usual Helicity Transversity Experiment  Type 
symbol representat ion representat ion required a) 

do/dt 

X da/dt 

Tdo/dt 

Pdo/dt 

INI2+ ISll2+1S212+1DI 2 

2Re(S~S2 - ND*) 

2lrn(Sl N* - S2D* ) 

21m(S2N* - S1D*) 

-21m($1S2 * + ND*) 
-2 Im(S1D* + $2 N*)  
IS2I 2 - IS l l  2 - ID[2+  IN[ 2 

2Re(S2D* + S I N * )  

G d a / d t  

Hdo/dt 
Edcr/dt 

Fde/dt 

Ib l12 + lb212 + lb a12 + lb 412 

Ibl12 + Ib2[ 2 - Ib312 - Ib412 

Ibll 2 -tb212 -Ib312 + Ib412 

Ibll 2 -Ib212+ [b312 - Ib4[  2 

2Im(blb~  + b2b4*) 
- 2 R e ( b i b 3 *  - b2b4*)  

- 2 R e ( b l b 3 *  + b2b4*)  

2 I m ( b l b 3 *  - b2b4* ) 

~- ;  - ;  - )  

(L~½.,o); -; -)  
(-;y;y) 
(-;?,; -) 
(L(~,~,o); O;y) 
( - ; - ; y )  
(L(~Tr,0); y ; - )  

(L~_+~.);z;-) 
(te-,~,O; x; - )  
(c;z;-) BT 

Oxdo/dt - 2 I m ( S 2 D *  + SIN*) - 2 R e ( b i b 4 *  - b2b3*)  (L(-+-ln); - ; x ' }  

Ozda/dt - 2 I m ( $ 2 S 1 "  +ND*) - 2 l m ( b l b 4 *  + b2b3* ) (L(+-llr); - ; z ' )  

Cxdu/dt -2Re(S2N* + SID*)  2I ra(b ib4* - b2b3*)  {c; - ;  x ' )  

Czdo/dt IS212-1Sll2-~12+1DI 2 -2Re(blb4 * + b2b3 *) ( c ; - ; z ' )  
Txda/dt 2Re(S1S 2 * + ND*) 2Re(b ib  2 .  - bab 4.) (-; x; x ' )  
Tzdo/dt 2Re(S]N*-S2D*) 2Im(blb2*-b3b4*) ( - ; x ; z ' )  
Lxda/dt 2Re(S2N* - S1D*) 2 Im(b lb2*  + b3b4*)  ~ - ;  z; x ' )  
Lzda/dt ISI[2.~IS212-1NI2-IDI 2 2Re(blb2 * + bab4* ) ( - ;  z; z ' )  

BR 

TR 

a) Notat ion is (P3'; PT; PR ) where: 
P3' = polarisation of  beam, L(O) = beam linearly polarised at angle 0 to scattering plane, 
C = circularly polarised beam; 
PT = direction of target polarisation; 
PR = componen t  of  recoil polarisation measured. 
In the case of the single polarisation measurements  we also give the equivalent double 

polarisation measurement.  
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Polarised beam - polarised target [5] 

do _ da {1 - PT ~ cos(2~b) 
dt dt tlnpolarised 

+ Px [--PT H sin (2~b) + P~,F] - Py [ - T  + PT P cos (2~b)] (2) 

- Pz [--PT G sin (2~b) +P®E]), 

where (Px, Py, Pz) is the polarisation of  the target, PT is the transverse polarisation 
of  the beam at an angle ~b to the reaction plane and P® is the degree of  right circular 
polarisation of  the beam. 

Beam-recoil [8/  

do do unpolarised (1 +OyP-PTCOS(2~) (~ + oyT) Pfd-t- =a t -  

- PT sin (2¢) (Oxo x + Ozaz) -- P®(Cxa x + Czaz)}. (3) 

Target-recoil [8] 

do do t 
Pf d-t = -d-f unpolarised {1+ OyP + Px(TxO x + TzOz) 

+ Py(T + EOy) - Pz(LxOx - LzOz)} , (4) 

pf = ½(/+ o -  el), (5) 

where pf is the density matrix of the recoil nucleon, and Pf is its polarisation. 
Since we can obtain all bilinear products of  amplitudes bi* bj froni the 16 ob- 

servables given we see that complete information can be obtained without measur- 
ing a triple polarisation*. For this reason we do not consider such experiments. 

3. P r o o f  

We are now in a position to prove our results. If  we measure the set S then we 
can immediately obtain the moduli r i = Ibil of the transversity amplitudes. Now we 
require a condition that three measurements give us their relative phases, ¢i" 

The necessity of  our condition can be seen trivially from table 1. Let us consider 
the set BT for definiteness. If  we measure three (or indeed four) from this set then 
we have equations of  the form 

rlr3 Sincos,l (~b 1 - ~b3) +_ r2r 4 Sincos, ~ (q~2 - ~b4) =K,  (6) 

¢i This is a special case of the general result proved by Simonius [9]. 
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where K isknown. Solving these equations gives (~b 1 ~b3) and (t~2 - ~b4) but n o  more .  

Therefore our condition is necessary, since the cases BR and TR are similar. 
One can see this in another way. Of the eight quantities of  sets S and BT only s ix  

are independent since there are two constraint equations [5] 

E 2 + F  2 + G  2 + H  2 = 1 + P 2 - ~ 2 - - T  2, (7) 

F G  - E H  = P - T '£ .  (8) 

To prove the sufficiency is equally straightforward but requires a rather tedious 
enumeration of possibilities. However it can be shown that any three observables not 
all of  the same group enable the relative phases to be calculated by solving the rele- 
vant trigonometric equations. This can easily be seen by inspecting the appropriate 
Jacobian. 

I f  the three measurements are taken from three different sets then, taking q~i, ~bj 
and ~b k as independent variables, the Jacobian has the form 

J =  Tik T/. k , (9) 

T;t T,k -r,k 
where 

Ti] = + 2rir] smCgS) ~ (~i - ~ / ' ) '  (10) 

and t, L k and I are all different. It is obvious from the position of the trigonometric 
functions of  q~l that the determinant is non-zero. 

In the case where two of the measurements are from the same set the Jacobian 
is 

v/t 
_ T  ~ 

0" 

t . . ° t t where Ti] is also of  the form given m eq. (10). By realising that if Ti] -- Ti] hen 
T k l  = - - T ~ l  and v ice  versa  the determinant can be easily shown to be non-zero. 
This completes the proof. 

An interesting consequence of this result is that in order to obtain complete in- 
formation one must use a polarised target, polarised beam and measure a recoil 
polarisation all in double polarisation experiments. However one can avoid measur- 
ing any one of  them in a single polarisation measurement by doing the appropriate 
double polarisation experiment out of  the scattering plane. In fact doing all pos- 
sible experiments with beam and/or target polarised perpendicular to the scattering 
plane (or not polarised at all) and measuring the component  of  recoil polarisation 
out of  the scattering plane is equivalent to measuring the set S. This is well-known 
property of  transversity amplitudes. 

(11) 
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Our results disagree with those of  Goldstein et al. [4]. We feel that their approach 
which involves listing the constraints satisfied by the observables is rather dangerous 
in that one can easily overlook a constraint. This is especially so in the case of  con- 
straints on the amplitude phases which appear to be highly non-linear and compli- 
cated when written in terms of  measurable quantities. 

4. Quadrant  ambigui t ies  

If  we carry out three double polarisation measurements according to our pres- 
cription then in general we are left with a discrete eightfold ambiguity. This arises 
because we are solving three trigonometric equations and each has a twofold ambi- 
guity in its solution. To determine the amplitudes uniquely (up to an overall phase, 
of course) then we must carry out further measurements. We have proved the fol- 
lowing rather surprising result. 

In order to determine the amplitudes uniquely then one must make five double 
polarisation measurements in all, provided that no four of  them come from the 
same set. 

Our proof of  this statement involves another tedious though elementary enumer- 
ation of  possibilities, and we do not give it here. However we give an example which 
we feel illustrates the principles involved. The case we consider is where we have 
satisfied the criterion of  sect. 3 by measuring G, F and L x. We can now solve for 
(~bl - ~b3), (~2 - ~b4) and (q~l - q~2) obtaining the solutions 

~13 = °t13 or rr - ot13 , 

q~24 = °t24 or 7r - ot24 , 

~ 1 2 - ~  =3' or 7 r - 7 ,  

where we have defined 

~bii = ~b i - ~bj, (12) 

1 G + F  
sin (ot13) = ~ rlr----- ~ , (13) 

1 G - F  
sin (ot24) = ~ r2----~- 4 , (14) 

r3r 4 sin (¢13 -- ~24) 

tan ~ )  = rlr2 + r3r4 cos (~b13 - ~b24 ) ' (15)  

½ Lx 
= . ( 1 6 )  

sin (7) [r12~ + r33r42 + 2rlr2r3r 4 cos (~b13 - ~24)] 
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If  we now measure E = - 2  [ r l r  3 cos (¢13) + r2r4 cos (¢24)] then we solve both 
the ¢13 and  the ~b24 ambiguities since all four choices give different predictions for 
E in general. This leaves us with an ambiguity between 

¢12=~ '+/3  or ¢ 1 2 = 7 r - 7 + / 3 ,  (17) 

where 7 and/3 are now known unambiguously. We must measure any other  observ- 
able except H, which provides no further information since it depends only on ¢13 
and 424" Another  way to see this is to note that if we know T, P, ~, F, G and E then 
H is given uniquely by  eq. (8). To see that any other measurement will resolve the 
ambiguity one must examine all the possibilities. L z measures cos (¢12 - /3)  and ob- 
viously resolves the ambiguity. T x and T z measure cos (¢12 - / 3 ' )  and sin (412 - t3') 
where 

r3r 4 sin (¢13 - ¢24) 

tan (/3') - r l r2  _ r3r4 cos (¢13 - ¢24)" (18) 

Therefore if we measure (say) T z we have 

412 = ~' +/3' or lr -- 7' +/3', (19) 

where 

sin (7 ')  - (20) 
2 2 + r 2 ~  _ 2 r l r 2 r 3 r  4 cos (413 - ¢24 ) ' r 1 r 2 

and since 7' 4 : 7  and/3' 4:t3 in general* only one solution of  eq. (19) will coincide 
with that of  eq. (17) and so the ambiguity is resolved. 

sm (¢ _/3,,} /3. Measuring an observable from the set BR would give cos 12 where is 
yet  another function of  413 and q~24 and so the ambiguity is resolved as before. 

It is easy to see that all cases can be solved in exactly the same way, and that one 
obtains unique amplitudes by measuring any five double polarisation observables, 
provided four are not  from the same set. The complete proof  of  this is exceedingly 
tedious and we do not  give it here. We have included the above example as an illu- 
stration of  the method of  proof. 

Our results differ from those of  Goldstein et al. [4] who claim that three measure- 
ments are necessary to solve the ambiguities in addit ion to the seven necessary to ob- 
tain the amplitudes up to the ambiguities. This is perhaps what one would naively 
expect as we have three twofold ambiguities. However, they do not  give a proof  or 
even an example of  this, and, as we have seen, one measurement can resolve t w o  

twofold ambiguities. 

* It is of course possible that there is an accidental equality between ~3 and/3' and then the ambi- 
guity would not be resolved. 
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5. Discussion 

We conclude with a few remarks on experiments concerning particular reactions. 
(a) 3'P -+ n0P. Here it is difficult to measure a recoil polarisation since it involves 

a rescattering. In obtaining P this can be avoided (and has been) by measuring 
{L(~-Tr, 0 ) ;y ;  0}. Thus one can obtain d~/dt, ~, T, P, G and H *  without measuring 
a recoil. To obtain a complete set one must measure any component of  recoil polari- 
sation in the x z  plane with either a target polarised in the xz  plane or a beam either 
circularly polarised or linear polarised at an angle ~Tr to the reaction plane and any 
such**measurement would suffice. However the component of  recoil polarisation 
in the z '  direction is not measurable by rescattering. 

(b) 7P -~ K ÷A- In this case the decay of the A gives all three components of recoil 
polarisation. Thus in this case one would avoid the set BT and do any three measure- 
ments from TR and BR though not all from the same set. 

( c ) ) 'p  ~ n+n. Since some measurement of  recoil polarisation in a double polarisa- 
tion experiment is required, it would appear that the difficulty of  rescattering experi- 
ments for neutrons would rule out the possibility of  amplitude analysis in this reac- 
tion. 

(d) 3'n ~ 7r-p. This is same as (a) with the additional difficulties of  using a polar- 
ised deuterium target. 

Any other practical case can be studied by a simple application of  our rules. 
The above discussion shows which experiments are in principle necessary to per- 

form an amplitude analysis. However not all such experiments are equally practicable 
There may be difficulties due to the smallness of  the asymmetry that is to be 

measured. In this case bounds can be very useful in deciding which experiment to 
do. The subject of  bounds has been studied in some detail by Goldstein et al. [4]. 
In terms of  the classes we have defined the bounds have a certain symmetry. There 
are the following bounds within the set S. 

Ie + / I ~ < I + - Z ,  I T + ~ I < ~ I + - P ,  [e +-ZI~<I+-T.  (21) 

Also all double polarisation observables are bounded by the set S as follows 

IXBT[ ~< min ( ~ ,  X/1 -- T2), 

where 

XBT = G, H, E or F; 

IXBRI ~< min ( ~ ,  x / 1 Z ~ } ,  

* Or E and F with a circularly polarised beam. 
** Any measurement from set TR or BR. 
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where 

XBR = Ox, Oz, C x or Cz; 

[XTRI ~< min ( X / i - 7 ~ ,  X/1 -- T2}, 

where 

X T R = T  x,  T z , L  x or L z. (22) 

In addition, if one double polarisation has already been measured then the follow- 
ing more stringent bounds between two observables of  a given set and the set S, are 
useful. 

max ((G 2 + E2), (H 2 + F2), (G2+ H2), (E2+ F2)} ~< min {(1-232), (1- T2)}, 

max((O2+O2), C2+C 2 2+ 2 ( x z) '  (Ox C~), (O2+Cz2)} ~< min{(1-Z2) ,  ( l - p 2 ) } ,  

max{ (T2x+T2z ) , (L2+L2) , (T2x+L2x) , (T2+L2) )<~min{ (1 -p2) , (1 -T2)} .  (23) 

max {[G + FI, IE + HI} ~< 1 + P, 

max(IT z +Lxl ,  IT x + Lzl}  <~ 1 + £ ,  

max([O x + Cz[, ]0 z =~ Cxl} <. 1 + T. (24) 

These bounds (and many more) are easy to prove, particularly using transversity 
amplitudes. To our knowledge the bounds (23) have not been noted before. 

These bounds can be very useful if a particular asymmetry is near 1. For example, 
at high energies the four reactions discussed above all have the polarised beam asym- 
metry 23 near 1 and so quantities bounded by 1 - 23 or x/1 - 232 are very restricted. 

To resolve quadrant ambiguities our rules indicate which measurements are suffi- 
cient in principle. However in practice the possibility of  accidental degeneracy (or 
near degeneracy) of  predictions of  the different solutions might make a choice diffi- 
cult. This might happen if a quantity is severely bounded by quantities already mea- 
sured. The easiest way to resolve this is to predict all the observables for each solu- 
tion and to see which measurements allow the clearest choice between solutions. 

Finally we remark that although the problem of obtaining the seven measure- 
ments needed to determine the amplitudes if not all measurements of  the set S are 
included is of  only mathematical interest nevertheless sufficiency conditions can be 
determined by a generalisation of  our method. This involves selecting a set S' of  
four measurements required to determine the moduli of  a new set of  amplitudes. 
For instance if we use helicity amplitudes than the set S' consists of  do/dt,  E, C z 
and L z,  and we can then divide the remaining twelve measurements into three clas- 
ses of  four according to which amplitudes interfere. Our results can then be trivially 
generalised. 
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