Measurement of beam and target polarization observables in $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$ using the CLAS spectrometer at Jefferson Lab.

Sungkyun Park on the behalf of CLAS Collaboration

Florida State University

May 27, 2013

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

Introduction

• Why is $\pi^+\pi^-$ photoproduction needed ?

FROST Experiment

The Frozen-Spin Target (FroST)

Data Analysis

- Kinematic variables
- Previous measurements
- Basic event selection

The Preliminary Results

- Polarization Observable I^O
- Q-factor method : Event-based background subtraction
- Polarization Observable Pz
- Polarization Observable P^o_z

Why is $\pi^+\pi^-$ photoproduction needed? Why is $\pi^+\pi^-$ photoproduction needed?

- Search for new baryon states that are predicted by quark models to decay strongly to $\Delta \pi$ and p ho.
- The most biggest cross section contribution is from double pion production, especially (γ , $\pi^+ \pi^-$), in the second resonance region
- Polarization observables are important in the resonance extraction from data.

NStar 2013 at Peniscola

FROST Experiment The Frozen-Spin Target (FroST)

The Frozen-Spin Target (FroST)

High magnetic field (5 T)

(a) The longitudinal holding magnet. (0.56 T) (g9a : Nov. 2007 - Feb. 2008)

- $\diamond~$ Average target polarization \sim 82 % (+Pol) and 85 % (-Pol)
- (b) The transversal holding magnet. (0.50 T) (g9b : March 2010 - August 2010)
- (c) The polarizing magnet. (5 T)

28 mK (w/o beam) and 30mK (w/ beam)

・ 同 ト ・ ヨ ト ・ ヨ

Photoproduction of $\pi^+\pi^-$ off the proton: Kinematics

• The π^+ π^- photoproduction requires 5 independent variables.

Data Analysis Kinemat

Kinematic variables

The differential cross section for $\gamma p \rightarrow p \pi^+ \pi^-$

The differential cross section for $\gamma p \rightarrow p \pi^+ \pi^-$

(without measuring the polarization of the recoiling nucleon)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_{i}} = \sigma_{0}\left\{\left(\mathbf{1} + \vec{\Lambda}_{i} \cdot \vec{\mathbf{P}}\right) + \delta_{\odot}\left(\mathbf{I}^{\odot} + \vec{\Lambda}_{i} \cdot \vec{\mathbf{P}}^{\odot}\right)\right\}$$

+ δ_{l} [sin 2 β (l^s + $\vec{\Lambda}_{i} \cdot \vec{P}^{s}$) + cos 2 β (l^c + $\vec{\Lambda}_{i} \cdot \vec{P}^{c}$)]}

- σ_0 : The unpolarized cross section
- β : The angle between the direction of polarization and the x-axis
- x_i : The kinematic variables
- $\delta_{\odot,I}$: The degree of polarizaton of the photon beam $\Rightarrow \delta_{\odot}$, and δ_{I}
- $\vec{\Lambda}_i$: The polarization of the initial nucleon $\Rightarrow (\Lambda_x, \Lambda_y, \Lambda_z)$
- $I^{\odot, s, c}$: The observable arising from use of polarized photons $\Rightarrow I^{\odot}, I^{s}, I^{c}$
- \vec{P} : The polarization observable \Rightarrow (P_x , P_y , P_z) (P_x^{\odot} , P_y^{\odot} , P_z^{\odot}) (P_x^s , P_y^s , P_z^s) (P_x^c , P_y^c , P_z^c) 15 Observables

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Previous measurements

The data used for this analysis :

- 1. circularly-polarized beam
- Iongitudinally-polarized target

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}x_{i}} &= \sigma_{0} \left\{ \left(\mathbf{1} + \mathbf{\Lambda}_{z} \cdot \mathbf{P}_{z} \right) \right. \\ &+ \delta_{\odot} \left(\mathbf{I}^{\odot} + \mathbf{\Lambda}_{z} \cdot \mathbf{P}_{z}^{\odot} \right) \end{aligned}$$

I [☉] : Phys.Rev.Lett. 103, 052002

I [☉] : Phys.Rev.Lett. 95, 162003 (2005, CLAS Collaboration)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

P 😳 : Eur.Phys.J. A 34, 11-21 (2007, GDH Collaboration)

- The helicity-dependent total cross-section difference

$$\Delta \sigma = (\sigma_{3/2} - \sigma_{1/2})$$

Sungkyun Park (Florida State University)

NStar 2013 at Peniscola

May 27, 2013 7/25 Data Analysis

Basic event selection

Basic event selection

The kinematic fitting

Basic Cuts

photon selection

: | Δt | < 1.2 ns

- proton selection

 $|\Delta \beta| < 0.032$

pion selection

 $|\Delta \beta| < 0.044$

vertex cut (Butanol)

: | Zvertex | < 3 cm

accidental cut

: one photon selection

cofidence-level cut
 : CL-cut > 5 %

Corrections

イロト イポト イヨト イヨト

- Energy-loss correction
- Photon-energy correction
- Momentum correction

Sungkyun Park (Florida State University)

Polarization observable I^{\odot}

(4) (3) (4) (4) (4)

A 1

Polarization Observable I C

Polarization observable 1^o

$$\mathbf{I}^{\odot}(\mathbf{W}, \phi_{\pi^{+}}) = \frac{1}{\overline{\delta}_{\odot}(\mathbf{W})} \frac{\left\{ N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} - N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} \right\}}{\left\{ N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} + N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} \right\}}$$

- $\delta \overline{\delta}_{\odot}(W)$: The average degree of the photon beam polarizations
- $\diamond \rightarrow (\leftarrow)$: the direction of the beam polarization is parallel (anti-parallel) to the beam.
- Beam-helicity asymmetry for the unpolarized target and circularly-polarized photon beam

- Topology : $\gamma p \rightarrow p \pi^+(\pi^-)$
- $\theta_{\text{c.m.}}, \phi_{\pi^+}, \theta_{\pi^+}, M_{\pi^+ \pi^-}$ are integrated over.

Using the 5 % Confidence Level Cut

There are still an effect of background events

Polarization Observable I ©

The background effect in Beam-Helicity Asymmetry I^o

- Butanol data are composed of
 - free-proton data
 - bound-nucleon data & background data
- After applying CL-cut, there are still bound-nucleon and background events.
- These bound-nucleon and background events have a small influence on the beam asymmetry.

3 > 4 3

Polarization Observable I ©

Check the symmetry of polarization observable I^o

• Kinematic variables $\theta_{c.m.}$, θ_{π^+} , $M_{\pi^+\pi^-}$ are integrated over.

• Butanol(
$$2\pi - \phi$$
): $-I^{\odot}(2\pi - \phi)$

Sungkyun Park (Florida State University)

The Preliminary Results Polarization Observable I[☉] Beam-Helicity Asymmetry I[☉] with the published data

● I[☉]: Phys.Rev.Lett. 95, 162003 (2005, CLAS Collaboration)

Sungkyun Park (Florida State University)

NStar 2013 at Peniscola

Q-factor method

- The Q-factor method is used to subtract background (developed at CMU, arXiv:0804.3382v1):
 - The Q-factor is an event-based quality factor which describes the ratio of hydrogen signal to butanol signal, i.e. an event-based dilution factor.
- From the butanol ($C_4 H_9 OH$) data, the free proton data is extracted on an event-by-event basis. No overall dilution factor is necessary.
- A comparison between an event-based method and the method for overall background subtraction

Sungkvun Park (Florida State University)

The Preliminary Results Q-factor

Q-factor method : Event-based background subtraction

Beam-Helicity Asymmetry I^o with models

- FSU-model calculated by Winston Roberts
- A.Fix-model calculated by Alexander Fix (Eur. Phys. J. A 25, 115-135, 2005)

Polarization observable Pz

Sungkyun Park (Florida State University)

NStar 2013 at Peniscola

May 27, 2013 17 / 25

A 1

∃ ► <

Polarization observable Pz

$$\mathbf{P}_{\mathbf{Z}}(\mathbf{W}, \phi_{\pi^{+}}) = \frac{1}{\overline{\Lambda}_{\mathbf{Z}}(\mathbf{W})} \frac{\left\{ N(\Rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{target} - N(\Leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{target} \right\}}{\left\{ N(\Rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{target} + N(\Leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{target} \right\}}$$

 $\land \overline{\Lambda}_{Z}(W)$: The average of the degree of the target polarizations

 $\diamond \Rightarrow (\Leftarrow)$: the direction of the target polarization is parallel (anti-parallel) to the beam.

◇ Target asymmetry for the linearly-polarized target and unpolarized photon beam

example :

- Topology : $\gamma p
 ightarrow p \pi^+(\pi^-)$
- W: 1.60 GeV
- $\theta_{\rm c.m.}, \, \phi_{\pi^+}, \, \theta_{\pi^+}, \, M_{\pi^+ \, \pi^-}$ are integrated over.

Using the 5 % Confidence Level Cut & Q-factor method

イロト 不得 トイヨト イヨト 三日

Sungkyun Park (Florida State University)

May 27, 2013 18 / 25

Polarization Observable Pz

Check the symmetry of polarization observable Pz

• Kinematic variables $\theta_{c.m.}$, θ_{π^+} , $M_{\pi^+\pi^-}$ are integrated over.

• Butanol(wQ)(
$$2\pi - \phi$$
): $-P_z(2\pi - \phi)$

Sungkyun Park (Florida State University)

The Preliminary Results Polarization Observable Pz

Target Asymmetry P_z with models

- FSU-model calculated by Winston Roberts
- A.Fix-model calculated by Alexander Fix (Eur. Phys. J. A 25, 115-135, 2005)

Sungkyun Park (Florida State University)

Polarization observable P_z^{\odot}

Sungkyun Park (Florida State University)

NStar 2013 at Peniscola

May 27, 2013 21 / 25

 $\equiv \rightarrow$

Polarization observable **P**^o_z

$$\mathbf{P}_{\mathbf{z}}^{\odot}(\mathbf{W}, \phi_{\pi^{+}}) = \frac{1}{\overline{\Lambda}_{\mathbf{z}}(\mathbf{W}) \cdot \overline{\delta}_{\odot}} \frac{\left\{ N(\mathbf{W}, \phi_{\pi^{+}})_{3/2} - N(\mathbf{W}, \phi_{\pi^{+}})_{1/2} \right\}}{\left\{ N(\mathbf{W}, \phi_{\pi^{+}})_{3/2} + N(\mathbf{W}, \phi_{\pi^{+}})_{1/2} \right\}}$$

- $\land \overline{\Lambda}_z(W)$: The average of the degree of the target polarizations
- $\delta_{\odot}(W)$: The average of the degree of the photon beam polarizations
- ♦ Helicity Difference for the linearly-polarized target and circularly-polarized photon beam

example :

- Topology : $\gamma p
 ightarrow p \pi^+(\pi^-)$
- W: 1.60 GeV
- $\theta_{\rm c.m.}, \phi_{\pi^+}, \theta_{\pi^+}, M_{\pi^+ \pi^-}$ are integrated over.

Using the 5 % Confidence Level Cut & Q-factor method

イロト イロト イヨト イヨト 三旦

Polarization Observable P,

Check the symmetry of polarization observable P_z^o

• Kinematic variables $\theta_{c.m.}$, θ_{π^+} , $M_{\pi^+\pi^-}$ are integrated over.

• Butanol(wQ)(
$$2\pi - \phi$$
): $P_z^{\odot}(2\pi - \phi)$

Sungkyun Park (Florida State University)

Polarization Observable P,

Helicity Difference P_z^o

- FSU-model calculated by Winston Roberts
- A.Fix-model calculated by Alexander Fix (Eur. Phys. J. A 25, 115-135, 2005)

Summary

- ◊ Polarization Observable I[☉] using the FROST data is in good agreement with the previously published CLAS data.
 - The CLAS-analysis note for Observable I^o will be prepared (95 %)
 - The systematic errors used for Observable I $^{\odot}$

Contribution	ΔI^{\odot}	$\Delta I^{\odot}/I^{\odot}$
Circular polarization of photon beam		< 1.8 %
Target polarization		< 4.33 %
Electron beam-charge asymmetry	< 0.004	

- ♦ Polarization Observables P_z and P_z^{\odot} will be first-time measurements for double-pion photoproduction.
- The event-based dilution factor can separate the background from the butanol data efficiently.

A B > A B >

Back up

Sungkyun Park (Florida State University)

イロト イポト イヨト イヨ

Polarization observable I[⊙]

$$\mathbf{I}^{\odot}(\mathbf{W}, \phi_{\pi^{+}}) = \frac{1}{\overline{\delta}_{\odot}(\mathbf{W})} \frac{\left\{ N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} - N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} \right\}}{\left\{ N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} + N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} \right\}}$$

- $\delta_{\odot}(W)$: The average of the degree of the photon beam polarizations
- Az : The degree of the target polarizations
- ◇ F : The photon flux (Normalization factor between periods)
- $\diamond \rightarrow (\leftarrow)$: the direction of the beam polarization is parallel (anti-parallel) to the beam.
- $\diamond \Rightarrow (\Leftarrow)$: the direction of the target polarization is parallel (anti-parallel) to the beam.
- Output the dataset with the unpolarized target and circularly-polarized beam

$$N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} = \frac{N(\rightarrow\Rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{butanol}}{\Lambda_{z}(\Rightarrow) \cdot F(\Rightarrow)} + \frac{N(\rightarrow\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{butanol}}{\Lambda_{z}(\Leftarrow) \cdot F(\Leftarrow)}$$
$$N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} = \frac{N(\leftarrow\Rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{butanol}}{\Lambda_{z}(\Rightarrow) \cdot F(\Rightarrow)} + \frac{N(\leftarrow\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{butanol}}{\Lambda_{z}(\Leftarrow) \cdot F(\Leftarrow)}$$

Polarization Observable P,

Missing mass distribution in several CL-cuts.

The background effect in Beam-Helicity Asymmetry I^o

- The different CL-cuts have the different background effect. However, they have the similar values in the observable I^o.
- g9a dataset is not sensitive to distinguish between the beam asymmetry from free-proton, bound-nucleon and background data.

Sungkyun Park (Florida State University)

NStar 2013 at Peniscola

May 27, 2013 29 / 25