Open questions in baryon spectroscopy

Hadron 2001 Protvino, Russia

Volker Credé

- Introduction
- Experimental spectrum of N and Δ resonances
- Theoretical results of different models (in respect of)
 - Missing resonances
 - Peculiar characteristics of the Δ spectrum
 - Parity doubling
- The Crystal Barrel Experiment at ELSA in Bonn
 - Experimental setup and general conception
 - First very preliminary results
- Summary and outlook

Institut für Strahlen– und Kernphysik, Universität Bonn, D–53115 Bonn

Characteristics of the experimental spectrum

- Linear Regge trajectories
 - \rightarrow linear confinement potential
- Hyperfine structure (N- Δ mass splitting)
 - \rightarrow spin-dependent mass splittings
 - a) gluon-exchange
 - b) instanton-induced interaction
- Parity doublets

Nucleons

Theoretical models and results

First approach

Simple Quark-Oscillator Model
 → correct level ordering

Current works

- Non-relativistic quark model including one-pion exchange (Gloszman and Riska)
- *relativized* quark model (Capstick and Roberts)
- $\rightarrow \Delta \text{-Regge trajectories } (\checkmark)$ however: N-Regge trajectories not correct
- \rightarrow Wrong spin-orbit couplings
- \rightarrow No explanation for parity doublets
 - Relativistic quark model with instanton-induced forces (Kretschmer, Löring, Metsch, Petry)
- \rightarrow Acceptable Regge trajectories
- \rightarrow Natural explanation for parity doublets

Many problems still unsolved

- \rightarrow Missing resonances and Δ -resonance spectrum
- \rightarrow Decay properties of resonances

General Physical Motivation

\Rightarrow Search for missing resonances

Quark Model: more baryons predicted than observed

Possible solutions:

a) Baryons have a quark-diquark structure:

one of the internal degrees of freedom is frozen

- b) They have not been observed up to now
 Nearly all existing data result from πN-scattering experiments
 - $\Rightarrow \text{ If the missing resonances do not couple to } N\pi, \\ \text{they would not have been discovered!!} \\ (supported by theory)$

Conception of the Experiment

- Crystal Barrel Detector $\approx 4\pi$ detector for photons
- Scintillating Fibre Detector detection of charged particles leaving the target
- Possible extensions in forward direction
 - Electromagnetic Spectrometer
 - Time of Flight Detector
 - TAPS
 - Lead-Glas-Detector
 - Baryon Spectroscopy
 - Measurement of threshold cross sections of neutral mesons

Photo- and electroproduction experiments possible

Is there a symmetry in $B^* \rightarrow B\eta$ decays?

⇒ Observation: $N(1535)S_{11}$ has strong coupling to $N\eta \rightarrow Why$?

Quark model:

 $N(1535)S_{11}$ and $N(1520)D_{13}$ are approximately mass degenerate \rightarrow doublet of states with $s = \frac{1}{2}$ Quarks may also couple to $s = \frac{3}{2}$

 \Rightarrow 3 states corresponding to the observed resonances N(1650)S₁₁, N(1700)D₁₃ and N(1675)D₁₅

$s = \frac{3}{2}$	$N(1650)S_{11}$	$\mathrm{N}(1700)\mathrm{D}_{13}$	$N(1675)D_{15}$
$s = \frac{1}{2}$	$N(1535)S_{11}$	$N(1520)D_{\textbf{13}}$	

 \hookrightarrow N η

Explanations:

- Two states S_{11} have appreciable mixing ($\approx 30^{\circ}$) (N. Isgur and G. Karl, Phys. Lett. **72B** (1977) 109.)
- Phenomenological fit to baryon decays ($\approx~30^\circ)$
- Coupled ΣK -p η effect (Kaiser, Siegel and Weise) \rightarrow no genuine 3-quark resonance required
- Amplitude analysis: (G. Hoehler) no pole is needed for $N(1535)S_{11}$
- Quark-diquark structure (Glozman and Riska)

Negative parity mesons and η decays:

$s = \frac{3}{2}$	$N(1650)S_{11}$	$N(1700)D_{13}$	$N(1675)D_{15}$
$s = \frac{1}{2}$	$\rm N(1535)S_{11}$	$N(1520)D_{13}$	
	$\hookrightarrow~\mathrm{N}\eta$	$\hookrightarrow \pi^0 \pi^0 p \ (\pi^0 \pi^- n)$	
$s = \frac{3}{2}$	$\Lambda(1800)S_{01}$	$\Lambda(????)D_{03}$	$\Lambda(1830)D_{05}$
$s = \frac{1}{2}$	$\Lambda(1670)S_{01}$	$\Lambda(1690)D_{03}$	

 $\hookrightarrow \Lambda \eta \qquad \hookrightarrow \pi^0 \pi^0 \Lambda$

$s = \frac{3}{2}$	$\Sigma(1750)S_{01}$	$\Sigma(????)D_{03}$	$\Sigma(1775)D_{05}$
$s = \frac{1}{2}$	$\Sigma(1620)S_{01}$	$\Sigma(1670)D_{03}$	

 $\hookrightarrow \Sigma \eta \qquad \hookrightarrow \pi^0 \pi^0 \Sigma^0$

- Octets Λ^* and Σ^* upgrades of N* by 150 MeV \Rightarrow Baryons favor SU(3)_{flavor}
- Spin flip required from states with $s = \frac{3}{2}$ \Rightarrow decay suppressed

$s = \frac{3}{2}$	$\Delta(1900)S_{31}$	$\Delta(1940)D_{33}$	$\Delta(1930) D_{\bf 35}$
$s = \frac{1}{2}$	$\Delta(1620)S_{31}$	$\Delta(1700)D_{33}$	

 $\hookrightarrow \Delta \eta$? $\hookrightarrow \pi^0 \pi^0 \Delta$?

The decay of the Δ resonances

Transitions between resonances and final states via transfer of the intrinsic parity of the η into orbital angular momentum between one pair of quarks and back:

$$(\uparrow\downarrow\uparrow) + \eta \quad \longleftrightarrow \quad (\uparrow\downarrow\downarrow\uparrow\uparrow)$$

(\Rightarrow represents $NS_{11}(1535)$ or $\Lambda(1670)S_{01}$)

Assumption for the Δ wave function:

$$(\uparrow\uparrow\uparrow) + \eta \iff (\uparrow\uparrow\Downarrow\uparrow)$$

 $(s = \frac{3}{2}, L = 1 \rightarrow J = \frac{3}{2})$

 $\Delta(1940)D_{33}$ should couple strongly to $\Delta\eta$ \downarrow Support of quark model

However, there is a conclusion based on bubble chamber data of the reaction $\pi^+ p \rightarrow \pi^+ p \eta$: (B.M.K. Nefkens)

$$D_{33}(1700) \rightarrow P_{33}(1232) + \eta$$

Data comprises about 60 % of 3.2 GeV data:

- $\approx 100\ 000$ events of $\gamma p \rightarrow p\ \pi^0\ \pi^0$
- $\approx 20\ 000$ events of $\gamma \,\mathrm{p} \rightarrow \mathrm{p} \pi^0 \eta$

Clear evidence for $\gamma p \rightarrow p \pi^0 \eta$

- No flux normalisation $(\frac{1}{E})$
- No efficiency correction (\approx flat)
- No final tracking (*semi-final*) \rightarrow preliminary results

Clear evidence for $\gamma p \rightarrow p \pi^0 \pi^0$

Summary

 $\gamma \, \mathrm{p} \ \rightarrow \ \mathrm{p} \, \pi^0 \, \pi^0$

- 1. mass region (1510 1585) MeV \rightarrow decays via $\Delta(1232)\pi^0$
- 2. mass region (1600 1750) MeV \rightarrow decays via $\Delta(1232)\pi^0$
 - \rightarrow indications for decays via X(1430) π^0
- 3. mass region (1800 2100) MeV
 - \rightarrow decays via $\Delta(1232)\pi^0$
 - \rightarrow decays via $S_{11}(1535)$ and $X(m\!>\!1600)$

 $\gamma \, \mathrm{p} \
ightarrow \, \mathrm{p} \ \pi^0 \ \eta$

- mass region (1800 2000) MeV $\rightarrow \Delta(1232)\eta$ decays obvious ($\Delta(1940)D_{33}$?)
- mass region (2000 2200) MeV \rightarrow clear evidence for $\Delta(1232)\eta$ decays \rightarrow clear evidence for $S_{11}(1535)\pi^0$ decays \rightarrow pa₀(980) strong \rightarrow structure of a₀(980) ?
- mass region (2200) MeV $\rightarrow X(m > 2200)$ decaying into $\Delta(1232)\eta$?

Summary and outlook

Good quality of data in various channels.

 \downarrow

Nucleon-resonance structures already visible Missing resonances?

Further investigation of nucleon excitation spectrum!

- Improvement of reconstruction
- Determination of cross sections
- Partial wave analyses (PWA)