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ABSTRACT

The study of baryon resonances offers a deeper understanding of the strong inter-

action, since the dynamics and relevant degrees of freedom hidden within them are

reflected by the properties of these states. The baryon resonances have been fairly

accurately predicted in the low-energy region (center-of-mass energies W < 1.7 GeV)

by constituent quark models. However, at higher masses (W > 1.7 GeV), most of the

predicted resonances and experimental findings do not match up. The model calcula-

tions even predict more baryon resonances than have been observed experimentally.

This issue is referred to as the ”missing resonance problem”.

Quark model calculations have suggested that some of the missing resonances

couple very weakly to πN or KN modes, but strongly to γp reactions. Therefore,

the missing resonances should be found in photoproduction experiments, not in pion-

or kaon-production experiments. Higher-lying excited states at and above 1.7 GeV

are generally predicted to have strong couplings to the reaction γp → pπ+π− via

π∆ or ρN intermediate states. Double-pion photoproduction is, therefore, important

for investigating the properties of high-mass resonances. The excited states of the

nucleon are usually found as broadly overlapping resonances, which may decay into

a multitude of final states involving measons and baryons. Polarization observables

make it possible to isolate single resonances from interference terms.
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The CLAS g9a (FROST) experiment, as part of the N⋆ spectroscopy program

at Jefferson Laboratory, has accumulated photoproduction data using circularly- and

linearly-polarized photons incident on a longitudinally-polarized butanol target in

the photon energy range 0.3 to 2.4 GeV. The CLAS g9b (FROST) experiment used

transverse target polarization, with a similar set of beam polarization as in the g9a

experiment. For the g9a experiment, I was serving as the run group chef who is

responsible for overseeing the reconstruction of the data. I was also responsible for the

drift chamber calibration in the g9a and g9b experiments. This document summarizes

how the beam-helicity asymmetry I⊙, the target asymmetry Pz, and the helicity

difference P⊙
z
for the reaction ~γ~p→ pπ+π− are extracted from photoproduction data,

utilizing circular beam and longitudinal target polarization in the g9a experiment.
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ZUSAMMENFASSUNG

Das Studium der Baryon resonanzen liefert ein tieferes Verständnis der starken Wech-

selwirkung, da die Dynamik sowie die in ihnen versteckten, relevanten Freiheitsgrade

die Eigenschaften dieser Zustände widergespiegelt werden. Die Baryon resonanzen

wurden ziemlich genau mithilfe von Konstituentenquark-Modellen im niedrigen En-

ergiebereich vorhergesagt (Schwerpunktsenergien W < 1.7 GeV). Bei höheren Massen

( W > 1.7 GeV) stimmen die meisten der vorhergesagten Resonanzen nicht mit den

experimentellen Befunden überein. Die Modellrechnungen prognostizieren sogar mehr

Baryonenresonanzen, als experimentell beobachtet wurden. Dieses Problem wird als

das ”Fehlende-Resonanz-Problem” bezeichnet.

Quark-Modell-Berechnungen haben ergeben, dass sich einige der fehlenden Reso-

nanzen sehr schwach zu πN - oder KN -Modi, aber stark zu γp-Reaktionen verbinden.

Daher sollten die fehlenden Resonanzen in Photoproduktionsexperimenten und nicht

in Pionor-Kaon-Produktionen zu finden sein. Bei höheren, angeregten Zuständen, die

bei 1.7 GeV und darüber liegen, ist im Allgemeinen zu prognostizieren, dass sie starke

Verbindungen mit den Zwischenzuständen der Reaktion γp → pπ+π− über π∆ oder

ρN eingehen. Die Doppel-Pion-Fotoproduktion ist daher für die Untersuchung der

Eigenschaften von Resonanzen mit hohen Massen wichtig. Die angeregten Zustände

des Nukleons zeigen sich in der Regel als weit überlappende Resonanzen, die in

einer Vielzahl von Endzuständen aus Mesonen und Baryonen zerfallen. Polarisations-
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beobachtungen machen es möglich, einzelne Resonanzen von den Interferenztermen

zu isolieren.

Das CLAS g9a (Frost) Experiment als Teil des N⋆ Spektroskopie-Programms am

Jefferson-Laboratorium hat Photoproduktionsdaten mit zirkular und linear polar-

isierten Photonen auf ein in Längsrichtung polarisiertes Butanol-Ziel im Photonen-

Energie-Bereich von 0.3 bis 2.4 GeV gesammelt. Beim CLAS g9b (FROST) Experi-

ment wurde eine querliegende Zielpolarisation mit einemähnlichen Satz an Strahlpo-

larisation wie im g9a Experiment verwendet. Für das g9a Experiment wurde ich

als Gruppenleiter eingeteilt, dem die Überwachung der Daten-Rekonstruktion oblag.

Ich war ebenfalls für die Kalibrierung der Driftkammer bei den g9a-und den g9b-

Experimenten verantwortlich. Dieses Dokument fasstzusammen, wie die Strahl-Helizitäts

asymetrie I⊙, die Ziel-Asymmetrie Pz, und der Helizitätsunterschied P⊙
z
für die Reak-

tion ~γ~p → pπ+π− aus den Fotoproduktionsdaten unter Verwendung kreisförmiger

Strahl-und längsgerichteter Zielpolarisation im g9a Experiment extrahiert wurden.

xxix



CHAPTER 1

INTRODUCTION AND OVERVIEW

The proton was discovered by Ernest Rutherford from Rutherford’s scattering exper-
iment in 1918. The proton is composed of two up quarks and one down quark, and
its mass is 938.272 /c2. The mass of the proton is known to be about 80-100 times
greater than the sum of the rest masses of the quarks to make up, while the gluons
have zero rest mass. When the overall mass of the proton and the combined masses
of these three quarks are compared with each other, more than 98 % of the proton
mass cannot be accounted for. The remaining mass of the proton may, thus, be a
result of the interaction among the quarks, the quark kinematic energy, and a ”sea”
of quark anti-quark pairs and gluons.

1.1 Quark Model

The atom is a basic unit of matter consisting of a dense central nucleus surrounded
by a cloud of negatively-charged electrons. The atomic nucleus itself contains a mix of
positively-charged protons and electrically-neutral neutrons. These protons and neu-
trons are members of a family of particles called ”hadrons”. Hadrons are composite
particles of quarks held together by a strong force, like atoms and molecules are held
together by the electromagnetic force. In 1961, M. Gell-Mann and Y. Ne′eman inde-
pendently classified hadrons using a system called the Eightfold Way. In the Eightfold
Way, hadrons with the same spin (J) and parity (P ) are classified as a function of their
charge (Q) and strangeness (S), based on group theory (SU(3)). According to the

rules of group theory, the particles are classified in multiplets: baryons with JP = 1
2

+

are contained in an octet, baryons with JP = 3
2

+
are contained in a decuplet, and

the vector mesons (JP = 1−) as well as the pseudoscalar mesons (JP = 0−) are con-
tained in a flavor singlet and an octet (a nonet). The multiplet structure of mesons,
as shown in Figure 1.1 (c) and (d), can be expressed using the combination rules of
SU(3) (3 ⊗ 3̄ = 1 ⊕ 8). Similarly, the octet and decuplet structure of baryons, as
shown in Figure 1.1 (a) and (b), can also be explained using all possible combinations
of three quarks according to SU(3) (3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10).
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(a) JP = 1

2

+
baryon octet (b) JP = 3

2

+
baryon decuplet

(c) JP = 0− pseudoscalar meson nonet (d) JP = 1− vector meson nonet

Figure 1.1: Classification of baryons and mesons according to charge and the
strangeness. Charge is determined by the diagonal line and strangeness is determined
by the horizontal line.

The hadrons were not classified accidentally in the patterns, as shown in Fig-
ure 1.1. These patterns would eventually reveal an internal structure of the hadrons.
An interpretation of these structures was proposed by Gell-Mann and Zweig inde-
pendently, in 1964. According to their work, the SU(3) structure appearing in the
classification of hadrons can be easily explained if the hadrons are not treated as fun-
damental particles but, in fact, are composed of even more elementary constituents,
which Gell-Mann called quarks. Table ?? summarizes masses of known quarks and
their properties. Hadrons are also categorized into two families according to the
number of quarks: baryons and mesons. The quark model asserts that baryons are
composed of three quarks (qqq), and mesons are composed of a quark and an anti-
quark (qq̄).

The combination rules of SU(3) elegantly explain the multiplet structure of the
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Table 1.1: Quark classification according to the key properties of the six quarks, such
as total angular momentum, J , the electric charge, Q (in units of electron charge e),
and isospin (I3 as a flavor quantum number) [1].

Name Symbol Mass (MeV/c2) Spin (J) Charge (Q) Isospin (I3)

Up u 1.7 to 3.1 1

2
+ 2

3
+ 1

2

Down d 4.1 to 5.7 1

2
− 1

3
− 1

2

Charm c 1,290 +50/-110 1

2
+ 2

3
0

Strange s 100 +30/-20 1

2
− 1

3
0

Top t 172,900 ± 600 ± 900 1

2
+ 2

3
0

Bottom b 4,190 +180/-60 1

2
− 1

3
0

hadrons, as shown in Figure 1.1, but contain a problem in the baryon decuplet. The
quark content of the three particles located in the corners of the decuplet are ∆++

= uuu, ∆− = ddd, and Ω− = sss, and their spins are 3/2. The spins of all quarks
in these baryons must be parallel since the spin of each quark is 1/2 and, therefore,
all quarks must be in the same quantum state. Since the quarks are fermions, they
must obey Fermi statistics, and the baryon wave function should be antisymmetric
under the exchange of two quarks, which is obviously not the case, and is thus in
contradiction with the Pauli exclusion principle. This problem is overcome using a
new quantum number, the color charge which can take three values: red, green, and
blue. In order to overcome the violation of the Pauli exclusion principle, the color
part of the wave function is prepared to be antisymmetric under the exchange of two
quarks in the wave function being symmetric, so that the total wave function of the
baryon is antisymmetric, and the rest of the wave function is symmetric. Color charges
mentioned here are used as a property of quarks and gluons in the theory of Quantum
Chromodynamics (QCD). The baryon resonances, which reflect the behavior of QCD,
are defined by

L2I 2J(m), Jπ, (1.1)

where I is the isospin of the particle, J is the total angular momentum, and m is
the invariant mass of the resonance in units of MeV/c2, and π is the parity of the
particle. Since the majority of the baryon resonances was discovered using πN or
KN scattering, L is named by the relative angular momentum between the pion (or
kaon) meson and the nucleon which gave rise to the resonance. This notation not
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only shows the properties of the baryon resonance but also how it is produced.

1.2 Quantum Chromodynamics (QCD)

The quarks predicted in the quark model have never been observed as massive and
charged particles even though it was thought before 1968 that they would be easily
detected. In order to test the existence of quarks, new experiments which did not
depend on hadron spectroscopy were considered, such as ”deep inelastic scattering”
(DIS) of leptons by nucleons. The DIS experiments delivered high energy electrons
to nucleon targets, and these electrons interacted at a large exchange momentum Q
so that the final state consisted of more particles than the initial lepton and nucleon.
In 1968, an important DIS experiment was performed in which 15 GeV electrons was
incident on protons at SLAC. This experiment showed that quarks were real and the
functions describing the internal structure of the protons did not depend strongly on
the exchange momentum Q [2]. The result of the DIS experiment could not be fully
explained with the simple assumption that the protons were made of three pointlike
quarks. This fact, on the other hand, was the evidence for point like partons which
Feynman called the different constituents of the hadrons.

R. Feynman gave a more comprehensive interpretation of this DIS experiment at
SLAC. The proton and other baryons are made of three quarks known as valence

Figure 1.2: Artist view of the interior of a proton. The three valence quarks are
surrounded by quark-antiquark pairs and gluons that form the main fraction of the
mass of the proton.
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quarks, and these quarks contribute the hadron’s quantum properties. In addition
to these quarks in the hadron, there are virtual quark-antiquark (qq̄) pairs known as
sea quarks (qs) as revealed by DIS. Moreover, there are some neutral, spin 1 partons
in the nucleon, which are now known as gluons. Sea quarks form when a gluon of
the hadron’s color field splits. These virtual quark-antiquark pairs exist only shortly,
and they typically annihilate each other within the interior of the hadron. These sea
quarks do not contribute to the quantum properties of the hadron. The proton is
based on three valence quarks and numerous virtual quark-antiquark pairs bound by
gluons, as shown in Figure 1.2.

In nature, there exist four known fundamental forces: gravity, the electromagnetic
force, the weak nuclear force, and the strong nuclear force. The theory of Quantum
Chromodynamics (QCD) describes the strong interactions between quarks and gluons
which make up hadrons, like the electromagnetic interactions which are described by
the exchange of photons between two charged particles. In QCD, however, the force
between two quarks has different properties than the electromagnetic force and this
difference leads to the dramatically different behavior of the nuclear strong force.

First, the force between two quarks does not diminish with distance as does the
electromagnetic force. That is, the attractive force between two quarks does not
decrease as the distance between quarks increases, but quite the contrary, the force
increases. If enough energy is provided to separate two quarks, new quark pairs will
be created in the process. As a result of this condition, quarks cannot exist alone and
are bound into hadrons such as baryons and mesons. This property is called ”con-
finement”. Second, the force between two quarks diminishes at very small distance
so that it is approximately possible to treat the quarks inside the hadrons as free,
non-interesting particles. This is called ”asymptotic freedom”. This means that the
QCD coupling constant, αs decreases as the energy of system increases, as shown in
Figure 1.3.

1.3 Nucleon Resonances

At very high energies, deep inelastic scattering experiments make it easier to probe
the inner structure of the nucleons composed of three valence quarks surrounded by
numerous quark-antiquark pairs, from the sea of quarks bound together by gluons,
as shown in Figure 1.2. When the exchange momentum Q is great, the asymptotic
freedom of QCD occurs and the mathematics of the gauge theory is greatly simpli-
fied. That is, QCD can be treated in a perturbative way, expanded in powers of the
strong coupling constant αs which is very small at such high energies. In this regime
of perturbative QCD (pQCD), the quarks in the hadrons are treated essentially as
free-moving, non-interacting quarks, and calculations of QED, used to describe the
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Figure 1.3: Summary of measurements of the QCD coupling constant αs as a func-
tion of the exchanged gluon momentum Q. The curves are QCD predictions for the
combined world average value of αs [3].

interaction between photon and electron, can be applied to calculations of pQCD. In
the low energy regime at which the nucleon resonances can be observed, it is not pos-
sible to apply this perturbative method to QCD, since the strong coupling constant
becomes large. The description of hadrons would be provided by a non-perturbative
treatment of QCD in which the coupling constant cannot be expanded in terms of αs.
This energy regime, where the theory of perturbative QCD cannot provide solutions
for nucleon excitations, is a highly important region to study.

It is an immensely difficult task to provide theoretical solutions to non-perturbative
QCD. In order to overcome this problem, a very promising and well-established
method called a Lattice QCD has been suggested. This method uses a grid of space-
time points to simplify the path integral calculations included in QCD and has shown
promising results. The main limitation encountered by Lattice QCD comes in the
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form of the hardware used to carry out the calculations. In order to extract testable
predictions from the theory, large amounts of computational power are required.

1.3.1 Constituent Quark Models

Constituent quark models (CQMs) are the most succesful models for making pre-
dictions about the properties of baryon resonances in the non-perturbative region
of QCD. CQMs do not describe the baryons based on their full internal structure,
but postulate that the baryons are made of so-called constituent quarks only. In the
low- or medium-energy region of QCD, where asymptotic freedom does not exist,
the sea quarks and virtual gluons, described in Figure 1.2, cannot be ignored. As
previously mentioned, the baryon is comprised of three quarks called the ”valence
quarks”. These valence quarks, when they have only their bare masses, are called
current quarks, and these current quarks are then ”dressed” with the interactions of
the sea quarks and gluons to make constituent quarks.

Figure 1.4: The proton is composed of three constituent quarks. Current quarks are
surrounded by a cloud of virtual quarks and gluons. Points of red, blue, and green
colors are virtual quarks; the others are gluons.

As an example, the proton is made of two u and one d constituent quarks, as
shown in Figure 1.4. In this point of view, the constituent quarks cannot be defined
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as point-particles any longer and, since they are the only subcomponents of the pro-
ton, these quarks share the total mass of the proton in CQMs. As a consequence,
the constituent quark masses are much heavier than the bare quark masses given in
Table ??, so that their masses are between 220 and 330 MeV for the u and d quarks.
There are three prominent examples of CQMs according to how the models treat
the short-range interactions among the three constitute quarks within the hadron:
one-gluon exchange [4], goldstone boson exchange [5], or instanton exchange [6]. Fig-
ure 1.6 represents an example of the constitute quark model, developed by S. Capstick
and N. Isgur using a gluon as the mediator for the short-range interactions.

Figure 1.5 shows how three quarks in a harmonic oscillator potential are ar-
ranged in the lightest resonances of the nucleon spectrum. The nucleon ground state
P11(939), as shown in Figure 1.5, is the lowest energy state with the spin of two
quarks aligned and the third spin in the other direction in the 1s state. The first
excited state P33 (1232), referred to as the ∆ resonance, is obtained by flipping the
spin of the third quark so that the three quarks remain on the 1s state but now with
all their spins aligned. The next resonances, S11(1535) and D13(1520), are obtained
by moving one quark on the 1p state. At higher energies, an arbitrary number of
resonances can be built using this procedure.

Figure 1.5: Schematic representation of the nucleon, P11(939), and the three lowest
lying nucleon resonances in a simplified constituent quark model. The convention for
naming the baryon resonances in this figure is from Equation 1.1.

1.3.2 Missing Resonance Problem

Figure 1.6 shows spectrum of N∗ with model predictions and experimental find-
ings. The baryon resonances have been fairly accurately predicted in the low-energy
region (center-of-mass energy, W < 1.7 GeV) by CQMs. However, at higher masses
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(W > 1.7 GeV), most of the predicted resonances and experimental measurements do
not match up. These model calculations even predict more baryon resonances than
have been observed experimentally. This issue is referred to as the ”missing resonance
problem”.
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Figure 1.6: The spectrum of N∗ resonances using one-gluon exchange for short-range
interaction. The left side of each column shows the resonances predicted by the model,
while the corresponding right side with the blocks represents experimental measure-
ments. The height of the blocks illustrates the uncertainty in the mass measurement.
The number of ∗’s denotes the ranking of the state according to the PDG. Resonances
with four stars are well-established, those with three stars have solid evidence sup-
porting their existence, states with two stars have little evidence, and excited states
with one star have even less supporting evidence [4].

The CQMs mentioned up to this point primarily describe the baryons as particles
composed of three constituent quarks in the excited baryon spectrum. If there is a
model with a lesser number of effective degrees of freedom, the number of predicted
resonances could be less. Two of the three constituent quarks in the baryon are an-
tisymmetric in color and spin components. These two quarks form a strongly-bound
quark pair, called diquark, by freezing the ρ oscillator, as shown in Figure 1.7. Cal-
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culations of the excited states in the diquark-quark model can be simplified, and the
number of degrees of freedom for the model will be decreased considerably. However,
the number of resonances predicted from the diquark-quark model is still too large.
There may be two possibilities which explain this discrepancy between model predic-
tions and experimental measurements. The first is that CQMs still predict too many
resonances, and further constraints should be added in CQMs to decrease the number
of effective degrees of freedom. Alternatively, additional resonances might exist but
couple very weakly with particles commonly used to excited nucleons made from data
accumulated until now. This weak coupling makes it difficult to observe additional
missing resonance in experiments.

Figure 1.7: A model of the baryon used in CQMs. In this model, the baryon is treated
as an object with two independent oscillators, ρ and λ [7].

Most of the data was accumulated from pion or kaon production, in which nucleons
are excited with beams of long-lived mesons, like π+, π−, K+, and K−. Quark model
calculations have suggested that some of the missing resonances couple very weakly
to πN or KN modes but these states couple strongly to γp reactions, the missing
resonances would not have been found in the pion- or kaon-production experiment.
Therefore, photoproduction experiments can be the clue to solving the missing reso-
nance problem. Before 2005, the experiments related to photoproduction have been
done at fairly low energies Eγ < 1.07 GeV (center-of-mass energy, W < 1.70 GeV), as
shown in Figure 1.8, and the missing resonance problem appears in the region above
W ∼ 1.70 GeV, as shown in Figure 1.6. If the photoproduction data at these higher
energies are analyzed, more baryon resonances will be revealed. This will help decide
the existence of the missing resonances. Figure 1.8 shows the total cross sections for
γp reaction as well as cross sections in several channels. Channels with quasi 2-body
final states such as KΛ, KΣ, Nω, and Nπ are primarily involved in these baryon
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spectrum made in γp reaction. The 3-body final states, like Nππ, especially account
for most of cross sections above Eγ ∼ 1.07 GeV, as shown in Figure 1.8. The γp reac-
tion data with 3-body final states provide a good opportunity to discover the missing
high-mass resonances.

Figure 1.8: Total cross section for γp reaction with contributions of individual chan-
nels.

Most of the high-lying resonances in the Nππ channels are predicted to decay into
excited intermediate states rather than directly to the ground state via single-meson
emission. Therefore the missing resonances can be found in the intermediate state
leading to a final state with two mesons, like γp → N∗ → ∆++π− → pπ+π−. CQMs
have given at least 150 MeV as the theoretical width of these missing resonances.
However, calculations of the decays of these resonances into 2-body final states like
KΛ, KΣ, Nω, and Nπ result in very narrow partial widths. This indicates that the
final state with Nππ channels dominates more than a 2-body final state at the high
energies.
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Figure 1.9 (a) shows a broad structure called the ”second resonance region” above
the energy range of the ∆ resonance, P33(1232), at incident photon energies between
0.5 and 0.9 GeV. The second resonance region has a more complex structure than
the peak corresponding to the ∆ resonance, P33(1232). Three nucleon resonances,
P11(1440), D13(1520), and S11(1535), have primarily overlapped in the second res-
onance region. The tails from the ∆ resonance, P33(1232) and additional higher
resonances are included as well. This second resonance region also consists of a com-
plicated superposition of the different reaction channels which differ in their energy
dependence. Figure 1.9 shows the total cross section for γ p reaction, and the partial
cross sections of the different reaction channels. The partial channels add up precisely
to the total cross section. The total cross section in the energy range corresponding
to the ∆ resonance, P33(1232), originates entirely in single pion production. The
production of two pions and η mesons is only allowed in the second resonance re-
gion, due to the kinematic particle thresholds. Most of the rise of the cross section
in the second resonance region, as shown in Figure 1.9 (b), comes from double pion
production. The partial cross section of the double pion production is very useful to
understand the complicated second resonance region.

(a) (b)

Figure 1.9: (a) Total photoabsorption and partial cross sections for photoproduction
off the proton. (b) Second resonance region in logarithmic scale [8].

Hadron spectroscopy experiments produce the excited baryon states, and mea-
sure properties of these resonances as precisely as possible to test quark models. The
emission of mesons via the strong interaction is usually the most common decay mode
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for all resonances. Figure 1.10 shows the lowest lying nucleon resonances with their
respective mesonic decay channels. Since these resonances have very short life times,
their widths in the mass measurement are quite broad, with widths on the order of
100 MeV. This implies that the individual resonances in the excited baryon spectrum
should be not only broad but also overlapping. These general characteristics of indi-
vidual resonances make it difficult to identify the resonances contained in the excited
baryon spectrum. In Figure 1.10, the P33(1232) resonance is isolated at 1232 Mev .
However, other resonances are laid quite close to this neighborhood and thus are
overlapped strongly, especially P11(1440), D13(1520), and S11(1535) in the second
resonance region. For this reason, it is difficult to study the excitation spectra alone
in an effort to present an accurate description of individual resonances.

Figure 1.10: Nucleon excitation spectrum showing the lowest lying resonances. The
black arrows show the mesonic decay of these resonances with width proportional
to the branching ratio. The shaded colored areas represent the widths of the reso-
nances [9].
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1.3.3 Polarization Observables

In order to study individual resonances from an area in which several resonances
are overlapped, like the second resonance region, measurable quantities called polar-
ization observables are a very useful tool to evaluate N∗ parameters, since polarization
observables are very sensitive to small resonant contributions. After model-dependent
theoretical values related to polarization observables are extracted from the model cal-
culations, these theoretical values can be compared with the experimentally measured
values. Resonance contributions can be explored by omitting or including them in
model observables. Precisely determined polarization observables give very stringent
constraints to the models, and help us understand the underlying processes present
in double pion photoproduction.

Differential cross section data are not sensitive to adding or omitting these small
resonant couplings. However, their interferences with the dominant amplitude will
reveal more clearly resonances with a small contribution to the cross section, and
these interference terms can be isolated via polarization observables. For example,
D13(1520) resonance can reveal itself in the beam-asymmetry data of η production
by its interference with the dominant amplitude of S11(1535). In the general polar-
ization experiment there are three different polarizations considered: beam, target,
and recoil. First, the incoming photon is able to be polarized 0 or linearly. The
target nucleon can be polarized, and in this case two polarizations can be taken into
account: the polarization before (target polarization) and after interaction (recoil po-
larization). Therefore, there are single, double, and triple polarization experiments,
depending on the number of polarizations observed. The theoretical description of
the general triple polarization case, involving 64 polarization observables in double-
meson photoproduction, has been given by W. Roberts and T. Oed [10].

In a double-polarization experiment, the differential cross section for single-meson
production, dσ/dxi, is given by :

d σ

d xi

= σ0 { 1 − δl Σ cos 2φ

+ Λx (−δl H sin 2φ + δ⊙F )

− Λy (−T + δl P cos 2φ )

− Λz (−δl G sin 2φ + δ⊙E ) }.

(1.2)

where xi are kinematic variables, as described in Section 5.1.1, and σ0 is the unpo-
larized cross section. δ⊙ is the degree of a circular polarization in the photon beam,
while δ l is the degree of a linear polarization. Here, ~Λ denotes the polarization of
the initial nucleon; Λx and Λy for transverse polarization, and Λz for longitudinal
polarization. There are 7 polarization observables obtainable from the analysis of
a single-meson final state: Σ, H, F, T, P, G, and E. In the case of single-meson
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photoproduction, two independent kinematic variables are needed.

The analysis of a channel with two final state mesons requires three additional
terms as kinematic variables. These additional variables are used to describe the
decay plane which can be formed for every reaction in which the two final state pions
occur, and the orientation of the decay plane with respect to the production plane1.
The analysis of a double-meson final state requires a great deal more observables than
a single-meson final state. For γp→ p ππ, without measuring the polarization of the
recoiling nucleon, the differential cross section can be written as: [10] :

d σ

d xi

= σ0 { ( 1 + ~Λi · ~P )

+ δ⊙ (I
⊙ + ~Λi · ~P

⊙ )

+ δ l [ sin 2β ( I s + ~Λi · ~P
s )

+ cos 2β ( I c + ~Λi · ~P
c ) ] }.

(1.3)

The two-meson final state equation, as referenced in Equation 1.3, contains 15
polarization observables. I⊙, I s, and I c are observables which arise from the beam
polarization. The observable I⊙ describes the beam asymmetry for an unpolarized
target and a circularly-polarized photon beam. The polarization observable I c is
equivalent to Σ in Equation 1.2. The observables ~P represent the target asymmetry
that arises if only the target nucleon is polarized, and ~P⊙ as well as ~P s,c represent
the polarization observables if, in addition to the target nucleon, the incoming pho-
ton is also polarized, either circularly or linearly, respectively. The observable I⊙ in
double-pion photoproduction data has been published. It has been analyzed from
CLAS g1c data [11] and MAMI, TAPS, and A2 Collaboration data [12]. The observ-
able P⊙z , equivalent to E in Equation 1.2 for single pion photoproduction, has been
also published in double-pion photoproduction data from GDH and A2 Collaboration
data [13].

The differential cross section for γp → p ππ, in the case of a circularly-polarized
beam on a longitudinally polarized target in the g9a experiment, can be written as:

d σ

d xi

= σ0 { ( 1 + Λz ·Pz ) + δ⊙ (I
⊙ + Λz ·P

⊙
z
)}. (1.4)

The number of polarization observables, as referenced in Equation 1.4, has been
reduced from 15 to 3. The polarization observable I⊙ related to a beam-helicity
asymmetry, the observable Pz related to a target asymmetry, and the observable P⊙

z

related to the helicity difference can be determined from this dataset.

1The production plane and decay plane are defined in Figure 5.1.
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CHAPTER 2

FROST EXPERIMENT

The data used in this analysis were taken as part of the g9a run period at the Thomas
Jefferson National Accelerator Facility (JLab) in Newport News, Virginia. In the
name ”g9a”, the ”g” refers to a photoproduction experiment, the ”9” indicates that
it was the ninth approved experiment in Hall B, and the ”a” denotes the first iter-
ation of the ”g9” experiment. Figure 2.1 shows the three experimental halls in the
foreground along with the CEBAF electron accelerator. A new experimental hall for
the 12 GeV upgrade program, Hall D housing the GlueX experiment is located in the
north of the CEBAF electron accelerator.

Figure 2.1: An aerial view of the accelerator and the three experimental halls at
Jefferson Lab. The Continuous Electron Beam Accelerator Facility (CEBAF) is the
racetrack accelerator, and the three mounds located at the bottom of the photograph
are the three experimental halls: Hall A, Hall B, and Hall C (left to right).

Hall B provides a unique set of experimental devices for the FROzen Spin Target
(FROST) experiment. First, the CEBAF Large Acceptance Spectrometer (CLAS) [14]
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is a nearly-4π spectrometer. Second, the broad-range photon tagging facility at
JLab [15], can tag photon energies over a range of from 20% to 95% of the inci-
dent electron energy, and is capable of operation with beam energies up to 5.5 GeV.
The remaining element which is indispensable for the double polarization experiment
is the frozen-spin target [16].

2.1 CEBAF Electron Accelerator

The Continuous Electron Beam Accelerator Facility (CEBAF) at JLab has two
superconducting radio-frequency (RF) linear accelerators, 1.4 km in length, to de-
liver electron beam up to 6 GeV to the three experimental halls and these linacs
are connected at each end with recirculation arcs. Figure 2.2 shows the accelerator
with the racetrack shape which consists of a 45-MeV injector, two anti-parallel linear
accelerators (LINACs), and 9 recirculating arcs (4 at one end and 5 at the other).

Figure 2.2: Schematic drawing of CEBAF and the three experimental halls. Included
are, clockwise from the top, a module in the linac, a steering magnet, and a part of
the RF separator [14].

The injector consists of two electron guns: a thermionic gun and a polarized gun.
In the g9a experiment, the polarized electron gun was used to produce polarized
electrons by illuminating a strained Gallium Arsenide (GaAs) photocathode with a
1497 MHz gain-switched diode laser operated at 780 nm [17]. The electrons produced
in the injector are longitudinally polarized, with the degree of polarization reaching
up to 85 %. The process of making polarized electron beam begins with a circularly
polarized photon beam. The circularly-polarized photons are made from an unpolar-
ized laser through the use of two Pocket cells, which are composed of a quarter-wave
plate and a half-wave plate. The strained GaAs cathode uses the photoelectric effect
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to turn circularly-polarized photons into longitudinally-polarized electrons. A 5 MeV
Mott polarimeter measured the polarization of the electron at the injection point.
After the extraction of the electrons from the photocathode, 2 1/4 superconducting
radio-frequency (RF) cavities, as shown in Figure 2.3, are used to accelerate the elec-
trons to 45 MeV. An optical chopper is then used to separate cleanly the 2 ns bunches
prior to injecting them into the LINACs. Each LINAC is equipped with 20 cryomod-
ules, and each cryomodule is made of 20 superconducting RF cavities, as shown in
Figure 2.3.

Figure 2.3: A diagram of an RF cavity with the charge gradient produced.

The RF cavities of the LINACs to accelerate the electrons produce a standing
electromagnetic wave in phase with the bundles of electrons. This electromagnetic
wave makes a charge gradient to serve as the source of the acceleration in the RF
cavity. Figure 2.3 shows that the RF cavity maintains the standing electromagnetic
wave such that there is a negative electric field filed behind the electrons, and a posi-
tive electric field in front of the electrons. Therefore each LINAC is able to accelerate
the electrons up to 600 MeV in energy with each pass through the LINAC. Two
180◦ arcs with a radius of 80 m complete the circuit between each linear accelerator.
Several quadrupole and dipole magnets are used to steer and focus the beam as it
passes through the accelerator. The electron beam is continuously generated with
45 MeV at the injector, and accelerated through the two linacs so that electrons gain
≈ 1.2 GeV for each trip they take around the accelerator. Each Hall can choose to
extract the beam after any number of passes, up to five only. After the beam reaches
the desired energy, it is delivered to one or more of the experimental halls.

2.2 Broad-Range Photon Tagging Facility

The g9a experiment uses the tagged bremsstrahlung method to create and iden-
tify the energy of the photon. Figure 2.4 show the photon tagging system (tagger)
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in Hall B to tag photons with energies ranging from 20 % to 95 % of the incident
electron beam energy [15].

Figure 2.4: Overall geometry of the bremsstrahlung photon tagging system. The elec-
trons, which enter from the left, are scattered off the radiator and then are ”tagged”
while the photons go downstream through the collimator (not shown in this picture).
The dashed lines indicate the trajectories made by recoil electrons with various frac-
tional energies. The two planes of the scintillator hodoscope, the E- and T-planes,
are shown geometrically.

Electrons from the CEBAF accelerator strike the radiator upstream from the tag-
ger and scatter off, producing photons via bremsstrahlung radiation. In this process,
the incoming electrons interact with the electromagnetic field of the nuclei of the ra-
diator material. When the electron of incident energy E0 encounters this field, it feels
a braking force and emits a bremsstrahlung photon into the target material located
at the center of the CLAS spectrometer, as shown in Figure 2.5. Since the energy
transferred to the nucleus is negligible, the reaction obeys the energy conservation
relation :

Eγ = E0 − Ee, (2.1)

where Ee is the energy of the outgoing electron and Eγ is the energy of the emitted
bremsstrahlung photon. Since E0 can be determined from the accelerator, a mea-
surement of the outgoing electron energy by a magnetic spectrometer thus provides a
determination of the photon energy. The radiator for the tagger is usually a thin Gold
or Carbon foil, and radiators with different thicknesses can be moved into position to
change the intensity of the photon beam. Circularly-polarized photon beam produced
from the longitudinally-polarized electron beam. Linearly polarized photons can be

19



produced via coherent bremsstrahlung of the incoming electrons interacting with a
well-oriented diamond radiator.

Figure 2.5: Side view schematic of the Tagger and the CLAS spectrometer in Hall B.

Between the radiator and the target material, as shown in Figure 2.5, there is
a tagger magnet, which is a C-shaped magnet with an open-yoke design capable of
producing a magnetic filed up to 1.75 T. After passing through the radiator, the
beam will be a mixture of non-interacting electrons, recoil electrons, and photons.
The Tagger Magnet is used to bend the recoil electrons towards the two scintillator
planes, which are composed of an E-counter plane (for measuring the electron energy)
and T-counter plane (for measuring the time), as shown in Figure 2.4. Unscattered
electrons are bent out of the beamline and guided directly into the Taggers beam
dump, bypassing the E- and T-counters.

The first plane of scintillators, referred to as the ”E-counters” in Figure 2.4, is used
to determine the momentum of the recoiling electrons and is aligned with the optical
focal point of the tagger magnet. The E-counter plane is made of 384 plastic scintil-
lators that are 20 cm long and 4 mm thick, with widths varying from 6 to 18 mm.
These scintillators are arranged in an overlapping manner with one scintillator cover-
ing 1/3 of its neighbors width, therefore creating 767 separate energy channels. The
trajectory followed by an electron in the magnetic field is governed by its momentum.
Thus, by determining which paddle an electron passed through, we can calculate its
momentum. The momentum of the recoil electron can then be used to obtain the
energy of the photon. The energy resolution of the E-counter plane is 0.1 % of the
incident electron beam energy. The second plane of scintillators, referred to as the
”T-counters” in Figure 2.4, is used to make accurate timing measurements of the
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recoiling electrons. The determination of the time at which a photon arrived at the
target is crucial to any analysis involving photoproduction. A timing resolution of
300 ps or greater is required to associate the measured time of an electron with the
corresponding electron bunch, and therefore to determine the photon time at the
target center. The T-counter plane is positioned parallel to the E-counter plane and
consists of 61 scintillator counters, 2 cm thick, which vary in length from 20 cm at the
high electron momentum end to 9 cm at the low-momentum end. The spectrometer
was able to tag photons ranging from 20 - 95 % of the incident electron beam energy.

2.3 CLAS Spectrometer

The CEBAF Large Acceptance Spectrometer (CLAS), as shown in Figure 2.7, is
used to detect particles produced by interactions of the photon beam with the target
located near the center of the CLAS spectrometer.

Figure 2.6: Schematic of the CLAS spectrometer. This spectrometer, approximately
8 m in diameter, is housed in experimental Hall B at Jefferson Lab.

The CLAS spectrometer arranged symmetrically around the beam axis is based
on six superconducting coils producing a toroidal magnetic field, and azimuthally
divided into six independent sectors within this superconducting toroidal magnet.
Even though the CLAS spectrometer has almost 4π angular coverage in the solid an-
gle, there are dead regions, where the CLAS spectrometer cannot measure particles
due to the presence of structures like the beamline, the toroidal magnet’s support
structure and others. In reality, the spectrometer covers between 8◦ < θ < 145◦
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in its polar angle, and −25◦ < φ < 25◦ along its azimuthal angle, for each sector.
Each sector is composed of multi-wire drift chambers (DC) to determine charged-
particle trajectories, scintillation counters (SC) for time-of-flight measurement, gas
Cherenkov counters (CC) for the identification of recoil electrons in electroproduction
experiments, and an electromagnetic calorimeter (EC) for electron, photon and neu-
tron energy measurement and detection. Close to the target region, a sub-nanosecond
time coincidence of the tagging spectrometer with a counter (ST) measures the start
time of a particle trajectory to better than 25 ps. Since Cherenkov counters are not
used in our analysis, it will not be discussed here. Each detector subsystem of the
CLAS spectrometer will be described in detail in the following sections.

2.3.1 Start Counter (ST)

In run periods using a photon beam instead of an electron beam, the mini-torus1 is
replaced with the Hall B Start Counter. This Start Counter, as seen in Figure 2.7, is
located at the center of the CLAS spectrometer and surrounds the target. It provides
a precise start time for every trigger recorded by the CLAS spectrometer as well as a
time of the hadronic interaction in the target.

Figure 2.7: A CAD drawing of the Start Counter used for the g9 experiment.

The Start Counter has six identical sectors, matching the six-sector geometry of
the CLAS spectrometer. Each of these sectors is made of four scintillator paddles,

1The mini-torus is used only for run periods using an electon beam, and prevents the electrons
in the beam from reaching the drift chambers.
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giving a total of twenty-four paddles for the entire structure. The forward tips of the
scintillators are bent to form the nose cone of the Start Counter. PMTs, which are
attached to the other end of the scintillators, are used as solid light-guides to collect
the scintillation light produced on passage of a particle through it. Each paddle is
502 mm long, 29 mm wide, and 2.15 mm thick, which, along with the wrapping and
the support material, gives a total thickness of about 0.26 g/cm2. A charged particle
traversing the paddle causes light to be produced inside the scintillator. This light is
reflected from the mirror film and makes its way to the light guide attached to the
PMT. At the PMT, the photo-signal is collected, converted, and amplified and then
the ADC and TDC values of this photo-signal are recorded to be used later in the
analysis. This Start Counter is capable of providing a fast timing signal (∼25 ps)
for the CLAS trigger that, when coupled with the information from the tagger and
time-of-flight systems, can be used to reduce greatly the accidental trigger rate. It
also helps determine information about velocities of charged particles when combined
with information from the time-of-flight system in the CLAS spectrometer. When
compared with the RF time, the Start Counter yields the start time of the particle
trajectory to better than 25 ps accuracy.

2.3.2 Torus Magnet

The torus magnet is composed of six individual superconducting coils around the
electron beam line. Figure 2.8 shows the mapping of the magnetic field produced by
the CLAS Torus Magnet.

(a) (b)

Figure 2.8: (a) Contours of the constant absolute magnetic field for the CLAS toroid
magnet in the midplane between two coils and (b) the toroidal magnetic field as
seen from a plane centered on the target. The length of the lines indicates the field
strength at that point.
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The magnetic field created by the CLAS Torus Magnet makes the charged parti-
cles bend towards or away from the beamline, depending on the charge of the particle
and the polarization of the torus, while leaving their azimuthal angle practically un-
changed. The magnetic field thus allows one to analyze the momentum of the charged
particles. This magnetic field also provides a magnetic field-free region around the
target, which allows for the use of dynamically polarized targets. The maximum de-
signed current in the torus coils is 3860 A, corresponding to the integral magnetic
field of 2.5 Tm in the forward direction, and 0.6 Tm at a polar angle of 90◦. When the
current is positive, the magnetic field bends the negative charged particle toward the
beam line; therefore, the data taken with positive torus current are called inbending
data, whereas the data taken with a negative torus current are called outbending
data. The g9a data were taken at a torus current of 1920 A as inbending data.

2.3.3 Drift Chamber (DC)

The momentum of charged particles is determined by tracking the particles through
the field generated by the toroidal magnet, as shown in Figure 2.8. Each sector of the
CLAS spectrometer consists of three sets of Drift Chamber, as shown in Figure 2.9.

(a) (b)

Figure 2.9: (a) Horizontal cut through the CLAS spectrometer showing two charged
particles traveling through the DC in opposite sectors. (b) Vertical cut through the
DC transverse to the beam line at the target location.

From the curvature of the trajectory of charged particles, as shown in Figure 2.9 (a),
the sign of the charge q of the particle, and the radius of the curvature R can be de-
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termined. The magnetic field B is known from the field maps, as shown in Figure 2.8,
and therefore, using the knowledge of the supplied current, the momentum p can be
determined from the relation p = qBR. The charged particles can be tracked using
three separate DC regions: region 1 (R1), region 2 (R2), and region 3 (R3). The R1
chambers are located close to the target in an area of low magnetic field. The R2
chambers are larger and reside between the torus coils in an area of high magnetic
field. Finally, the R3 chambers are the largest, located radially outside of the torus
magnet.

Each DC region is divided into two separate superlayers. Each superlayer consists
of six layers, except for superlayer 1 in R1 which consists of only 4 layers. The DC
has one anode sense wire at a positive potential surrounded by six cathode wires in
an hexagonal shape at a negative potential, as shown in Figure 2.10. The DC is filled
with an 88−12% mixture of argon and CO2 to improve the operating lifetime and
system safety. Therefore, as the charged particle passes through the gas in the DC, it
ionizes the atom and produces ion pairs. The negative ions drift to the sense wire and
create a voltage pulse on the sense wire. The pulse is presented to the time-to-digital
converters (TDC) for digitization. The online data acquisition system measures and
stores these raw TDC times.

Figure 2.10: The hexagonal Drift Chamber of R3 chamber, showing the layout of its
two superlayers. The highlighted drift cells indicate a passing charged particle. The
upper right corner shows the edge of the Cherenkov counters.
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2.3.4 Time of Flight Counters (TOF)

The time information of charged particles crossing the Drift Chambers is measured
by the time-of-flight (TOF) scintillation paddles and the transit time for the particles
passing through the magnetic field area. It can be measured when this passing time
is combined with the time of a hadronic interaction in the target. The track length
can be calculated by using the tracking information from the Drift Chamber system,
and the β is defined by the equation β = v/c. Once β and p are given, the mass
of the particle can be calculated, and thus particles are identified such as pions,
protons, kaons, etc. To determine the masses of all charged particles originating
from a hadronic interaction, the TOF counters, as shown in Figure 2.11 (a), cover
a polar angle from 8◦ to 142◦, and nearly the entire azimuthal angle. Each one of
the six panels of the TOF counts contains 57 scintillator paddles of varying lengths
and widths. To provide 100% detection efficiency of minimum ionizing particles, each
paddle is made 2 inches, thick and the signals from the scintillators are collected via
photo-multiplier tubes (PMTs) mounted at each end of the bars.

(a) (b)

Figure 2.11: (a) A picture of the Time-of-Flight counters revealed when CLAS is
opened. TOF can be seen to the far left. The part of the CLAS spectrometer revealed
is the region 3 of the Drift Chamber. (b) A diagram of a ToF sector, showing the
scintillation counters arranged in four panels and perpendicular to the beam line. At
both ends of each paddle are a light guide and a PMT.

2.3.5 Electromagnetic Calorimeters (EC)

The forward electromagnetic calorimeter (EC) detects electrons with energies
above 500 MeV, photons with energies above 200 MeV (for the reconstruction of
π0 and η mesons), and also detects neutrons. The EC covers laboratory scattering
angles from 0 to 45◦. There are six EC modules matching the CLAS sector geometry.
Each EC module has 39 layers in an alternating sandwichs arrangement of scintillator
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strips and lead sheets. Each layer of scintillator with the shape of a nearly equilateral
triangle is a 10 mm thickness followed by a 2.2 mm thick lead sheet. Each scintillator
layer consists of 36 strips parallel to one side of the triangle. Each successive layer
is rotated through 120◦, effectively creating three orientations (labeled U, V, and W)
with each orientation containing 13 layers, as shows in Figure 2.12.

Figure 2.12: Enlarged diagram of one of the six CLAS electromagnetic calorimeter
modules.

2.4 Frozen Spin Target (FROST)

The previous Hall B polarized target was able to polarize protons in 15NH3 or
deutrons in 15ND3 only longitudinally, and covered scattering angles up to 55◦ from
the beam. However, the Frozen Spin Target (FROST) can be both longitudinally
and transversely polarized, having a 4π angular coverage in the scattering angle. The
FROST target can also reach polarization values over 80 % at a base temperature
of 28 mK [18] [19]. In order to polarize the protons within the target material. A
technique called dynamic nuclear polarization (DNP), as shown in Figure 2.13, is
used. In the DNP method, free electrons in the target material are polarized by
brute force polarization [20] :

P = tanh(
~µ · ~B

kT
), (2.2)

To achieve the high degree of polarization, a maximized B field and minimized
temperature are required. At JLab, the DNP process is performed at a ”moder-
ate” temperature of approximately 0.3 K using 5.0 T polarizing magnet, where the
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Figure 2.13: The polarization of an electron and proton by brute force.

time required to polarize an electron is short (ms) and the time for a nucleus is long
(minutes), as shown in Figure 2.13. Then the spin polarization of electrons, spread
throughout the target mixture, is transferred to the nuclei of the target material using
microwaves. Mutual electron-nucleus spin flips rearrange the nuclear Zeeman popu-
lations to favor one spin state over the other. However, the disadvantage of the DNP
method is that a large magnet for the experiment is required, and a choice of target
material is very limited. Thus, materials for DNP targets should adhere to some chice
of target material: a maximum polarization, a resistance to ionization from radiation,
a minimum number of unpolarizing nucleon. Table 2.1 shows conditions of materials
for DNP targets considered for the FROST experiment.

Table 2.1: Examples of materials for DNP targets.

Name Dopant f=Ñ/Ntotal Radiative resistance
Polyethelyne, C2H4 chemical 0.12 low
Polystyrene, C8H8 chemical 0.07 low
Propandiol, C3H6(OH)2 chemical 0.11 moderate
Butanol, C4H9OH chemical 0.13 moderate
Ammonia, 15NH3 radiation 0.17 high
Lithium Hydride, 7LiH radiation 0.12 very high

The FROST experiment uses three kinds of meson production targets: the FROST
target, a graphite (carbon) target, and a polyethylene (CH2) target. The FROST ex-
periment uses butanol as the ideal target material. The carbon and polyethylene
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targets are useful for various systematics checks, and for the determination of the
contribution of bound nucleons in the butanol data. FROST has the capability of
polarizing the butanol target by the DNP, as mentioned earlier. Another important
characteristic of FROST is that it can also freeze this polarization via a cooling of the
target material and usage of a small holding magnet field. In order for the spin po-
larization of the butanol target to be frozen, a temperature of at least 50 mK for the
FROST is required. The FROST uses a 3He/4He dilution refrigerator to accomplish
this cooling process for the butanol target. Refrigeration below 4.2 K is performed
by the method of evaporative cooling. Below 0.8 K, the mixing chamber in the dilu-
tion refrigerator can separate into two phases, as shown in Figure 2.14 (a): a dilute
phase of a 3He-poor region and concentrated phase of a 3He-rich region. The two
phases of the 3He/4He mixture in the mixing chamber have different specific heats:
106 J/(mol·K) for dilute phase and 22 J/(mol·K) for the concentrated phase. The
3He atoms then move from the concentrated phase (a 3He-rich region) to the dilute
phase (a 3He-poor region) with the heat energy exchange with the surroundings. Re-
moving the 3He from the dilute phase causes the 3He atoms in the concentrated phase
to absorb the heat from its surroundings and dissolve into the dilute phase in order
to re-establish a thermal equilibrium. This process occurs in the mixing chamber of
the FROST where the butanol target exists. When this evaporation of 3He into 4He
occurs, heat is taken from the target material. This process is implemented around
FROST, as shown in Figure 2.14 (b).

(a) (b)

Figure 2.14: (a) Two phases of 3He/4He mixture in the mixing chamber. (b) An
illustration of the operation of the dilution refrigerator for FROST.

Figure 2.15 (a) and (c) show the design for the frozen spin target. The temperature
for cooling the butanol target falls step by step in the several parts of the FROST. The
temperature in the 4K pot of the FROST, as shown in Figure 2.15 (a), is about 4.2 K.
The FROST has approximately 1.5 K in the 1K pot. In the distillation chamber, the
FROST has roughly 0.7 K. Finally, the temperature near the butanol target is about
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30 mK by the DNP process. Figure 2.15 (b) describes the structure of the FROST
near the mixing chamber, with three kinds of targets. In Figure 2.15 (b), the carbon
and polyethylene are located on the end caps of the 1 K heat shield and the 20 K
heat shield, respectively, downstream from the butanol target. The butanol target
of the FROST is composed of supercooled butanol (C4H9OH) beads, 5%H2O, and
0.5%TEMPO(C9H18NO). In order to create these butanol beads, the butanol is
doped with the paramagnetic TEMPO used for the DNP process and then make the
formation of the beads by supercooling in liquid nitrogen, as shown in Figure 2.16 (a).

(a) (b)

(c)

Figure 2.15: (a) The illustration of the frozen spin target with 1K pot and 4K pot.
The actual butanol target is located on the target material part. (b) A cross section of
the target area of FROST: A) primary heat exchanger, B) 1K heat shield, C) holding
coil, D) 20 K heat shield, E) outer vacuum can (Rohacell extension), F) polyethylene
target, G) carbon target, H) butanol target, J) target insert K) mixing chamber,
L) microwave waveguide, M) Kapton coldseal. (c) The floor plan of the frozen spin
target with the polarizing magnet.
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In order to retain effectively their polarizations after freezing the butanol beads,
a relatively small ”holding magnet” with extremely low temperature is used. There
are two types of the ”holding magnet” for the FROST experiment, as shown in
Figure 2.17 (a): The first type is the longitudinal holding magnet which produces
a magnetic field, either parallel or anti-parallel to the beamline, used in the g9a
experiment. The Second type is the transverse holding magnet with racetrack shaped
coils, which produces a magnetic field perpendicular to the beamline, used in the g9b
experiemnt. Figure 2.17 (b) shows that the optimized value of the magnetic field
for the maximum relaxation time in the butanol is around 0.5 T. Therefore, the
longitudinal holding magnet has approximately 0.56 T as a magnetic filed, and the
transverse holding magnet has about 0.52 T.

(a) (b)

Figure 2.16: (a) Butanol beads formed by supercooling of the liquid nitrogen. (b)
Butanol beads placed in the target cup (the green area).

The butanol target is cooled to approximately 0.5 K and dynamically polarized
outside the spectrometer using a highly homogeneous magnetic field of about 5.0 T.
And then, the mocrowaves is turned on for electron polarization to be transferred to
protons. Once protons in the butanol target are polarized, the butanol target is then
cooled to a low temperature of 30 mK, enough to preserve the nuclear polarization in
a more moderate holding field of about 0.5 T. The target is then moved back into the
spectrometer, and data acquisition with the tagged photon beam can commence. The
target polarization then decays exponentially during the data acquisition phase of the
experiment. After polarization decays to about 50 % of its initial value, the butanol
target is repolarized via the DNP process at 5 T. Repolarization of the butanol target
is necessary every 4 to 5 days. The repolarization schedule is seen in Figure 2.18.
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(a) (b)

Figure 2.17: (a) There are, clockwise from the top, the longitudinal holding magnet
with a field strength of approximately 0.56 T, the transverse holding magnet with
approximately 0.52 T, and the polarizing magnet with 5.0 T. (b) Magnetic field vs.
spin relaxation time for butanol [21].

Figure 2.18: The polarization schedule for the frozen spin target.
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CHAPTER 3

DATA RECONSTRUCTION

The first iteration of the g9 dataset (g9a experiment) utilizing longitudinal target
polarization was collected from November 3, 2007 to February 12, 2008, and the
second iteration (g9b experiment) utilizing transverse target polarization was taken
from March to August, 2010. Because the dataset used in this analysis is from the
g9a experiment, the reconstruction and calibration process discussed in this chapter
will refer primarily to the g9a experiment. The real time of the data acquisition in the
g9a experiment was only 72 days. Figure 3.1 shows the number of events accumulated
during this data acquisition period.

Figure 3.1: Number of events for the g9a experiment, which utilizes a variety of
electron beam energies. The numbers on the top show the electron beam energies
in [GeV] used in the g9a experiment. LC indicates longitudinal target polarization
and circular beam polarization, and LL indicates longitudinal target polarization and
linear beam polarization.
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The raw Hall B data were acquired in units called runs1. A total of 603 runs was
accumulated during the g9a data recording. One run may consist of several files of
a fixed size of 2 Gb containing about 0.87× 106. The possible settings for the beam
polarization in the g9 experiment are circular and linear, and those for the target po-
larization are longitudinal and transverse. In the first iteration of the g9 experiment,
only longitudinal target polarization was used, with a circularly- or linearly-polarized
beam. The second iteration used transverse target polarization, with a similar set of
beam polarization as in the g9a experiment.

3.1 Reconstruction

The information included in the raw data from the FROST experiment consists of
charge-to-digital converter and time-to-digital converter channel IDs and values. The
data are then reconstructed to convert these into physical quantities such as particle
IDs, positions, angles, energies and momenta. This process takes of the order of 15 h
per 106 events on a mid-range Linux PC. During the FROST experiment, 1.05× 1010

events were accumulated; it would require approximately 6500 years to reconstruct all
the raw data using just a single Linux PC. Jefferson Lab has a computer system called
the ”batch farm”, which consists of dual CPU computers connected by high-speed
Ethernet. The word ”cooking” is used to describe the reconstruction process, which
refers to running the CLAS reconstruction code on many raw data files by sending
them to the JLab farm [22]. For each experiment a ”chef” is chosen to manage the
cooking process. I was serving as the chef for the g9a experiment. The process of re-
constructing the raw data requires careful maintenance and good organizational skills.

The cooking process attempts to convert digital information into physical infor-
mation. For the g9a dataset, the raw data are cooked by using user ana, which
is the FORTRAN-based reconstruction software for the CLAS spectrometer. The
user ana program is configured via a tcl file, cook.tcl, that sets up the names
of an input and an output file, and switches on or off the required parameters that
manage the cooking process. The FROST data are saved in the BOS format2 [23]
after they are acquired.

The raw data from the g9a experiment consist of 17,676 BOS files. Because each
file is approximately 2 Gb in size, the g9a experiment accumulated a total of about
35 TB of data. Each BOS file name has the usual format, clas xxxxx.Ay y, where
the first and second number represents the run number and its extension, respec-

1At JLab, the word ’run’ has two meanings. A run can mean a time interval during which data
are collected, assuming there is no change in the experimental conditions. A run is also the unit of
the data accumulated during this time interval.

2The BOS format is based on a so-called bank structure.
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tively. The original BOS files are processed into and reorganized several output files
in the reconstruction process. A single BOS output file containing the reconstructed
events is more than 3 Gb in size; thus, it is split into two or even three files. They
are expressed in the usual format, cooked xxxxx.Ay y.Bz z, where the third number
represents additional file information. The reconstruction process prepares log files
that contain information on the progress of the cooking and any errors that happened
during cooking. Table 3.1 is illustrative of the name, file size and directory of the
output files for the input file clas 055521.A10.

Table 3.1: Names, sizes and directories of output files containing reconstructed events.

Description Nomenclature Size Directory

Input File clas 055521.A10 2 Gb Silo tape
cooked 055521.A10.B00 2 Gb

BOS Output cooked 055521.A10.B01 2 Gb BOS
cooked 055521.A10.B02 51 Mb

Histogram Files anaist 055521 A10.hbook 11 Mb AnaHistFiles
run 055521 rmA10.err 11 Kb

Log File run 055521 A10.log 8 Kb LOGS
run 055521 A10.out 55 Kb
DST 055521.A10.B00.root 408 Mb

Root File DST 055521.A10.B01.root 408 Mb ROOT
(for analysis) DST 055521.A10.B02.root 11 Mb

3.2 Calibration

During the data acquisition and while the trigger is open, a hit in the Start
Counter surrounding the target starts a time measurement until a signal is detected
in the CLAS spectrometer. Then the time is stopped and the information of the
event is read out and recorded. A general feature in the calibration of all detector
components is the need to align their timing with the beam radio frequency (RF or
accelerator time)3 time. The T-counter plane of the CLAS tagging system measures
the travel time of the scattered electron from the T-counter plane to the radiator
(backwards), as shown in Figure 2.4. The photon corresponding to this travel time
of the scattered electron is identified and triggers an event in the target at the cen-

3The accelerator at JLab produces an electron beam with buckets a period of 2.004 ns, which
defines the machine RF time; that is, an electron beam bucket is supplied to the target about every
2 ns.
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ter of the CLAS spectrometer. The ”RF vertex time4” for the identified photon is
calculated. The start counter, TOF scintillators and the electromagnetic calorimeter
(EC) of the CLAS spectrometer have their distinct vertex times. These vertex times
are synchronized against the RF vertex time. Since the start counter is the closest
sub-detector to the event vertex, its timing is the most reliable for any given track.
First, the ”ST vertex time5” for any given final particle is aligned with the ”RF
vertex time” for the photon. That is, the start-counter detector provides the first
time reference and the TOF scintillators provide the second time reference. The dis-
tinct timings measured in all the components of the CLAS spectrometer are aligned
together. Table 3.2 shows the role of each part of the CLAS detector in the calibration.

Table 3.2: The purpose of each calibration.

Detector Calibration procedure
Tagger Align T-counter and E-counter timing

against the RF beam signal.
Time-of-flight (TOF) Optimize the time and hit position reconstruction,

Counters align the 57 paddle timings with each other
and within the CLAS detection timing scheme.

Drift Chambers (DC) Optimize charged track reconstruction.
Electromagnetic Optimize the time and energy reconstruction.
Calorimeter (EC)
Start-Counter (ST) Align the ST paddles reconstructed

Calibration within the CLAS detection timing.

Calibration programs generally read files of raw or reconstructed data in BOS
format and typically produce some calibration constants. Calibration is an itera-
tive process. When the calibration of one component is improved, it allows further
improvement in another component. For example, if a TOF scintillator measures
the time of flight of particles more precisely, the EC time can be calibrated more
accurately. The CLAS spectrometer can be divided roughly into five parts: tagger,
start counter (ST), drift chamber (DC), TOF counters, and EC. Each part of the
calibration has a prerequisite stage; that is, the calibration of certain detector com-
ponents can commence start only after other calibrations are finalized. The order of
the calibration in the FROST experiment is Tagger, TOF, ST, DC and EC. A set of
representative runs dispersed evenly throughout the beam time is generally selected
for calibration. These runs are calibrated and reconstructed over several iterations

4The RF vertex time is the time of a photon calculated from the radiator at the event vertex.
5The ST vertex time is the time of the detected track calculated from the start counter (ST) at

the event vertex.
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until all subsystems are considered to be satisfactorily calibrated. The calibrations
are then applied to the entire run period, and a larger subset of the entire dataset is
reconstructed to check the quality and consistency of the calibrations. Typically, at
this stage, two files per run would be reconstructed, resuming 5-10% of the total run
statistics. When the conditions of all calibrations are satisfied, the final reconstruc-
tion is commenced to prepare the data analysis.

I was responsible for the DC calibration [24] in the g9a and g9b experiments. Fig-
ure 3.2 shows how the regions and superlayers in DC are arranged. The sectors are
six azimuthal segments divided by six superconducting coils, as shown in Figure 2.2.
Each sector of the chambers is classified radially into three regions, and each region
is composed of two superlayers. Superlayer 1 contains four layers, and the other su-
perlayers each has six layers of sense wires.

Figure 3.2: Schematic view of regions and superlayers in CLAS DC.

The DC are in a magnetic field and produce the curvature of the particle from
which we can determine its momentum. For this purpose, thin wires are fixed in a
volume filled with a special gas (the CLAS spectrometer uses a mixture of 90% argon
and 10% CO2 as a gas system) and form cells, as shown in Figure 3.3. The DC
of the CLAS spectrometer uses a quasi-hexagonal pattern as the cell form with six
field wires (cathodes) surrounding one sense wire (anode), as shown in Figure 3.4. A
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traversing charged particle ionizes the gas inside these cells. Owing to the electrical
potentials applied to the field-shaping wires, the electrons drift to the sense wire, and
the connected electronics measure this current.

Figure 3.3: Typical arrangement of electrodes in a drift-chamber cell.

Figure 3.4: Left: Portion of a Region 3 sector showing the layout of its two superlayers.
A passing charged particle is indicated by the highlighted drift cells that have fired.
Right: Schematic diagram showing a charged particle track. The individual hexagonal
drift cells are identified by a dashed line around the perimeter of each.

A software package entitled ”dc3” is used at JLab to calibrate the CLAS DC. To
determine the particle’s track, the measured drift time should be used. The drift time
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refers to the time required for electrons to drift to the nearest sense wire from the
place where a charged final particle has crossed. An example of a drift time distribu-
tions is shown in Figure 3.5 (a). Any three sense wires are only nearby in one place,
so a set of ”hits” on these three senses wires fixes a particle track in this region via
a least-squares fit done inside the CLAS reconstruction program. By measuring this
drift time the location of the original track can be determined with much greater pre-
cision than that of the actual spacing between the wires. The ”dc3” software package
uses two terms to describe the distance of a charged particle track from a sense wire:
DOCA and DIST . DOCA (distance of closest approach) is the distance from the
fitted track to the sense wire; DIST is the distance from the sense wire to the track
calculated from the drift time. The fitted DOCA values are obtained from fits to
global tracks (i.e. fits that include all layers); That is, the trajectory in a DC can be
rebuilt in the first stage without information from the other detectors in a hit-based
track. These trajectory data constitute a fitted DOCA.

(a) (b)

Figure 3.5: (a) Drift time measured in superlayer 1 of sector 1. (b) Relation between
fitted DOCA and drift times in superlayer 1 of sector 1.

The ”dc3” software package calculates the drift velocity function for every super-
layer in every sector by using a fitting, as shown in Figure 3.6 (a). This software
marks the calculated DIST from the relation of the drift velocity function and the
drift time. It also obtains the time residual, defined as the difference between the
absolute values of DOCA and DIST. Its sign is determined by the sign of any sys-
tematic time shift. The goal in DC calibration is that the value of the residual in
each superlayer become approximately zero, as shown in Figure 3.6 (b). Therefore,
moving from the rough hit-based track to a complete time-based track requires timing
alignment of the TOF measurement.
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(a) (b)

Figure 3.6: (a) Fitting the plot between fitted DOCA and drift times in superlayer 1
of sector 1, as shown in Figure 3.5 (b), to calculate the drift velocity function in
the ”dc3” software package. (b) Relation between drift times and the residual in
superlayer 1 of sector 1.

Figure 3.7 shows the residual before starting the DC calibration and after finishing
the final iteration of the calibration for every superlayer in every sector. The residual
values tend to approach zero when the new ones are compared with the old. However,
the residuals of superlayers 5 and 6 are not stable, but fluctuate with values far from
zero.
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Figure 3.7: Average DC residuals before starting (the top) and after finishing (the bottom) DC calibration in the g9a
dataset.
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CHAPTER 4

DATA SELECTION

4.1 Pre-Event Selection

The data for the g9a experiment (FROST-g9a) were taken between November
3th, 2007 and February 12th, 2008. The g9a data are divided into two major parts
according to the polarization type of the incident photon beam: circular and linear
polarization. In this analysis, the data with a circularly polarized photon beam and
a longitudinally polarized target were used. The circularly-polarized dataset is cate-
gorized into two parts according to the electron beam energy: one is the data from
Ee− = 1.645 GeV and another is from Ee− = 2.478 GeV. These data are broken up
into seven different periods.1 Table 4.1 shows the different experimental conditions
of the g9a data.

The information included in the raw data of the g9a experiment consists of QDC
(Charge to Digital Converter) and TDC (Time to Digital Converter) channel IDs
and values. The data must then undergo reconstruction, or be cooked (converting
these data into physical quantities like particle IDs, positions, angles, energies, and
momenta) in order to be ready for a physics analysis, as referenced in Chapter 3.
Therewith the data calibration is carried out for each detector component of CLAS
independently. After the detectors have been calibrated and the particle tracks have
been reconstructed, the cooking of the data is complete and the data are made avail-
able for analysis. Each event has its information organized in data banks. These data
banks hold not only the properties of the particles involved in the reaction but also
information about detector hits.

1A period is defined as a group of runs with similar conditions like the same target polarization
or 1/2 wave plate status in the data with a circularly-polarized photon beam and longitudinally-
polarized target.
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Table 4.1: The dataset of the g9a experiment classified according to a wide variety of characteristics, such as the target
polarization, the beam polarization, the electron beam energy, dates, and run numbers. The data with the circularly-
polarized beam is grouped in periods with similar run conditions.

Target Beam Electron Beam
Dates Run Range Period

Polarization Polarization Energy (GeV)

Longitudinal

Circular

1.645
11/10/07 - 11/10/07 55521 - 55536 1
11/11/07 - 11/13/07 55537 - 55555 2
11/14/07 - 11/20/07 55556 - 55595 3

2.478

11/27/07 - 11/30/07 55604 - 55625 4
11/30/07 - 12/07/07 55630 - 55678 5
02/04/08 - 02/07/08 56164 - 56193 6
02/07/08 - 02/11/08 56196 - 56233 7

Linear
3.539 12/07/07 - 12/20/07 55678 - 55844
2.751 01/05/08 - 01/11/08 55854 - 55938
4.599 01/17/08 - 02/03/08 55945 - 56152
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4.2 Reaction Channel and General Event

Selection

The reaction channel of interest in this analysis is γp→ pπ+π− using a circularly-
polarized photon beam and this channel is broken up into different topologies, as
shown in Table 4.2. A topology is defined according to the detected particles in
the final state: the two-particle final states (Topology 1-3) and all three-particles in
the final state (Topology 4). A particle which is not detected in a given topology
can be identified through the missing-mass technique. For this method, the Lorentz
vectors of the incoming beam and the target should be used. The four-momentum of
an identified particle in the reaction γp → pπ+π− is determined from the measured
three momentum and the particle energy. The missing four-momentum is given by :

xµ = kµ + P µ −

2,3
∑

i=1

pµi , (4.1)

where kµ and P µ are the photon and proton-target four-momenta, and pµi are the
four-momenta of the two or three detected particles. The missing mass mX is defined
as :

m2
X = xµxµ. (4.2)

The missing mass distribution is used to check the condition of the data after ap-
plying corrections and cuts. The four-momentum vector xµ of Equation 4.1 is used
to complete the set of four-momentum vectors for events of Topologies 1, 2, or 3, as
referenced in Table 4.2.

Table 4.2: Identification of the γp → pπ+π− channel using different topologies. Re-
constructed particles are identified by the PID information from the GPID bank.

Topology Reconstructed particles Missing mass of interest
total p π+ π− mX

1 2 1 1 0 mπ−

2 2 1 0 1 mπ+

3 2 0 1 1 mp

4 3 1 1 1 0

Since the g9a experiment has used a trigger which required at least one charged
particle in CLAS, the trigger file used during data-taking allowed for the recording
of a large variety of events. In order to analyze only the specific topologies of the
reaction γp→ pπ+π−, events possessing the final-state particles of interest should be
filtered using the particle’s identification number (PID), which is determined during
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the cooking process. Events that do not meet this requirement are ignored and sub-
sequently omitted from the analysis. The calculation of the detected particles’ mass,
which is necessary to determine the PIDs of the final particles, uses two independently
measured quantities, momentum (p) and velocity as fraction of the speed of light (β).
The magnitude of the particle’s momentum (p) is determined with an error of < 1%
using the measurements made by the Drift Chambers [14]. The β of the detected
final-state particle is determined using a combination of the Start Counter (SC), The
Time of Flight (TOF), and the particle’s detected trajectory through CLAS with an
error of up to 5% [14]. A detected particle’s mass can then be calculated by :

m2
particleX =

p2(1− β2)

β2
. (4.3)

After the particle’s mass has been calculated, it is compared to the masses of
known particles (hadrons and leptons). If this calculated mass matches that of a
known particle (within resolution errors), the PID associated with that mass is as-
signed to the final-state particle. This value can then be used to select certain final-
state particles for analysis. Therefore, to select events that match one of the four
topologies, the PID value is used and the necessary final-state particles are detected.
Information regarding the properties of these final-state particles (their 4-vectors,
vertex information, etc.) is then extracted from the GPID [25] data bank and used
for kinematic fitting and application of cuts and systematic corrections, and the ex-
traction of the polarization observables.

4.3 Photon and Particle Identification

4.3.1 Photon Selection

The electrons, which are used to produce the beam of polarized photons, are de-
livered from the accelerator into Hall B. They are carried in the form of 2 ns bunches.
The circularly-polarized photon beam is also produced in the form of 2 ns bunches by
directing the bunch of longitudinally-polarized electrons to the amorphous radiator.
It is very important to determine the correct photon in each event because the photon
energy is key to understand the initial state of the event. To determine the exact
photon corresponding to a physics event, a timing window can be used which satisfies
the consistency check between the tagger and start counter times.

The event-start-time difference at the interaction point between the tagger and
the start counter, ∆ tTGPB, is defined as the coincidence time between the tagger
and CLAS spectrometer. Figure 4.1 shows the distribution of tagged photons as a
function of the coincidence time, ∆ tTGPB, on a logarithmic scale. In the central peak,
there are events with the true tagger-CLAS coincidence time. Accidental coincidences
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can be seen as a series of other peaks associated with different beam buckets. Only
coincident events determined by :
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Mean   -0.002125
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Figure 4.1: Coincidence-time distribution of tagged photons for the raw data (dot-
ted histogram) and after applying all γp → pπ+π− selection cuts (solid histogram).
Events of the center bins filled in black indicate the candidates for the final selection.

|∆ tTGPB| < 1.2 ns, (4.4)

are selected. The tagged energy of that photon will be used as the photon energy
for the event. The fraction of accidental coincidences remaining in the central peak
is < 3% and is calculated from the comparison in the yields between the central
peak and neighboring beam buckets. When the “true” photon has been undetected,
these events are considered accidental events. If events with only a “true” photon are
selected, the fraction of accidental coincidences in the data is reduced strongly. In
this analysis, events with a “true” photon are selected using ngrf = 1 and tagrid

the same for all detected particles. These variables are from the GPID bank and
introduced and described in more detail in Section 4.6.2.

4.3.2 Proton and Pion Selection

The reaction channel of interest in this analysis is γp → pπ+π− and the photon
energy for each event is selected according to the procedure outlined in section 4.3.1.
In the next step, the identification of the proton, π+, and π− as the final-state particles
of γp → pπ+π− is needed using the GPID bank. The GPID bank has the CLAS-
measured momentum of a particle and a theoretical βc value for that particle can be
calculated from this measured momentum. This theoretically calculated βc value for
all possible hadron particle types is compared to the CLAS-measured empirical βm
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value. Particle identification is then determined based on matching the calculated βc

closest to the empirical measured βm. Figure 4.2 shows the difference ∆β between
the calculated βc and measured βm. ∆β is given with its assumed mass m :

β - measured β (proton) = calculated β ∆
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Figure 4.2: Distribution of ∆ β = βc − βm made from protons (a) and pions (plus
and minus) (b), where βc is calculated based on the particle’s assumed mass. Events
of the center peak filled in red are selected after applying the |βc − βm| ≤ 3σ cut.

∆β = βc − βm =

√

p2

m2 + p2
− βm. (4.5)

The peak around ∆β = 0, as shown in Figure 4.2, corresponds to the particles
of interest. ∆β for the pions in Figure 4.2 (b) is broader than for the proton in
Figure 4.2 (a) and there is a long tail to negative values of ∆β for the pions. When
the GPID bank is made during the reconstruction, electrons are not separated from
pions within the data. The long tail in the ∆β distribution of the pion particles
may represent electrons that need to be filtered out. To identify the proton and pion
and correct this GPID problem, a |βc − βm| cut should be applied. This cut can be
extracted by fitting the main peak near ∆β = 0 with a Gaussian function, discarding
all events outside 3σ, where σ is the width of the fitted Gaussian function. Thus,
any events with a value of ∆β greater than 0.032 for the proton and 0.044 for the
pions are filtered out of the dataset. Figure 4.3 shows the measured momentum (p)
versus the empirical measured βm for protons and pions (plus and minus) before (a)
and after (b) applying the |βc − βm| cut. Due to the different rest masses, bands for
pions and protons are clearly visible, especially after applying the |βc − βm| cut, and
protons and pions are well identified.
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(a) Before applying the ∆β cut
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(b) After applying the ∆β cut

Figure 4.3: (a) Measured βm versus the measured momentum for the double-pion
photoproduction events read from GPID on a logarithmic color scale. Notice the
stripes for pions at the top, followed by protons. (b) Measured βm versus the measured
momentum after applying the cut based on the difference ∆ β = βc − βm. Events
with pions and protons are clearly distinguished after applying the cut.

4.4 Kinematic Fitting

The reconstruction process determines the 4-vectors of the final-state particles.
Kinematic fitting [26] modifies these 4-vectors by imposing energy-momentum con-
servation on the event as a physical constraint. All components of these Lorentz 4-
vectors and the photon energy are modified until the event satisfies energy-momentum
conservation exactly, and then the kinematically fitted event has several quantities
to inspect the quality of the kinematic fitting: a confidence level and pull distri-
butions for each measured quantities. The confidence level is used to estimate the
goodness-of-fit of the data to the hypothesized event. The pull distributions are used
to evaluate the quality of the error estimation and check for systematics.

4.4.1 Confidence Level

After performing the fit, we need a way to check the agreement between the
data and the hypothesis. The confidence level used as the primary method of the
goodness-of-fit of an event is defined as :

CL =

∫ ∞

χ2

f(z;n)dz, (4.6)

48



where f(z;n) is the χ2 probability density function with n degrees of freedom. It
denotes the probability that a given event obeys the constraint imposed on the event
kinematics, e.g. energy-momentum conservation. In the ideal case of independent
variables and gaussian errors, the confidence level of the events without background
follows a flat distribution ranging from 0 to 1. However, the real data produce confi-
dence level distributions which have a sharp rise near zero. The large number of events
with low confidence level values represents events that do not satisfy the hypothesized
constraint equations. These events include background events, poorly reconstructed
events, or events with misidentified particles. Cutting out events with low confidence
levels provides a reasonable way to eliminate the majority of the background while
losing a relatively small amount of good events.

4.4.2 Pulls

To effectively use the confidence level to cut out background events, a good under-
standing of each fit quantity’s error is needed. The quality of the error estimation can
be obtained by examining the pull distributions. All fit parameters for every detected
final-state particle have pull distributions. A pull is a measure of how much and in
what direction the kinematic fitting has to alter the measured parameters. The pull
value for the ith fit quantity is given by :

zi =
ǫi

σ(ǫi)
, (4.7)

where ǫi = ηi − yi is the difference between the fit value of the ith parameter, ηi, and
the measured value of the ith parameter, yi. The quantity σ represents the standard
deviation of the parameter ǫi. Therefore, the ith pull can be written as:

zi =
ηi − yi

√

σ2(ηi)− σ2(yi)
. (4.8)

The reaction channel γp → pπ+π− has three final-state particles: proton, π+,
and π−. There are three fit parameters for each particle in the kinematic fitting: a
momentum and two angles, λ and φ. Thus, this analysis has ten pull distributions
including a pull for the photon energy if all particles in the final state are detected.
Assuming that the errors of the parameters used for kinematic fitting are properly
determined and all systematic errors have been corrected, the distribution of the pull
values (zi values) will be the Gaussian distribution in shape with a width of one
(σ = 1) and a mean value of zero (µ = 0); an example is shown in Figure 4.4. A
systematic error in the quantity ηi can be seen as an overall shift in the distribution of
the corresponding zi away from zero. Similarly, if the error of ηi has been consistently
(overestimated) underestimated, then the corresponding pull distribution will be too
(narrow) broad. The error of the measured value ηi can be corrected from the pull
distribution in an iterative procedure. Kinematic fitting provides an effective tool
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Figure 4.4: Example of fit results coming from a fit to a fully reconstructed
γp → pπ+π− final state. (a) Shows an example of a confidence level distribution.
A confidence level distribution (working with real data) peaks toward zero but flat-
tens out toward one. (b) Shows an example of a pull distribution (the photon energy
pull). Ideally, a pull distribution has the Gaussian distribution in shape around the
origin with a mean (µ) of zero and a sigma (σ) of one.

also to determine corrections to the particles’ energies and momenta. This will be
described in the following sections.

4.5 Corrections

4.5.1 Energy Loss Correction (ELoss)

As charged particles from the decay of a resonance travel from the target cell
to the Drift Chambers of CLAS, they lose energy through atomic excitations or
ionizations when interacting with the three kinds of targets, target walls, support
structures, beam pipe, start counter, and the air gap between the start counter and
the Region 1 Drift Chambers. Therefore, the reconstructed momentum seen in the
Drift Chambers is actually less than the momentum of the particle at the production
vertex. To account and correct for this, the 4-vectors of the final-state particles taken
from the data were corrected event-by-event according to the ELoss package developed
for charged particles moving through CLAS [27]. This ELoss package calculates the
lost momentum of each particle in several materials which the charged particle has
interacted with. To perform this calculation, the particle’s 4-momentum measured by
the Region 1 of the Drift Chamber is used to track the particle back to the reaction
vertex in the target cell. As the particle is tracked back to the reaction vertex, the
materials and distances it traverses are considered and the energy loss of the detected
particle is also calculated. The 4-vector of the particle is corrected by multiplying an
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Figure 4.5: Missing-mass distributions before (dotted blue histogram) and after (solid
red histogram) applying energy-loss-correction made in Topology γp→ pπ+(π−) from
the butanol target (a) and carbon target (b). The vertical lines denote the mass of
the π−. The energy-loss correction makes the peak shape noticeably narrower and the
peak position is also corrected. Since, however, the peak position is not positioned at
the π− mass exactly, another correction is needed in the butanol target.

energy loss correction factor to the momentum of this vector like :

P( p ,ELoss ) = ηp · P( p , CLAS )

P(π+ , ELoss ) = ηπ+ · P(π+ , CLAS )

P(π− , ELoss ) = ηπ− · P(π− , CLAS ),

(4.9)

where P(x ,ELoss ) is the momentum of the particle x after applying the energy loss
correction, P(x ,CLAS ) is the raw momentum measured in CLAS and x is the proton,
π+, or π−. Parameters ηp, ηπ+ , and ηπ− are the correction factors of the energy loss
correction. The energy-loss-corrected 4-vectors are then used in the analysis with the
corrections being on the order of a few MeV. The energy loss correction produces a
shift in mass as can be seen for the missing-mass calculations in Figure 4.5.

4.5.2 Photon Beam Correction

The energy of the photons that are incident on the target is determined in the
Hall B tagging system. The photon energy measured in this tagging system should
be also checked for consistency with the final state after applying the energy loss
correction in Section 4.5.1. It has been seen in past experiments that a physical
sagging of the support structures for the E-counter scintillator bars in the tagger
hodoscope could be attributed to gravitational forces [28]. The consequence of this
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sagging is a misalignment of the scintillator bars which leads to a mis-measurement
of the scattered electron’s energy [29]. In the g9a experiment, this sagging problem
has been already corrected when the data was reconstructed. However, whether the
sagging problem still exists or not in the g9a dataset should be checked and minor
corrections need to be applied to the photon beam if necessary.

(a) Ee = 1.645 GeV dataset (b) Ee = 2.478 GeV dataset

Figure 4.6: The photon beam correction on Ee = 1.645 GeV dataset at ASU (a) and
Ee = 2.478 GeV dataset (b). Eγ TRUE is the photon energy returned by the kinematic
fitting and Eγ measured is the measured photon energy from the data [30].

The photon beam energy can be calculated from the information of particles in
the reaction γp→ pπ+π− using the energy conservation law like :

E( cal.γ ) =
√

m2
p + P 2

( p ,ELoss ) +
√

m2
π+ + P 2

(π+ , ELoss ) +
√

m2
π− + P 2

(π− , ELoss ) −mp,

(4.10)
where P( p ,ELoss ), P(π+ , ELoss ) and P(π− , ELoss ) are the ELoss-corrected momenta of
the final particles shown in Equation 4.13. The status of the photon beam energy can
be checked by comparing the calculated photon energy Ecal.γ as seen in Equation 4.10
with the measured photon energy Emea.γ given in the g9a dataset.

The initial photon beam correction, as shown in Figure 4.6, was given by :

Eout = Ein + a1 · Ein + a0 · Ee− , with
a0 = 0.00456797 and
a1 = -0.00630536,

(4.11)

where Ein is the photon energy before the correction and Eout is the photon energy
with the ASU correction. Ee− is the electron beam energy used in this analysis. Fig-
ure 4.7 shows the comparison of the calculated photon energy Ecal. γ to the measured
photon energy Emea. γ after applying the ASU photon correction. In the low energy,
there is an overall shift in the distribution of the corresponding energy difference away
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Figure 4.7: The difference between the calculated photon energy Ecal. γ and measured
photon energy Emea. γ after applying the ASU photon beam correction.

from zero: the measured photon energy is bigger than the calculated photon energy.
The ASU photon energy correction needs to be supplemented and was improved by
Florida State University (FSU) applying the fitting, as shown in Figure 4.7. The FSU
photon energy correction is given by :

Eout =

(

a1 · Ein + a0 · Ee

)

·

(

1 +
p1
Ee

)

+ p0. (4.12)

Table 4.3: The parameters used in the FSU photon beam correction.

target p0 p1
butanol -0.02299 0.0237
carbon -0.01533 0.02012

polyethylene -0.01539 0.02413

The three kinds of targets have different values for the parameters, p0, p1, and
p2, as referenced in Table 4.3. The parameters a1 and a2 are from Equation 4.11.
Eout is the photon energy after applying the final photon energy correction. After
the photon beam correction is applied to the photon energy measured in the CLAS
spectrometer, we can compare the difference between the calculated and measured
photon energy. This is shown in Figure 4.8. After applying energy-loss and photon
beam correction, 4-vectors of the final-state particles and the photon beam energy
are corrected very well except for the regions of very high and low energies.
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Figure 4.8: The difference between the calculated photon energy Ecal. γ and measured
photon energy Emea. γ , after applying energy-loss correction and all photon-beam
correction. This figure is made for the topology γp → pπ+π− with no missing mass
and the data from the butanol target. On the x-axis, Ee− is the electron beam energy
used in the g9a experiment. As the tagging system of the Hall-B can tag photon
energies from 20% to 95% of the incident electron beam energy, the data on the
x-axis covers a range from 0.2 to 0.95.

4.5.3 Momentum Correction

Since the CLAS spectrometer used in the g9a experiment is not a perfect de-
tector, corrections for particles’ momenta must be determined for the g9a dataset.
This mainly is a result of unknown variations in the magnetic field provided by the
Torus Magnet as well as inefficiencies and misalignments of the Drift Chambers. The
momentum correction in the g9a experiment was determined using the kinematic fit-
ting. The final particle’ 4-vector is corrected by multiplying a correction factor of the
momentum correction to the momentum of this vector like :

P( p ,MomC ) = ξp · P( p ,ELoss )

P(π+ ,MomC ) = ξπ+ · P(π+ , ELoss )

P(π− ,MomC ) = ξπ− · P(π− , ELoss ),

(4.13)

where P(x ,ELoss ) is the momentum of the particle x after applying the energy loss
correction, P(x ,MomC ) is the momentum of the particle x after applying the momen-
tum correction and x is the proton, π+, or π−. Parameters ξp, ξπ+ , and ξπ− are the
correction factors of the momentum correction. To properly determine correction fac-
tors of the proton and pion for the momentum correction using the kinematic fitting,
pull distributions must be evaluated for different momentum bins. The binning of
the momentum was determined based upon the observed distributions of the proton
and pion momenta, as shown in Figure 4.9.
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Figure 4.9: Examples of momentum distributions of final-state particles in the g9a
dataset.

The momentum binning utilized 5 momentum bins for the proton and pion, which
are referenced in Table 4.4.

Table 4.4: The momentum binning of the proton and pion for the momentum correc-
tion and the correction factors applied in this analysis.

particle momentum bin range [GeV] correction factor

proton

1 0.2 - 0.5 1.012011
2 0.5 - 0.6 1.002014
3 0.6 - 0.7 0.999716
4 0.7 - 0.9 1.000439
5 0.9 - 1.7 0.999975

π+

1 0.05 - 0.2 1.005510
2 0.20 - 0.27 0.998049
3 0.27 - 0.35 0.998151
4 0.35 - 0.53 1.000716
5 0.53 - 1.40 1.001858

π−

1 0.05 - 0.2 1.018893
2 0.20 - 0.27 0.987956
3 0.27 - 0.35 0.986561
4 0.35 - 0.53 1.010072
5 0.53 - 1.40 0.992872
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The final goal of the momentum correction is to obtain pull distributions, which
are a Gaussian distribution in shape with σ = 1 and mean = 0. Only small correction
factors are applied to the momenta used in the kinematic fitting process to adjust the
positions of the pull distributions. This iterative process is repeated until the pull
distributions for proton, π+, and π− are centered at zero with a symmetric shape.
Pull distributions and confidence-level distribution after applying the energy-loss cor-
rection, the photon-beam correction, and the momentum correction are shown in
Figure 4.10. Means and sigmas of these pull distributions are acquired by fitting pull
distributions with all corrections to a Gaussian curve and are referenced in Table 4.5.

Table 4.5: Means and σ’s of pull distributions made to integrate with the momentum
bins referenced in Table 4.4 after applying all corrections.

particle mean σ

mom -0.012 1.029
proton λ +0.205 0.983

φ -0.050 0.991

mom -0.086 1.002
π+ λ +0.099 1.004

φ -0.098 0.990

mom -0.090 1.023
π+ λ -0.371 0.976

φ -0.085 0.987

photon +0.088 1.035
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Figure 4.10: Pull and confidence-level distributions after applying all corrections in
the butanol target. The green dotted line is made from the raw data. After the
energy-loss correction is applied to the raw data, the red dashed line is obtained. One
after another, photon-beam correction and momentum-correction are applied on the
dataset and the blue solid histograms are obtained. These pulls and the confidence-
level distribution are from Topology γp→ pπ+π− ( ) with a 5 % confidence level cut
applied. The lines represent fitting the data to a Gaussian function, the mean and σ
of which can be found in Table 4.5.
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4.6 Basic Cuts

The events of one of the four topologies were kinematically fitted after applying all
corrections. In the next step, it is necessary to impose a series of cuts before extracting
polarization observables. These cuts will serve to further refine the data sample and
help remove events with accidental particles and other things that corrupt the dataset.

4.6.1 Vertex Cut

The g9a experiment has three kinds of targets such as a butanol, carbon, and
polyethylene target. The butanol target is 5 cm long and 3 cm in diameter with
its center located at the center of the CLAS spectrometer. The carbon target is
located at 6 cm from the CLAS center downstream with 0.15 cm in length. The
polyethylene target is located at 16 cm from the CLAS center downstream with 0.35
cm in length. The required vertex cuts therefore are: −3 cm < zall particles < +3 cm
for the butanol target, +5 cm < zall particles < +7.5 cm for the carbon target, and
+15 cm < zall particles < +18 cm for the polyethylene target. The vertex cut involving
the x- and y- components selects those events, which originated no more than 2 cm
from the z axis (beam line).
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Figure 4.11: (a) The vertex z-position (axis along the beam line) of all reconstructed
particles showing the positions of the three kinds of targets. The red line denotes
the data with all pπ+π− events. The blue line denotes events after applying basic
cuts. The carbon data with all pπ+π− events is fitted with a Breit-Wigner to check
the distribution of carbon events. (b) A comparison of the z-vertex reconstruction
from the MVRT and TBTR bank is shown on a log-z color scale. Lines indicating
the target cut regions are shown in the dashed red boxes.
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Since the target vertex distributions of butanol and carbon targets are very close,
as shown in Figure 4.11 (a), the overlap between both targets needs to be checked
when determining event yields. To check the contamination of the butanol events
with carbon events, the total distribution of the carbon data with all pπ+π− events
has been fitted with a Breit-Wigner function. We observe little interference of the
carbon events with the butanol data. After applying basic cuts, the butanol and car-
bon events are clearly distinguished and there is no contamination of carbon events
in the butanol events.

The vertex information in this analysis can be taken from either of the two banks,
TBTR or MVRT. The difference of the vertex information between the TBTR and
MVRT bank comes from the number of particles used to reconstruct the vertex. The
reconstruction from the TBTR bank uses the vertex position for a particle based
solely on CLAS information regarding the particle, whereas the MVRT bank assigns
a single vertex information from the tracking information of all available charged
particles in CLAS to calculate the best estimate of the vertex location. The MVRT
vertex reconstruction is usually more accurate than the TBTR vertex when there are
multiple tracks like in double-pion photoproduction since more tracks included in the
reconstruction of the vertex location will determine the vertex with a higher degree of
accuracy. In an ideal situation, both TBTR and MVRT vertex would give identical
results, which seems to be a good approximation when looking at the vertex informa-
tion for the entire dataset, as shown in Figure 4.11 (b). This plot shows single thin
straight lines with Vz(TBTR) = Vz(MVRT ) like an ideal situation. This analysis
will use the vertex information from the MVRT bank.

4.6.2 Accidental Cuts

Accidental events can occur as a result of a number of factors, such as human
error, detector error, natural events (e.g. cosmic ray), or a combination of these.
Cuts to remove the accidental events imposed on the g9a dataset during this analysis
use specific bank variables. These variables can be found in the GPID bank with the
names ’ngrf’ and ’tagrid’ and are shown in Figure 4.12 [25]. The ngrf variable in-
dicates how many candidate photons were found in the reconstruction, which passed
the reconstruction timing cut to find the incident photon. The tagrid provides an
index to the location of the photon related to a particle in the TAGR bank. The
ngrf cut imposed on all final-state particles requires that they all have a value of
one (ngrf=1). This means that for every final-state particles, there was only one
photon found which passes the timing requirements. For the tagrid cut, the re-
quirement is that values of this variable for all final-state particles are the same and
this guarantees that the reconstruction code found the same photon for all final state
particles. These accidental cuts ensure that the events analyzed include a successful
determination of the incident photon and that this photon is the same for all final-
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state particles thus leading to a well-defined initial state.
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Figure 4.12: The distributions of the variable ngrf and tagrid used in the g9a
experiment.

4.6.3 Confidence Level Cut

By performing a cut on the confidence level, the background events, poorly re-
constructed events as well as events with misidentified particles can be significantly
removed from the g9a dataset. Figure 4.13 (a) shows the confidence level distribution
in the topology γp → pπ+(π−) before and after applying the confidence-level cut
of 5% and Figure 4.13 (b) describes the missing mass distribution before and after
applying the confidence-level cut of 5%. This confidence-level cut removes much of
the background events while ideally only cutting out 5% of the good events.
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Figure 4.13: (a) The distribution of confidence level values for the topology γp →
pπ+(π−) generated from the butanol target. The confidence-level cut selects the
events whose confidence level is greater than 0.05, as shown in the colored region.
(b) The missing mass distribution made from the same topology and target as in
Figure 4.13 (a). The black dashed line is made after applying all cuts and corrections
without the confidence-level cut and the blue solid histogram indicates the good events
after applying the confidence-level cut of 5% on the black dashed histogram. The
colored area includes events whose confidence level is less than 0.05.

4.6.4 Removing Bad Time-of-flight Paddles

Since some paddles of the time-of-flight (TOF) in the CLAS spectrometer are dead
or malfunctioning, the information from these bad TOF paddles should be removed
from the g9a dataset. The number of counts for each scintillator paddle is plotted in
Figure 4.14. The bad paddles are identified by comparing the TOF paddle with very
low counts to the average value of the sectors. The identified bad TOF paddles are
listed in Table 4.6.
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Figure 4.14: The paddle distributions of the time-of-flight counters in the six sectors.
The red dashed line is the average of the six sectors’ counts in the paddle distribution.

Table 4.6: The information of the bad time-of-flight paddles.

sector number bad TOP paddles
1 17, 24
2 45
3 23, 35
4 23, 49
5 23, 55
6 54
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4.6.5 Event Distributions after Applying All Cuts and
Corrections

The process of developing and applying energy and momentum corrections during
the course of an analysis serves the purpose of correcting for the effects of the experi-
mental setup, therefore resulting in a dataset that is as nature intended it. Addition-
ally, determining and enforcing cuts used in an analysis serves not only to remove the
remaining effects of the experimental setup but also to remove the contribution to the
dataset from physics events not of interest to the analysis (the hadronic background).
Figure 4.15 shows missing mass distributions and a squared missing mass distribution
for the four kinds of topologies in the reaction γp→ pπ+π−, respectively. In this fig-
ure, missing-mass distributions after applying energy and momentum corrections for
the 4-vectors in the reaction γp→ pπ+π− are described and the change of histograms
after applying all cuts with and without the confidence-level cut are also shown in
Figure 4.15.

The remaining background may be comprised of accidental events where a de-
tected particle was attributed to an event to which it does not belong, events with
an incorrect initial state like a misidentification of a photon and events originating
from interactions with matter other than the target materials. A typical method
of observing the background is to choose a final state topology and construct the
missing mass of that topology, as shown in Figure 4.13 (b). A single cut on the confi-
dence level greatly reduces this background but does not entirely remove it. Through
the application of vertex position, photon and particles identification variables, this
background may be reduced even further. Because the g9a experiment uses a “dirty”
polarized target, the free-proton events from the butanol after removing some of the
background still have contributions from bound nucleons. These bound-nucleon con-
tributions still need to be taken care of.
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Figure 4.15: Missing-mass distributions for the four different topologies. The π−

particle is missing in all p π+ π− events (a), the π+ particle is missing (b), the p
particle is missing (c), and there are no particles missing (d). The black solid line
is made from the butanol target after applying all corrections. The histogram filled
in light blue indicates the good events after ap plying all basic and accidental cuts
and corrections without the confidence-level cut. The red dashed histogram includes
events whose confidence level is greater than 0.05. The distribution in (d) is made as
a function of the squared missing mass.
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4.7 Beam and Target Polarization

4.7.1 Photon Beam Polarization

Circularly-polarized photons are produced by bremsstrahlung of longitudinally-
polarized electrons from an amorphous radiator. The degree of circular polarization of
the bremsstrahlung photons δ⊙ can be calculated from the longitudinal polarization of
the electron beam δ e multiplied by a numerical factor. In particular, with x = Eγ/Ee,
the degree of circular polarization of bremsstrahlung from longitudinally-polarized
electrons is given by [31] :

δ⊙ = δ e ·
4x− x2

4− 4x+ 3x2
. (4.14)

Figure 4.16, made from Equation 4.14, shows that the circular polarization of the
photon beam and the photon beam energy are roughly proportional to each other.
In the figure, the photon energy Eγ is described in proportion of the amount of the
electron-beam energy Ee.
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Figure 4.16: Circular polarization of the photon beam as a function of photon energy.

The data with a circularly-polarized photon beam in the g9a experiment have two
kinds of electron beam energies, 1.645 GeV and 2.478 GeV, as referenced in Table 4.1.
Runs with different electron beam energies have different circular polarizations for the
same photon energy Eγ. Thus, the circular polarization of the photon beam should
be calculated separately in runs with different electron beam energies, as shown in
Figure 4.17. As the first step in calculating the circular polarization of the photon
beam, the longitudinal polarization of the electron beam δ e should be found in runs
with different electron beam energies. Table 4.7 summarizes the Mφller measurements
of the electron-beam polarization δ e in the g9a experiment and their average values
in runs with different electron beam energies.
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Table 4.7: Mφller measurements of the electron-beam polarization.

Electron-beam Date Run number Electron-beam polarization δ e

energy Ee Average

1.645 GeV

Nov. 12, 2007 55544

+85.228 ± 1.420

84.789 ± 0.470

−78.523 ± 1.350
−79.150 ± 1.26
+88.700 ± 1.480

Nov. 13, 2007 55552
+84.167 ± 1.330
−84.725 ± 1.530

Nov. 19, 2007 55588
−86.531 ± 1.380
+88.409 ± 1.440
+87.753 ± 1.480

2.478 GeV

Nov. 28, 2007 55608 −82.534 ± 1.400

83.016 ± 0.789
Nov. 28, 2007 55608

−79.450 ± 1.410
+80.060 ± 1.400

Jan. 07, 2008 56194 −83.267 ± 1.380
Feb. 08, 2008 56202 −83.248 ± 1.320
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An average value of 84.798% and 83.016% with an uncertainty of 0.470% and
0.789%, respectively, is used for the degree of the electron-beam polarization δ e.
Since the center-of-mass energy is used as an independent kinematic variable, the cir-
cular polarization cannot be a continuous function.The average values of the circular
polarization for a specific phase-space volume ∆τ in each center-mass-of-energy bin
are given by :

δ̄⊙ =
1

N+ +N−

∑

i∈∆τ

δ⊙(W ). (4.15)

N± are the total number of γp→ pπ+π− events for the two helicity states and W is
the center-of-mass energy. These average values are calculated in each center-of-mass
energy bin, shown in Table 4.8. Figure 4.17 shows circular polarizations and their
averages for the two electron beam energies, 1.645 GeV and 2.478 GeV.
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(b) E e = 2.427 GeV

Figure 4.17: The average degree of circular polarization of the photon beam as a
function of the center-of-mass energy for electron beam energies 1.645 GeV (a) and
2.427 GeV (b).
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Table 4.8: The average degrees of circular polarization in FROST g9a.

The center of mass energy The average circular polarization, δ̄⊙
[GeV] Ee = 1.645 GeV Ee = 2.427 GeV
1.25 0.22172 ± 0.00007
1.30 0.26349 ± 0.00006
1.35 0.31319 ± 0.00007 0.20442 ± 0.00019
1.40 0.36416 ± 0.00008 0.22325 ± 0.00007
1.45 0.41810 ± 0.00008 0.25841 ± 0.00008
1.50 0.47551 ± 0.00009 0.29194 ± 0.00010
1.55 0.53077 ± 0.00010 0.32929 ± 0.00010
1.60 0.58695 ± 0.00013 0.36861 ± 0.00012
1.65 0.64083 ± 0.00015 0.40909 ± 0.00014
1.70 0.69159 ± 0.00017 0.44555 ± 0.00021
1.75 0.73866 ± 0.00019 0.49416 ± 0.00020
1.80 0.77739 ± 0.00022 0.53564 ± 0.00022
1.85 0.80903 ± 0.00024 0.57837 ± 0.00031
1.90 0.83162 ± 0.00025 0.61849 ± 0.00029
1.95 0.84239 ± 0.00034 0.65746 ± 0.00031
2.00 0.69530 ± 0.00035
2.05 0.72835 ± 0.00037
2.10 0.75822 ± 0.00040
2.15 0.78291 ± 0.00045
2.20 0.80441 ± 0.00051
2.25 0.81792 ± 0.00059
2.30 0.82581 ± 0.00065
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4.7.2 Beam Charge Asymmetry

The electron beam polarization is toggled between the h+ helicity state and the
h− helicity state at a 30Hz rate. Therefore, the photon-beam flux for both helicity
states should be identical on average. Small beam-charge asymmetries of the electron
beam, however, can cause instrumental asymmetries in the observed γp → pπ+π−

asymmetries, and need to be taken into account. This beam-charge asymmetry can
be calculated by considering the luminosities for helicity-plus and -minus events :

Γ± = α±Γ =
1

2
(1± āc)Γ, (4.16)

where Γ is the total luminosity. The parameter α± is used to find the helicity plus
and minus luminosity, Γ±, from the total luminosity. This parameter depends on
the mean value of the electron-beam charge asymmetry āc. Figure 4.18 shows the
beam-charge asymmetry, ac, for the g9a runs used in this analysis.

Figure 4.18: Distribution of beam-charge asymmetries for the analyzed runs.

Their averages and errors calculated for different periods are referenced in Ta-
ble 4.9. These beam-charge asymmetries do not affect the final result of this analysis
since these asymmetries are very small.
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Table 4.9: The mean and error of the beam-charge asymmetries, āc, calculated in
each period.

Period Average of σ
the beam-charge asymmetry, āc

1, 2, and 3 7 × 10−4 1 × 10−3

4 and 5 3 × 10−5 3 × 10−3

6 and 7 1 × 10−3 4 × 10−3

4.7.3 Target Polarization

The target polarization has the magnitude and the direction, as shown in Fig-
ure 4.19. The polarization direction is defined by two quantities: the direction of
the holding magnetic field with respect to the beam and the direction of the proton
polarization with respect to the holding field. Table 4.10 shows how the direction of
the target polarization is defined in the FROST g9a experiment.

Figure 4.19: Target polarization versus run number measured in the g9a experiment.
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Table 4.10: The definition of the direction of the target polarization used in the g9a
experiment. The first plus sign in L++ means the direction of the holding magnet
and the second indicates the direction of the proton polarization.

L++ : Positive target polarization
L+− : Negative target polarization
L−+ : Negative target polarization
L−− : Positive target polarization

The plus (minus) sign in the direction of the holding field means the field is
parallel (anti-parallel) to the beam direction. The plus (minus) sign in the direction
of the proton polarization indicates the protons are polarized parallel (anti-parallel)
to the holding field. It turned out later that the directions of the target polarization
between the NMR data and the run table are not consistent. The exact directions
of the target polarization are checked from the target asymmetry in the reaction
γp→ pπ+π− based on the information of the run table (see Appendix A). Table 4.11
shows the information of the direction of the target polarization before and after
correcting the inconsistency using the target asymmetry.

Table 4.11: The direction of the target polarization before and after correcting initial
inconsistencies. After the correction, the direction of the target polarization in period
4 and 5 is reversed. The arrow⇒ (⇐) means the target polarization is parallel (anti-
parallel) to the beam direction.

Period The target polarization
Before the correction After the correction

1 L+−(⇐) ⇐
2 L+−(⇐) ⇐
3 L++(⇒) ⇒
4 L−+(⇐) ⇒
5 L−−(⇒) ⇐
6 L++(⇒) ⇒
7 L+−(⇐) ⇐

Each run has a different value of the target polarization and in order to be used
in the asymmetry equation, averages per period value should be calculated. Λ̄z is the
mean value of the longitudinal target polarization :

Λ̄±z =
1

N±

∑

run

Λ±z (run), (4.17)
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Figure 4.20: Values of target polarization versus run number measured in the g9a
experiment and their averages (the blue line) made per period.

where ± means the target polarization is parallel/anti-parallel to the beam and N± is
the total numbers of observed counts in the different target polarization. Figure 4.20
shows the distribution of target polarizations used in the dataset with the circularly-
polarized beam and longitudinally-polarized target. The average values are calculated
by using Equation 4.17 and their mean values are described in Table 4.12 with the
statistical errors and systematic errors calculated by standard error propagation.

Table 4.12: Average target polarization with the statistical and sysmatic error per
period and the ratio between the different target polarizations. This ratio of the
different target polarization is used in Equation 5.12.

Period Average target polarization Ratio of target polarization
Λ̄z error Λ̄z(=>)/Λ̄z(<=) error

statistical sysmatic statistical sysmatic
2 0.793 4.503e-05 1.685e-03 1.102 3.592e-04 2.350e-03
3 0.874 2.806e-04 1.736e-04
4 0.843 5.165e-05 2.575e-04 1.013 7.402e-05 3.631e-04
5 0.833 3.321e-05 1.565e-04
6 0.796 3.079e-05 2.136e-04 0.995 5.777e-05 3.781e-04
7 0.800 3.461e-05 2.150e-04
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4.7.4 Confirm the Information of the Beam and Target
Polarization

In the next step, we should assure that the directions of the determined beam and
target polarizations are credible. The direction of the target polarization is mentioned
in Table 4.11. Therewith, the direction of the beam polarization depends on the con-
dition of the half-wave plate (HWP): IN or OUT. The longitudinal polarization of
the electron beam is flipped pseudo-randomly with 30 sequences of helicity (+,−) or
(−,+) signals per second. Occasionally the HWP is inserted in the circularly-polarized
laser beam of the electron gun to reverse helicities and the beam polarization phase
should be changed by 180◦. The HWP is inserted and removed at semi-regular in-
tervals throughout the experimental run to ensure that no polarity-dependent bias
is manifested in the measured asymmetry. The electron-beam helicity information
is stored in the level1-trigger-latch word of the TGBI bank. Bit 16 in the level1-
trigger-latch word is the helicity-state bit. It indicates the sign of the electron-beam
polarization, as shown in Table 4.13.

Table 4.13: Helicity signal from the TGBI-bank latch1 for the two half-wave-plate
positions. In the table, the sign +(−) means the beam polarization is parallel (anti-
parallel) to the beam direction.

TGBI latch1 Beam helicity
bit-16 λ/2 (OUT) λ/2 (IN)

1 + −
0 − +

When the half-wave plate is OUT, the number 1 in bit 16 of the level1-trigger
latch means the beam polarization is parallel to the beam direction and the number 0
means the beam polarization is antiparallel to the beam. When this plate is IN,
the directions of the beam polarization related to the number 1 and 0 are switched.
Table 4.14 shows the information of the condition of the half-wave plate and the
direction of the target polarization used in this analysis. The reliability of the infor-
mation, as referenced in Table 4.14, is confirmed by the beam and target asymmetry
(see Appendix A).
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Table 4.14: The condition of the beam and target polarization of each period used in this analysis.

Beam polarization
Period Run range The condition of Target polarization

the half-wave plate
1 55521 - 55536 IN ⇐
2 55537 - 55555 OUT ⇐
3 55556 - 55595 IN ⇒
4 55604 - 55625 IN ⇒
5 55630 - 55678 IN ⇐
6 56164 - 56193 OUT ⇒
7 56196 - 56233 OUT ⇐
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4.8 Normalization Factor

As mentioned earlier, the g9a experimental data with the circularly-polarized
beam can be divided into seven groups of runs with similar conditions called periods
and each period has a different direction of the target polarization, as referenced in
Table 4.14.
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Figure 4.21: The distribution of the number of photons as a function of photon energy
saved in the “gflux” file. In this picture, there are seven periods and each period has
100 and 25-MeV wide bins in the range from 0.4875 to 2.9875 GeV, respectively.
Period 5 has the largest number of photons.

Datasets with different target polarizations should be combined to calculate the
asymmetry in the reaction γp→ pπ+π−. Since, however, the number of runs included
in each period is different and each run has a different number of events, a normaliza-
tion factor is needed to adjust the imbalance of the number of events between periods.
The events included in the data are roughly proportional to the initial number of pho-
tons. The normalization factors can be found from comparing the number of photons
between periods. The information about the number of photons in Hall-B is saved in
“gflux” files. The gflux files contain the number of photons and their uncertainties
in a given bin, as shown in Figure 4.21. The g9a data with the circularly-polarized
beam can be divided largely into two datasets according to the electron beam energy
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Ee− . One dataset includes period 1, 2, and 3 with Ee− = 1.645 GeV and another
dataset has period 4, 5, 6, and 7 with Ee− = 2.427 GeV. In the first dataset, Period 1
and Period 2 have very similar conditions except the condition of the half-wave plate.
Because of statistics, the data of Period 1 and Period 2 will be combined after consid-
ering the difference of the half-wave plate between two periods and these combined
data will then be defined as Period 2.
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Figure 4.22: The ratio of the number of photons between periods with the target
polarizations parallel (⇒) and anti-parallel (⇐) to the beam.

As mentioned before, the normalization factor is defined as the ratio of the number
of photons between datasets with different directions of the target polarization, as
shown in Figure 4.22. The periods 3, 4, and 6 have the target polarization direction
parallel to the beam direction, as shown in Table 4.14 and the other periods have
an opposite direction of the target polarization. There are three kinds of period-
combinations to calculate the polarization observables in this analysis: combination-
32 with period 3 and 2, combination-45 with period 4 and 5, and combination-67
with period 6 and 7.
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Table 4.15: The normalization factor used in combination-32, combination-45, and
combination-67.

The center of mass energy ratio, F(⇒)/F(⇐)
[GeV] per-3/per-2 per-4/per-5 per-6/per-7
1.35 1.160 0.359 0.840
1.40 1.163 0.368 0.836
1.45 1.190 0.373 0.830
1.50 1.131 0.370 0.840
1.55 1.168 0.370 0.830
1.60 1.157 0.371 0.828
1.65 1.164 0.372 0.834
1.70 1.174 0.371 0.831
1.75 1.158 0.371 0.835
1.80 1.171 0.371 0.828
1.85 1.177 0.380 0.851
1.90 1.157 0.370 0.837
1.95 1.166 0.371 0.828
2.00 0.371 0.830
2.05 0.371 0.828
2.10 0.371 0.829
2.15 0.371 0.827
2.20 0.372 0.826
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4.9 Dilution Factor

The g9a experiment utilizes butanol (C4H9OH) as the main target material.
When this main target is polarized, only the hydrogen component of the butanol
can be polarized. Polarized free-proton events from the butanol target can be sep-
arated from bound-nucleon events, which are subject to Fermi motion, and other
background events by using a dilution factor. This is illustrated in Figure 4.23. The
dilution factor is generally defined as the ratio between the free proton and the full
butanol contribution to the cross section. A simple calculation based on the chemical
formula of butanol (C4H9OH) yields 10/74 = 0.135 as the ideal dilution factor. In
practice, dilution factors are reaction dependent and are generally larger than the
ideal factor after the application of the selection cuts.

Figure 4.23: Illustration of the signal and background events in the butanol data from
the g9a experiment.

To determine the dilution factor in this analysis, it was necessary to evaluate the
contribution of the bound-nucleon events to the reaction γp → pπ+π−. In the g9a
experiment, the carbon target is used as a known source of bound nucleons to esti-
mate the contribution of bound-nucleon and background events in the butanol data,
as shown in Figure 4.23. It is assumed that bound-nucleon events from 12C and 16O
nuclei in the butanol behave similarly, and can be appropriately subtracted using the
data from the carbon target.
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Figure 4.24 (a) illustrates an example of the missing π− mass distribution using
butanol (in black) and carbon (in red) data for the topology γp → pπ+(π−). Since
the carbon events from the g9a experiment have the hydrogen contamination [32],
the carbon events from the g9b experiment are used in this analysis. Figure 4.24 (b)
shows the same butanol distribution where the bound-nucleon and background events
are described with a Chebyshev polynomial. To isolate the free-proton events in the
butanol data more accurately, the carbon distribution should be scaled and then
subtracted from the butanol distribution. The equation to calculate the dilution
factor is :

D(W ) = 1−
s ·NC(W )

NC4H9OH(W )
, (4.18)

where NC is the number of events from the carbon target and NC4H9OH is the number
of events from the butanol target. In Equation 4.18, s is the parameter to scale
the carbon distribution and s · Nc is the number of events from the scaled carbon
distribution, i.e., the true contribution of bound-nucleon and background events in
the butanol data. In Section 4.9.1, the method to determine the scale parameters
referred to as ”phase space scale factors” will be described [33].
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Figure 4.24: (a) The missing mass distribution for the topology γp→ pπ+(π−) from
the butanol and carbon target. The black line describes the butanol events from the
g9a experiment and the red line denotes the carbon events from the g9b experiment.
(b) The fitted missing mass distribution using a mixed function of a Gaussian and
a Chebyshev polynomial (blue line). The green dotted line denotes the Chebyshev
polynomial in the mixed fitting function. The colored area includes events whose
confidence level is less than 0.05. The data are selected from W ∈ [1.575,1.625] GeV;
the beam polarization is anti-parallel to the beam and the target polarization is anti-
parallel to the beam direction.
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4.9.1 Phase Space Scale Factor

The scale factors or the ”phase space scale factors” are used to produce the scaled
carbon distributions from the carbon data. They are determined by comparing the
bound-nucleon events in the butanol data with the carbon data. In order to ac-
complish this, it is necessary to isolate the bound-nucleon events from the butanol
data. The free proton events in the butanol data are from protons ”at rest”, that is,
these events are not subject to Fermi motion. Energy conservation for the topology
γp→ p′π+(π−) requires :

Eπ− =
(

Eγ + Ep

)

−
(

Ep′ + Eπ+

)

, (4.19)

where
(

Eγ + Ep

)

is the energy of the initial state, and
(

Ep′ + Eπ+

)

is the energy of
the final state. The free proton events obey the relation Ep = mp and are distributed
near the missing-pion peak, as shown in Figure 4.25 (a). Since the bound-nucleon

events have additional Fermi motion, they obey the relation Ep =
√

m2
p + p2F , where

pF is the Fermi momentum, and can be distributed far from the peak. In the squared
missing-mass distribution of the butanol data, free-proton events in the butanol data
cannot have the negative values, but the squared missing-masses of bound-nucleon
events can be the negative. The squared missing-mass distribution can be classified
as a region that is possible for free proton reactions and that can only contain events
from bound nucleons. In Figure 4.25, a loose cut at MM2 < −0.2 GeV2 can isolate
bound-nucleon events in butanol data.
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(a) The butanol data (g9a)
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Figure 4.25: The missing squared-mass distribution for Topology γp → pπ+(π−)
from the butanol target (a) and from the carbon target (b). The blue-shaded regions
indicate MM2 < −0.2 GeV2 and should contain only events for bound nucleons.

Figure 4.26 shows the two dimensional distribution of two kinematic variables:
center-of-mass energy, W , versus the azimuthal angle, φ∗π+ , after applying the loose
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cut at MM2 < −0.2 GeV2 in the squared missing-mass distribution of the butanol
and carbon data.
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(a) g9a-butanol data
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Figure 4.26: The comparison of the π+ W versus φ∗π+ from the butanol and carbon
data in the reaction γp → pπ+(π−). The phase space (a) is from the butanol data
of the g9a experiment, and the phase space (b) is from the carbon data of the g9b
experiment.

The phase space scale factor is calculated by simply dividing the two histograms in
Figure 4.26. Figure 4.27 (a) shows that the resulting phase space scale factors exhibit a
very flat distribution and are independent of the azimuthal angle φ∗π+ . Figure 4.27 (b)
shows the free-proton distribution and scaled carbon distribution calculated by the
method described in this section.

4.9.2 Q-factor Method

Another approach, called the Q-factor method, has been used to separate the
signal events from the background events. The Q-factor method assigns each event in
the butanol data an event-based quality factor which denotes the probability that an
event is a signal event [34]. The contribution of the bound-nucleon and background
events can be removed from the butanol events by weighting each event with this Q-
factor. In order to determine the Q-factors, the following 5 kinematic variables, used
to define the 5-dimensional kinematic phase space of the reaction γp→ pπ+π−, have
been chosen: cosΘproton

c.m. , a mass (m pπ+ , m pπ− , or mπ+π−), the center-of-mass energy
W , the polar and azimuthal angle θ∗π+ and φ∗π+ in the rest frame of the π+ π− system.
For each event (seed event), events closest in the kinematic phase space defined by 4 of
the 5 independent variables are selected to perform event-based unbinned maximum
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Figure 4.27: (a) The π+ phase space scale factor on two dimensional distribution of
the π+ W versus φ∗π+ (b) The missing mass distribution with the free-proton and
bound-nucleon distribution calculated using the phase space scale factors given in
(a). The black line describes the butanol events for Topology γp → pπ+(π−) and
the center-of-mass energy W ∈ [1.575,1.625] GeV from the g9a experiment, and the
red line is the carbon events from the g9b experiment. The yellow line is the scaled
carbon distribution, and the blue dashed line is the free-proton distribution made by
the phase space scale factors.

likelihood fits [35] in the remaining fifth variables. In this analysis, we have performed
fits on the missing pion mass in Topology 1 or 2. To locate the nearest neighbor events,
the following equation describing the distance between event a and b, Da, b has been
used :

D2
a, b =

4
∑

i=1

(

Γa
i − Γb

i

∆i

)2

, (4.20)

where Γ is a kinematic variable and ∆i is the maximum range of the kinematic vari-
able Γ. Table 4.16 shows the specific kinematic variables and their maximum ranges
used in the Q-factor method.

Table 4.16: The kinematic variables Γi and their ranges ∆i used in the Q-factor
method.

Γi Kinematic variable Their maximum ranges, ∆i

Γ0 center-of-mass energy, W 50 [MeV]
Γ1 cosΘproton

c.m. 2
Γ2 φ∗π+ 2π [radian]
Γ3 cos θ∗π+ 2
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The distances of all other events from a seed event are computed using Equa-
tion 4.20, and then the 300 nearest neighbors are selected to form a missing-mass
distribution for fitting. The missing-mass distribution made from the carbon data is
used as the background distribution in the fitting function of the Q-factor method.
The total fit function utilizes a signal function for the missing-pion peak and the car-
bon distribution from the g9b experiment for the description of the background. For
the latter, a seed event in the carbon sample is chosen which is kinematically closest
to the butanol seed event and the 300 nearest neighbors for the carbon seed events
are selected. Figure 4.28 (a) shows an example of the missing mass distributions for
a particular pair of a butanol and carbon seed event. These distributions will be used
as the input for the Q-factor method.
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Figure 4.28: (a) The missing mass distributions made from the 300 nearest events
selected from butanol (black dots) and carbon (green line) data in Topology γp →
pπ+(π−), W ∈ [1.575,1.625] GeV, and Period 7. (b) Fitting the butanol’s missing
mass distribution (black dots) using a combination of the signal (red line) and carbon
background (blue dashed line) function.

In the missing π− mass distribution from the butanol target for Topology γp →
pπ+(π−), a clear peak near 139.5 MeV for the π− can be seen. Since the peak is much
broader than the natural width of the π−, a Gaussian resolution function should be
used to describe the shape of the peak. Unfortunately, a Gaussian could not describe
very well the high-mass tail of the signal; for this reason, a Voigt function with a very
small Breit-Wigner component is used for the signal. The true carbon distribution
of the g9b experiment is used for the background shape which describes a smooth
non-peaking distribution underneath the peak. For this analysis, the total function
is defined as :
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f(x) = N · [fs · S(x)− (1− fs) ·B(x)]. (4.21)

S(x) denotes the signal and B(x) the background function. N is a normalization
constant and fs is the signal fraction with a value between 0 and 1. The Roofit
package of the CERN ROOT software package [35] is used for the fit procedure. The
Q-factor itself is then given by :

Q =
s(x)

s(x) + b(x)
, (4.22)

where x is the missing mass of the seed event and s(x) = fs · S(x) and b(x) =
(1 − fs) · B(s). The total fitting function f(x) in Equation 4.21 has four parame-
ters: Γ, mean, and σ of the Voigt function and fs(the signal fraction). The mean of
the Voigt function has been be fixed to 139.5 MeV; the sigma of the Voigt function
has no limitation. The Γ parameter of the Voigt function has been fixed to a very
small value, which was derived from a similar fit to the fully integrated distribution
(summed over all events, as shown in Figure 4.29).

The signal fraction fs is the most important parameter and is related to the event
based scale factor.
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Figure 4.29: Fitting the missing-mass distribution from the butanol data in Topology
γp→ pπ+(π−), W ∈ [1.575,1.625] GeV, and Period 7 using a Voigt function. The Γ
parameter taken in this fitting is used as a fixed value in the Q-factor method.

The event-based scale factor, s, is given by (similar to Equation 4.21) :

s =
(1− fs) · (# of nearest butanol events)

(# of nearest carbon events)
= 1− fs, (4.23)
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where the number of nearest butanol events is equal to the number of nearest carbon
events. The event-based scale factors are assumed to be the same for all butanol
seed events. Similar phase space scale factor, as discussed in Section 4.9.1, can be
derived from the Q-factor method. The peak of the χ2 distribution derived from
the all Q-factor fits should have a value near one, as shown in Figure 4.30 (a), to
guarantee good quality fitting. Figure 4.30 (b) shows the ratio of the phase space scale
factors derived from kinematics (Section 4.9.1) to the phase space scale factors derived
from the Q-factor method. Figure 4.30 (b) shows a fairly flat distribution, close to
one. Figure 4.31 shows the free-proton distribution and scaled carbon distribution
calculated by the Q-factor method. The results of the Q-factor method applied in
the whole energy range W ∈ [1.375,2.125] are shown in Figure 4.32-4.35.
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Figure 4.30: (a) The normalized χ2 distribution from the Q-factor method (b) The
comparison of scaled carbon distribution between the phase space scale factor and
Q-factor method.
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Figure 4.31: The missing-mass distribution with the free-proton and bound-nucleon distribution calculated by the Q-
factor method. The black and red line denote the butanol (the g9a experiment) and carbon (the g9b experiment) data
for Topology γp → pπ+(π−) and W ∈ [1.575,1.625] GeV used in Figure 4.27, respectively. The yellow line and the green
line denote the scaled carbon distribution and the free-proton distribution by the method described in Section 4.9.1,
respectively.
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(b) W ∈ 1.55 GeV
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(c) W ∈ 1.60 GeV

Figure 4.32: The missing-mass distribution with the free-proton and bound-nucleon
distribution calculated in Q-factor method in Topology γp→ pπ+(π−), the center-of-
mass energy range W ∈ [1.475,1.625] GeV, and Period 7, and their χ2 distribution.
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(a) W ∈ 1.65 GeV
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(b) W ∈ 1.70 GeV
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Figure 4.33: The missing-mass distribution with the free-proton and bound-nucleon
distribution calculated in Q-factor method in Topology γp→ pπ+(π−), the center-of-
mass energy range W ∈ [1.625,1.775] GeV, and Period 7, and their χ2 distribution.
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(a) W ∈ 1.80 GeV
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(b) W ∈ 1.85 GeV
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Figure 4.34: The missing-mass distribution with the free-proton and bound-nucleon
distribution calculated in Q-factor method in Topology γp→ pπ+(π−), the center-of-
mass energy range W ∈ [1.775,1.925] GeV, and Period 7, and their χ2 distribution.
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(a) W ∈ 1.95 GeV
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(b) W ∈ 2.00 GeV
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Figure 4.35: The missing-mass distribution with the free-proton and bound-nucleon
distribution calculated in Q-factor method in Topology γp→ pπ+(π−), the center-of-
mass energy range W ∈ [1.925,2.075] GeV, and Period 7, and their χ2 distribution.
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CHAPTER 5

DATA ANALYSIS

After all corrections, cuts and kinematic fitting were applied, the different possible
final-state topologies for the reaction γp → pπ+π− have been selected and the ex-
traction of polarization observable commenced. The polarization observables I⊙, Pz,
and P⊙

z
(Equation 1.4) were extracted from the double-pion photoproduction data

utilizing circular beam and longitudinal target polarization. This chapter presents
the methodology utilized in the extraction of these polarization observables from the
experimental data.

5.1 General Data Analysis

5.1.1 Binning and Definition of Angles

In order for an analysis to be conducted, the kinematics of the reaction must be
understood. First, the kinematics of γp → pπ+π− require a selection of five inde-
pendent kinematic variables, as referenced in Section 1.3.3. The kinematic variables
chosen for this analysis are cosΘc.m. of the proton, a mass (m pπ+ , m pπ− , or mπ+π−),
the center-of-mass energy W , θ∗π+ , and φ∗π+ , where the latter two angles denote the
polar and azimuthal angles of the π+ in the rest frame of the π+ π− system. A dia-
gram showing the kinematics of the reaction γp→ pπ+π− can be seen in Figure 5.1,
while the blue plane represents the center-of-mass production plane composed of the
initial photon and proton, while the red plane represents the decay plane formed by
two of the final-state particles.

The angle φ∗π+ is a kinematic variable unique to a final state containing two pseu-
doscalar mesons. It describes the orientation of the decay plane containing the two
pions (or another pair of the particles) with respect to the production plane, which is
defined by the incident photon and recoiling proton. It is also given as the azimuthal
angle with respect to the π+ meson. This azimuthal angle, φ∗π+ , is calculated via
two boosts, the first being a boost along the beam line into the overall center-of-mass
frame. The second boost occurs along the axis that is antiparallel to the recoiling pro-
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ton and results in the rest frame wherein the two final-state pions occur back-to-back.
Mathematically, the angle φ∗π+ is uniquely determined by the following expression:

cosφ∗ =
(~p× ~a) · (~b2 ×~b1)

|~p× ~a| |~b2 ×~b1|
. (5.1)

In this analysis the data are then binned in two of the five independent kinemat-
ical variables. These binning variables are the center-of-mass energy, W , and the
azimuthal angle, φ∗π+ . In order to compare the polarization observable I⊙ (Equa-
tion 1.4), with the results from the CLAS g1c analysis [11], the center-of-mass energy
W is divided into bins of 50 MeV wide. This results in a total of 20 bins in the
center-of-mass energy, covering an energy range from 1.225 GeV to 2.225 GeV. For
the angle, φ∗π+ , 20 bins are used, covering a range from 0 ≤ φ∗π+ ≤ 2π, to describe the
structure of the observable more clearly than in the CLAS g1c analysis, which used
11 bins in the same angle range. This choice of binning using two variables results in
a total of 400 bin combinations per final-state topology.

Figure 5.1: A diagram describing the kinematics of the reaction γp → pπ+π−. The
blue plane represents the center-of-mass production plane composed of the initial
photon and proton, while the red plane represents the decay plane formed by two of
the final-state particles. In the diagram, k is the initial photon and the particle p
denotes the polarized target proton. a, b1, and b2 are the three particles of the final
state. If we assume that particle a is the recoiling proton, b1 and b2 should be the
two pions: π+ and π−. Θc.m. denotes the angle between the initial proton and the
particle a in the center-of-mass system. φ∗ and θ∗ indicate the azimuthal and polar
angles of the particle b1 in the rest frame of b1 and b2.

92



5.1.2 Observables with Circular Beam and Longitudinal
Target Polarization

The reaction rate for γp → p ππ, in the case of a circularly-polarized beam on a
longitudinally-polarized target, is by [10] :

d σ

d xi

= σ0 { ( 1 + Λ̄z ·Pz ) + δ̄⊙ (I
⊙ + Λ̄z ·P

⊙
z
)} , (5.2)

and results in the polarization observable I⊙, the beam-helicity asymmetry, the ob-
servable Pz, target asymmetry, and the observable P⊙

z
, to the helicity difference,

which can be determined from this dataset.

5.2 Polarization observable I⊙

5.2.1 Beam Helicity Asymmetry

The differential cross section for γp→ p ππ (Equation 5.2) is experimentally given
by :

d σ

d xi

=
Ndata

A · F · ρ · ∆xi

, (5.3)

where Ndata is the number of data events measured in the g9a experiment, A is the
acceptance, F is the photon flux, ρ is the target area density parameter, and ∆xi

is the width of the kinematic bin. Therefore, the number of measured data events,
Ndata, can be also defined as :

Ndata = σ0 · (A · F · ρ · ·∆xi){ ( 1 + Λ̄z ·Pz ) + δ̄⊙ (I
⊙ + Λ̄z ·P

⊙
z
)} . (5.4)

Since the beam and target polarization of each Ndata in the g9a dataset have a
certain direction, a definition of this direction is required. In the following, → and
← indicate the circular beam polarization parallel and antiparallel to the beam axis;
⇒ and ⇐ indicate the longitudinally target polarization parallel and antiparallel to
the beam axis. In this analysis, we use four different dataset with the following beam
and target polarizations :

N(→⇒), N(←⇒), N(→⇐), and N(←⇐). (5.5)

In the process of calculating the asymmetry, the product σ0 · A · ρ · ∆xi will
cancel out. Moreover, each combination (Equation 5.5) has a different photon flux
F , average beam polarization δ̄⊙, and average target polarization Λ̄z :

Ncombination ∼ F{ ( 1 + Λ̄z ·Pz ) + δ̄⊙ (I
⊙ + Λ̄z ·P

⊙
z
)} . (5.6)
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The distributions of events with these four different polarization settings, as a
function of φ∗, have the form :

N(φ∗, σ(→⇒)) ∼ F (→⇒)
{

1 + Λ̄z(⇒)Pz + δ̄⊙(→)
(

I⊙ + Λ̄z(⇒)P⊙
z

)}

N(φ∗, σ(←⇒)) ∼ F (←⇒)
{

1 + Λ̄z(⇒)Pz − δ̄⊙(←)
(

I⊙ + Λ̄z(⇒)P⊙
z

)}

N(φ∗, σ(→⇐)) ∼ F (→⇐)
{

1− Λ̄z(⇐)Pz + δ̄⊙(→)
(

I⊙ − Λ̄z(⇐)P⊙
z

)}

N(φ∗, σ(←⇐)) ∼ F (←⇐)
{

1− Λ̄z(⇐)Pz − δ̄⊙(←)
(

I⊙ − Λ̄z(⇐)P⊙
z

)}

.

(5.7)

In the ideal case, the photon flux will be well known, and flux parameters from
the four different data combinations will have the same value: F (→⇒)) = F (←⇒)
= F (→⇐) = F (←⇐) = F . Similarly, the ideal experiment setup makes it possible
to use Λ̄z(⇒) = Λ̄z(⇐) = Λ̄z and δ̄⊙(→) = δ̄⊙(←) = δ̄⊙, and the datasets can be
reliably scaled. Since the polarization observable I⊙ refers to unpolarized target
data, a dataset with the unpolarized target nucleons and a circularly-polarized beam
is needed. We can produce unpolarized target data by adding the data with different
target polarizations :

N(φ∗, σ(→)) ∼ N(φ∗, σ(→⇒)) +N(φ∗, σ(→⇐)) ∼ F
(

2 + 2 · δ̄⊙I
⊙

)

N(φ∗, σ(←)) ∼ N(φ∗, σ(←⇒)) +N(φ∗, σ(←⇐)) ∼ F
(

2− 2 · δ̄⊙I
⊙

)

,
(5.8)

and the beam asymmetry derived from the unpolarized target data can be expressed
as :

N(φ∗, σ(→))−N(φ∗, σ(←))

N(φ∗, σ(→)) +N(φ∗, σ(←))
= δ̄⊙I

⊙. (5.9)

However, in the more general situation [36], Λ̄z(⇒) 6= Λ̄z(⇐). As the polarization
of the JLab electron beam in each period is flipped 30 times per second, we can as-
sume that the flux parameters between the different beam polarizations are the same,
F(→) = F(←), and the beam polarization between the different beam directions is
also the same, δ̄⊙(→) = δ̄⊙(←) = δ̄⊙. In reality, the flux parameters between the dif-
ferent target polarizations are different, and we have F(⇒) 6= F(⇐). In this analysis,
the four different dataset (Equation 5.5) were scaled with the target polarization and
photon flux, as shown in Figure 5.2 :

94



N(φ∗, σ(→⇒))

Λz(⇒)F (⇒)
∼
{( 1

Λz(⇒)
+Pz

)

+
δ̄⊙

Λz(⇒)
I⊙ + δ̄⊙P

⊙
z

}

N(φ∗, σ(←⇒))

Λz(⇒)F (⇒)
∼
{( 1

Λz(⇒)
+Pz

)

−
δ̄⊙

Λz(⇒)
I⊙ − δ̄⊙P

⊙
z

}

N(φ∗, σ(→⇐))

Λz(⇐)F (⇐)
∼
{( 1

Λz(⇐)
−Pz

)

+
δ̄⊙

Λz(⇐)
I⊙ − δ̄⊙P

⊙
z

}

N(φ∗, σ(←⇐))

Λz(⇐)F (⇐)
∼
{( 1

Λz(⇐)
−Pz

)

−
δ̄⊙

Λz(⇐)
I⊙ + δ̄⊙P

⊙
z

}

.

(5.10)
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Figure 5.2: Examples of φ∗ angular distributions in the helicity frame of the beam
polarization parallel (a) and anti-parallel (b) to the beam axis for the center-of-
mass energy W ∈ [1.675,1.725] GeV in the topology γp → pπ+(π−). The data with
the target polarization parallel (antiparallel) to the beam axis are from Period 6
(Period 7).

Figure 5.2 shows examples of angular distributions in the four different polariza-
tion combinations (Equation 5.5). In the next step, distributions in Figure 5.2 (a)
and (b) have been added, respectively, to produce an unpolarized target. Figure 5.3
shows examples of these distributions: N(φ∗, σ(→)) and N(φ∗, σ(←)) :

N(φ∗, σ(→)) ∼
N(φ∗, σ(→⇒))

Λz(⇒)F (⇒)
+

N(φ∗, σ(→⇐))

Λz(⇐)F (⇐)
∼
( 1

Λz(⇒)
+

1

Λz(⇐)

)(

1 + δ̄⊙I
⊙

)

N(φ∗, σ(←)) ∼
N(φ∗, σ(←⇒))

Λz(⇒)F (⇒)
+

N(φ∗, σ(←⇐))

Λz(⇐)F (⇐)
∼
( 1

Λz(⇒)
+

1

Λz(⇐)

)(

1− δ̄⊙I
⊙

)

.

(5.11)

95



+π φ
0 1 2 3 4 5 6

0

500

1000

1500

2000

2500

3000

)→, φN(
)←, φN(

Figure 5.3: CLAS-integrated azimuthal angular distributions in the helicity frame of
helicity-plus events N(φ∗, →) and and helicity-minus events N(φ∗, ←) for the center-
of-mass energy W ∈ [1.675,1.725] GeV in the topology γp→ pπ+(π−).

The beam asymmetry can be calculated using the number of events for the helicity
plus and minus from Equation 5.11. Since the effect for the electron beam charge
asymmetry in the g9a dataset is negligible, it is not applied to the beam asymmetry
(see Appendix B). The polarization observable I⊙, as shown in Figure 5.4, with the
normalization factor F (⇒)/F (⇐), introduced in Table 4.15 is given by :

+π φ
0 1 2 3 4 5 6

 I

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 (g9a)  I
 (g1c)  I

Figure 5.4: The polarization observable I⊙ calculated from Equation 5.12 is compared
with the same observable published in the g1c experiment. The dataset is the same
as in Figure 5.2.
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I⊙ =
1

δ̄⊙

(

N(φ∗,σ(→⇒))
Λz(⇒)·F (⇒)/F (⇐)

+ N(φ∗,σ(→⇐))
Λz(⇐)

)

−

(

N(φ∗,σ(←⇒))
Λz(⇒)·F (⇒)/F (⇐)

+ N(φ∗,σ(←⇐))
Λz(⇐)

)

(

N(φ∗,σ(→⇒))
Λz(⇒)·F (⇒)/F (⇐)

+ N(φ∗,σ(→⇐))
Λz(⇐)

)

+

(

N(φ∗,σ(←⇒))
Λz(⇒)·F (⇒)/F (⇐)

+ N(φ∗,σ(←⇐))
Λz(⇐)

)

.

(5.12)

5.2.2 Average Beam Asymmetry

Since the g9a dataset is broken up the different periods (Table 4.14), we can use
three kinds of period-combinations to calculate the beam asymmetry: Period 3 and
2 (called combination-32), Period 4 and 5 (called combination-45), and Period 6 and
7 (called combination-67). As reminded, the double-pion photoproduction data have
also four kinds of topologies:

• Topology 1: γ̄p̄→ pπ+(π−) (π− not detected)

• Topology 2: γ̄p̄→ pπ−(π+) (π+ not detected)

• Topology 3: γ̄p̄→ π+π−(p) (proton not detected)

• Topology 4: γ̄p̄→ pπ+π− (all particles detected)

Since the CLAS spectrometer is designed to detect charged particles, we cannot
distinguish between the reaction γp and γn using the butanol target. The missing-
mass distribution for the topology γp→ π+π−(p), as shown in Figure 4.15, includes
the data from the reaction γp → π+π−(p) and from the reaction γn → π+π−(n)
together, and this analysis cannot separate dataset between the reaction γp and γn.
For this reason, the topology γp→ π+π−(p) has been excluded in this analysis. The
beam asymmetries from three kinds of period-combinations and three kinds of topolo-
gies, as referenced in Table 5.1, are calculated.

Figure 5.4 shows the comparison of the observable I⊙ from the g9a and g1c ex-
periments. In the figure, the polarization observable I⊙ from the g9a dataset is made
from combination-67 and Topology γp → pπ+(π−). In the next step, the average
of the observables from the three different period-combinations in each topology has
been calculated to improve statistics. This is shown in Figure 5.5. These observables
of the combination-32, combination-45, and combination-67, as shown in Figure 5.5,
have statistical errors of different magnitudes. When the average of these observables
is calculated, the errors have been used as weighting parameters :

x̄ =

∑

i
xi ·

1
σ2
i

∑

i
1
σ2
i

, (5.13)

where xi is the observable and σi is its error.
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Table 5.1: The dataset used to calculate the average observable I⊙.

combination-32
Topology 1: γp→ pπ+(π−) combination-45

combination-67
combination-32

Topology 2: γp→ pπ−(π+) combination-45
combination-67
combination-32

Topology 4: γp→ pπ+π− combination-45
combination-67
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(a) Topology 1: γp→ pπ+(π−)
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Figure 5.5: Polarization observables I⊙ from the three kinds of period-combinations in
the topology γp → pπ+(π−) (a) and the topology γp → pπ−(π+) (b) for the center-
of-mass energy W ∈ [1.675,1.725] GeV and their average in each topology. The
polarization observable I⊙ in each period-combination and each topology is derived
from Equation 5.12.

To improve further the statistics and obtain better kinematic coverage, the re-
sults from the topology 1, 2, and 4 have been averaged using Equation 5.13. This
final observable from the butanol data is shown in Figure 5.6, together with the data
published from the g1c experiment. Results of this analysis are in general agreement
with the data published in [11] (See Appendix C).
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Figure 5.6: The beam asymmetries from the topology 1, 2, and 4 and average, called FROST-average, for the center-of-
mass energy W ∈ [1.675,1.725] GeV. The polarization observable I⊙ analyzed in the g9a experiment is also compared with
data published in [11].
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5.2.3 Comparison

For different period-combinations and topologies, we have compared the results to
check consistency. Figure 5.7 (a)-(c) shows the differences (I⊙combinationX − I⊙combinationY)
for three kinds of period-combinations; Figure 5.8 (a)-(c) shows the differences (I⊙TopologyX

− I⊙TopologyY) between different topologies integrated over all kinematic bins. Fig-

ure 5.8 (d) shows the differences (I⊙g9a − I⊙g1c) of the polarization observable I⊙ from
this analysis and previous published CLAS data. The distributions are all centered
at zero and show generally good agreement.
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Figure 5.7: (a)-(c) Comparisons (differences) between results for the polarization ob-
servables I⊙ from different period-combinations integrated over all energies in Topol-
ogy γp → pπ+(π−). The distributions are centered at zero, suggesting consistency
among the results from different period-combinations.
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Figure 5.8: (a)-(c) Comparisons (differences) between results for the polarization ob-
servables I⊙ from different topologies integrated over all energies. The distributions
are centered at zero, suggesting consistency among the results from different topolo-
gies. (d) Comparisons (differences) between results for the polarization observables
I⊙ from the g9a experiment and the g1c experiment, integrated over all energies.
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5.3 Polarization Observable Pz

5.3.1 Target Asymmetry

The target asymmetry derived from the different target polarization data, as a
function of φ∗, is given by :

T.Asy. =
N(φ∗, σ(⇒))−N(φ∗, σ(⇐))

N(φ∗, σ(⇒)) +N(φ∗, σ(⇐))
. (5.14)

In order to calculate the target asymmetry, the polarized free-proton data of the
full butanol data must be extracted. In the numerator of Equation 5.14, unpolarized
data effect of the butanol events will cancel out. However, there are still unpolarized
events in the denominator of Equation 5.14 (normalization). Since the Q-factor is de-
fined as an event-based dilution factor, the Q-factor weighted event N(φ∗, σ(→⇒ ))Q

denotes the number of the free-proton events. The event distributions of the four dif-
ferent data combinations, as shown in Figure 5.9, are given by (similar to the beam
asymmetry in Equation 5.2) :

N(φ∗, σ(→⇒))Q

F (⇒)
∼
(

1 + Λz(⇒) ·Pz

)

+ δ⊙ · I
⊙ + δ⊙ · Λz(⇒) ·P⊙

z

N(φ∗, σ(←⇒))Q

F (⇒)
∼
(

1 + Λz(⇒) ·Pz

)

− δ⊙ · I
⊙ − δ⊙ · Λz(⇒) ·P⊙

z

N(φ∗, σ(→⇐))Q

F (⇐)
∼
(

1− Λz(⇐) ·Pz

)

+ δ⊙ · I
⊙ − δ⊙ · Λz(⇐) ·P⊙

z

N(φ∗, σ(←⇐))Q

F (⇐)
∼
(

1− Λz(⇐) ·Pz

)

− δ⊙ · I
⊙ + δ⊙ · Λz(⇐) ·P⊙

z
.

(5.15)

Since the polarization observable Pz refers to unpolarized beam data, a dataset
with a longitudinally-polarized target and an unpolarized beam is required. We can
produce an unpolarized beam data by adding the data with different beam polar-
izations from Equation 5.15. Figure 5.10 shows examples of these distributions,
N(φ∗, σ(⇒))Q and N(φ∗, σ(⇐))Q :

N(φ∗, σ(⇒))Q ∼
N(φ∗, σ(→⇒))Q

F (⇒)
+

N(φ∗, σ(←⇒))Q

F (⇒)
∼ 2 + 2 · Λz(⇒) ·Pz

N(φ∗, σ(⇐))Q ∼
N(φ∗, σ(→⇐))Q

F (⇐)
+

N(φ∗, σ(←⇐))Q

F (⇐)
∼ 2− 2 · Λz(⇐) ·Pz.

(5.16)

The target asymmetry derived from the unpolarized beam data is given by:
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Figure 5.9: Example of the φ∗ angular distributions in the helicity frame of the target
polarization parallel (a) and antiparallel (b) to the beam axis. The data are selected
for W ∈ [1.725,1.775] GeV, combination-67, and Topology γp→ pπ+(π−).
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Figure 5.10: CLAS-integrated azimuthal angular distribution in N(φ∗, ⇒)Q and
N(φ∗, ⇐)Q for the center-of-mass energy W ∈ [1.725,1.775] GeV and the topology
γp→ pπ+(π−).

T.Asy. =

(

N(φ∗,σ(→⇒))
F (⇒)/F (⇐)

+ N(φ∗,σ(←⇒))
F (⇒)/F (⇐)

)

−

(

N(φ∗,σ(→⇐))
1

+ N(φ∗,σ(←⇐))
1

)

(

N(φ∗,σ(→⇒))Q

F (⇒)/F (⇐)
+ N(φ∗,σ(←⇒))Q

F (⇒)/F (⇐)

)

+

(

N(φ∗,σ(→⇐))Q

1
+ N(φ∗,σ(←⇐))Q

1

) .

=
Λz(⇒) + Λz(⇐)

2
·Pz

(5.17)103



and the polarization observable Pz, as shown in Figure 5.11, is given by:

Pz =
1

Λ̄z

(

N(φ∗,σ(→⇒))
F (⇒)/F (⇐)

+ N(φ∗,σ(←⇒))
F (⇒)/F (⇐)

)

−

(

N(φ∗,σ(→⇐))
1

+ N(φ∗,σ(←⇐))
1

)

(

N(φ∗,σ(→⇒))Q

F (⇒)/F (⇐)
+ N(φ∗,σ(←⇒))Q

F (⇒)/F (⇐)

)

+

(

N(φ∗,σ(→⇐))Q

1
+ N(φ∗,σ(←⇐))Q

1

) . (5.18)
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Figure 5.11: The polarization observable Pz calculated from Equation 5.18. The
dataset is the same as that used in Figure 5.10.

5.3.2 Average Target Asymmetry

The target asymmetry can be calculated from three kinds of period-combinations
and two kinds of topologies, as referenced in Table 5.2, which is similar to calculating
the average of the observable I⊙ in Section 5.2.2.

Table 5.2: The dataset used to calculate the average observable Pz.

combination-32
Topology 1: γp→ pπ+(π−) combination-45

combination-67
combination-32

Topology 2: γp→ pπ−(π+) combination-45
combination-67
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Figure 5.11 shows the polarization observable Pz from combination-67 and Topol-
ogy γp → pπ+(π−) of the g9a dataset. In Figure 5.12, each topology is based on
the average of the combination-32, combination-45, and combination-67 using Equa-
tion 5.13. Figure 5.13 shows the average value of observables Pz calculated in Topol-
ogy γp → pπ+(π−) and Topology γp → pπ−(π+), as shown in Figure 5.12 for the
center-of-mass energy W ∈ [1.725,1.775] GeV.
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(a) Topology 1: γp→ pπ+(π−)
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Figure 5.12: Polarization observables Pz of three kinds of period-combinations in
Topology γp→ pπ+(π−) (a) and Topology γp→ pπ−(π+) (b) for the center-of-mass
energy W ∈ [1.725,1.775] GeV and their average in each topology.
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Figure 5.13: The average target asymmetry of the topology 1 and topology 2 and their average, called FROST-average.
The data are shown for the center-of-mass energy W ∈ [1.725,1.775] GeV.
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5.3.3 Comparison

For different period-combinations and topologies, we have compared the results to
ensure a consistency. Figure 5.14 shows the differences (PzcombinationX − PzcombinationY)
for three kinds of period-combinations, and Figure 5.15 the differences (PzTopologyX

− PzTopologyY) between different topologies integrated across all kinematic bins. The
distributions are all centered at zero and show generally good agreement.
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Figure 5.14: Comparisons (differences) between results for the polarization observ-
ables Pz from different period-combinations integrated across all energies in Topology
γp→ pπ+(π−).
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Figure 5.15: Comparisons (differences) between results for the polarization observ-
ables I⊙ from different topologies integrated across all energies.
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5.4 Polarization Observable P⊙z

5.4.1 Helicity Difference

In the calculation of the helicity difference, the average target polarization was
used. Table 4.12 shows the average degree of target polarization in all periods. The
degree of target polarization of periods 4 and 5 is similar with each other. Periods
6 and 7 are also have similar values. However, polarization between periods 2 and 3
are a slightly different. If the average target polarization between Λz(⇒) and Λz(⇐)
is applied to the calculation of the helicity difference, the influence of the observable
P⊙

z
from combination-32 has only a small influence on the observable P⊙

z
. Its effect

will be estimated in systematic uncertainties (Section 5.5). The event distributions
of four different data combination sets in the general case are given by Equation 5.15.

The double polarization observable P⊙
z
refers to the data with the longitudinally-

polarized target and the circularly-polarized beam. The events with the spin 3/2
N(φ∗, σ3/2) and spin 1/2 N(φ∗, σ1/2) are given by :

N(φ∗, σ3/2) ∼
N(φ∗,→⇒)

F (⇒)
+

N(φ∗,←⇐)

F (⇐)
∼ 2 + 2 · δ̄⊙ · Λ̄z ·P

⊙
z

N(φ∗, σ1/2) ∼
N(φ∗,←⇒)

F (⇒)
+

N(φ∗,→⇐)

F (⇐)
∼ 2− 2 · δ̄⊙ · Λ̄z ·P

⊙
z
.

(5.19)
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Figure 5.16: CLAS-integrated azimuthal angular distribution in N(φ∗, 3/2) and
N(φ∗, 1/2) for the center-of-mass energy W ∈ [1.675,1.725] GeV and the topology
γp→ pπ+(π−).

The polarization observable P⊙
z
, as shown in Figure 5.17 is given by :

108



P⊙
z
=

1

δ̄⊙ · Λ̄z

(

N(φ∗,→⇒)
F (⇒)/F (⇐)

+ N(φ∗,←⇐)
1

)

−

(

N(φ∗,←⇒)
F (⇒)/F (⇐)

+ N(φ∗,→⇐)
1

)

(

N(φ∗,→⇒)Q

F (⇒)/F (⇐)
+ N(φ∗,←⇐)Q

1

)

+

(

N(φ∗,←⇒)Q

F (⇒)/F (⇐)
+ N(φ∗,→⇐)Q

1

) . (5.20)
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Figure 5.17: The polarization observable P⊙
z

calculated from Equation 5.20. The
dataset is the same as in Figure 5.16.

5.4.2 Average Helicity Difference

The helicity difference can also be calculated from three kinds of period-combinations
and two kinds of topologies, which is referenced in Table 5.3, similar to calculating
the average of observable Pz in section 5.3.2.

Table 5.3: The dataset used to calculate the average observable P⊙
z
.

combination-32
Topology 1: γp→ pπ+(π−) combination-45

combination-67
combination-32

Topology 2: γp→ pπ−(π+) combination-45
combination-67

Figure 5.17 shows the polarization observable P⊙
z
from combination-67 and Topol-

ogy γp → pπ+(π−) of the g9a dataset. In Figure 5.18, each topology is based on
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the average of the combination-32, combination-45, and combination-67 using Equa-
tion 5.13. Figure 5.19 shows the average value of observables P⊙

z
calculated in Topol-

ogy γp → pπ+(π−) and Topology γp → pπ−(π+), as shown in Figure 5.18 for the
center-of-mass energy W ∈ [1.675,1.725] GeV. Figure 6.6 shows the average value of
the observable P⊙

z
for the whole energy range W ∈ [1.375,2.125] GeV.
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(a) Topology 1: γp→ pπ+(π−)
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Figure 5.18: Polarization observables P⊙
z

of three kinds of period-combinations in
Topology γp→ pπ+(π−) (a) and Topology γp→ pπ−(π+) (b) for the center-of-mass
energy W ∈ [1.675,1.725] GeV and their average in each topology.

Figure 5.19 shows the average value of observables P⊙
z

calculated in Topology
γp→ pπ+(π−) and Topology γp→ pπ−(π+), as shown in Figure 5.18 for the center-
of-mass energy W ∈ [1.725,1.775] GeV.

110



+π φ
0 1 2 3 4 5 6

 z 
P

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 )-π ( +π p -> p γ

 )+π ( -π p -> p γ

FROST-average

Figure 5.19: The average helicity difference of the topology 1 and topology 2 and their average, called FROST-average.
The data are shown for the center-of-mass energy W ∈ [1.675,1.725] GeV.
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5.4.3 Comparison

For different period-combinations and topologies, we have compared the results to
confirm consistency. Figure 5.20 shows the differences (P⊙z combinationX − P⊙z combinationY)
for three kinds of period-combinations, and Figure 5.21 shows the differences (P⊙z TopologyX

− PzTopologyY) between different topologies integrated across all kinematic bins. The
distributions are all centered at zero and show generally good agreement.
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Figure 5.20: Comparisons (differences) between results for the polarization observ-
ables P⊙

z
from different period-combinations integrated over all energies in Topology

γp→ pπ+(π−).
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Figure 5.21: Comparisons (differences) between results for the polarization observ-
ables P⊙

z
from different topologies integrated over all energies.
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5.5 Systematic Uncertainties

Systematic uncertainties define errors which are not determined by statistics but
are introduced by an inaccuracy in the measurement inherent in the system. Sys-
tematic errors in experimental observations of the g9a experiment are usually based
on instrumental effects. The polarization observables have several variables from the
measuring instruments: beam polarization δ⊙, target polarization Λz, and normaliza-
tion factor F from the photon beam flux. These systematic uncertainties and their
systematic errors affect the polarization observables. The integrated effect of these
systematic errors on the observables can be calculated by applying the error propa-
gation. (See Appendix D).

The beam helicity is flipped in the injector of the electron accelerator. Small
beam-charge asymmetries of the electron beam can be one component of the system-
atic error. The error of beam-charge asymmetry can be calculated from the difference
between polarization observables I⊙ before and after applying the effect of the electron
beam charge asymmetry (See Appendix B). Other systematic errors, as referenced in
Table 5.4, should be studied for publishing.

Table 5.4: Systematic contributions to the uncertainties in polarization observables.
There is the list of systematic errors studied for publishing.

Contribution ∆O ∆O/O
Circular polarization of photon beam < 1.8 %
Target polarization < 4.33 %
Electron beam-charge asymmetry < 0.004
Accidentals
Normalization (photon flux)
Q-factor method : nearest neighbors
Q-factor method : scale factor
Kinematic fitting : different CL
Average target polarization in P⊙

z
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CHAPTER 6

CONCLUSIONS

6.1 Systematic check of the Symmetry of the

Observables

In this analysis, the dataset has been binned in two independent kinematical vari-
ables: the center-of-mass energy, W , and the azimuthal angle, φ∗π+ . As previously
mentioned, the variable φ∗π+ is the angle between the production plane (blue plane
in Figure 5.1) and the decay plane (red plane in the same figure). Observables as
function of φ∗π+ exhibit either an odd or an even symmetry.

Figure 6.1 shows the polarization observable I⊙ for the whole energy range W
∈ [1.375,2.125] GeV. To check the symmetry of the observable I⊙, the transition
φ∗π+ → 2π − φ∗π+ is performed, i.e. −I⊙(2π − φ∗π+). This is equivalent to applying a
mirror operation with respect to the production plane, and then changing the sign of
the asymmetry (Figure 6.1). The observable I⊙ obeys the odd symmetry constrain-
sts because the differences between the observables I⊙(φ∗π+) and −I⊙(2π − φ∗π+) are
comparably small values.

Figure 6.2 and 6.3 represent the polarization observables Pz and P⊙
z
for the whole

energy range W ∈ [1.375,2.125] GeV, respectively. To also check the symmetries of
the observables Pz and P⊙

z
, the transition φ∗π+ → 2π − φ∗π+ should be applied like

for the observable I⊙. Because the observable Pz is an odd symmetry like the ob-
servable I⊙, −Pz(2π − φ∗π+) is applied (Figure 6.2). Since, however, P⊙

z
is an even

function, the mirror operation with respect to the production plane does not require
a sign change as in the case of I⊙ and Pz, i.e. P⊙

z
(2π − φ∗π+)(Figure 6.3). The

polarization observables Pz and P⊙
z
have overall well defined symmetry constraints

because the differences between the observable and the observable applied the tran-
sition φ∗π+ → 2π − φ∗π+ have the resonable small values.
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Figure 6.1: Measured beam-helicity asymmetry I⊙ in the reaction ~γp→ pπ+π− for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV. The filled symbols denote the average observable I⊙ from the butanol data and the open symbol
the observable −I⊙(2π − φ∗π+) from the same dataset. The distribution at the bottom of each energy is the difference
between the observable I⊙ and the observable −I⊙(2π − φ∗π+).
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Figure 6.2: Measured beam-helicity asymmetry Pz in the reaction γ~p→ pπ+π− for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV. The filled symbols denote the average observable Pz from the butanol data weighted by the
Q-factor (Section 4.9.2) and the open symbol the observable −Pz(2π − φ∗π+) from the same dataset. The distribution at
the bottom of each energy is the difference between the observable Pz and the observable −Pz(2π − φ∗π+).
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Figure 6.3: Measured beam-helicity asymmetry P⊙
z
in the reaction ~γ~p→ pπ+π− for the whole center-of-mass energy range

W ∈ [1.375,2.125] GeV. The filled symbols denote the average observable P⊙
z

from the butanol data weighted by the
Q-factor (Section 4.9.2) and the open symbol the observable P⊙

z
(2π − φ∗π+) from the same dataset. The distribution at

the bottom of each energy is the difference between the observable P⊙
z
and the observable P⊙

z
(2π − φ∗π+).
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6.2 Comparison of the Polarization Observables

with Models

Figure 6.4 shows the comparison of the observable I⊙ from this analysis with the
results from the CLAS-g1c experiment for the entire center-of-mass energy range,
W ∈ [1.375,2.125] GeV. The observable I⊙ from the g9a experiment (in red) is overall
very good agreement with the published data (in light blue) [11] for the whole energy
range. In addition, the observable from the CLAS-g9a experiment with 20 bins in the
azimuthal angel φ∗π+ has the better resolution than from the CLAS-g1c experiment
with 11 bins. Since the x-axis in this figure denotes the azimuthal angle between
the center-of-mass production plane (blue plane in Figure 5.1) and the decay plane
(red plane in the same figure), the observable I⊙ must have a value of zero in this
representation for φ∗π+ = 0, π, and 2π due to the odd sysmmetry. This nicely observed
in the data. Moreover, the results from the butanol data (in red, no background sub-
traction) and the butanol data weighted by the Q-factor (in deep blue, background
subtraction) coincide very well for the whole φ∗π+ angle range. The discrepancy be-
tween these two results is happened due to the low statistic.

The measurements of the observable I⊙ are then compared to the results from the
models of A. Fix [37] and W. Roberts [10], which are available from threshold of the
double pion photoproduction up to the center-of-mass energy, W = 1.775 GeV. The
observables calculated by A. Fix and W. Roberts show the odd sysmmetry as the
result from this analysis in shape and magnitude to be observed. Overall agreement,
however, is not very good and there is even the big discrepancy between them.

Figure 6.5 shows the polarization observable Pz for the whole center-of-mass en-
ergy range W ∈ [1.375,2.125] GeV. For the polarization observable Pz, there are no
experimentally published data. However, results from the models of A. Fix [37] and
W. Roberts [10] exist in the low-energy region (W ∈ [1.375,1.1775] GeV). All these
model predictions provide a good estimation of the magnitude of the observable.
However, they appear to be a sign issue. Therefore, the observables analyzed here
can serve as the guideline to improve predictions.

Figure 6.6 shows the polarization observable P⊙
z

for the whole energy range
W ∈ [1.375,2.125] GeV. Since the published data for the observable P⊙

z
[13] only

shows the helicity-dependent total cross-section difference, ∆σ = (σ3/2 − σ1/2), but
not the observable, the results published in [13] are not shown in Figure 6.6. The po-
larization observable P⊙

z
from the g9a experiment is overall good agreement with the

models predictions by A. Fix [37] and W. Roberts [10] in shape, but not amplitude.
It is worth noting that the A. Fix model knows about these results from the isospin
related channel, nπ+π0 and pπ0π0, measured at MAMI.
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In summary, we have given a brief overview of precise measurements of the beam-
helicity asymmetry, the target asymmetry, and the helicity difference for photopro-
duction of two charge pions off the longitudinally-polarized proton using circularly-
polarized photons. The comparison between results from the butanol target and the
butanol weighted by the Q-factor (event-based background subtraction) also shows
that the Q-factor method is a very useful tool to extract the polarization observ-
ables. The general lack of agreement between experiment and the theory signals se-
vere shortcomings in the theoretical models existed. Therefore, the comparison with
model predictions provides the basis for significant improvements for the models. A
proper understanding of the π+π−N channel in the region of overlapping nucleon
resonances can serve as an important contribution to solving the missing resonance
problem.
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Figure 6.4: Comparison between the polarization observable I⊙ analyzed in the g9a experiment, and the polarization
observable I⊙ published in the g1c experiment (light blue). The data are shown for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV. All kinematic variables except φ∗π+ and W are integrated over. The red datapoint denotes the
observable I⊙ from the butanol data, and the deep blue datapoint denotes the same observable from the butanol weighted
by the Q-factor (Section 4.9.2). The green dots indicate model calculations provided by A. Fix [37], and the blue dots by
W. Roberts [10]. 120
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Figure 6.5: The polarization observable Pz from the g9a experiment for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV. All kinematic variables except φ∗π+ and W are integrated over. The blue denotes the observ-
able I⊙ from the butanol weighted by the Q-factor (Section 4.9.2). The green dots indicate model calculations provided
by A. Fix [37], and the blue dots by W. Roberts [10].
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Figure 6.6: The polarization observable P⊙
z

from the g9a experiment for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV. All kinematic variables except φ∗π+ and W are integrated over. The blue fullcross denotes the
observable I⊙ from the butanol weighted by the Q-factor (Section 4.9.2). The green dots indicate model calculations
provided by A. Fix [37], and the blue dots by W. Roberts [10].
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APPENDIX A

BEAM AND TARGET POLARIZATION

A.1 Beam and Target Polarization

Table 4.14 illustrates the condition of the half-wave plate and the direction of the
target polarization in the seven periods. The information in Table 4.14 should be
confirmed. The condition of the half-wave plate is used for the beam polarization,
as referenced in Table 4.13. If the condition of the half-wave-plate in Table 4.14
per period may be wrong, beam asymmetries from three period-combinations will
not coincide. In conclusion, beam asymmetries made from three different period-
combinations show good agreement, as shown in Figure A.1.
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Figure A.1: The beam asymmetries of three period-combinations in topology γp →
pπ+(π−) and an average beam asymmetry.
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The direction of the target polarization in Table 4.14 can also be checked using the
target asymmetry. Target asymmetries made in the different directions of the target
polarizations will have some structure and beam asymmetries in the same directions
will not have any structures, as shown in Figure A.2.
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(a) Combinations among different polarizations.
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(b) Combinations among same polarizations.

Figure A.2: The target asymmetry made from different target polarizations (a) and
from the same target polarization (b).
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APPENDIX B

BEAM CHARGE ASYMMETRY

B.1 Beam Charge Asymmetry

Table 4.9 shows the electron beam charge asymmetry in the g9a dataset and the
total number of γp → pπ+π− events for the two helicity states. The electron beam
charge asymmetry can be defined by

Y ± = N±/α± (B.1)

Y + =
1
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(

N(φ,→⇒)
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(B.2)

and the asymmetry can be calculated using the corrected number of events for
the helicity plus and minus. The beam asymmetry Abeam considering the effect of the
electron beam charge asymmetry is given by

Abeam =
Y + − Y−

Y + + Y −
=

1
α+

(

N(φ,→⇒)
Λz(⇒)F (⇒)

+ N(φ,→⇐)
Λz(⇐)F (⇐)

)

− 1
α−

(

N(φ,←⇒)
Λz(⇒)F (⇒)

+ N(φ,←⇐)
Λz(⇐)F (⇐)

)

1
α+

(

N(φ,→⇒)
Λz(⇒)F (⇒)

+ N(φ,→⇐)
Λz(⇐)F (⇐)

)

+ 1
α−

(

N(φ,←⇒)
Λz(⇒)F (⇒)

+ N(φ,←⇐)
Λz(⇐)F (⇐)

)

=
1+ δ⊙I⊙

α+ − 1− δ⊙I⊙

α−

1+ δ⊙I⊙

α+ + 1− δ⊙I⊙

α−

(B.3)

The polarization observable I⊙ is given by
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)

−

(

1
α+ −

1
α−

)

(

1
α+ + 1

α−

)

− Abeam

(

1
α+ −

1
α−

) (B.4)

Equation 5.12 shows the polarization observable I⊙ without the effect of the beam
charge asymmetry, and equation B.4 shows the polarization observable I⊙ with the
effect of the beam charge asymmetry. Figure B.1 shows their difference. The electron
beam charge asymmetry can be neglected in this analysis.
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Figure B.1: Comparisons between the polarization observables I⊙ before and after
applying the beam charge asymmetry.
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APPENDIX C

BACKGROUND EFFECT IN THE
BUTANOL TARGET

C.1 Background Effect in the Butanol Target

The butanol data are composed of the free-proton, bound-nucleon, and back-
ground data. We cannot distinguish precisely between the free-proton events and the
rest of the events in the butanol data. The confidence-level cut in the g9a analysis
can make it possible to classify the butanol data.

Missing-Mass [ GeV ]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

100

200

300

400

500
Butanol-Data

CL-cut > 0.05

CL-cut < 0.05

(a)

 (GeV)ESm
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ (
 0

.0
01

 )

0

100

200

300

400

500

 0.0048±c0 = -0.46150 

 0.0014±c1 = -1.02065 

 0.0052±c2 =  0.4850 

 0.0037±fsig =  0.3043 

 0.00028±sigwidth =  0.02307 

 (GeV)ESm
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ (
 0

.0
01

 )

0

100

200

300

400

500

 (GeV)"ESA RooPlot of "m

(b)

Figure C.1: (a) The missing mass distribution with the 5 % confidence-level cut for
the butanol target. (b) The missing mass distribution fitted with a Gaussian and
the second-order Chebyshev polynomial. The data are selected for the center-of-mass
energy W ∈ [1.575,1.625] GeV and the topology γp → pπ+(π−). The hatched area
includes events whose the confidence-level is less than 0.05. The light blue line is
located at the π+ mass ± 3σ of the fitted Gaussian function. The dashed green line
is the second-order Chebyshev polynomial function.
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Figure C.1 (a) shows the missing mass distribution with the 5 % confidence-level
cut. In Figure C.1 (b), the free-proton data are expressed as the Gaussian func-
tion. The bound-nucleon and background data are described using the second-order
Chebyshev polynomial function. The missing mass distribution of the g1c dataset
after applying all cuts and corrections had no background for double-pion photopro-
duction because the g1c experiment use the hydrogen target. In the g9a dataset,
however, the missing mass plot has the background with the free-proton events as the
shape of the Gaussian, as shown in Figure C.1 (b). We may assume that the back-
ground events of the missing mass distribution, as shown in Figure C.1 (a), stems from
carbon parts of the butanol target. However, the mixture of ”good” carbon events
and garbage events, which is badly reconstructed, is unknown. We also assume that
the beam asymmetry made from the free-proton events is similar for bound nucleons,
and that g9a dataset is not sensitive to distinguish between the beam asymmetries
for free-proton and bound-nucleon events.
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Figure C.2: The missing mass distribution of the butanol target made in different
CL-cuts. The data are selected for the center-of-mass energy W ∈ [1.575,1.625] GeV
and the topology γp→ pπ+(π−).

Figure C.2 shows the missing mass distribution of Topology γp → pπ+(π−) in
the confidence-level cut 1%, 5%, 10%, and 15%. When the confidence-level cut
is increased, more and more background events are cut out, along with the small
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amounts of the good signal events. These different amounts of background events
under the free-proton events in Figure C.2 can have an effect on the amplitude of
our modulation in the beam asymmetry. Figure C.3 shows the comparison between
the polarization observables I⊙ made in the confidence-level cut 1%, 5%, 10%, and
15% with the published g1c data. Figure C.3 shows the beam asymmetry is more or
less independent of the confidence-level cut. The different sizes of background events
under the free-proton events apparently have no significant effect on the structure of
the beam asymmetry.
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Figure C.3: The average beam asymmetries made in 1% CL-cut, 5% CL-cut, 10%
CL-cut, and 15% CL-cut and the polarization observable I⊙ published in g1c exper-
iment.

Our conclusion is that, after applying the confidence-level cut, the ”garbage”
background events can be almost negligible; That is, events under the free-proton
events are from the bound-nucleon data. Polarization observables I⊙ from free-
proton and bound-nucleon events have similar values. Figure C.4 (a) shows differences
(I⊙X %CLcut − I⊙5%CLcut) and Figure C.4 (b) describes the percent error between X %
CL-cut and 5% CL-cut when X is 1% CL-cut, 10% CL-cut, and 15% CL-cut.
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Figure C.4: Difference and percent error between polarization observable I⊙ for 5% CL-cut and other CL-cuts.

130



APPENDIX D

ERROR PROPAGATION

D.1 Error Propagation

The target polarization Λz, normalization factor F , and beam polarization δ⊙
in Equation 5.12 also have statistical errors and their effects on the polarization
observable I⊙ should also be considered. Polarization observable I⊙ can be given by:

I⊙ =
1

δ̄⊙

N(→)−N(←)

N(→) +N(←)
(D.1)

Where

N(→) =
N(→⇒)

{

Λ(⇒)/Λ(⇐)
}{

F (⇒)/F (⇐)
} +N(→⇐) (D.2)

and

N(←) =
N(←⇒)

{

Λ(⇒)/Λ(⇐)
}{

F (⇒)/F (⇐)
} +N(←⇐). (D.3)

For a calculative expedience, we assume A = Λ(⇒)/Λ(⇐) and B = F (⇒)/F (⇐
). The errors of N(→) and N(←) for the target polarization and normalization factor
can be calculated using the formulation of the error propagation:

∆N(→) =

√

(

N(→⇒) ·∆A

A2 ·B

)2

+

(

N(→⇒) ·∆B

A ·B2

)2

(D.4)

and

∆N(←) =

√

(

N(←⇒) ·∆A

A2 · B

)2

+

(

N(←⇒) ·∆B

A · B2

)2

. (D.5)
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The error of polarization observable I⊙ is also given using the formulation of the error
propagation:

∆I⊙ =

√

(

∂I⊙ ·∆N(→)

∂N(→)

)2

+

(

∂I⊙ ·∆N(←)

∂N(←)

)2

+

(

∂I⊙ ·∆δ̄⊙
∂δ̄⊙

)2

=

√

(2N(←))2(∆N(→))2

(δ̄⊙)2(N(→) +N(←))4
+

(2N(→))2(∆N(←))2

(δ̄⊙)2(N(→) +N(←))4
+

(N(→)−N(←))2(∆δ̄⊙)2

(δ̄⊙)4(N(→) +N(←))2
.

(D.6)

The error of polarization observable I⊙ given in Equation D.6 consists of three parts:
the error from the target polarization, the error from the normalization factor, and
the error from the beam polarization. Figure D.1 shows the error distribution about
polarization observable I⊙ in the three parts.

The error from the target polarization is given by:

∆I⊙Tar.Pol. =

√

2N(←)2 ·N(→⇒)2 + 2N(→)2 ·N(←⇒)2

(δ̄⊙)2 · (N(→) +N(←))4 · (A2 ·B)2
· (∆A)2 (D.7)

The error from the normalization factor is given by:

∆I⊙Nor.Fac. =

√

2N(←)2 ·N(→⇒)2 + 2N(→)2 ·N(←⇒)2

(δ̄⊙)2 · (N(→) +N(←))4 · (A ·B2)2
· (∆B)2 (D.8)

The error from the beam polarization is given by:

∆I⊙BeamPol. =

√

1

(δ̄⊙)4
·

(

N(→)−N(←)

N(→) +N(←)

)2

· (∆δ̄⊙)2 (D.9)

and the error of polarization observable I⊙ is given by

∆I⊙ =

√

(

∆I⊙Tar.Pol.

)2

+

(

∆I⊙Nor.Fac.

)2

+

(

∆I⊙Beam.Pol.

)2

(D.10)
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Figure D.1: The statistical error contribution on observable I⊙ from the target polarization (b), from the normalization
factor (c), and the beam polarization (d). The sum of these errors is shown in (a).
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APPENDIX E

AVERAGE POLARIZATION
OBSERVABLES

E.1 Average Polarization Observable I⊙

E.1.1 Average Polarization Observable I⊙ for the Butanol
Data
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Figure E.1: The beam asymmetries for the topology γp → pπ+(π−) and
the combination-32. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data.
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Figure E.2: The beam asymmetries for the topology γp → pπ+(π−) and
the combination-45. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data.
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Figure E.3: The beam asymmetries for the topology γp → pπ+(π−) and
the combination-67. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data.
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Figure E.4: The beam asymmetries for the topology γp → pπ−(π+) and
the combination-32. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data.
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Figure E.5: The beam asymmetries for the topology γp → pπ−(π+) and
the combination-45. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data.
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Figure E.6: The beam asymmetries for the topology γp → pπ−(π+) and
the combination-67. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data.
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Figure E.7: The beam asymmetries for the topology γp → pπ+(π−) and the
average combination. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data.
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Figure E.8: The beam asymmetries for the topology γp → pπ−(π+) and the
average combination. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data.
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Figure E.9: The beam asymmetries for the average topology and the average combina-
tion. The dataset is for the whole center-of-mass energy range W ∈ [1.375,2.125] GeV
and the butanol data.
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E.1.2 Average Polarization Observable I⊙ for the Butanol
Data Weighted by Q-factor

 W = 1.40 GeV  W = 1.45 GeV  W = 1.50 GeV  W = 1.55 GeV

 W = 1.60 GeV  W = 1.65 GeV  W = 1.70 GeV  W = 1.75 GeV

 W = 1.80 GeV  W = 1.85 GeV  W = 1.90 GeV  W = 1.95 GeV

 W = 2.00 GeV  W = 2.05 GeV  W = 2.10 GeV

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

g9a-data

g1c-data(Phys.Rev.Lett.)

-0.2

0

0.2

-0.2

0

0.2

-0.2

0

0.2

-0.2

0

0.2

0 2 4 60 2 4 60 2 4 60 2 4 6
+π φ

 
P

ol
ar

iz
at

io
n 

O
bs

er
va

bl
e 

I

Figure E.10: The beam asymmetries for the topology γp → pπ+(π−) and
the combination-32. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.11: The beam asymmetries for the topology γp → pπ+(π−) and
the combination-45. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.12: The beam asymmetries for the topology γp → pπ+(π−) and
the combination-67. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.

 W = 1.40 GeV  W = 1.45 GeV  W = 1.50 GeV  W = 1.55 GeV

 W = 1.60 GeV  W = 1.65 GeV  W = 1.70 GeV  W = 1.75 GeV

 W = 1.80 GeV  W = 1.85 GeV  W = 1.90 GeV  W = 1.95 GeV

 W = 2.00 GeV  W = 2.05 GeV  W = 2.10 GeV

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

g9a-data

g1c-data(Phys.Rev.Lett.)

-0.2

0

0.2

-0.2

0

0.2

-0.2

0

0.2

-0.2

0

0.2

0 2 4 60 2 4 60 2 4 60 2 4 6
+π φ

 
P

ol
ar

iz
at

io
n 

O
bs

er
va

bl
e 

I

Figure E.13: The beam asymmetries for the topology γp → pπ−(π+) and
the combination-32. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.14: The beam asymmetries for the topology γp → pπ−(π+) and
the combination-45. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.15: The beam asymmetries for the topology γp → pπ−(π+) and
the combination-67. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.16: The beam asymmetries for the topology γp → pπ+(π−) and the
average combination. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.17: The beam asymmetries for the topology γp → pπ−(π+) and the
average combination. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.18: The beam asymmetries for the average topology and the aver-
age combination. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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E.2 Average Polarization Observable Pz

E.2.1 Average Polarization Observable Pz for the Butanol
Data Weighted by Q-factor
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Figure E.19: The target asymmetries for the topology γp → pπ+(π−) and
the combination-32. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.20: The target asymmetries for the topology γp → pπ+(π−) and
the combination-45. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.21: The target asymmetries for the topology γp → pπ+(π−) and
the combination-67. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.22: The target asymmetries for the topology γp → pπ−(π+) and
the combination-32. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.23: The target asymmetries for the topology γp → pπ−(π+) and
the combination-45. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.24: The target asymmetries for the topology γp → pπ−(π+) and
the combination-67. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.25: The target asymmetries for the topology γp → pπ+(π−) and the
average combination. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.26: The target asymmetries for the topology γp → pπ−(π+) and the
average combination. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.27: The target asymmetries for the average topology and the aver-
age combination. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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E.3 Average Polarization Observable P⊙z

E.3.1 Average Polarization Observable P⊙
z
for the Butanol

Data Weighted by Q-factor
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Figure E.28: The helicity differences for the topology γp → pπ+(π−) and
the combination-32. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.29: The helicity differences for the topology γp → pπ+(π−) and
the combination-45. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.30: The helicity differences for the topology γp → pπ+(π−) and
the combination-67. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.31: The helicity differences for the topology γp → pπ−(π+) and
the combination-32. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.32: The helicity differences for the topology γp → pπ−(π+) and
the combination-45. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.33: The helicity differences for the topology γp → pπ−(π+) and
the combination-67. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.34: The helicity differences for the topology γp → pπ+(π−) and the
average combination. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.35: The helicity differences for the topology γp → pπ−(π+) and the
average combination. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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Figure E.36: The helicity differences for the average topology and the aver-
age combination. The dataset is for the whole center-of-mass energy range
W ∈ [1.375,2.125] GeV and the butanol data weighted by Q-factor.
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