Measurement of beam and target polarization observables in  $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$  using the CLAS spectrometer at Jefferson Lab

#### Sungkyun Park



Florida State University Department of Physics

July 01, 2013 Dissertation Defense



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Outline



- Introduction
- Baryon Spectroscopy
- Why is  $\pi^+\pi^-$  photoproduction needed ?
- FROST Experiment
  - Jefferson Laboratory in Newport News, VA
  - Experimental devices for the FROST experiment
- 3 Data Analysis
  - Kinematic variables
  - Previous measurements
  - Basic event selection
  - Preliminary Results
    - Polarization Observable I<sup>o</sup>
    - Q-factor method : Event-based background subtraction
    - Polarization Observable Pz
    - Polarization Observable P<sup>o</sup><sub>z</sub>

# Summary

# Outline

### Introduction

- Baryon Spectroscopy
- Why is  $\pi^+\pi^-$  photoproduction needed ?

### 2 FROST Experiment

- Jefferson Laboratory in Newport News, VA
- Experimental devices for the FROST experiment

#### 3 Data Analysis

- Kinematic variables
- Previous measurements
- Basic event selection

#### Preliminary Results

- Polarization Observable I<sup>··</sup>
- Q-factor method : Event-based background subtraction
- Polarization Observable Pz
- Polarization Observable P<sup>o</sup><sub>z</sub>

#### Summary

## What are hadrons?



- Hadrons are composed of quarks bound by the strong interaction.
  - Baryon: qqq
  - Meson: qq
- Quantum Chromodynamics (QCD)
  - QCD is the theory of strong interactions; the strong force describes the interactions of quarks and gluons making up hadrons.
- Strong interaction processes at larger distances and at small (soft) momentum transfers belong to the realm of non-perturbative QCD.
  - Constituent quark models are the most successful models

for making predictions about the properties of baryon resonances

< ロト < 同ト < ヨト < ヨト

in the non-perturbative region of QCD.

#### The N\* Program in JLab

→ The study of the properties of baryon resonances

Sungkyun Park (Florida State University)

#### **Dissertation Defense**

July 01, 2013 4 / 44

**Baryon Spectroscopy** 

### The spectrum of N<sup>\*</sup> resonances

#### Constituent quark model: Gluon-exchange model



**Baryon Spectroscopy** 

### The spectrum of *N*<sup>\*</sup> resonances

Constituent quark model:  $N^*$  resonances (Isospin  $\frac{1}{2}$ )



Sungkyun Park (Florida State University)

A D N A B N A B N A B

**Baryon Spectroscopy** 

### The spectrum of N<sup>\*</sup> resonances

Constituent quark model:  $N^*$  resonances (Isospin  $\frac{1}{2}$ )



< ロト < 同ト < ヨト < ヨト

**Baryon Spectroscopy** 

#### The spectrum of $N^*$ resonances



Sungkyun Park (Florida State University)

#### **Dissertation Defense**

Introduction Why

Why is  $\pi^+\pi^-$  photoproduction needed ?

# Why is $\pi^+\pi^-$ photoproduction needed ?



Sungkyun Park (Florida State University)

July 01, 2013 9 / 44

Why is  $\pi^+\pi^-$  photoproduction needed ?

# Why is $\pi^+\pi^-$ photoproduction needed ?

| Particle | L21.2.    |                   | Status as seen in — |         |             |            |              |         |           |
|----------|-----------|-------------------|---------------------|---------|-------------|------------|--------------|---------|-----------|
|          |           | Overall<br>status | $N\pi$              | $N\eta$ | $\Lambda K$ | $\Sigma K$ | $\Delta \pi$ | $N\rho$ | $N\gamma$ |
| N(939)   | $P_{11}$  | ****              |                     |         |             |            |              |         |           |
| N(1440)  | $P_{11}$  | ****              | ****                | *       |             |            | ***          | *       | ***       |
| N(1520)  | $D_{13}$  | ****              | ****                | ***     |             |            | ****         | ****    | ****      |
| N(1535)  | S11       | ****              | ****                | ****    |             |            | *            | **      | ***       |
| N(1650)  | $S_{11}$  | ****              | ****                | *       | ***         | **         | ***          | **      | ***       |
| N(1675)  | $D_{15}$  | ****              | ****                | *       | *           |            | ****         | *       | ****      |
| N(1680)  | $F_{15}$  | ****              | ****                | *       |             |            | ****         | ****    | ****      |
| N(1700)  | $D_{13}$  | ***               | ***                 | *       | **          | *          | **           | *       | **        |
| N(1710)  | $P_{11}$  | ***               | ***                 | **      | **          | *          | **           | *       | ***       |
| N(1720)  | $P_{13}$  | ****              | ****                | *       | 10.00       | *          | 10 C         | **      | **        |
| N(1900)  | $P_{13}$  | **                | **                  |         |             |            |              | *       | F - T     |
| N(1990)  | $F_{17}$  | **                | **                  | *       | *           | *          |              |         | *         |
| N(2000)  | F15       | **                | **                  | *       | *           | *          | *            | **      |           |
| N(2080)  | $D_{13}$  | **                | **                  | *       | *           |            |              |         | *         |
| N(2090)  | $S_{11}$  | *                 | *                   |         |             |            |              |         |           |
| N(2100)  | $P_{11}$  | *                 | *                   | *       |             |            |              |         |           |
| N(2190)  | $G_{17}$  | ****              | ****                | *       | *           | *          |              | *       | *         |
| N(2200)  | $D_{15}$  | **                | **                  | *       | *           |            |              |         |           |
| N(2220)  | $H_{19}$  | ****              | ****                | *       |             |            |              |         |           |
| N(2250)  | $G_{19}$  | ****              | ****                | *       |             |            |              |         |           |
| N(2600)  | I1 11     | ***               | ***                 |         |             |            |              |         |           |
| N(2700)  | $K_{113}$ | **                | **                  |         |             |            |              |         | J         |



< ロト < 同ト < ヨト < ヨト

#### Polarization observables

- The excited states are found as broadly overlapping resonances.
- The polarization observables can isolate single resonances from other interference terms.
  - polarization observables are very sensitive to small resonant contributions.

# Outline

• Why is  $\pi^+\pi^-$  photoproduction needed ? **FROST Experiment** Jefferson Laboratory in Newport News, VA Experimental devices for the FROST experiment Kinematic variables Previous measurements Polarization Observable I<sup>O</sup> Q-factor method : Event-based background subtraction Polarization Observable P<sub>7</sub> Polarization Observable P<sup>o</sup>

#### Summary

# Jefferson Laboratory in Newport News, VA





 The continuous electron beam accelerator facility (CEBAF) can deliver a continuous electron beam up to 6 GeV.

Sungkyun Park (Florida State University)

Dissertation Defense

July 01, 2013 12 / 44

FROST Experimental devices for the FROST experiment

# Experimental devices for the FROST experiment

- The broad-range photon tagging system
- The FROzen Spin Target (FROST)
- The CEBAF Large Acceptance Spectrometer (CLAS)



# The tagging system in Hall B



# The tagging system in Hall B

#### JLAB Hall B bremsstrahlung photon tagger



FROST Experimental devices for the FROST experiment

### **CEBAF Large Acceptance Spectrometer (CLAS)**



イロン イロン イヨン イヨン

FROST Experiment Experimental devices for the FROST experiment

# The FROzen-Spin Target (FROST)



#### High magnetic field (5 T)



(a) The longitudinal holding magnet. (0.56 T) ( g9a : Nov. 2007 - Feb. 2008 )

- $\diamond~$  Average target polarization  $\sim$  82 % (+Pol) and 85 % (-Pol)
- (b) The transversal holding magnet. (0.50 T) (g9b: March 2010 - August 2010)
- (c) The polarizing magnet. (5 T)



#### 28 mK (w/o beam) and 30mK (w/ beam)



< 4 →

→ Ξ → < Ξ</p>

# Outline

• Why is  $\pi^+\pi^-$  photoproduction needed ? Jefferson Laboratory in Newport News, VA Experimental devices for the FROST experiment **Data Analysis** Kinematic variables Previous measurements Basic event selection Polarization Observable I<sup>O</sup> Q-factor method : Event-based background subtraction Polarization Observable P<sub>7</sub> Polarization Observable P<sup>o</sup>

Photoproduction of  $\pi^+\pi^-$  off the proton: Kinematics

• The  $\pi^+$   $\pi^-$  photoproduction requires 5 independent variables.



#### Data Analysis Kinema

Kinematic variables

### The differential cross section for $\gamma p \rightarrow p \pi^+ \pi^-$

The differential cross section for  $\gamma p \rightarrow p \pi^+ \pi^-$ 

(without measuring the polarization of the recoiling nucleon)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_{i}} = \sigma_{0}\left\{\left(\mathbf{1} + \vec{\Lambda}_{i} \cdot \vec{\mathbf{P}}\right) + \delta_{\odot}\left(\mathbf{I}^{\odot} + \vec{\Lambda}_{i} \cdot \vec{\mathbf{P}}^{\odot}\right)\right\}$$

+ $\delta_{l}$ [sin 2 $\beta$ (l<sup>s</sup> +  $\vec{\Lambda}_{i} \cdot \vec{P}^{s}$ ) + cos 2 $\beta$ (l<sup>c</sup> +  $\vec{\Lambda}_{i} \cdot \vec{P}^{c}$ )]}

- $\sigma_0$ : The unpolarized cross section
- $\beta$ : The angle between the direction of polarization and the x-axis
- x<sub>i</sub>: The kinematic variables
- $\delta_{\odot,I}$ : The degree of polarizaton of the photon beam  $\Rightarrow \delta_{\odot}$ , and  $\delta_{I}$
- $\vec{\Lambda}_i$ : The polarization of the initial nucleon  $\Rightarrow (\Lambda_x, \Lambda_y, \Lambda_z)$
- $I^{\odot, s, c}$ : The observable arising from use of polarized photons  $\Rightarrow I^{\odot}, I^{s}, I^{c}$
- $\vec{P}$ : The polarization observable  $\Rightarrow$  ( $P_x$ ,  $P_y$ ,  $P_z$ ) ( $P_x^{\odot}$ ,  $P_y^{\odot}$ ,  $P_z^{\odot}$ ) ( $P_x^s$ ,  $P_y^s$ ,  $P_z^s$ ) ( $P_x^c$ ,  $P_y^c$ ,  $P_z^c$ ) 15 Observables

イロト 不得 トイヨト イヨト ニヨー

### **Previous measurements**

The data used for this analysis :

- 1. circularly-polarized beam
- 2. longitudinally-polarized target

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}x_{i}} &= \sigma_{0} \left\{ \left( \mathbf{1} + \mathbf{\Lambda}_{z} \cdot \mathbf{P}_{z} \right) \right. \\ &+ \delta_{\odot} \left( \mathbf{I}^{\odot} + \mathbf{\Lambda}_{z} \cdot \mathbf{P}_{z}^{\odot} \right) \end{aligned}$$



I <sup>©</sup> : Phys.Rev.Lett. 103, 052002 (2009, Crystal Ball at MAMI, TAPS, and A2 Collaboration)

I  $^{\odot}$  : Phys.Rev.Lett. 95, 162003 (2005, CLAS Collaboration)



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

P <sup>☉</sup>/<sub>z</sub> : Eur.Phys.J. A 34, 11-21 (2007, GDH Collaboration)

- The helicity-dependent total cross-section difference

$$\Delta \sigma = (\sigma_{3/2} - \sigma_{1/2})$$

Sungkyun Park (Florida State University)

#### **Dissertation Defense**

July 01, 2013 21 / 44

Data Analysis

### **Basic event selection**



Sungkyun Park (Florida State University)

**Dissertation Defense** 

### **Basic event selection**

#### The kinematic fitting







#### Basic Cuts

- photon selection
  - : | Δt | < 1.2 ns
- proton selection
  - $|\Delta \beta| < 0.032$
- pion selection
  - $|\Delta \beta| < 0.044$
- vertex cut (Butanol)

: | Zvertex | < 3 cm

- accidental cut
  - : one photon selection
- confidence-level cut
   : CL-cut > 5 %

#### Corrections

イロト イポト イヨト イヨト

- Energy-loss correction
- Photon-energy correction
- Momentum correction

#### Sungkyun Park (Florida State University)

#### **Dissertation Defense**

July 01, 2013 23 / 44

# Outline

• Why is  $\pi^+\pi^-$  photoproduction needed ? Jefferson Laboratory in Newport News, VA Experimental devices for the FROST experiment Kinematic variables Previous measurements **Preliminary Results** Polarization Observable I<sup>O</sup> Q-factor method : Event-based background subtraction Polarization Observable P<sub>7</sub> Polarization Observable P<sup>O</sup>

# Polarization observable $I^{\odot}$

Sungkyun Park (Florida State University)

A = > 4

Polarization Observable I C Preliminary Results

## Polarization observable 1<sup>o</sup>

$$\mathbf{I}^{\odot}(\mathbf{W}, \phi_{\pi^{+}}) = \frac{1}{\overline{\delta}_{\odot}(\mathbf{W})} \frac{\left\{ N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} - N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} \right\}}{\left\{ N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} + N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} \right\}}$$

- $\delta \overline{\delta}_{\odot}(W)$ : The average degree of the photon beam polarizations.
- $\diamond \rightarrow (\leftarrow)$ : the direction of the beam polarization is parallel (anti-parallel) to the beam.
- Beam-helicity asymmetry for the unpolarized target and circularly-polarized photon beam.



example :

- Topology :  $\gamma p \rightarrow p \pi^+(\pi^-)$ .
- W : 1.60 GeV.
- $\theta_{\text{c.m.}}, \phi_{\pi^+}, \theta_{\pi^+}, M_{\pi^+ \pi^-}$  are integrated over.

Using the 5 % Confidence Level Cut

There is still an effect of background events. 0 イロト イポト イヨト イヨト 3

Preliminary Results P

Polarization Observable I <sup>©</sup>

# The background effect in Beam-Helicity Asymmetry I<sup>o</sup>



- Butanol data are composed of
  - free-proton data
  - bound-nucleon data & background data
- After applying CL-cut, there are still bound-nucleon and background events.
- These bound-nucleon and background events have a small influence on the beam asymmetry.

3 > 4 3

Preliminary Results

Polarization Observable I <sup>©</sup>

### Check the symmetry of polarization observable I<sup>o</sup>

• Kinematic variables  $\theta_{c.m.}$ ,  $\theta_{\pi^+}$ ,  $M_{\pi^+\pi^-}$  are integrated over.

• Butanol(
$$2\pi - \phi$$
):  $-I^{\odot}(2\pi - \phi)$ 



Preliminary Results Polarization Observable I C

# Beam-Helicity Asymmetry I<sup>o</sup> with the published data

I<sup>O</sup>: Phys.Rev.Lett. 95, 162003 (2005, CLAS Collaboration)



- The Q-factor method is used to subtract background :
  - The Q-factor is an event-based quality factor which denotes the probability that each seed event is a signal event.
- Find the input for the Q-factor method :
  - Step 1) The 300 nearest neighbors from the butanol seed event are selected. (in black)
  - Step 2) A seed event in the carbon sample is chosen which is kinematically closest to the butanol seed event.
  - Step 3) The 300 nearest neighbors for the carbon seed event are selected. (in green)



• The distance between event a and b,  $D_{a,b}^2$ :

$$D_{a,b}^2 = \sum_{i=1}^4 \left(\frac{\Gamma_i^a - \Gamma_i^b}{\Delta_i}\right)^2$$

$$\Gamma_i$$
:  $W$ ,  $\theta_{c.m.}^{proton}$ ,  $\phi_{\pi^+}$ ,  $\theta_{\pi^+}$ 

 $\Delta_i$ : the maximum range of the kinematic variable  $\Gamma_i$ 



The Q-factor is:





x: the missing mass of the seed event s(x):  $f_s \cdot S(x)$ 

3 
$$b(x): (1 - f_s) \cdot B(x)$$

The total function (in blue) is:

 $f(\mathbf{x}) = N \cdot [f_{s} \cdot S(\mathbf{x}) - (1 - f_{s}) \cdot B(\mathbf{x})]$ 

→ There are four parameters decided.



- S(x): the Voigt function ( $\Gamma$ , mean, and  $\sigma$ )
- B(x) : the background function
  - g9b carbon distribution (in green)
- N : a normalization constant
  - $f_{s}$ : the signal fraction with [0,1]
  - → event-based scale factor, s is the parameter to scale the carbon distribution.

 $(1-f_{S}) \cdot (\# \text{ of nearest butanol events})$ (# of nearest carbon events)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))







- ♦ Topology:  $\gamma p \rightarrow p \pi^+(\pi^-)$ .
- The Q-factor method is used as an event-based dilution factor to subtract background.
- From the butanol (C<sub>4</sub>H<sub>9</sub>OH) data, the free proton data is extracted on an event-by-event basis. No overall dilution factor is necessary.

イロト イヨト イヨト イヨト

Preliminary Results Q-factor me

Q-factor method : Event-based background subtraction

### Beam-Helicity Asymmetry I<sup>☉</sup> with models

- FSU-model calculated by Winston Roberts
- A.Fix-model calculated by Alexander Fix (Eur. Phys. J. A 25, 115-135, 2005)



# Polarization observable Pz

Sungkyun Park (Florida State University)

- E - E

### Polarization observable Pz

$$\mathbf{P}_{\mathbf{Z}}(\mathbf{W}, \phi_{\pi^{+}}) = \frac{1}{\overline{\Lambda}_{\mathbf{Z}}(\mathbf{W})} \frac{\left\{ N(\Rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{target} - N(\Leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{target} \right\}}{\left\{ N(\Rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{target} + N(\Leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{target} \right\}}$$

 $\land \overline{\Lambda}_z(\mathbf{W})$ : The average degree of the target polarizations.

 $\diamond \Rightarrow (\Leftarrow)$ : the direction of the target polarization is parallel (anti-parallel) to the beam.

♦ Target asymmetry for the linearly-polarized target and unpolarized photon beam.



example :

- Topology :  $\gamma p \rightarrow p \pi^+(\pi^-)$ .
- W : 1.60 GeV.
- $\theta_{\rm c.m.}, \, \phi_{\pi^+}, \, \theta_{\pi^+}, \, M_{\pi^+ \, \pi^-}$  are integrated over.

Using the 5 % Confidence Level Cut & Q-factor method

イロト イポト イヨト イヨト

Sungkyun Park (Florida State University)

। July 01, 2013 36 / 44
Preliminary Results

Polarization Observable Pz

# Check the symmetry of polarization observable Pz

• Kinematic variables  $\theta_{c.m.}$ ,  $\theta_{\pi^+}$ ,  $M_{\pi^+\pi^-}$  are integrated over.

• Butanol(wQ)(
$$2\pi - \phi$$
):  $-P_z(2\pi - \phi)$ 



Preliminary Results Polarization Observable Pz

# Target Asymmetry **P**<sub>z</sub> with models

- FSU-model calculated by Winston Roberts
- A.Fix-model calculated by Alexander Fix (Eur. Phys. J. A 25, 115-135, 2005)



# Polarization observable $P_z^{\odot}$

## Polarization observable $P_z^{\odot}$

$$\mathbf{P}_{\mathbf{z}}^{\odot}(\mathbf{W}, \phi_{\pi^{+}}) = \frac{1}{\overline{\Lambda}_{\mathbf{z}}(\mathbf{W}) \cdot \overline{\delta}_{\odot}} \frac{\left\{ N(\mathbf{W}, \phi_{\pi^{+}})_{3/2} - N(\mathbf{W}, \phi_{\pi^{+}})_{1/2} \right\}}{\left\{ N(\mathbf{W}, \phi_{\pi^{+}})_{3/2} + N(\mathbf{W}, \phi_{\pi^{+}})_{1/2} \right\}}$$

- $\land \overline{\Lambda}_z(\mathbf{W})$ : The average degree of the target polarizations.
- $\delta \overline{\delta}_{\odot}(W)$ : The average degree of the photon beam polarizations.
- Helicity Difference for the linearly-polarized target and circularly-polarized photon beam.



example :

- Topology :  $\gamma p \rightarrow p \pi^+(\pi^-)$ .
- W : 1.60 GeV.
- $\theta_{\rm c.m.}, \, \phi_{\pi^+}, \, \theta_{\pi^+}, \, M_{\pi^+ \, \pi^-}$  are integrated over.

Using the 5 % Confidence Level Cut & Q-factor method

イロト イポト イヨト イヨト

Sungkyun Park (Florida State University)

July 01, 2013 40 / 44

Preliminary Results

Polarization Observable P,

# Check the symmetry of polarization observable P<sub>z</sub><sup>o</sup>

• Kinematic variables  $\theta_{c.m.}$ ,  $\theta_{\pi^+}$ ,  $M_{\pi^+\pi^-}$  are integrated over.

• Butanol(wQ)(
$$2\pi - \phi$$
):  $P_z^{\odot}(2\pi - \phi)$ 



#### Preliminary Results

### Polarization Observable P,

# Helicity Difference P<sub>z</sub><sup>o</sup>

- FSU-model calculated by Winston Roberts
- A.Fix-model calculated by Alexander Fix (Eur. Phys. J. A 25, 115-135, 2005)



# Outline

• Why is  $\pi^+\pi^-$  photoproduction needed ? Jefferson Laboratory in Newport News, VA Experimental devices for the FROST experiment Kinematic variables Previous measurements Polarization Observable I<sup>O</sup> Q-factor method : Event-based background subtraction Polarization Observable P<sub>7</sub> Polarization Observable P<sup>o</sup> Summary

- E - E

- ◇ Polarization Observable I<sup>☉</sup> using the FROST data is in good agreement with the previously published CLAS data.
- ◊ Polarization Observables P<sub>z</sub> and P<sub>z</sub><sup>⊙</sup> will be first-time measurements for double-pion photoproduction.
- The comparison between results from the butanol target and the butanol weighted by the Q-factor (event-based background subtraction) shows that the Q-factor method is very useful tool to extract the polarization observables.
- The comparison with model predictions provides the basis for significant improvements for the models.

A B F A B F

# Korea Multi-Purpose Accelerator Complex

6

### **Proton Accelerator Research Center**

Accelerator & Klystron Building
 Experimental Hall
 Ion Facility Building
 Utility Building
 Substation
 Cooling Tower

⑦ Water Storages
⑧ Main Office Building
⑨ Regional Cooperation Building
⑩ Dormitory
⑪ Information Center

イロト イポト イヨト イヨト

Seoul 6

KAERI

Gyeongiu Q

Sungkyun Park (Florida State University)

Dissertation Defense

(12)

3

July 01, 2013 45 / 44

# Korea Multi-Purpose Accelerator Complex

 $\mathbf{\overline{6}}$ 

### **Proton Accelerator Research Center**

### User Program Development (2003~)

12

3

| Research Fields            | Sub-categories                                                                                                                                 |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Nano Science & Technology  | Ion-cutting, Nano-particle shaping & fabrication,<br>Carbon nano-tube, nano-wire, Nano-machining                                               |
| Information Technology     | High power semiconductor, Semiconductor manufacturing R&D,<br>Proton lithography                                                               |
| Space Technology           | Radiation hard electronic device, Radiation effect on materials                                                                                |
| Bio-Technology             | Mutation of plants & micro-organisms                                                                                                           |
| Medical research           | Low energy proton therapy study, Biocompatible material,<br>Biological radiation effects, New RI production R&D                                |
| Materials Science          | Proton irradiation effects with various materials<br>Gemstone coloration                                                                       |
| Energy & Environment       | New microorganism development for bio fuel (ethanol, butanol),<br>New materials for fuel cell ; electrolyte, nano catalyst, organic solar cell |
| Nuclear & Particle Physics | Detector R&D, Nuclear data, TLA (Thin Layer Activation)                                                                                        |

Seoul 6

KAERI

Gyeongju Q

# Accelerator & Klystron Bui Experimental Hall



### **Dissertation Defense**

# Back up



Sungkyun Park (Florida State University)

**Dissertation Defense** 

টা> ব টা> টা তি ৭০ July 01, 2013 47 / 44

# Quark



• electric charge  $\mathbf{Q}$  :  $\mathbf{I_z} + \frac{\beta + \mathbf{S} + \mathbf{C} + \mathbf{B} + \mathbf{T}}{2}$  ex:

• 
$$\mathbf{Q}(\mathbf{u}) = \frac{1}{2} + \frac{1/3+0+0+0+0}{2} = +\frac{2}{3}$$
  
•  $\mathbf{Q}(\mathbf{d}) = -\frac{1}{2} + \frac{1/3+0+0+0+0}{2} = -\frac{1}{3}$   
•  $\mathbf{Q}(\mathbf{s}) = 0 + \frac{1/3-1+0+0+0}{2} = -\frac{1}{3}$   
•  $\mathbf{Q}(\mathbf{c}) = 0 + \frac{1/3+0+1+0+0}{2} = +\frac{2}{3}$   
•  $\mathbf{Q}(\mathbf{b}) = 0 + \frac{1/3+0+0-1+0}{2} = -\frac{1}{3}$   
•  $\mathbf{Q}(\mathbf{t}) = 0 + \frac{1/3+0+0+0+1}{2} = +\frac{2}{3}$ 

|                            | d    | u    | S    | С    | b    | t    |
|----------------------------|------|------|------|------|------|------|
| J - total angular momentum | +1/2 | +1/2 | +1/2 | +1/2 | +1/2 | +1/2 |
| Q - electric charge        | -1/3 | +2/3 | -1/3 | +2/3 | -1/3 | +2/3 |
| I - isospin                | 1/2  | 1/2  | 0    | 0    | 0    | 0    |
| Iz - isospin z-component   | -1/2 | +1/2 | 0    | 0    | 0    | 0    |
| $\beta$ - baryon number    | +1/3 | +1/3 | +1/3 | +1/3 | +1/3 | +1/3 |
| S - strangeness            | 0    | 0    | -1   | 0    | 0    | 0    |
| C - charm                  | 0    | 0    | 0    | +1   | 0    | 0    |
| B - bottomness             | 0    | 0    | 0    | 0    | -1   | 0    |
| T - topness                | 0    | 0    | 0    | 0    | 0    | +1   |

イロン イロン イヨン イヨン

Sungkyun Park (Florida State University)

:▶ < ≣ ▶ ≣ ∽ ৭.০ July 01, 2013 48 / 44

# Hadron : SU(3)



- **Y** : the hypercharge =  $\beta$ (baryon number) + **S**(strangeness)
- T<sub>3</sub>: the isospin z-component
- ◊ Young Tableaux for SU(n) : dim YT = N/D





## Meson



♦ The  $J^P = 0^-$  pseudoscalar meson nonet ♦  $n^{2s+1} l_J J^{PC} : 1^1 S_0 0^{-+}$ 

- 
$$n = 1, I = 0, s = 0, and J = 0$$

| <b>I</b> =1                                        | <b>I</b> =1/2                                         | <b>I</b> =0                                      | <b>I</b> =0                                     |
|----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|
| $\pi^+ : u\bar{d}$                                 | K <sup>+</sup> : us                                   |                                                  |                                                 |
| (Q=1:S=0)                                          | (Q=1:S=1)                                             | η                                                | $\eta'(958)$                                    |
| $\pi^{0}: \frac{1}{\sqrt{2}}(d\bar{d} - u\bar{u})$ | K <sup>0</sup> : ds̄ ( <b>Q</b> =0: <b>S</b> =1)      | $\frac{(u\bar{u}+d\bar{d}-2s\bar{s})}{\sqrt{6}}$ | $\frac{(u\bar{u}+d\bar{d}+s\bar{s})}{\sqrt{3}}$ |
| (Q=0:S=0)                                          | $\bar{K}^0$ : $\bar{d}s$ ( <b>Q</b> =0: <b>S</b> =-1) | ( <b>Q</b> =0: <b>S</b> =0)                      | (Q=0:S=0)                                       |
| $\pi^-: \overline{u}d$                             | K <sup>−</sup> : ūs                                   |                                                  |                                                 |
| (Q=-1:S=0)                                         | ( <b>Q</b> =-1: <b>S</b> =-1)                         |                                                  |                                                 |



| ♦ The $J^P = 1^-$ vector meson nonet                                  |
|-----------------------------------------------------------------------|
| ◇ $n^{2s+1} I_J J^{PC}$ : 1 <sup>3</sup> S <sub>1</sub> 1 <sup></sup> |
| - $n = 1, I = 0, s = 1, and J = 1$                                    |

| <b>I</b> =1                                         | <b>I</b> =1/2                                                    | <b>I</b> =0                 | <b>I</b> =0                          |
|-----------------------------------------------------|------------------------------------------------------------------|-----------------------------|--------------------------------------|
| $\rho^+$ : $u\bar{d}$                               | K*+ : us                                                         |                             |                                      |
| (Q=1:S=0)                                           | (Q=1:S=1)                                                        | $\phi$ (1020)               | $\omega$ (782)                       |
| $\rho^{0}: \frac{1}{\sqrt{2}}(d\bar{d} - u\bar{u})$ | K <sup>∗0</sup> : ds̄ ( <b>Q</b> =0: <b>S</b> =1)                | sīs                         | $\frac{u\bar{u}+d\bar{d}}{\sqrt{2}}$ |
| (Q=0:S=0)                                           | <i>K</i> <sup>∗0</sup> : <i>d</i> s ( <b>Q</b> =0: <b>S</b> =−1) | ( <b>Q</b> =0: <b>S</b> =0) | (Q=0:S=0)                            |
| $\rho^-$ : $\bar{u}d$                               | K* - : ūs                                                        |                             |                                      |
| ( <b>Q</b> =-1: <b>S</b> =0)                        | ( <b>Q</b> =-1: <b>S</b> =-1)                                    |                             |                                      |

Sungkyun Park (Florida State University)

July 01, 2013 50 / 44

<ロ> <四> <四> <四> <四> <四</p>

## Meson



$$\pi^{\pm}(139.5): I^{G}(J^{P}) = 1^{-}(0^{-}) \qquad \pi^{0}(135): I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

$$K^{\pm}(494): I(J^{P}) = \frac{1}{2}(0^{-}) \qquad K^{0}(498): I(J^{P}) = \frac{1}{2}(0^{-})$$

$$\eta(548): I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

$$\eta'(958): I^{G}(J^{PC}) = 0^{+}(0^{-+})$$



$$\rho(770): I^{G}(J^{P}) = 1^{+}(1^{--})$$

$$K^{*}(892): I(J^{P}) = \frac{1}{2}(1^{-})$$

$$\omega(783): I^{G}(J^{PC}) = 0^{-}(1^{--})$$

$$\phi(1020): I^{G}(J^{PC}) = 0^{-}(1^{--})$$

### Sungkyun Park (Florida State University)

# Baryon



The 
$$J^P = \frac{1}{2}^+$$
 baryon octet  
 $\rho(938) : I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ 
 $\Gamma(939) : I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ 
 $\Sigma^+(1189) : I(J^P) = 1(\frac{1}{2}^+)$ 
 $\Sigma^-(1197) : I(J^P) = 1(\frac{1}{2}^+)$ 
 $\Lambda^0(1115) : I(J^P) = 0(\frac{1}{2}^+)$ 
 $\Sigma^0(1192) : I(J^P) = 1(\frac{1}{2}^+)$ 
 $\Xi^0(1315) : I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ 
 $\Xi^-(1322) : I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ 



$$D_{P} = \frac{3}{2}^{+} \text{ baryon decuplet}$$

$$\Delta(1232) : I(J^{P}) = \frac{3}{2}(\frac{3}{2}^{+})$$

$$\Delta^{*}(1385) : I(J^{P}) = 1(\frac{3}{2}^{+})$$

$$\Xi^{*}(1530) : I(J^{P}) = \frac{1}{2}(\frac{3}{2}^{+})$$

$$\Omega^{-}(1672) : I(J^{P}) = 0(\frac{3}{2}^{+})$$

Sungkyun Park (Florida State University)

July 01, 2013 52 / 44

2

イロン イロン イヨン イヨン

# Quantum Chromodynamics (QCD)



 QCD is the theory of strong interactions; the strong force describes the interactions of quarks and gluons making up hadrons.

### 1. Asymptotic Freedom

When the exchange momentum Q is great, quarks and gluons interact very weakly.

→ The inside of the proton at high energies,

a "dense soup" of quarks and gluons.

### 2.Confinement

Force between quarks does not diminish as they are separated.





< 17 ▶

→ Ξ > < Ξ</p>

# The $\gamma$ -N interaction



### Photoelectric effect

- Photon undergoes an interaction with an absorber atom in which the photon completely disappears. In this place, an energetic photoelectron is ejected

### Compton scattering effect

The compton effect is equivalent to inelastic collision of photon with electrons.
 Part of the photon energy is lost to the electron, and a less-energetic photon bounce off.

### Pair production

- At the vicinity of an atom, a photon with energy greater than 1.02 MeV creates a positron-electron pair, and such a process is called pair production.

Sungkyun Park (Florida State University)

**Dissertation Defense** 

July 01, 2013 54 / 44

## The spectrum of N<sup>\*</sup> resonances



### Double pion-production in the second resonance region



- ◊ Total cross section of the three isospin channels of double pion production on the proton.
- Possible resonance contributions to double pion production in the second resonance region.

- 
$$N^*(I=1/2) \rightarrow N(938)\rho$$
  
 $\rightarrow N(938)f_0(600)$   
 $\rightarrow \delta(1232)\pi \rightarrow N(938)\pi\pi$ 

♦ An important contribution is assigned to the  $\gamma p \rightarrow \Delta^{++}\pi^{-}$  channel while the  $\gamma p \rightarrow \Delta^{0}\pi^{+}$  channel is negligible.

# Calibration

### The process of the data acquisition

- Step 1 A trigger is detected. (The g9a experiment has used a trigger which required at least one charged particle in CLAS spectrometer.)
- Step 2 Time counters in detectors start measuring the time.
- Step 3 When a signal is detected, they stop and record the data.
- The calibration of all detector components
  - The calibration aligns their timing with the beam radio frequency time (RF or accelerator time).
  - An electron beam bucket is supplied to the target about every 2 ns.



Tagger Calibration

- dt = (Time reconstructed in the tagger at the target center)
   (RF time identified nearest bucket at the target center)
- T counter is matched to the RF bucket

Summarv

300

250

150 100 500

# Calibration



ST Calibration

- odt = (RF vertex time) (ST vertex time)
- offsets are around zero  $\diamond$

### TOF Calibration

- dt = (RF vertex time) (TOF vertex time)
- The time-of-flight times are corrected for the flight time back to the target.
- Or Particle identification in CLAS relies on the combination of measured charged-particle momenta (from DC)

< ロト < 同ト < ヨト < ヨト

and the flight time from the target to the respective TOF counters.

Sungkyun Park (Florida State University)

SC time meas,-colc, for m

### Dissertation Defense

July 01, 2013 58/44

# Drift chamber(DC) Calibration





Sungkyun Park (Florida State University)

### **Dissertation Defense**

# Drift chamber(DC) Calibration



- The DC are in a magnetic field and produce the curvature of the particle.
  - Thin wires are fixed in a volume filled with the gas mixture (90% argon and 10% CO<sub>2</sub>).
  - The DC has a quasi-hexagonal pattern as the cell form with six field wires (cathodes) surrounding one sense wire (anode)
  - A traversing charged particle ionizes the gas inside these cells and the electrons drift to the sense wire.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Drift chamber(DC) Calibration



- The fitted DOCA and drift time is found.
  - DOCA means the distance of closest approach of the charged particle to the sense wire.

イロン イロン イヨン イヨン

# Drift chamber(DC) Calibration



The fitted DOCA and drift time is found.

Sungkyun Park (Florida State University)

<ロ> <問> <問> < 回> < 回> < □> < □> <

# Drift chamber(DC) Calibration



The fitted DOCA and drift time is found.

Sungkyun Park (Florida State University)

<ロ> <問> <問> < 回> < 回> < □> < □> <

# Drift chamber(DC) Calibration



The fitted DOCA and drift time is found.

<ロ> <問> <問> < 回> < 回> < □> < □> <

# Drift chamber(DC) Calibration



0

S1SL1

# Drift chamber(DC) Calibration

DC Residuals Ave. (7/3 ~7/11)

Summarv





 Average DC residuals before starting (the top) and after finishing (the bottom) DC calibration in the g9a dataset.

Residual = calculated DOCA - fitted DOCA

イロト イポト イヨト イヨト

# The Frozen-Spin Target (FROST)

Operation is more complicated:

- (1) Polarize target material via DNP at 5 T and 0.5 K (Polarizing Mode)
- (2) After optimum polarization is obtained, turn off microwaves and 5 T magnet

Summarv

- (3) Use a 2<sup>nd</sup> magnet (~0.5 T) and very low temperatures to "freeze" the polarization (Frozen Spin Mode)
- (4) Polarization will decay very slowly with a time constant of several days
- (5) After polarization decays to about 50 % of its initial value, go back to step 1



3 1 4 3

# A Simple Way to Polarize

# Brute Force Polarization $P_{\text{te}} = \tanh\left(\frac{\vec{\mu} \cdot \vec{B}}{kT}\right)$

### To get high polarization

maximize B

minimize T

5 Tesla



### Disadvantages:

- Requires very large magnet
- Low temperatures require low luminosity
- Polarization can take a very long time (protons slow, electrons fast)

# A Better Way – Dynamic Nuclear Polarization

- (1) Use brute force to polarize free electrons in the target material.
- (2) Use microwaves to "transfer" this polarization to nuclei.

Mutual electron-nucleus spin flips re-arranges the nuclear Zeeman populations to favor one spin state over the other.

### For best results:

DNP is performed at B/T conditions where electrons  $t_1$  is short (ms) and nuclear  $t_1$  is long (minutes):

JLab: 
$$B = 5 T$$
  
 $T = 1 K$ 

# Materials for DNP Targets

### Choice of material dictated by:

- A maximum polarization
  - A resistance to ionization from radiation
- A minimum number of polarizing nucleon

### The holding magnet for FROST : 0.5 T



### Compromise: Butanol (C<sub>4</sub>H<sub>9</sub>OH)

Quality (dilution) factor:

$$f = \vec{N}/N_{\rm total} = 10/74 \approx 0.13$$

# Refrigeration below 4.2 K - Evaporative Cooling



- In order to evaporate 1 mole of <sup>4</sup>He,  $\diamond$ the heater, L ( $\sim$  80 J/mol) must supply.
- In absence of a heater,  $\diamond$ 
  - liquid will absorb heat from surroundings and liquid's temperature will drop
- Cooling power of a evaporation "fridge", Q is

- 
$$\dot{Q} = \dot{n}L = \dot{V}PL$$



Sungkvun Park (Florida State University)

Temperature (K)

0.001

0 0.5 1 1.5 2 2.5 3.5

# <sup>3</sup>He/<sup>4</sup>He Dilution Refrigeration

◊ Below 0.8 K, a <sup>3</sup>He/<sup>4</sup>He mixture will reparate into two phases.

Summarv



- The <sup>3</sup>He atoms move from the concentrated phase to the dilute phase with the heat energy exchange with the surroundings.
- Removing the <sup>3</sup>He from the dilute phase causes the <sup>3</sup>He atoms in the concentrated phase to
  - absorb the heat from its surroundings
  - dissolve into the dilute phase in order to re-establish a thermal equilibrium.

< ロト < 同ト < ヨト < ヨト
# The <sup>3</sup>He/<sup>4</sup>He Dilution Refrigerator for FROST



## The Frozen-Spin Target - Summary of Results

|                      | Expectation                               | Result                                    |
|----------------------|-------------------------------------------|-------------------------------------------|
| Base temperature:    | 50 mK                                     | 28 mK (w/o beam)<br>30 mK (w/ beam)       |
| Cooling Power:       | 10 $\mu$ W (Frozen)<br>20 mW (Polarizing) | 800 μW @ 50mK<br>60mW @ 300 mK            |
| Polarization:        | 80 %                                      | + 82 %<br>- 85 %                          |
| 1/e Relaxation Time: | 500 hours                                 | 2700 hours (+ Pol.)<br>1600 hours (-Pol.) |

<u>় ব ট ট ট ৩</u>৫৫ July 01, 2013 74 / 44

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

### Lorentz Boost



### Lorentz transformation

- how measurements of space and time by two observers are related.
- The Lorentz transformations are called "boosts" in the stated directions.

A

 $\left( \frac{\Theta_{cm}}{D} \right)$ 

 $b_{2}$ 

First boost

• The azimuthal angle,  $\phi_{\pi^+}^*$  is calculated via two boosts.

- The first boost along the beam line into the overall center-of-mass frame.
- The second boost along the axis that is antiparallel to the recoiling proton.

k

Second boost

## The voigt function



- A voigt function,  $V(x; \sigma, \gamma)$ 
  - A voigt function is a convolution of a Breit-Wigner function and a Gaussian function

$$V(x;\sigma,\gamma) = \int_{-\infty}^{\infty} G(x';\sigma) L(x-x';\gamma) \, dx'$$

•  $G(x; \sigma)$  is the centered Breit-Wigner function and  $L(x; \gamma)$  is the centered Lorentzian function

$$G(x;\sigma) \equiv \frac{e^{-x^2/(2\sigma^2)}}{\sigma\sqrt{2\pi}} \qquad \qquad L(x;\gamma) \equiv \frac{\gamma}{\pi(x^2+\gamma^2)}.$$

Sungkyun Park (Florida State University)

July 01, 2013 76 / 44

## Hydrogen contamination of the carbon target (g9a)





The holding magnet for g9b is longer than for g9a

so the carbon vertex for g9b is shifted into 3cm downstream



Figure 3.6: A cross section of the target area of FROST: *a*) primary heat exchanger, *b*) 1 K heat shield; *c*) holding coil; *d*) 20 K heat shield; *e*) outer vacuum can (Rohacell extension); *f*) polyethylene target; *g*) carbon target; *h*) butanol target; *j*) target insert; *k*) mixing chamber; *l*) microwave waveguide; *m*) kapton coldseal [10].

Sungkyun Park (Florida State University)

#### Dissertation Defense

## Hydrogen contamination of the carbon target (g9a)









Figure 3.6: A cross section of the target area of FROST: *a*) primary heat exchanger, *b*) 1 K heat shield; *c*) holding coil; *d*) 20 K heat shield; *e*) outer vacuum can (Rohacell extension); *f*) polyethylene target; *g*) carbon target; *h*) butanol target; *j*) target insert; *k*) mixing chamber; *l*) microwave waveguide; *m*) kapton coldseal [10].

#### Sungkyun Park (Florida State University)

#### Dissertation Defense

### July 01, 2013 78 / 44

## Hydrogen contamination of the carbon target (g9a)





### The conclusion :

The shoulder near the carbon peak in g9a data and 12.5 cm peak

in g9b are from super-insulation on the 1K heat shield

The shoulder near the CH2 peak in g9a data is from

super-insulation on the 20K heat shield

- The distance btw the carbon and super-insulation in g9a may be closer than in g9b
  - This make the carbon data contaminated by the hydrogen in g9a data



Sungkyun Park (Florida State University)

Dissertation Defense

July 01, 2013 79 / 44

### **Proton and Pion Selection**



## General method to get the phase space scale factor



### General method to get the scale factor



- The phase-space scale factor (*W* versus  $\phi_{\pi^+}^*$ )
- This scale factor is calculated by dividing two histograms. (Butanol/Carbon)



Sungkyun Park (Florida State University)

#### Summarv

## The internal conditions of the Q-factor method

Optimizing the number of binning



→ the proper number of binning is 30.

Optimizing the number of nearest events



→ the proper number of nearest events is 300.

< ロト < 同ト < ヨト < ヨト

Summarv

### Polarization observable I<sup>o</sup>

$$\mathbf{I}^{\odot}(\mathbf{W}, \phi_{\pi^{+}}) = \frac{1}{\overline{\delta}_{\odot}(\mathbf{W})} \frac{\left\{ N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} - N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} \right\}}{\left\{ N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} + N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} \right\}}$$

- $\delta_{\odot}(W)$  : The average of the degree of the photon beam polarizations
- Az : The degree of the target polarizations
- F: The photon flux (Normalization factor between periods)
- $\diamond \rightarrow$  ( $\leftarrow$ ) : the direction of the beam polarization is parallel (anti-parallel) to the beam.
- $\diamond \Rightarrow (\Leftarrow)$ : the direction of the target polarization is parallel (anti-parallel) to the beam.
- Output the dataset with the unpolarized target and circularly-polarized beam

$$N(\rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} = \frac{N(\rightarrow\Rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{butanol}}{\Lambda_{z}(\Rightarrow) \cdot F(\Rightarrow)} + \frac{N(\rightarrow\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{butanol}}{\Lambda_{z}(\Leftarrow) \cdot F(\Leftarrow)}$$
$$N(\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{beam} = \frac{N(\leftarrow\Rightarrow; \mathbf{W}, \phi_{\pi^{+}})_{butanol}}{\Lambda_{z}(\Rightarrow) \cdot F(\Rightarrow)} + \frac{N(\leftarrow\leftarrow; \mathbf{W}, \phi_{\pi^{+}})_{butanol}}{\Lambda_{z}(\Leftarrow) \cdot F(\Leftarrow)}$$

July 01, 2013 84 / 44

## Missing mass distribution in several CL-cuts.



Sungkyun Park (Florida State University)

**Dissertation Defense** 

July 01, 2013 85 / 44

## The background effect in Beam-Helicity Asymmetry I<sup>o</sup>



- The different CL-cuts have the different background effect. However, they have the similar values in the observable I<sup>o</sup>.
- g9a dataset is not sensitive to distinguish between the beam asymmetry from free-proton, bound-nucleon and background data.

Sungkyun Park (Florida State University)

Dissertation Defense