
 Document version 2.91-33 – October 14, 2008 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RooFit Users Manual v2.91 
                            W. Verkerke, D. Kirkby 



 2

Table of Contents 

Table of Contents .................................................................................................................................... 2 
 
What is RooFit? ....................................................................................................................................... 4 
 
1. Installation and setup of RooFit .......................................................................................................... 6 
 
2. Getting started ..................................................................................................................................... 7 

Building a model .................................................................................................................................. 7 
Visualizing a model .............................................................................................................................. 7 
Importing data ...................................................................................................................................... 9 
Fitting a model to data ....................................................................................................................... 10 
Generating data from a model ........................................................................................................... 13 
Parameters and observables ............................................................................................................ 13 
Calculating integrals over models ..................................................................................................... 14 
Tutorial macros .................................................................................................................................. 16 
 

3. Signal and Background – Composite models ................................................................................... 17 
Introduction ........................................................................................................................................ 17 
Building composite models with fractions .......................................................................................... 17 
Plotting composite models ................................................................................................................ 19 
Using composite models ................................................................................................................... 20 
Building extended composite models ................................................................................................ 21 
Using extended composite models ................................................................................................... 23 
Note on the interpretation of fraction coefficients and ranges ........................................................... 23 
Navigation tools for dealing with composite objects .......................................................................... 25 
Tutorial macros .................................................................................................................................. 28 
 

4. Choosing,  adjusting and creating basic shapes .............................................................................. 29 
What p.d.f.s are provided? ................................................................................................................ 29 
Reparameterizing existing basic p.d.f.s ............................................................................................. 30 
Binding TFx, external C++ functions as RooFit  functions ................................................................ 32 
Writing a new p.d.f. class................................................................................................................... 33 
Tutorial macros .................................................................................................................................. 36 
 

5. Convolving a p.d.f. or function with another p.d.f. ............................................................................. 37 
Introduction ........................................................................................................................................ 37 
Numeric convolution with Fourier Transforms ................................................................................... 38 
Plain numeric convolution.................................................................................................................. 43 
Analytical convolution ........................................................................................................................ 44 
Tutorial macros .................................................................................................................................. 48 
 

6. Constructing multi-dimensional models ............................................................................................ 49 
Introduction ........................................................................................................................................ 49 
Using multi-dimensional models ........................................................................................................ 50 
Modeling building strategy ................................................................................................................. 52 
Multiplication ...................................................................................................................................... 53 
Composition ....................................................................................................................................... 54 
Conditional probability density functions ........................................................................................... 56 
Products with conditional p.d.f.s ........................................................................................................ 58 
Extending products to more than two dimensions ............................................................................ 61 
Modeling data with per-event error observables. .............................................................................. 61 
Tutorial macros .................................................................................................................................. 65 
 
 



 3

7. Working with projections and ranges ................................................................................................ 66 
Using a N-dimensional model as a lower dimensional model ........................................................... 66 
Visualization of multi-dimensional models ......................................................................................... 69 
Definitions and basic use of rectangular ranges ............................................................................... 70 
Fitting and plotting with rectangular regions ...................................................................................... 73 
Ranges with parameterized boundaries ............................................................................................ 75 
Regions defined by a Boolean selection function ............................................................................. 80 
Tuning performance of projections through MC integration .............................................................. 83 
Blending the properties of models with external distributions ........................................................... 84 
Tutorial macros .................................................................................................................................. 87 
 

8. Data modeling with discrete-valued variables .................................................................................. 88 
Discrete variables .............................................................................................................................. 88 
Models with discrete observables ..................................................................................................... 88 
Plotting models in slices and ranges of discrete observables ........................................................... 91 
Unbinned ML fits of efficiency functions using discrete observables ................................................ 93 
Plotting asymmetries expressed in discrete observables ................................................................. 95 
Tutorial macros .................................................................................................................................. 96 
 

9. Dataset import and management ...................................................................................................... 97 
Importing unbinned data from ROOT TTrees .................................................................................. 97 
Importing unbinned data from ASCII files .......................................................................................... 98 
Importing binned data from ROOT THx histograms .......................................................................... 98 
Manual construction, filling and retrieving of datasets .................................................................... 100 
Working with weighted events in unbinned data ............................................................................. 102 
Plotting, tabulation and calculations of dataset contents ................................................................ 103 
Calculation of moments and standardized moments ...................................................................... 105 
Operations on unbinned datasets ................................................................................................... 106 
Operations on binned datasets ....................................................................................................... 108 
Tutorial macros ................................................................................................................................ 109 
 

10. Organizational tools ...................................................................................................................... 110 
Tutorial macros ................................................................................................................................ 110 
 

11. Simultaneous fits ........................................................................................................................... 111 
Tutorial macros ................................................................................................................................ 111 
 

12. Likelihood calculation, minimization .............................................................................................. 112 
Tutorial macros ................................................................................................................................ 112 
 

13. Special models .............................................................................................................................. 113 
Tutorial macros ................................................................................................................................ 113 
 

14. Validation and testing of models ................................................................................................... 114 
Tutorial macros ................................................................................................................................ 114 
 

15. Programming guidelines ............................................................................................................... 115 
 
Appendix A – Selected statistical topics ............................................................................................. 116 
Appendix B – Pdf gallery ..................................................................................................................... 117 
Appendix C – Decoration and tuning of RooPlots .............................................................................. 118 

Tutorial macros ................................................................................................................................ 118 
Appendix D – Integration and Normalization ...................................................................................... 119 

Tutorial macros ................................................................................................................................ 119 
Appendix E – Quick reference guide .................................................................................................. 120 

Plotting ............................................................................................................................................. 120 
Fitting and generating ...................................................................................................................... 127 
Data manipulation ............................................................................................................................ 130 
Automation tools .............................................................................................................................. 131 



 4

What is RooFit? 
Purpose 
The RooFit library provides a toolkit for modeling the expected distribution of events in a physics 
analysis. Models can be used to perform unbinned maximum likelihood fits, produce plots, and 
generate "toy Monte Carlo" samples for various studies. RooFit was originally developed for the 
BaBar collaboration, a particle physics experiment at the Stanford Linear Accelerator Center. The 
software is primarily designed as a particle physics data analysis tool, but its general nature and open 
architecture make it useful for other types of data analysis also. 
 

Mathematical model 
The core functionality of RooFit is to enable the modeling of ‘event data’ distributions, where each 
event is a discrete occurrence in time, and has one or more measured observables associated with it.  
Experiments of this nature result in datasets obeying Poisson (or binomial) statistics. The natural 
modeling language for such distributions are probability density functions F(x;p) that describe the 
probability density the distribution of observables x in terms of function in parameter p.  
 
The defining properties of probability density functions, unit normalization with respect to all 
observables and positive definiteness, also provide important benefits for the design of a structured 
modeling language: p.d.f.s are easily added with intuitive interpretation of fraction coefficients, they 
allow construction of higher dimensional p.d.f.s out of lower dimensional building block with an 
intuitive language to introduce and describe correlations between observables, they allow the 
universal implementation of toy Monte Carlo sampling techniques, and are of course an prerequisite 
for the use of (unbinned) maximum likelihood parameter estimation technique. 

Design 
RooFit introduces a granular structure in its mapping of mathematical data models components to 
C++ objects: rather than aiming at a monolithic entity that describes a data model, each math symbol 
is presented by a separate object. A feature of this design philosophy is that all RooFit models always 
consist of multiple objects. For example a Gaussian probability density function consists typically of 
four objects, three objects representing the observable, the mean and the sigma parameters, and one 
object representing a Gaussian probability density function. Similarly, model building operations such 
as addition, multiplication, integration are represented by separate operator objects and make the 
modeling language scale well to models of arbitrary complexity. 
 
 

Math concept Math symbol RooFit (base)class 
Variable ݔ RooRealVar 
Function ݂ሺݔሻ RooAbsReal 
P.D.F. ܨሺݔ;  ሻ RooAbsPdf

Integral න ݂ሺݔሻ݀ݔ
௫ೌೣ

௫

 RooRealIntegral 

Space point ݔԦ RooArgSet 
Addition ݂ܨሺݔሻ  ሺ1 െ ݂ሻܩሺݔሻ RooAddPdf 

Convolution ݂ሺݔሻ ٔ ݃ሺݔሻ RooFFTConvPdf 
 

Table 1 - Correspondence between selected math concepts and RooFit classes 
 

 

Scope 
RooFit is strictly a data modeling language: It implements classes that represent variables, (probability 
density) functions, and operators to compose higher level functions, such as a class to construct a 
likelihood out of a dataset and a probability density function. All classes are instrumented to be fully 
functional: fitting, plotting and toy event generation works the same way for every p.d.f., regardless of 
its complexity. But important parts of the underlying functionality are delegated to standard ROOT 
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components where possible: For example, unbinned maximum likelihood fittings is implemented as 
minimization of a RooFit calculated likelihood function by the ROOT implementation of MINUIT.  
 

Example  
Here is an example of a model defined in RooFit that is subsequently used for event generation, an 
unbinned maximum likelihood fit and plotting. 
 

 
// --- Observable --- 
RooRealVar mes("mes","m_{ES} (GeV)",5.20,5.30) ; 
 
// --- Build Gaussian signal PDF --- 
RooRealVar sigmean("sigmean","B^{#pm} mass",5.28,5.20,5.30) ; 
RooRealVar sigwidth("sigwidth","B^{#pm} width",0.0027,0.001,1.) ; 
RooGaussian gauss("gauss","gaussian PDF",mes,sigmean,sigwidth) ; 
 
// --- Build Argus background PDF --- 
RooRealVar argpar("argpar","argus shape parameter",-20.0,-100.,-1.) ; 
RooArgusBG argus("argus","Argus PDF",mes,RooConst(5.291),argpar) ; 
 
// --- Construct signal+background PDF --- 
RooRealVar nsig("nsig","#signal events",200,0.,10000) ; 
RooRealVar nbkg("nbkg","#background events",800,0.,10000) ; 
RooAddPdf sum("sum","g+a",RooArgList(gauss,argus),RooArgList(nsig,nbkg)) ; 
 
// --- Generate a toyMC sample from composite PDF --- 
RooDataSet *data = sum.generate(mes,2000) ; 
 
// --- Perform extended ML fit of composite PDF to toy data --- 
sum.fitTo(*data,Extended()) ; 
 
// --- Plot toy data and composite PDF overlaid --- 
RooPlot* mesframe = mes.frame() ; 
data->plotOn(mesframe) ; 
sum.plotOn(mesframe) ; 
sum.plotOn(mesframe,Components(argus),LineStyle(kDashed)) ; 
 

 
 

Example 1 – Example of extended unbinned maximum likelihood in RooFit 



 6

1. Installation and setup of RooFit 
Installing ROOT and RooFit 
The RooFit libraries are part of the standard ROOT distribution and are prebuilt in the binary 
distributions available from root.cern.ch. If you compile ROOT from a source distribution you must 
use the flag –enable-roofit when you run configure.  
 
The functionality of the numeric convolution operator class RooFFTConvPdf requires that the FFTW3 
library is installed on the host and that ROOT is configured with FFTW3 support (--enable-fftw, 
which is on by default). If FFTW3 is not installed you can download it for free from www.fftw.org 
 

Setup of your interactive ROOT environment 
ROOT will automatically load the RooFit libraries libRooFitCore and libRooFit as soon as you 
reference one of the RooFit classes on the command line. For convenience it is recommended to add  
 
 

using namespace RooFit ; 
 
 
to your ROOT logon script to make the command line helper functions that are available in the RooFit 
namespace available on your command line. This namespace command also triggers the auto-
loading of the RooFit libraries. All examples in this users guide assume the RooFit namespace has 
been imported.  

Setup of compiled applications using ROOT and RooFit 
To set up a standalone compiled application using ROOT and RooFit use the standard ROOT 
recommended practice, but add the RooFit, RooFitCore and Minuit libraries on the linking command 
 

 
export CFLAGS= `root-config –-cflags` 
export LDFLAGS=`root-config –-ldflags –glibs` -lRooFit –lRooFitCore -lMinuit 
 
g++ ${CFLAGS} -c MyApp.cxx 
g++ -o MyApp MyApp.o ${LDFLAGS} 
 

 

Availability of tutorial macros 
This manual is accompanied by a set of 70 tutorial macros. These macros are available in both 
source and binary distributions in $ROOTSYS/tutorial/roofit. Each macro is self-sustaining and 
can be run in both interpreted and compiled mode as all the required header files for compilation are 
included. A small set of macros requires an external input file which can be found in the same 
directory. The last section of each chapter of this Users Guide lists the macros that relate the content 
of the chapter. 
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2. Getting started 
This section will guide you through an exercise of building a simple model and fitting it to data. The 
aim is to familiarize you with several basic concepts and get you to a point where you can do 
something useful yourself quickly.  In subsequent sections we will explore several aspects of RooFit in 
more detail 

Building a model 
A key concept in RooFit is that models are built in object-oriented fashion. Each RooFit class has a 
one-to-one correspondences to a mathematical object: there is a class to express a variable, 
RooRealVar, a base class to express a function, RooAbsReal, a base class to express a probability 
density function, RooAbsPdf, etc. As even the simplest mathematical functions consists of multiple 
objects – i.e. the function itself and its variables – all RooFit models also consist of multiple objects. 
The following example illustrates this 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar mean(“mean”,”Mean of Gaussian”,0,-10,10) ; 
RooRealVar sigma(“sigma”,”Width of Gaussian”,3,-10,10) ; 
 
RooGaussian gauss(“gauss”,”gauss(x,mean,sigma)”,x,mean,sigma) ; 
 

Example 2 – Construct a Gaussian probability density function 
 
Each variable used in gauss is initialized with several properties: a name, a title, a range and 
optionally an initial value. Variables described by RooRealVar have more properties that are not 
visible in this example, for example an (a)symmetric error associated with the variable and a flag that 
specifies if the variable is constant or floating in a fit. In essence class RooRealVar collects all 
properties that are usually associated with a variable 
 
The last line of code creates a Gaussian probability density function (PDF), as implemented in 
RooGaussian. Class RooGaussian is an implementation of the abstract base class RooAbsPdf, which 
describes the common properties of all probability density functions. The PDF gauss has a name and 
a title, just like the variable objects, and is linked to the variables x, mean and sigma through the 
references passed in the constructor.  
 

 
Figure 1 – Gaussian PDF 

Visualizing a model 
The first thing we usually want to do with a model is to see it. RooFit takes slightly more formal 
approach to visualization than plain ROOT. First you have to define a ‘view’, essentially an empty plot 
frame with one of the RooRealVar variables along the x-axis. Then, in OO style, you ask your model 
plot itself on the frame. Finally you draw the view on a ROOT TCanvas: 
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RooPlot* xframe = x.frame() ; 
gauss.plotOn(frame) ; 
frame->Draw() 
 

 
The result of this example is shown in Figure 1. Note that in the creation of the view we do not have to 
specify a range, it is automatically taken from the range associated with the RooRealVar. It is possible 
to override this. Note also that when gauss draws itself on the frame, we don’t have to specify that we 
want to plot gauss as function of x, this information is retrieved from the frame.  
 
A frame can contain multiple objects (curves, histograms) to visualize. We can for example draw 
gauss twice with a different value of parameter sigma. 
 

 
RooPlot* xframe = x.frame() ; 
gauss.plotOn(frame) ; 
sigma = 2 ; 
gauss.plotOn(frame,LineColor(kRed)) ; 
frame->Draw() 

 
 
In this example we change the value of RooRealVar sigma after the first plotOn() command using 
the assignment operator. The color of the second curve is made red through additional 
LineColor(kRed) argument passed to plotOn()1. LineColor is an example of a ‘named argument’. 
Named arguments are used throughout RooFit and provide a convenient and readable way to modify 
the default behavior of methods. Named arguments are covered in more detail in later sections. The 
output of the second code fragment in shown in Figure 2. 
 
 

 
Figure 2 – Gaussian PDF with different widths 

 
 
The example also demonstrates that method plotOn() make a ‘frozen’ snapshot of the PDF: if the 
PDF changes shape after it has been drawn, as happens in the last code fragment, the already drawn 
curve will not change. Figure 2 also demonstrates that RooGaussian is always normalized to unity, 
regardless of the parameter values. 

                                                      
1 If you get a ROOT error message at this point because LineColor is not defined, you have 
forgotten to include ‘using namespace RooFit’ in your ROOT setup as was explained in Chapter 1. 
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Importing data 
Generally speaking, data comes in two flavors: unbinned data, represented in ROOT by class TTree 
and binned data, represented in ROOT by classes TH1,TH2 and TH3. RooFit can work with both. 
 

Binned data (histograms) 
 
In RooFit, binned data is represented by the RooDataHist class. You can import the contents of any 
ROOT histogram into a RooDataHist object 
 

 
TH1* hh = (TH1*) gDirectory->Get(“ahisto”) ; 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooDataHist data(“data”,”dataset with x”,x,hh) ; 
 

Example 3 – Importing data from a TTree and drawing it on a TCanvas 
 
When you import a ROOT histogram, the binning definition of the original histogram is imported as 
well.  The added value of a RooDataHist over a plain histogram is that it associates the contents of 
the histogram with one or more RooFit variable objects of type RooRealVar. In this way it always 
known what kind of data is stored in the histogram. 
 
A RooDataHist can be visualized in the same way as a function can be visualized: 
 

 
RooPlot* xframe = x.frame() ; 
data.plotOn(frame) ; 
frame->Draw() 

 
 
The result is shown in Figure 3. 
 

 
Figure 3 – Histogram visualized in RooFit 

 
If you look closely at Figure 3 you will see that the error bars for entries at low statistics are not 
symmetric: RooFit by default shows the 68% confidence interval for Poisson statistics2, which are 
generally asymmetric, especially at low statistics, and a more accurate reflection of the statistical 
uncertainty in each bin if the histogram contents arose from a Poisson process. You can choose to 
                                                      
2 To be more precise the intervals shown are ‘classic central ’ intervals as described in Table I of 
Cousins, Am. J. Phys. 63, 398 (1995) 
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have the usual √N error shown by adding DataError(RooAbsData::SumW2) to the 
data.plotOn() line. This option only affects the visualization of the dataset. 

Unbinned data (trees) 
 
Unbinned data can be imported in RooFit much along the same lines and is stored in class 
RooDataSet 
 

 
TTree* tree = (TTree*) gDirectory->Get(“atree”) ; 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooDataSet data(“data”,”dataset with x”,tree,x) ; 
   
 

 
In this example tree is assumed to have a branch named “x” as the RooDataSet constructor will 
import data from the tree branch that has the same name as the RooRealVar that is passed as 
argument. A RooDataSet can import data from branches of type Double_t, Float_t, Int_t, 
UInt_t and Bool_t for a RooRealVar observable. If the branch is not of type Double_t, the data 
will converted to Double_t as that is the internal representation of a RooRealVar. It is not possible 
to import data from array branches such as Double_t[10]. It is possible to imported integer-type 
data as discrete valued observables in RooFit, this is explained in more detail in Chapter 8. 
 
Plotting unbinned data is similar to plotting binned data with the exception that you can now show it in 
any binning you like. 
 

 
RooPlot* xframe = x.frame() ; 
data.plotOn(frame,Binning(25)) ; 
frame->Draw() 

 
 
In this example we have overridden the default setting of 100 bins using the Binning() named 
argument. 

Working with data 
In general working with binned and unbinned data is very similar in RooFit as both class RooDataSet 
(for unbinned data) and class RooDataHist (for binned data) inherit from a common base class, 
RooAbsData, which defines the interface for a generic abstract data sample. With few exceptions, all 
RooFit methods take abstract datasets as input arguments, making it easy to use binned and 
unbinned data interchangeably. 
 
The examples in this section have always dealt with one-dimensional datasets. Both RooDataSet and 
RooDataHist can however handle data with an arbitrary number of dimensions. In the next sections 
we will revisit datasets and explain how to work with multi-dimensional data. 
 

Fitting a model to data 
 
Fitting a model to data involves the construction of a test statistic from the model and the data – the 
most common choices are χ2 and –log(likelihood) – and minimizing that test statistics with respect to 
all parameters that are not considered fixed3.  The default fit method in RooFit is the unbinned 
maximum likelihood fit for  unbinned data and the binned maximum likelihood fit for binned data.  
 
 

                                                      
3 This section assumes you are familiar with the basics of parameter estimation using likelihoods. If 
this is not the case, a short introduction is given in Appendix A. 
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In either case, the test statistic is calculated by RooFit and the minimization of the test statistic is 
performed by MINUIT through its TMinuit implementation in ROOT to perform the minimization and 
error analysis.  
 
An easy to use high-level interface to the entire fitting process is provided by the fitTo() method of 
class RooAbsPdf: 
 

 
gauss.fitTo(data) ; 
 

 
This command builds a –log(L) function from the gauss function and the given dataset, passes it to 
MINUIT, which minimizes it and estimate the errors on the parameters of gauss.  The output of the 
fitTo() method produces the familiar MINUIT output on the screen: 
 

 
 ********** 
 **   13 **MIGRAD        1000           1 
 ********** 
 FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. 
 START MIGRAD MINIMIZATION.  STRATEGY  1.  CONVERGENCE WHEN EDM .LT. 1.00e-03 
 FCN=25139.4 FROM MIGRAD    STATUS=INITIATE       10 CALLS          11 TOTAL 
                     EDM= unknown      STRATEGY= 1      NO ERROR MATRIX 
  EXT PARAMETER               CURRENT GUESS       STEP         FIRST 
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  mean        -1.00000e+00   1.00000e+00   1.00000e+00  -6.53357e+01 
   2  sigma        3.00000e+00   1.00000e+00   1.00000e+00  -3.60009e+01 
                               ERR DEF= 0.5 
 MIGRAD MINIMIZATION HAS CONVERGED. 
 MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. 
 COVARIANCE MATRIX CALCULATED SUCCESSFULLY 
 FCN=25137.2 FROM MIGRAD    STATUS=CONVERGED      33 CALLS          34 TOTAL 
                     EDM=8.3048e-07    STRATEGY= 1      ERROR MATRIX ACCURATE 
  EXT PARAMETER                                   STEP         FIRST 
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  mean        -9.40910e-01   3.03997e-02   3.32893e-03  -2.95416e-02 
   2  sigma        3.01575e+00   2.22446e-02   2.43807e-03   5.98751e-03 
                               ERR DEF= 0.5 
 EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5 
  9.241e-04 -1.762e-05 
 -1.762e-05  4.948e-04 
 PARAMETER  CORRELATION COEFFICIENTS 
       NO.  GLOBAL      1      2 
        1  0.02606   1.000 -0.026 
        2  0.02606  -0.026  1.000 
 ********** 
 **   18 **HESSE        1000 
 ********** 
 COVARIANCE MATRIX CALCULATED SUCCESSFULLY 
 FCN=25137.2 FROM HESSE     STATUS=OK             10 CALLS          44 TOTAL 
                     EDM=8.30707e-07    STRATEGY= 1      ERROR MATRIX ACCURATE 
  EXT PARAMETER                                INTERNAL      INTERNAL 
  NO.   NAME      VALUE            ERROR       STEP SIZE       VALUE 
   1  mean        -9.40910e-01   3.04002e-02   6.65786e-04  -9.40910e-01 
   2  sigma        3.01575e+00   2.22449e-02   9.75228e-05   3.01575e+00 
                               ERR DEF= 0.5 
 EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5 
  9.242e-04 -1.807e-05 
 -1.807e-05  4.948e-04 
 PARAMETER  CORRELATION COEFFICIENTS 
       NO.  GLOBAL      1      2 
        1  0.02672   1.000 -0.027 
        2  0.02672  -0.027  1.000 
 

 
The result of the fit – the new parameter values and their errors – is propagated back to the 
RooRealVar objects that represent the parameters of gauss, as is demonstrated in the code fragment 
below: 
 

 
mean.Print() ; 
RooRealVar::mean: -0.940910 +/- 0.030400 
 
sigma.Print() ; 
RooRealVar::sigma:  3.0158 +/- 0.022245 
 

 
A subsequent drawing of gauss will therefore reflect the new shape of the function after the fit. We 
now draw both the data and the fitted function on a frame, 
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RooPlot* xframe = x.frame() ; 
data.plotOn(xframe) ; 
model.plotOn(xframe) ; 
xframe->Draw() 
 

 
The result of this code fragment is shown in Figure 4. 
 

 
Figure 4 – Output of Example 3. 

 
Note that the normalization of the PDF, which has an intrinsic normalization to unity by definition, is 
automatically adjusted to the number of events in the plot. 
 
A powerful feature of RooFit and one of the main reasons for its inception is that the fit invocation of 
Example 3 works for both binned and unbinned data. In the latter case an unbinned maximum 
likelihood fit is performed. Unbinned –log(L) fits are statistically more powerful than binned fits (i.e. 
you will get smaller errors on averages) and avoid any arbitrariness that is introduced by a choice of 
binning definition. These advantages are most visible when fitting small datasets and fitting 
multidimensional datasets. 
 
The fitting interface is highly customizable. For example, if you want fix a parameter in the fit, you just 
specify that as a property of the RooRealVar parameter object so that this code fragment 
 

 
mean.setConstant(kTRUE) ; 
gauss.fitTo(data) ; 
 

 
repeats the fit with parameter mean fixed to its present value. Similarly, you can choose to bound a 
floating parameter to range of allowed values: 
 

 
sigma.setRange(0.1,3) ; 
gauss.fitTo(data) ; 
 

 
All such fit configuration information is automatically passed to MINUIT. Higher level aspects of 
MINUIT can be controlled through optional named arguments passed to the fitTo() command. This 
example enables the MINOS method to calculate asymmetric errors and changes the MINUIT 
verbosity level to its lowest possible value 
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gauss.fitTo(data, Minos(kTRUE), PrintLevel(-1)) ; 
 

Fitting in a range 
The way the likelihood function is constructed can be influenced through the same interface. To 
restrict the likelihood (and thus the fit) to the subset of events that fit in the specified range, do 
 
 

gauss.fitTo(data, Range(-5,5)) ; 
 
 
A subsequent plot of this fit will then by default only show a curve in the fitted range (Figure 5). 
 

 
Figure 5 – Fit to a subset of the data 

 
Details on the construction of the likelihood in fits, advanced use options and the construct of χ2 fits 
are covered in more details in Chapter 12.  A reference guide to all available arguments to the 
fitTo() commands is provided in both Appendix E as well as the online code documentation for 
method RooAbsPdf::fitTo(). 
 

Generating data from a model 
All RooFit p.d.f.s have a universal interface to generate events from its distribution. A variety of 
techniques to sample events from a distribution is implemented and described in Appendix A. The 
internal logic of RooAbsPdf will automatically select the most efficient technique for each use case.  
 
In it simplest form you can generate a RooDataSet from a p.d.f as follows: 
 

 
RooDataSet* data = gauss.generate(x,10000) ; 
 

 
This example create a RooDataSet with 10000 events with observable x sampled from p.d.f gauss. 
 

Parameters and observables 
In the simple example of this chapter we have always worked with a Gaussian p.d.f. and have made 
the explicit assumption that variable x is the observable and variables mean and sigma are our 
parameters. This distinction is important, because it directly relates to the function expression of the 
object: a probability density function is unit normalized with respect to its observables, but not with 
respect to its parameters. 
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Nevertheless RooFit p.d.f classes themselves have no intrinsic static notion of this distinction between 
parameters and observables. This may seem confusing at first, but provides essential flexibility that 
we will need later when building composite objects.  
 
The distinction between parameters and observables is always made, though, but it arises 
dynamically from each use context. 
 
The following example shows how gauss is used as a p.d.f for observable mean: 
 
 

RooDataSet* data = gauss.generate(mean,1000) ; 
 
RooPlot* mframe = mean.frame() ; 
data->plotOn(mframe) ; 
gauss.plotOn(mframe) ; 

 
  
Given that the mathematical expression for a Gaussian is symmetric under the interchange of x and 
m, this unsurprisingly yields a Gaussian distribution in (now) observable m in terms of parameters x 
and sigma. Along the same lines it is also possible to use gauss as a p.d.f in sigma with parameters 
x and mean. 
 
In many cases, it is not necessary to explicitly say which variables are observable, because its 
definition arises implicitly from the use context. Specifically, whenever a use context involves both a 
p.d.f and a dataset, the implicit and automatic definition observables are those variables that occur in 
both the dataset and p.d.f definition. 
 
This automatic definition works for example in fitting, which involves an explicit dataset, but also in 
plotting: the RooPlot frame variable is always considered the observable4. In all other contexts 
where the distinction is relevant, the definition of what variables are considered observables has to be 
manually supplied. This is why when you call generate() you have to specify what you consider to 
be the observable in each call. 
 

 
RooDataSet* data = gauss.generate(x,10000) ; 
 

 
However, in all three possible use cases of gauss, it is a properly normalized probability density 
function with respect to the (implicitly declared) observable. This highlights an important consequence 
of the ‘dynamic observable’ concept of RooFit: RooAbsPdf objects do not have a unique return value, 
it depends on the local definition of observables. This functionality is achieved through an explicit a 
posteriori normalization step in RooAbsPdf::getVal() that is different for each definition of 
observables. 
 

 
Double_t  gauss_raw = gauss.getVal()      ; // raw unnormalized value 
Double_t gauss_pdfX = gauss.getVal(x)     ; // value when used as p.d.f in x 
Double_t gauss_pdfM = gauss.getVal(mean)  ; // value when used as p.d.f in mean 
Double_t gauss_pdfS = gauss.getVal(sigma) ; // value when used as p.d.f in sigma 
 

 

Calculating integrals over models 
Integrals over p.d.f.s and functions are represented as separate objects in RooFit. Thus, rather than 
defining integration as an action, an integral is defined by object inheriting from RooAbsReal, of 
                                                      
4 This automatic concept also extends to multi-dimensional datasets and p.d.f.s that are projected on 
1-dimensional plot frame. This explained in more detail in Chapter 7. 
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which the value is calculated through an integration action. Such objects are constructed through the 
createIntegral() method or RooAbsReal 
 

 
RooAbsReal* intGaussX = gauss.createIntegral(x) ; 
                                             

 
Any RooAbsReal function or RooAbsPdf pdf can be integrated this way. Note that for p.d.f.s the 
above configuration integrates the raw (unnormalized) value of gauss. In fact the normalized return 
value of gauss.getVal(x) is precisely gauss.getVal()/intGaussX->getVal().  
 
Most integrals are represented by an object of class RooRealIntegral. Upon construction this 
class determines the most efficient way an integration request can be performed. If the integrated 
functions supports analytical integration over the requested observable(s) this analytical 
implementation will be used5, otherwise a numeric technique is selected. The actual integration is not 
performed at construction time, but is done on demand when RooRealIntegral::getVal() is 
called. Once calculated, the integral value is cached and remains valid until either one of the 
integrand parameters changes value, or if (one of ) the integrand observables changes its 
normalization range. You can inspect the chosen strategy for integration by printing the integral object 
 

 
intGauss->Print("v") 
... 
--- RooRealIntegral --- 
  Integrates g[ x=x mean=m sigma=s ] 
  operating mode is Analytic 
  Summed discrete args are () 
  Numerically integrated args are () 
  Analytically integrated args using mode 1 are (x) 
  Arguments included in Jacobian are () 
  Factorized arguments are () 
  Function normalization set <none> 
 

 

Integrals over normalized p.d.f.s. 
It is also possible to construct integrals over normalized p.d.f.s: 
 

 
RooAbsReal* intGaussX = gauss.createIntegral(x,NormSet(x)) ; 
                                             

 
This example is not particularly useful, as it will always return 1, but with the same interface one can 
also integrate over a predefined sub-range of the observable 
 

 
x.setRange(“signal”,-2,2) ; 
RooAbsReal* intGaussX = gauss.createIntegral(x,NormSet(x),Range(“signal”)) ; 
                                             

 
to extract the fraction of a model in the “signal” range. The concept of named ranges like “signal” will 
be elaborated in Chapters 3 and 7. The return value of normalized p.d.f.s integrals is naturally in the 
range [0,1]. 
 

                                                      
5 There are situations in which the internal analytical of an p.d.f. cannot be used, for example when 
the integrated observable is transformed through a function in the input declaration of the p.d.f which 
would give rise to a Jacobian term that is not included in the internal integral calculation. Such 
situations are automatically recognized and handled through numeric integration.  



 16 

Cumulative distribution functions 
A special form of an integral a p.d.f. is the cumulative distribution function, which is defined as 
 

 

 
and is constructed through the specialized method createCdf() from any p.d.f  
 

 
RooAbsReal* cdf = pdf->createCdf(x) ; 
 

 
An example of a c.d.f. created from a Gaussian p.d.f. is shown in Figure 6, The advantage of 
createCdf() over createIntegral() for integrals of this form is that the former has a more 
efficient handling of p.d.f.s that require numerical integration: createIntegral() will recalculate 
the entire numeric integral from scratch once one or more parameters have changed, whereas 
createCdf() caches the results of the sampling stage of numeric integration and only recalculates 
the summation part. Additional details on integration and cumulative distribution function are given in 
Appendix C. 

 
Figure 6 – Cumulative distribution function constructed from a Gaussian p.d.f. 

 

Tutorial macros 
The following $ROOTSYS/tutorial/roofit macros illustrate functionality explained in this chapter 
 

• rf101_basics.C – Basic plotting, fitting and event generation 
• rf102_dataimport.C – Importing of ROOT TH1, TTree data in RooFit 
• rf110_normintegration.C – Normalization and integration of p.d.f.s in 1 dimension 
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3. Signal and Background – Composite models 
Introduction 
Data models are often used to describe samples that include multiple event hypotheses, e.g. signal 
and (one or more types of) background. To describe sample of such nature, a composite model can 
be constructed. For event hypotheses, ‘signal’ and ‘background’, a composite model M(x) is 
constructed from a model S(x) describing signal and B(x) describing background as 
  

ሻݔሺܯ ൌ ݂ܵሺݔሻ  ሺ1 െ ݂ሻܤሺݔሻ 
 
In this formula, f is the fraction of events in the sample that are signal-like. The generic expression for 
a sum of N  hypotheses is 
 

ሻݔሺܯ ൌ  ଵ݂ܨଵሺݔሻ
ேିଵ

ୀଵ

 ൭1 െ ݂

ேିଵ

ୀଵ

൱ܨேሺݔሻ 

 
A elegant property of adding p.d.f.s in this way is that M(x) does not need to be explicitly normalized 
to one: if both S(x) and B(x) are normalized to one then M(x) is – by construction – also normalized. 
RooFit provide a special ‘addition operator’ p.d.f. in class RooAddPdf to simplify building and using 
such composite p.d.f.s.   

The extended likelihood formalism 
As a final result of a measurement is often quoted as a number of events, rather than a fraction, it is 
often desirable to express a data model directly in terms of the number of signal and background 
events, rather than the fraction of signal events (and the total number of events), i.e. 
 

ሻݔாሺܯ ൌ ௌܰܵሺݔሻ  ܰܤሺݔሻ 
 
In this expression ME(x) is not normalized to 1 but to NS+NB = N, the number of events in the data 
sample and is therefore not a proper probability density function, but rather a shorthand notation for 
two expressions: the shape of the distribution and the expected number of events 
 

ሻݔሺܯ ൌ ൬ ௌܰ

ௌܰ  ேܰ
൰ ܵሺݔሻ  ൬ ܰ

ௌܰ  ܰ
൰  ሻݔሺܤ

 
ܰ௫௧ௗ ൌ ௌܰ  ܰ 

 
that can be jointly constrained in the extended likelihood formalism6:  
 

െ log ሻሺܮ ൌ െ  log ܯሺݔ
ௗ௧

ሻ െ log  ሺ݊ݏݏ݅ܲ ܰ௫௧ௗ, ܰ௦௩ௗሻ 

 
In RooFit both regular sums (Ncoef=Npdf-1) and extended likelihood sum (Ncoef=Npdf) are represented by 
the operator pdf class RooAddPdf, that will automatically construct the extended likelihood term in 
the latter case.  

 

Building composite models with fractions 
We start with a description of plain (non-extended) composite mode. Here is a simple example of a 
composite PDF constructed with RooAddPdf using fractional coefficients. 

                                                      
6 See Appendix A for details on the extended likelihood formalism 
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RooRealVar x(“x”,”x”,-10,10) ; 
 
RooRealVar mean(“mean”,”mean”,0,-10,10) ; 
RooRealVar sigma(“sigma,”sigma”,2,0.,10.) ; 
RooGaussian sig(“sig”,”signal p.d.f.”,x,mean,sigma) ; 
 
RooRealVar c0(“c0”,”coefficient #0”, 1.0,-1.,1.) ; 
RooRealVar c1(“c1”,”coefficient #1”, 0.1,-1.,1.) ; 
RooRealVar c2(“c2”,”coefficient #2”,-0.1,-1.,1.) ; 
RooChebychev bkg(“bkg”,”background p.d.f.”,x,RooArgList(c0,c1,c2)) ; 
 
RooRealVar fsig(“fsig”,”signal fraction”,0.5,0.,1.) ; 
 
// model(x) = fsig*sig(x) + (1-fsig)*bkg(x) 
RooAddPdf model(“model”,”model”,RooArgList(sig,bkg),fsig) ;  
 

Example 4 – Adding two pdfs using a fraction coefficient 
 
In this example we first construct a Gaussian p.d.f sig and flat background p.d.f bkg and then add 
them together with a signal fraction fsig in model.  
 
Note the use the container class RooArgList to pass a list of objects as a single argument in a 
function. RooFit has two container classes: RooArgList and RooArgSet. Each can contain any 
number RooFit value objects, i.e. any object that derives from RooAbsArg such a RooRealVar, 
RooAbsPdf etc. The distinction is that a list is ordered, you can access the elements through a 
positional reference (2nd, 3rd,…), and can may contain multiple objects with the same name, while a 
set has no order but requires instead each member to have a unique name 
 
A  RooAddPdf instance can sum together any number of components, to add three p.d.f.s with two 
coefficients, one would write 
  

 
// model2(x) = fsig*sig(x) + fbkg1*bkg1(x) + (1-fsig-fbkg)*bkg2(x) 
RooAddPdf model2(“model2”,”model2”,RooArgList(sig,bkg1,bkg2), 
                                  RooArgList(fsig,fbkg1)) ; 
 

 
To construct a non-extended p.d.f. in which the coefficients are interpreted as fractions, the number of 
coefficients should always be one less than the number of p.d.f.s. 
 

Using RooAddPdf recursively 
Note that the input p.d.f.s of RooAddPdf do not need to be basic p.d.f.s, they can be composite p.d.f.s 
themselves. Take a look at this example that uses sig and bkg from Example 7 as input: 
 

 
// Construct a third pdf bkg_peak 
RooRealVar mean_bkg(“mean_bkg”,”mean”,0,-10,10) ; 
RooRealVar sigma_bkg(“sigma_bkg,”sigma”,2,0.,10.) ; 
RooGaussian bkg_peak(“bkg_peak”,”peaking bkg p.d.f.”,x,mean_bkg,sigma_bkg) ; 
 
// First add sig and peak together with fraction fpeak 
RooRealVar fpeak(“fpeak”,”peaking background fraction”,0.1,0.,1.) ; 
RooAddPdf sigpeak(“sigpeak”,”sig+peak”,RooArgList(bkg_peak,sig),fpeak) ; 
 
// Next add (sig+peak) to bkg with fraction fpeak 
RooRealVar fbkg(”fbkg”,”background fraction”,0.5,0.,1.) ; 
RooAddPdf model(“model”,”bkg+(sig+peak)”,RooArgList(bkg,sigpeak),fbkg) ; 
 

Example 5 – Adding three p.d.f.s through recursive addition of two terms 
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The final p.d.f model represents the following expression 
 

ሻݔሺܯ ൌ ݂ܤሺݔሻ  ൫1 െ ݂൯൛  ݂ܲሺݔሻ  ൫1 െ ݂൯ܵሺݔሻൟ 
 
It is also possible to construct such a recursive addition formulation with a single RooAddPdf by 
telling the constructor that the fraction coefficients should be interpreted as recursive fractions.  To 
construct the functional equivalent of the model object in the example above one can write 
 

 
RooAddPdf model(“model”,”bkg+(sig+peak)”,RooArgList(bkg,peak,bkg), 

                                     RooArgList(fbkg,fpeak),kTRUE) ; 
 

Example 6 – Adding three p.d.f.s recursively using the recursive mode of RooAddPdf 
 
In this constructor mode the interpretation of the fractions is as follows 
 

ሻݔሺܯ ൌ ሺࢌࡲ  ሺ1 െ ଵ݂ሻሺࢌࡲ  ሺ1 െ ଶ݂ሻሺࢌࡲ  ሺ1 െ ଷ݂ሻሺࢌࡲ  ሺ1 െ ସ݂ሻࡲሻሻሻ 
 

 

Plotting composite models  
The modular structure of a composite p.d.f. allows you to address the individual components. One can 
for example plot the individual components of a composite model on top of that model to visualize its 
structure. 
 

 
RooPlot* frame = x.frame() ; 
model.plotOn(frame) ; 
model.plotOn(frame, Components(bkg),LineStyle(kDashed)) ; 
frame->Draw() ; 
 

 
The output of this code fragment is show in Figure 7. The component plot is drawn with a dashed line 
style. A complete overview of plot style options, see Appendix C. You can identify the components by 
object reference, as is done above, or by name: 
 
 

model.plotOn(frame, Components(“bkg”),LineStyle(kDashed)) ; 
 
 
The latter is convenient when your plotting code has no access to the component objects, for example 
if your model is built in a separate function that only returns the top-level RooAddPdf object. 
 
If you want to draw the sum of multiple components you can do that in two ways as well: 
 
 

model.plotOn(frame, Components(RooArgSet(bkg1,bkg2)),LineStyle(kDashed)) ; 
 
model.plotOn(frame, Components(“bkg1,bkg2”),LineStyle(kDashed)) ; 

 
 
Note that in the latter form wildcards are allowed so that a well chosen component naming scheme 
allows you for example to do this: 
 
 

model.plotOn(frame, Components(“bkg*”),LineStyle(kDashed)) ; 
 
 
If required multiple wildcard expressions can be specified in a comma separated list. 
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Figure 7 – Drawing of composite model and its components 

 

Using composite models 

Fitting composite models  
Fitting composite models with fractional coefficients is no different from fitting any other model: 
 

 
model.fitTo(data) ; 
 

 
The parameters of the models are those of the component p.d.f.s plus the fraction parameters 
introduced by the addition operator class. 

Common pitfalls in fitting with multiple fractions 
Some care should be taking in the definition of the allowed ranges of the fraction parameters in 
models that involve straight (non-recursive) addition of more than two components.  
 
If two components are added with a single fraction, the natural range for that fraction is [0,1]. However 
if more than components are added, there are multiple fractions. While it is legitimate to keep the 
allowed ranges for each fraction at [0,1], it leaves the possibility to define configurations in which the 
sum of the coefficient exceeds one, e.g. when f1=f2=0.7. If that happens, the last coefficient, 
automatically calculated as ሺ1 െ ∑ ݂

ேିଵ
ୀଵ ሻ will become negative.  

 
If such configurations occur during the fitting process, a warning message will be printed by RooFit for 
each occurrence, but no action is taken as long as the return value of RooAddPdf is still positive for 
each point at which it is evaluated in the likelihood. If you would like to avoid such configurations, 
there are several options. One approach is to tighten the allowed ranges of all fractions using 
RooRealVar::setRange() such that they can never add up to more than one when summed. This 
approach requires some knowledge of the distribution you are fitting to avoid prohibiting the best fit 
configuration. Another approach is to use recursive addition, in which every permutation of fraction 
values in the ranges [0,1] results in a valid positive definite composite pdf. This approach changes the 
interpretation of the coefficients, but makes no assumptions on the shape of the distribution to be 
modeled. A third approach is to use an extended likelihood fit in which all coefficients are explicitly 
specified and there is no implicitly calculated remainder fraction that can become negative. 
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Generating data with composite models 
The interface to generate events from a composite model is identical to that of a basic model. 
 

 
// Generate 10000 events  
RooDataSet* x = model.generate(x,10000) ; 
 

 
Internally, RooFit will take advantage of the composite structure of the p.d.f. and delegate the 
generation of events to the component p.d.f.s methods, which is in general more efficient. 

Building extended composite models 
 
To construct a composite p.d.f , that can be used with extended likelihood fits from plain component 
p.d.f.s specify an equal number of components and coefficients. 
 

 
RooRealVar nsig(“nsig”,”signal fraction”,500,0.,10000.) ; 
RooRealVar nbkg(“nbkg”,”background fraction”,500,0.,10000.) ; 
 
RooAddPdf model(“model”,”model”,RooArgList(sig,bkg),RooArgList(nsig,nbkg)) ; 

 
 

Example 7 – Adding two pdfs using two event count coefficients 
 
The allowed ranges of the coefficient parameters in this example have been adjusted to be able to 
accommodate event counts rather than fractions. 
 
In practical terms, the difference between the model constructed by Example 7 and Example 4 is that 
in the second form the RooAbsPdf object model is capable of predicting the expected number of data 
events (i.e. nsig+nbkg) through its member function expectedEvents(), while model in the first form 
cannot. The second form divides each coefficient with the sum of all coefficients to arrive at the 
component fractions.   
 
It is also possible to construct a sum of two or more component p.d.f.s that are already extended 
p.d.f.s themselves, in which case no coefficients need to be provided to construct an extended sum 
p.d.f: 
 
 

RooAddPdf model(“model”,”model”,RooArgList(esig,ebkg)) ; 
 
 
Such inputs can be either previously constructed RooAddPdfs – using the extended mode option –  
or plain p.d.f.s that have been made extended using the RooExtendPdf utility p.d.f. 
 

 
RooRealVar nsig(“nsig”,”nsignal”,500,0,10000.) ; 
RooExtendPdf esig(“esig”,”esig”,sig,nsig) ; 
 
RooRealVar nbkg(“nbkg”,”nbackground”,500,0,10000.) ; 
RooExtendPdf ebkg(“ebkg”,”ebkg”,bkg,nbkg) ; 
 
RooAddPdf model(“model”,”model”,RooArgList(esig,ebkg)) ; 
 

 
The model constructed above is functionally completely equivalent to that of Example 7. It can be 
preferable to do this for logistical considerations as you associate the yield parameter with a shape 
p.d.f immediately rather than making the association at the point where the sum is constructed. 
However, class RooExtendPdf also offers extra functionality to interpret event counts in a different 
range: 
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Figure 8 – Illustration of a composite extended p.d.f. 

 
Suppose one is interested in the signal event yield in the range [4,6] of the model shown in Figure 8: 
you can calculate this from the total signal yield, multiplied by the fraction of the signal p.d.f shape that 
is in the range [4,6] 
 

 
x.setRange(“window”,4,6) ; 
RooAbsReal* fracSigRange  = sig.createIntegral(x,x,”window”) ; 
Double_t nsigWindow = nsig.getVal() * fracSigRange->getVal() ; 
 

 
but one would still have to manually propagate the error on both the signal yield and the fraction 
integral of the shape to the final result. Class RooExtendPdf offers the possibility to apply the 
transformation immediately inside the calculation of the expected number of events so that the 
likelihood, and thus the fit result, is directly expressed in terms of nsigWindow, and all errors are 
automatically propagated correctly. 
 

 
x.setRange(“window”,4,6”) ; 
RooRealVar nsigw(“nsigw”,”nsignal in window”,500,0,10000.) ; 
RooExtendPdf esig(“esig”,”esig”,sig,nsigw,”window”) ; 
 

 
The effect of this modification is that the expected number of events returned by esig becomes 
 

௦ܰ
௫௧ௗ ௦ܰ

௪ௗ௪

 ܵሺݔሻ݀ݔ
ସ

 

 
so that after minimizing the extended maximum likelihood nsigw equals the best estimate for the 
number of events in the signal window. Additional details on integration over ranges and normalization 
operations are covered in Appendix D. 
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Using extended composite models 

Generating events from extended models 
Some extra features apply to composite models built for the extended likelihood formalism. Since 
these model predict a number events one can omit the requested number of events to be generated 
 
 

RooDataSet* x = model.generate(x) ; 
 
 
In this case the number of events predicted by the p.d.f. is generated. You can optionally request to 
introduce a Poisson fluctuation in the number of generated events trough the Extended() argument: 
 
 

RooDataSet* x = model.generate(x, Extended(kTRUE)) ; 
 
 
This is useful if you generate many samples as part of a study where you look at pull distributions. For 
pull distributions of event count parameters to be correct, a Poisson fluctuation on the total number of 
events generated should be present. Fit studies and pull distributions are covered in more detail in 
Chapter 14. 
 

Fitting 
Composite extended p.d.f.s can only be successfully fit if the extended likelihood term is included in 
the minimization because they have one extra degree of freedom in their parameterization that is 
constrained by this extended term.  
If a p.d.f. is capable of calculating an extended term (i.e. any extended RooAddPdf object, the 
extended term is automatically included in the likelihood calculation. You can manually override this 
default behavior by adding the Extended() named argument in the fitTo() call.  
 

 
model.fitTo(data,Extended(kTRUE)) ; // optional 

 
 

Plotting 
The default procedure for visualization of extended likelihood models is the same as that of regular 
p.d.f.s: the event count used for normalization is that of the last dataset added to the plot frame. You 
have the option to override this behavior and use the expected event count of the pdf for its 
normalization as follows 
 

 
model.plotOn(frame,Normalization(1.0,RooAbsReal::RelativeExtended)) ; 
 

 
 
Note on the interpretation of fraction coefficients and ranges 
 
A closer look at the expression for composite p.d.f.s 
 

ሻݔሺܯ ൌ  ଵ݂ܨଵሺݔሻ
ேିଵ

ୀଵ

 ൭1 െ ݂

ேିଵ

ୀଵ

൱ܨேሺݔሻ 

 
shows that the fraction coefficients multiply normalized p.d.f.s. shapes, which has important 
consequences for the interpretation of these fraction coefficients: if the range of an observable is 
changed, the shape of the p.d.f. will change. This is illustrated in Figure 9(left,middle), which shows a 
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composite p.d.f consisting of a Gaussian plus a polynomial with a fraction of 0.5 in the range [-20,20] 
(left) and in the range [-5,5] (middle) that were created as follows: 
 

 
RooPlot* frame1 = x.frame() ; 
model.plotOn(frame1) ; 
model.plotOn(frame1,Components(“bkg”),LineStyle(kDashed)) ; 
 
x.setRange(-5,5) ; 
 
RooPlot* frame2 = x.frame() ; 
model.plotOn(frame2) ; 
model.plotOn(frame2,Components(“bkg”),LineStyle(kDashed)) ; 
 

 
 

 
Figure 9 – Composite p.d.f with fsig=0.5 in the range [-20,20] (left) and the range [-5,5] (middle) 

and the range[-5,5] with [-20,20] as fraction interpretation range (right). 
 
However, there are cases, in which one would like to use the same object as a p.d.f with the same 
shape, but just defined in a narrower range (Figure 9-right). This decoupling of the shape from the 
domain can be accomplished with the introduction of a reference range that controls the shape 
independently of the domain on which the p.d.f. is used 

Introducing an explicit reference range 
It is possible to fix the interpretation of RooAddPdf fraction coefficient to a frozen ‘reference’ range 
that is used to interpret the fraction, regardless of the actual range defined for the observables.  
 

 
x.setRange(“ref”,-20,20) ; 
model.fixCoefRange(“ref”) ;  
 
RooPlot* frame3 = x.frame() ; 
model.plotOn(frame3) ; 
model.plotOn(frame3,Components(“bkg”),LineStyle(kDashed)) ; 
 

 
In this mode of operation the shape is the same for each range of x in which model is used. The 
reference range can be both wider (as done above) and narrower than the original range. 
 

Using the Range() command in fitTo() on composite models 
A reference range is introduced by default when you use the Range() specification mentioned in the 
preceding chapter in the fitTo() command to restrict the data to be fitted: 
 

 
model.fitTo(data,Range(-5,5)) ; // fit only data in range[-5,5] 
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In this case, the interpretation range for the fractions of model will be set to a (temporary) named 
range “fit” that is created on the fly that is identical to the original range of the observables of the 
models. The fitted p.d.f shape thus resembles that Figure 9-right and not that of  Figure 9-middle. This 
default behavior applies only to composite models without a preexisting reference range: if the fitted 
model already has a fixed reference range set, that range will continue to be used. 
  
It is also possible specify the reference range to be used by all RooAddPdf components during the fit 
with an extra named argument SumCoefRange() 
 
 

// Declare “ref” range 
x.setRange(“ref”,-10,10) ; 
 
// Fit model to all data x[-20,20], interpret coefficients in range [-10,10] 
model.fitTo(data,SumCoefRange(“ref”)) ; 
 
// Fit model to data with x[-10,10], interpret coefficients same range 
model.fitTo(data,SumCoefRange(“ref”),Range(“ref”)) ; 
 
// Fit model to data with x[-10,10], interpret coefficients in range [-20,20] 
model.fitTo(data,Range(“ref”)) ; 
 

 

Navigation tools for dealing with composite objects 
One of the added complications of using composite model versus using basic p.d.f.s is that you no 
longer know what the variables of your model are. RooFit provides several tools for dealing with 
composite objects when you only have direct access to the top-level node of the expression tree, i.e. 
the model object in the preceding examples. 
 

What are the variables of my model? 
Given any composite RooFit value object, the getVariables() method returns you a RooArgSet with 
all parameters of your model: 
 

 
RooArgSet* params = model->getVariables() ; 
params->Print(“v”) ; 

 
 
This code fragment will output 
 

 
RooArgSet::parameters: 
  1) RooRealVar::c0: "coefficient #0" 
  2) RooRealVar::c1: "coefficient #1" 
  3) RooRealVar::c2: "coefficient #2" 
  4) RooRealVar::mean: "mean" 
  5) RooRealVar::nbkg: "background fraction" 
  6) RooRealVar::nsig: "signal fraction" 
  7) RooRealVar::sigma: "sigma" 
  8) RooRealVar::x: "x" 
 

 
If you know the name of a variable, you can retrieve a pointer to the object through the find() 
method of RooArgSet: 
 

 
RooRealVar* c0 = (RooRealVar*) params->find(“c0”) ; 
c0->setVal(5.3) ; 
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If no object is found in the set with the given name, find() returns a null pointer. 
 
Although sets can contain any RooFit value type (any class derived from RooAbsArg) one deals in 
practice usually with sets of all RooRealVars. Therefore class RooArgSet is equipped with some 
special member functions to simplify operations on such sets. The above example can be shortened 
to 
 

 
params->setRealValue(“c0”,5.3) ; 
 

 
Similarly, there also exists a member function getRealValue(). 
 

What are the parameters and observable of my model? 
The concept of what variables are considered parameters versus observables is dynamic and 
depends on the use context, as explained in chapter 2. However, the following utility functions can be 
used to retrieve the set of parameters or observables from a given definition of what are observables 
 

 
// Given a p.d.f model(x,m,s) and a dataset D(x,y) 
 
// Using (RooArgSet of) variables as given observable definition 
RooArgSet* params = model.getParameters(x) ; // Returns (m,s) 
RooArgSet* obs = model.getObservables(x) ; // Returns x 
 
// Using RooAbsData as definition of observables 
RooArgSet* params = model.getParameters(D) ; // Returns (m,s) 
RooArgSet* obs = model.getObservables(D)   ;    // Return x 

 

What is the structure of my composite model? 
In addition to manipulation of the parameters one may also wonder what the structure of a given 
model is. For an easy visual inspection of the tree structure use the tree printing mode  
 

 
model.Print(“t”) ; 
 

 
The output will look like this: 
 

 
0x9a76d58 RooAddPdf::model (model)  [Auto] 
  0x9a6e698 RooGaussian::sig (signal p.d.f.)  [Auto] 
    0x9a190a8 RooRealVar::x (x) 
    0x9a20ca0 RooRealVar::mean (mean) 
    0x9a3ce10 RooRealVar::sigma (sigma) 
  0x9a713c8 RooRealVar::nsig (signal fraction) 
  0x9a26cb0 RooChebychev::bkg (background p.d.f.)  [Auto] 
    0x9a190a8 RooRealVar::x (x) 
    0x9a1c538 RooRealVar::c0 (coefficient #0) 
    0x9a774d8 RooRealVar::c1 (coefficient #1) 
    0x9a3b670 RooRealVar::c2 (coefficient #2) 
  0x9a66c00 RooRealVar::nbkg (background fraction) 
 

 
For each lists object you will see the pointer to the object, following by the class name and object 
name and finally the object title in parentheses.  
 
A composite object tree is traversed top-down using a depth-first algorithm. With each node traversal 
the indentation of the printout is increased. This traversal method implies that the same object may 
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appear more than once in this printout if it is referenced in more than one place. See e.g. the multiple 
reference of observable x in the example above.   
 
The set of components of a p.d.f can also be accessed through the utility method 
getComponents(), which will return all the ‘branch’ nodes of its expression tree and is the 
complement of  getVariables(), which returns the ‘leaf’ nodes. The example below illustrates the 
use of getComponents() to only print out the variables of model component “sig”: 
 

 
RooArgSet* comps = model.getComponents() ; 
RooAbsArg* sig = comps->find(“sig”) ; 
RooArgSet* sigVars = sig->getVariables() ; 
sigVars->Print() ; 
 

  

Graphic representation of the structure of a composite model 
A graphic representation of a models structure can be constructed with aid of the GraphViz suite of 
graph visualization tools7. You can write a file with a GraphViz representation of a tree structure of 
any composite object using the method RooAbsArg::graphVizTree(): 
 

 
model.graphVizTree("model.dot") ; 
 

 
Using the GraphViz tools the structure can be visualized using a variety of algorithms. For example 
 
 

unix> dot -Tgif -o model.gif model.dot     # Directed graph 
unix> fdp –Tgif –o model_fdp.gif model.dot # Spring balanced model 

 
 
Figure 10 and Figure 11 show the output of the above commands 
 

 
 

Figure 10 – Model structure as drawn by the GraphViz ‘dot’ utility 
 

                                                      
7 Not bundled with ROOT, be freely available from www.graphviz.org. 
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Figure 11 – Model structure as drawn by the GraphViz ‘fdp’ utility 
 

Tutorial macros 
The following $ROOTSYS/tutorial/roofit macros illustrate functionality explained in this chapter 
 

• rf201_composite.C – Basic use of RooAddPdf to construct composite p.d.f.s 
• rf202_extendedmlfit.C – Constructed extended p.d.f.s using RooAddPdf 
• rf203_ranges.C – Use of ranges in composite p.d.f.s.  
• rf204_extrangefit.C – Using non-standard ranges in RooExtendPdf 
• rf205_compplot.C – Plotting options for composite p.d.f.s 
• rf206_treevistools.C – Tools for visualization of composite objects 
• rf207_comptools.C – General tools for dealing with composite objects 
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4. Choosing,  adjusting and creating basic shapes  
We will now have a closer look at what basic shapes are provided with RooFit, how you can tailor 
them to your specific problem and how you can write a new p.d.f.s in case none of the stock p.d.f.s. 
have the shape you need. 

What p.d.f.s are provided? 
RooFit provides a library of about 20 probability density functions that can be used as building block 
for your model. These functions include basic functions, non-parametric functions, physics-inspired 
functions and specialized decay functions for B physics. A more detailed description of each of this 
p.d.f.s is provided in p.d.f. gallery in Appendix B 
 

Basic functions 
The following basic shapes are provided as p.d.f.s 
 

• Gaussian, class RooGaussian. The normal distribution shape 
 

• A bifurcated Gaussian, class RooBifurGauss. A variation on the Gaussian where the width 
of the Gaussian on the low and high side of the mean can be set independently 
 

• Exponential , class RooExponential. Standard exponential decay distribution 
 

• Polynomial, class RooPolynomial. Standard polynomial shapes with coefficients for each 
power of xn. 
 

• Chebychev polynomial, class RooChebychev. An implementation of Chebychev polynomials 
of the first kind.  
 

• Poisson, class RooPoisson. The standard Poisson distribution. 
 
Note that each functional form has one parameter less than usual form, because the degree of 
freedom that controls the ‘vertical’ scale is eliminated by the constraint that the integral of the p.d.f. 
must always exactly 1.  
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The use of Chebychev polynomials over regular polynomials is recommended because of their superior stability in fits. 
Chebychev polynomials and regular polynomials can describe the same shapes, but a clever reorganization of power 
terms in Chebychev polynomials results in much lower correlations between the coefficients ai in a fit, and thus to a 
more stable fit behavior. For a definition of the functions Ti and some background reading, look e.g. at 
http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html 

 

Non-parametric functions  
 
RooFit offers two classes that can describe the shape of an external data distribution without explicit 
parameterization 
 

• Histogram, class RooHisPdf.  A p.d.f. that represents the shape of an external 
RooDataHist histogram, with optional interpolation to construct a smooth function 
 

• Kernel estimation, class RooKeysPdf. A p.d.f. that represent the shape of an external 
unbinned dataset as a superposition of Gaussians with equal surface, but with varying width, 
depending on the local event density. 
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Physics inspired functions 
In addition to the basic shapes RooFit also implements a series of shapes that are commonly used to 
model physical ‘signal’ distributions.  
 

• Landau, class RooLandau. This function parameterizes energy loss in material and has no 
analytical form. RooFit uses the parameterized implementation in TMath::Landau.  

 
• Breit-Wigner, class RooBreitWigner. The non-relativistic Breit-Wigner shape models 

resonance shapes and its cousin the Voigtian (class RooVoigtian)– a Breit-Wigner 
convolved with a Gaussian --- are commonly used to describe the shape of a resonance in 
the present of finite detector resolution. 

 
• Crystal ball, class RooCBShape. The Crystal ball function is a Gaussian with a tail on the low 

side that is traditionally used to describe the effect of radiative energy loss in an invariant 
mass.  

 
• Novosibirsk, class RooNovosibirsk. A modified Gaussian with an extra tail parameter that 

skews the Gaussian into an asymmetric shape with a long tail on one side and a short tail on 
the other.  
 

• Argus, class RooArgusBG. The Argus function is an empirical formula to model the phase 
space of multi-body decays near threshold and is frequently used in B physics.  

 
• D*±-D0 phase space, class RooDstD0BG. An empirical function with one parameter that can 

model the background phase space in the D*±-D0 invariant mass difference distribution.  
 

Specialized functions for B physics 
RooFit was originally development for BaBar, the B-factory experiment at SLAC, therefore it also 
provides a series of specialized p.d.f.s. describing the decay of B0 mesons including their physics 
effect.  
 

• Decay distribution, class RooDecay. Single or double-sided exponential decay distribution. 
 

• Decay distribution with mixing, class RooBMixDecay Single or double-sided exponential 
decay distribution with effect of B0-B0bar mixing 
 

• Decay distribution with SM CP violation, class RooBCPEffDecay. Single or double-sided 
exponential decay distribution with effect Standard Model CP violation 
 

• Decay distribution with generic CP violation, class RooBCPGenDecay. Single or double-sided 
exponential decay distribution with generic parameterization of CP violation effects 
 

• Decay distribution with CP violation into non-CP eigenstates, class RooNonCPEigenDecay. 
Single or double-sided exponential decay distribution of  decays into non-CP eigenstates with 
generic parameterization of CP violation effects 
 

• Generic decay distribution, with mixing, CP, CPT violation, class RooBDecay. Most generic 
description of B decay with optional effects of mixing, CP violation and CPT violation. 

 
 

Reparameterizing existing basic p.d.f.s 
In Chapter 2 it was explained that RooAbsPdf classes have no intrinsic notion of variables being 
parameters or observables. In fact, RooFit functions and p.d.f.s. even have no hard-wired assumption 
that the parameters of a function are variables (i.e. a RooRealVar), so you can modify the 
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parameterization of any existing p.d.f. by substituting a function for a parameter. The following 
example illustrates this: 
 

 
// Observable 
RooRealVar x(“x”,”x”,-10,10) ; 
 
// Construct sig_left(x,mean,sigma) 
RooRealVar mean(“mean”,”mean”,0,-10,10) ; 
RooRealVar sigma(“sigma_core”,”sigma (core)”,1,0.,10.) ; 
RooGaussian sig_left(“sig_left”,”signal p.d.f.”,x,mean,sigma) ; 
 
// Construct function mean_shifted(mean,shift) 
RooRealVar shift(“shift”,”shift”,1.0) ; 
RooFormulaVar mean_shifted(“mean_shifte”,”mean+shift”,RooArgSet(mean,shift)); 
    
// Construct sig_right(x,mean_shifted(mean,shift),sigma) 
RooGaussian sig_right(“sig_right”,”signal p.d.f.”,x,mean_shifted,sigma) ; 
 
// Construct sig=sig_left+sig_right 
RooRealVar frac_left(“frac_left”,”fraction (left)”,0.7,0.,1.) ; 
RooAddPdf sig(“sig”,”signal”,RooArgList(sig_left,sig_right),frac_left) ; 
 

 
 
The p.d.f. sig is a sum of two Gaussians in which the position of one Gaussian is shifted by shift 
with respect to the other one.  The mean of the second Gaussian is not specified through a 
RooRealVar parameter however, but through a RooFormulaVar function objects, which relates the 
position of the second Gaussian to that of the first Gaussian. 
 
 

 Figure 12 – left: variation of mean variable, right: variation of shift variable 

 

Interpreted generic functions – RooFormulaVar 
The function that calculates the position of the rightmost Gaussian is an object of type 
RooFormulaVar, which is a real-valued function that evaluates itself by interpreting the formula 
expression mean+shift using ROOTs TFormula engine.  
 
While the functional form of the two-Gaussian p.d.f. sig is no different from one constructed of two 
ordinary Gaussian, each with their own mean, the ability to reparametrize the model like this is that 
one can now for example fit with a floating mean while keeping the distance between the Gaussians 
fixed.  Figure 12 shows the sig p.d.f. of the above example for mean=-3, mean=3 and 
shift=3,shift=6 in red and blue respectively. 
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Class RooFormulaVar can handle any C++ expression that ROOT class TFormula can. This includes 
most math operators (+,-,/,*,…), nested parentheses and some basic math and trigonometry functions 
like sin, cos, log, abs etc…Consult the ROOT TFormula documentation for a complete overview of 
the functionality. The names of the variables in the formula expression are those of the variables 
given in the RooArgSet as 3rd parameter in the constructor. Alternatively, you can reference the 
variable through positional index if you pass the variables in a RooArgList: 
 

 
RooFormulaVar mean_shifted(“mean_shifte”,”@0+@1”,RooArgList(mean,shift)); 

 
 
This form is usually easier if you follow a ‘factory-style’ approach in your own code where you don’t 
know (or don’t care to know) the names of the variables you intend to add in code that declares the 
RooFormulaVar. 
 
Class RooFormulaVar is explicitly intended for trivial transformations like the one shown above. If you 
need a more complex transformation you should write a compiled class. The final section of this 
Chapter cover the use of RooClassFactory to simplify the writing of classes that can be compiled. 
 

Compiled generic functions – Addition, multiplication, polynomials  
For simple transformation, the utility classes RooPolyVar, RooAddition and RooProduct are 
available, that implement a polynomial function, a sum of N components and a product of N 
components respectively.  
 

Binding TFx, external C++ functions as RooFit  functions 
 
If you have an existing C(++) function from either ROOT or from a private library that is linked with 
your ROOT session or standalone application, you can trivially bind such a function as a RooFit 
function or p.d.f. object. For example, to bind the ROOT provided function double 
TMath::Erf(Double_t) as a RooFit function object you do 
 
 

RooRealVar x(“x”,”x”,-10,10) ; 
RooAbsReal* erfFunc = bindFunction(TMath::Erf,x) ; 
 
RooPlot* frame = x.frame() ; 
erfFunc->plotOn(frame) ; 

 
 
To bind an external function as p.d.f. rather than as a function use the bindPdf() method, as is 
illustrated here with the ROOT::Math::beta_pdf function 
 

 
RooRealVar x("x","x",0,1) ; 
RooRealVar a("a","a",5,0,10) ; 
RooRealVar b("b","b",2,0,10) ; 
RooAbsPdf* beta = bindPdf("beta",ROOT::Math::beta_pdf,x,a,b) ; 
 
RooDataSet* data = beta.generate(x,10000) ; 
 
RooPlot* frame = x.frame() ; 
data->plotOn(frame) ; 
beta->plotOn(frame) ; 
 
 

 
The bindFunction() and bindPdf() helper functions return a pointer to an matching instance of 
one of the templated classes  RooCFunction[N]Binding or RooCFunction[N]PdfBinding, 
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where N=1,2,3,4, that implement the binding of one through four variables represented by 
RooAbsReal objects to the external C++ function and are an implementation of base classes 
RooAbsReal and RooAbsPdf respectively. 
 
Along similar lines, an existing ROOT TFx can also be represented as RooFit function or p.d.f. 
 

 
TF1 *fa1 = new TF1("fa1","sin(x)/x",0,10); 
 
RooRealVar x("x","x",0.01,20) ; 
RooAbsReal* rfa1 = bindFunction(fa1,x) ; 
 
RooPlot* frame = x.frame() ; 
rfa1->plotOn(frame) ; 
 

 
In this case, the bindFunction() and bindPdf() helper functions return a pointer to an instance 
of a  RooExtTFnBinding or RooExtTFnPdfBinding object respectively. The output of all 
examples is shown in Figure 13.  
 
 

 
Figure 13 – Examples of a ROOT C++ math functions, a ROOT C++ p.d.fs and a ROOT TF1 

bound as RooFit function object 

 

Writing a new p.d.f. class 
It is easy to write your own RooFit p.d.f. class in case none of the existing p.d.f. classes suit your 
needs, and no one can be customized through use of RooFormulaVar 

Interpreted generic p.d.f. – class RooGenericPdf 
If the formula expression of your model is relatively simple, and performance is not critical, you can 
use RooGenericPdf which interprets your C++ expression, just like RooFormulaVar: 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar alpha(“alpha”,”alpha”,1.0,0.,10.) ; 
RooGenericPdf g(“g”,”sqrt(abs(alpha*x))+0.1”,RooArgSet(x,alpha)) ; 
 
RooPlot* frame = x.frame() ; 
g.plotOn(frame) ; 
alpha=1e-4 ; 
g.plotOn(frame,LineColor(kRed)) ; 
frame->Draw() ; 
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The formula expression entered into g is explicitly normalized through numeric integration before it is 
returned as the value of p.d.f g, so it is not required that the provided expression is normalized itself.  
The automatic normalization is nicely demonstrated in Figure 14, which shows p.d.f. g for two values 
of parameter alpha. If your formula expression becomes more complicated than the example shown 
above, you should write a compiled class that implements your function. 
 

   
Figure 14 – Generic p.d.f g(“sqrt(abs(x*alpha))+0.1”) drawn for  

alpha=1 (blue) and alpha=0.0001 (red) 
 

Writing a new p.d.f class using RooClassFactory 
The utility class RooClassFactory simplifies the task of writing a custom RooFit p.d.f class to writing 
the actual p.d.f expression. 
 
The class factory has several modes of operation. The simplest mode of operation is for a function 
expression that is simple enough to be expressed in a single line of code. For those cases, a 
completely functional custom p.d.f. class can be written as follows: 
 
 

RooClassFactory::makePdf(“RooMyPdf”,”x,alpha”,0,“sqrt(abs(x*alpha))+0.1”); 
 
 
This operation writes out two files, RooMyPdf.cxx and RooMyPdf.h, that can be compiled and linked 
with ACliC for immediate use  
 

 
root>.L RooMyPdf.cxx+ 
 

 
Here is the original example rewritten in terms of your new compiled class RooMyPdf: 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar alpha(“alpha”,”alpha”,1.0,0.,10.) ; 
RooMyPdf g(“g”,”compiled class g”,x,alpha) ; 

 
 
If your function expression is not simple enough to be expressed in a single line of code, you can 
simply omit the expression when you request RooClassFactory to create the class 
 

 
RooClassFactory::makePdf(“RooMyPdf”,”x,alpha”) ; 
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This creates a fully functional class with a dummy implementation of RooAbsPdf::evaluate(). To 
make it a functional class, edit the file RooMyPdf.cxx and insert a function expression as return value 
in the evaluate() method of your class, using as many lines of code as you need. 
 

 
Double_t RooMyPdf::evaluate() const  
 {  
   // ENTER EXPRESSION IN TERMS OF VARIABLE ARGUMENTS HERE  
   return 1 ; 
 } 
 

 
You can use all symbols that you listed as function arguments in the makePdf() call as C++ double 
objects.8 
 
Since RooAbsPdf have no fixed interpretation of variables being observables or parameters, there is 
no need, or point, in explicitly normalizing the expression in evaluate() with respect to a specific 
choice of observables: the return value of evaluate() is always divided a posteriori by a 
normalization integral before it is return through RooAbsPdf::getVal().  
 
By default this normalization step is done using a numeric integrator, but if you know how to integrate 
your class over one (or more) choices of observables, you can advertise this capability in the p.d.f. 
and your analytical integral will be used instead of numeric integration whenever it is appropriate. You 
can invoke RooClassFactory::makePdf() with different options that will make skeleton code for 
the analytical integral interface. Details can be found in the RooClassFactory HTML class 
documentation.  
 
Additional information on how to write p.d.f. classes with optional support for analytical integration and 
internal event generation handling is given in Chapter 14. 
 

Instantiating custom p.d.f objects using RooClassFactory 
Another mode of operation of RooClassFactory is that you request the factory to immediately 
perform the compilation and instantiation of an object in terms of a set of given variable objects: 
 
 

RooAbsPdf* myPdf = RooClassFactory::makePdfInstance(“RooMyPdf”, 
                       “sqrt(abs(x*alpha))+0.1”, RooArgSet(x,alpha)) ; 

 
 
Note that the functional form of this invocation is very similar to that of creating an object of type 
RooGenericPdf: you provide a string with a C++ function expression and a set of input variables 
and you get back an instance of a RooAbsPdf that implements that shape in terms of the given 
variables.  The difference is in the way the code is generated: interpreted for and compiled for 
RooClassFactory.  
 
What is more appropriate depends on the use case: the RooClassFactory route will result in faster 
execution, but incurs a startup overhead of a few seconds to compiled and link the code each time 
macro is executed. The RooGenericPdf route has negligible startup overhead but will slow down 
the executing of plotting, event generation and fitting. 
 
 
 

                                                      
8 Note that in reality these objects are not doubles, but objects of type RooRealProxy that hold 
references to the RooRealVar variables (or more generically RooAbsReal functions) that were 
specified as inputs of the instance of the function object. These objects can be handled as doubles 
in function expressions because RooRealProxy implements operator double() that facilitates 
that functionality. 
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Writing a new function class using RooClassFactory 
The code factory class RooClassFactory cannot only write skeleton p.d.f.s, but also skeletons for 
generic real-valued functions. Generic real-valued function are all classes in RooFit that inherit from 
RooAbsReal. Class RooFormulaVar is a good example of a generic real-valued function. Unlike 
p.d.f.s, RooAbsReal are not normalized to unity and can also take negative values.  
 
Compilable custom real-valued functions are a good replacement for RooFormulaVar in cases where 
the formula expression is less than trivial, or in cases where performance is critical. 
 
Creating a skeleton for a generic function object is done with the makeFunction() method of 
RooClassFactory 
 

 
RooClassFactory::makeFunction(“RooMyFunction”,”x,b”) ; 
 

 

Tutorial macros 
The following $ROOTSYS/tutorial/roofit macros illustrate functionality explained in this chapter 
 

• rf103_interprfuncs.C – Creating interpreted functions and p.d.f.s. 
• rf104_classfactory.C – Using the class factory to make a custom p.d.f class 
• rf105_funcbinding.C – Binding external C++ functions and ROOT TFx objects 
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5. Convolving a p.d.f. or function with another p.d.f. 
Introduction 
Experimental data distributions are often the result of a theoretical distribution that is modified by  
detector response function. In the most general case, these distributions are described by a 
convolution of a  theory  model T(x,a) and a detector response function R(x,b) 
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An example with a Breit-Wigner theory model and a Gaussian detector response function is illustrated 
in Figure 15.  
 

Figure 15 – A Breit-Wigner theory model convoluted with a Gaussian detector response 
function with a resolution-to-width ratio of 0.2, 1.0 and 5.0 respectively 

 
Often the resulting distributions is either dominated by the detector response, in which case M(x,a,b) 
can be effectively approximated by R(x,b) (Figure 15-a), or by the theory model, in which case 
M(x,a,b) can be effectively approximated by T(x,a) (Figure 15-c). If the effects of both functions are 
however of comparable magnitude (Figure 15-b), an explicit calculation of the convolution integral 
may be required. In this chapter we explain how such convolutions can be calculated in RooFit.  
 

Computational aspects of convolutions 
The calculation of convolutions for use in probability density functions is often computationally 
challenging. For only few choices of R(x) and T(x) the convolution integral can be calculated 
analytically, leaving a numeric integration on the domain [-∞,∞] for all other cases.  
 
In addition, for probability density functions an explicit normalization step is required, as the 
convolution of two normalized p.d.f.s. on a finite domain is not generally normalized itself. Thus the 
expression for a p.d.f. M is 
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Multiple options for calculations of convolutions 
RooFit offers three methods to represent convolutions probability density functions: 
 

1. Numeric convolution calculations using Fourier Transforms 
2. Numeric convolutions using plain integration 
3. Analytical convolutions for selected p.d.f.s 
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Numeric convolution with Fourier Transforms  
For most applications, numeric convolutions calculated in Fourier transformed space provide the best 
tradeoff between versatility, precision and computational intensity. To better understand the features 
of convolutions calculated with discrete Fourier transforms we start with a brief introduction on the 
underlying math. 

The Circular Convolution Theorem and Discrete Fourier Transformations 
The circular convolution theorem states that the convolution of two series of coefficients xi and yi in 
the space domain9 can be calculated in the frequency domain as a simple multiplication of coefficients 
 

ሺݔ ٔ ሻݕ ி֞
ሺݔ ·  ሻݕ

 
This theorem allows us to calculate convolutions without any explicit integral calculation. The 
drawback is that it requires Fourier transforms and discrete input data. However, in practice these 
problems that are more easily solved than numeric integration over an open domain. Another feature 
of the theorem is that for finite n the convolution observable is treated as cyclical, which may or may 
not be desirable depending on the application. We will get back to this. 
 
To be able to use discrete Fourier transforms all continuous input function must be sampled into a 
discrete distribution: 
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Any such discrete distribution xI, can be represented in the frequency domain by an equal number of 
coefficients Xi through the application of a Fourier transform: 
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Both the spatial domain coefficients xi and the frequency domain coefficients Xi  are in general 
complex numbers. If the input coefficients xi are real, as is the case for sampling from probability 
density functions, the frequency domain coefficients Xi will exhibit the symmetry Xn-k=X*k.  
 
Conversely, a distribution in the frequency domain can be converted (back) to a distribution in the 
space domain using an inverse Fourier transform 
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The resulting spatial domain coefficients xi of the inverse transform are in general complex numbers, 
unless the coefficients Xi satisfied the symmetry Xn-k=X*k  in which case all xi are real. 
 
The convolution operator class RooFFTConvPdf implements the following algorithm to compute 
circular convolutions of the type M(x) = T(x)ٔR(x) as follows 

 
1. Sample T(x) into an array ti and R(x) into ri 
2. Fourier Transform arrays ti Ti and ri Ri  into the frequency domain 
3. Calculate the convolution in the frequency domain as Mi = Ti⋅Ri 
4. Inverse Fourier Transform the array Mi mi into the space domain 
5. Represent the array mi as a continuous function M(x) through interpolation. 

 
The bulk of the computational effort of the approach is in the calculation of the (inverse) discrete 
Fourier transforms. Fast calculation of discrete Fourier transforms is a heavily researched topic in the 
field of signal processing and excellent algorithms exists to be able to calculate these transforms 

                                                      
9 A series of coefficients in the space domain is effectively a histogram 
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efficiently. RooFit uses the freely available package FFTW3, which is interfaced to ROOT through 
class TVirtualFFT, and provides one of the fastest available implementations of discrete Fourier 
transforms. This means that to be able to use RooFFTConvPdf,  you must have FFTW installed with 
your ROOT installation10. 
 

Performance of FFT based convolutions 
The speed of the FFTW calculations does not scale linearly with the number of sampling points. It is 
unproblematic to sample p.d.f.s at high resolutions like 1000 or 10000 evenly spaced points in the 
domain of the observable, so that sampling granularity is not an issue for most applications. 
 
As an indication of the performance, a convolution of a Landau p.d.f with a Gaussian resolution 
sampled on 10000 points each takes roughly 90 milliseconds per evaluation, resulting a typical fit 
times of a few seconds, (assuming 50-100 MINUIT steps for minimization and error analysis), making 
FFT-based convolution 10 to 100 times faster than convolution through plain numeric integration.  
 

Limitations of FFT based convolutions 
You should be aware though of the specific features of this algorithm 
 

• The resulting convolution is explicitly circular: any tail that goes ‘over the edge’ on the upper 
bound of the domain of the convolution observable side will show up on the lower bound and 
vice versa. This is effect is illustrated in Figure 16. In case this is unwanted, class 
RooFFTConvPdf has tools minimize these effects that are explained in the next sections.  
It is correct behavior for inherently circular observables such as azimuthal angles. 
 

• A small but finite approximation is introduced by the sampling frequency. While unproblematic 
for most applications (at e.g. 10000 sampling points) you should exert some caution with 
models that fit very high frequency signal components (such as Bs meson oscillations) 
 

• The shape of both the theory model and the resolution are truncated at the boundaries of the 
defined range of the observable. The effect of this is most obvious in the resolution p.d.f. and 
best illustrated with an extreme example: Given a observable with a defined range [-1,1]: if 
you would convolve you theory model with a Gaussian of infinite width you’re effectively 
convolving it with a block function of width 2.  
 

Most of these possible adverse effects can be avoided by choosing parameters appropriately, i.e. 
choosing a sufficiently high sampling frequency, a sufficiently wide sampling range. 
 

 
Figure 16 – Demonstration of cyclical nature of FFT based convolutions. Dashed line is theory 
model (Landau). Solid lines is theory model convoluted with a Gaussian. The overflow of the  

convoluted p.d.f. at the xmax resurfaces at the xmin 

                                                      
10 See www.fftw.org for the installation of FFTW itself. In your  ROOT installation, be sure to run 
configure with  options –with-fftw-libdir=<path> and –with-fftw-incdir=<path> in 
case you have installed FFTW in a non-standard location.  
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Using class RooFFTConvPdf 
In contrast to its computational complexity, the use of RooFFTConvPdf is trivial. One specifies the 
two input p.d.f.s and optionally a sampling frequency that is different from the default binning of the 
observable 
 
 

// Observable 
RooRealVar t("t","t",-10,30) ; 
 
// Theoretical model 
RooRealVar ml("ml","mean landau",5.,-20,20) ; 
RooRealVar sl("sl","sigma landau",1,0.1,10) ; 
RooLandau landau("lx","lx",t,ml,sl) ; 
 
// Detector response function 
RooRealVar mg("mg","mg",0) ; 
RooRealVar sg("sg","sg",2,0.1,10) ; 
RooGaussian gauss("gauss","gauss",t,mg,sg) ; 
 
// Define sampling frequency 
t.setBins(“fft”,10000) ; 
 
// Construct convolution 
RooFFTConvPdf lxg("lxg","landau (X) gauss",t,landau,gauss) ; 

 
 
The resulting p.d.f. is fully functional, i.e. one can sample events, fit them and plot them like any other 
p.d.f. 
 

 
// Sample 1000 events in x from gxlx 
RooDataSet* data = lxg.generate(t,10000) ; 
 
// Fit gxlx to data 
lxg.fitTo(*data) ; 
 
// Plot data, fitted p.d.f 
RooPlot* frame = t.frame(Title("landau (x) gauss convolution")) ; 
data->plotOn(frame) ; 
lxg.plotOn(frame) ; 
landau.plotOn(frame,LineStyle(kDashed)) ; 
 

 
The output of the above example is shown in Figure 17. 
 

 
Figure 17 – Result of fit to Landau shape convoluted with Gaussian resolution 
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Tuning the sampling frequency 
The default sampling frequency that is used to sample both input p.d.f.s is the default binning 
specification of the convolution observable, as specified through RooRealVar::setBins(). Note 
that the default binning for a RooRealVar is 100 bins, which is usually insufficient resolution for a  
FFT convolution. To change this you can either increase the density of the default binning, e.g. 
x.setBins(1000), or specify an alternate binning with the name “fft” that is used for FFT 
convolution sampling only, i.e. x.setBins(“fft”,10000). 
 

Sampling of multidimensional p.d.f.s  
Even though RooFFTConvPdf only supports convolution in one observable, it can convolve 
multidimensional p.d.f.s, e.g. one can do 
 

,ݔሺܯ ሻݕ ൌ ܶሺݔ, ሻݕ ٔ ܴሺݔሻ 
 
In such cases the input p.d.f. T(x,y) is sampled in both observables x and y and the output histogram 
that caches the result of M(x,y) is also two-dimensional so that the value of M is precalculated for all 
values of x and y. The sampling density for FFT sampling of T in the observable y is controlled in the 
same way as that of x: in the absence of a alternate binning named “fft” defined in y, the default 
binning of y is used. The sampling density of x and y does not need to be the same  
 

Interpolation of FFT output 
By default the output histogram of the FFT convolution is interpolated to second order to yield a 
smooth and continuously derivable p.d.f shape. You can change this default through the 
setInterpolationOrder() member function, or supply it as the optional argument in the 
constructor. At order zero, no interpolation is used. The highest order supported is 9. If the output 
histogram is multi-dimensional interpolation is applied to all real-valued dimensions.11 
 

Adjustment of the sampling range 
Even though the FFT convolution formalism is completely symmetrical in the two input p.d.f.s, the role 
of both p.d.f.s in most applications is not. Class RooFFTConvPdf assumes that the first p.d.f. is the 
theory model and that the second p.d.f. is the resolution model.  In this interpretation it is often 
convenient to define different sampling ranges for the theory model and the resolution mode. 
 
For example, if one fits a Z boson mass peak in the range 60-100 GeV one would like to sample the 
theory model in the range [60,100], but the resolution model in a range symmetrically around zero, 
e.g. [-20,20] as resolution models that do not (intentionally) introduce a bias are always centered 
around zero. To simplify these (theory model ٔ resolution model) use cases class RooFFTConvPdf 
has the following default sampling strategy 
 

• The first p.d.f. is assumed to be the theory model and is sampled in the defined range of the 
observable (using either the fft or default binning density) 
 

• The second p.d.f is assumed to be the resolution model and is sampled in a range that is 
symmetric around zero with the same width and sampling density as the theory model12 

 
Without this shifting strategy one would in the example of the Z boson be forced to fit the range [-
20,100] to include both theory and resolution in the range, which is usually undesirable as it requires 

                                                      
11 At present, the interpolation is limited to at most two real-valued dimensional due to an 
implementation limitation in RooDataHist. 
12 The FFT formalism does not allow the sampling density or width of the range of the theory model 
and resolution model to be different. 
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you to model the theory distribution always to below zero, which may include areas in which it is not 
well known or undefined (i.e. [-20,60]). You can adjust the range shifting feature through a call 
 

 
lxg.setShift(s1,s2) ; 
 

 
 
where s1 and s2 are the amounts by which the sampling ranges for pdf1 and pdf2 are shifted 
respectively. A pair of values of (0,-(xmin+xmax)/2) replicates the default behavior and a pair of values of 
(0,0) disables the shifting feature altogether. 
 

Reducing cyclical spill over – Adjusting the buffer fraction 
RooFFTConvPdf introduces a blank buffer in the FFT sampling array beyond the end of the 
sampling range of both p.d.f.s. The purpose of this buffer is to reduce the effect over cyclical 
overflows: any overflow will first spill into the buffer area, which is discarded when the FFT output 
buffer is interpreted as the output p.d.f. shape, before it leaks back into the observable range. The 
effect of such cyclical leaking is shown in Figure 16, which was created with the buffer feature 
disabled. 
 
If your convolution observable is a inherently cyclical observable, such spillover is in fact a desired 
feature and you should disable this feature by setting the buffer size to zero using  
 
 

lxg.setBufferFraction(0) ; 
 
 
 
If your observable is not inherently cyclical, the default buffer fraction 10% of the size of sampling 
array is usually sufficient to suppress minor cyclical leakage. If you observe otherwise you can 
increase the buffer fraction to a large value using setBufferFraction(x) where x is a fraction of 
the sampling array size. Please note that computation time will go up if very large buffer fractions are 
chosen. 
 

Generating events from a convolution p.d.f 
If both input p.d.f.s of a RooFFTConvPdf provide an internal event generator that supports generation 
of events in the convolution observable in the domain [-∞,∞], a special generator context is 
automatically selected to construct the distribution of the convolution. Rather than sampling the 
convoluted p.d.f. distribution with an accept/reject sampling technique, it samples values from the 
theory model and resolution model separately (using the internal generator method of each) and 
constructs the convoluted observable as 
 

௧ٔݔ ൌ ௧ݔ   ݔ
 
reflecting the ‘smearing’ nature of the convolution operation. Only events that pass the requirement 
ݔ ൏ ௧ٔݔ ൏  ௫ are returned as generated events. This method of event generation is typicallyݔ
more efficient that the default accept/reject sampling technique. If the smearing method cannot be 
applied, e.g. because one or both of the input p.d.f. lack an internal generator, the default sampling 
method on the convoluted distribution is automatically substituted. 
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Plain numeric convolution 

Method and performance 
If you do not wish to use class RooFFTConvPdf because one of its algorithmic features are 
problematic you can try class RooNumConvPdf, which calculates the convolution integral 
 

,ݔሺܯ ܽ, ܾሻ ൌ ܶሺݔ, ܽሻ ٔ ܴሺݔ, ܾሻ ൌ
 ܶሺݔ, ܽሻܴሺݔ െ ,ᇱݔ ܾሻ݀ݔᇱஶ
ିஶ

  ܶሺݔ, ܽሻܴሺݔ െ ,ᇱݔ ܾሻ݀ݔᇱ݀ݔஶ
ିஶ

௫ೌೣ
௫

 

 
 

and its normalization integral through straight numeric integration. By default RooNumConvPdf 
performs the numeric convolution integral on the domain [-∞,+∞] . 
 
This calculation is numerically difficult, and can suffer from stability problems. Class RooNumConvPdf 
should therefore be your option of last resort. In particular, if you intend to fit a RooNumConvPdf you 
should be aware that a precision of O(10-7) needs to be reached for the numeric noise not disturb 
MINUIT in its likelihood minimum finding. In practice this means O(100) evaluations of R and T to 
calculate M for each data point. 
 

Using class RooNumConvPdf 
Class RooNumConvPdf has an almost identical constructor syntax as class RooFFTConvPdf, so one 
can switch easily between the two: 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
 
RooRealVar meanl(“meanl”,”mean of Landau”,2) ; 
RooRealVar sigmal(“sigmal”,”sigma of Landau”,1) ; 
RooLandau landau(“landau”,”landau”,x,meanl,sigmal) ; 
 
RooRealVar meang(“meang”,”mean of Gaussian”,0) ; 
RooRealVar sigmag(“sigmag”,”sigma of Gaussian”,2) ; 
RooGaussian gauss(“gauss”,”gauss”,x,meang,sigmag) ; 
 
RooNumConvPdf model(“model”,”model”,x,landau,gauss) ; 
 
RooPlot* frame = x.frame() ; 
model.plotOn(frame) ; 
landau.plotOn(frame,LineStyle(kDashed)) ; 
frame->Draw() ; 

 
Example 8 – Numeric convolution of a Landau with a Gaussian 

 
Figure 18 show the result of Example 8. 
 

Configuring the numeric convolution integration 
By default RooNumConvPdf performs the numeric convolution integral on the full domain of the 
convolution variable (i.e. from -∞ to +∞) using a x  1/x transformation to calculate the integrals of the 
tails extending to infinity. This calculation is difficult, can suffer from stability problems and may be 
avoided for certain choices of resolution models.  
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Figure 18 – Output of Example 8 – Numeric convolution of a Landau with a Gaussian, Landau 

convolved with a Gaussian and the original Landau (dashed line) 
 
 
 
For certain resolution models, e.g. a Gaussian, you know a priori that the integrand of the convolution 
integral is effectively zero when you are far from the core of the resolution model. For such cases one 
can e.g. restrict the domain of the convolution integral to e.g. [-5σ+μ,+5σ+μ], where μ and σ are the 
mean and width of the Gaussian resolution model respectively. RooNumConvPdf offers you the option 
restrict the convolution integral domain in terms of model parameters. The following call 
 

 
landau.setConvolutionWindow(center,width,scale) 
 

 
defines a convolution integral domain from [center-width*scale,center+width*scale], 
where center and width are RooAbsReals and scale is a double. In case of a Gaussian 
resolution model, the parameters expressing its mean and sigma can be conveniently used to define 
the appropriate convolution window. 
 

Adjusting numeric integration precision and technique. 
If you are going to fit models based on numeric convolutions it is almost inevitable that you will need 
to fine tune the numeric integration parameters to obtain the right balance between speed and 
precision. You can access the numeric integration configuration object that is used for the convolution 
integral from member function convIntConfig(). You can read more about numeric integration 
configuration in Appendix D. 
 
Convolution through numeric integration is an intrinsically difficult problem. You should expect to 
spend some time tuning the integration configuration before you obtain a workable configuration. 
 

Generating events from a numeric convolution p.d.f 
Class RooNumConvPdf uses the same event generation strategy as class RooFFTConvPdf. 
 

Analytical convolution 
 
For certain combinations of p.d.f.s it is possible to calculate the convolution integral and its 
normalization analytically. Apart from the specialized class RooVoigtian, which implements an 
analytical convolution of a non-relativistic Breit-Wigner model with a Gaussian resolution function, a 
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series of special p.d.f.s that inherit from base class RooAbsAnaConvPdf.  Details on the physics 
contents of these shapes is provided in Chapter 13 and Appendix B, here we just describe the 
mechanism available for automatically selecting the appropriate analytical convolution calculation. 
 
The classes for which the resolution model can be chosen at run time is listed below in Table 2. 
 
Class Name Description 
RooDecay Decay function: exp(-|t|/τ), exp(-t/τ) or exp(t/τ) 
RooBMixDecay B decay with mixing 
RooBCPEffDecay B decay with CP violation parameterized as sin(2b) and |l| 
RooBCPGenDecay B decay with CP violation parameterized S and C 
RooNonCPEigenDecay B decay to non-CP eigenstates with CP violation  
RooBDecay Generic B decay with possible mixing, CP violation, CPT violation 

Table 2 – Available theory models for analytical convolution 
 

Decomposing a p.d.f. into basis functions 
The defining property of these decay functions is that they can be written as a superposition of basis 
functions B(t,τ,a) multiplied with coefficients ci(x;b): 
 

,ݐሺܦ ߬, ܽ, ܾሻ ൌ
∑ ܿሺݔ; ܾሻ⋅ܤሺݐ; ߬, ܽሻ

∑ ܿሺݔ; ܾሻ݀ܤ⋅ݔሺݐ; ߬, ܽሻ ݐ݀
 

 
 
The special feature of these basis functions is that it is known how to analytically convolve all of these 
functions with a selection of resolution functions.  Given an input resolution model in the constructor 
the classes of Table 2 form the following expression: 
 

,࢚ሺࡾٔࡰ ,࣎ ,ࢇ ,࢈ ሻ࢘ ൌ
;࢞ሺࢉ∑ ,࢚ሺሻ⋅ሾ࢈ ,࣎ ሻࢇ ٔ ,࢚ሺࡾ ,࣎ ሻሿ࢘

∑ ;࢞ሺࢉ ,࢚ሺሾ⋅࢞ࢊሻ࢈ ,࣎ ሻٔࢇ ,࢚ሺࡾ ,࣎ ሻሿ࢘ ࢚ࢊ
 

(1) 
The available choices for the basis functions are listed in Table 3, the available resolution functions 
are listed in Table 4. 
 
exp(-t/τ) exp(t/τ) exp(-|t|/τ) 
exp(-t/τ)⋅sin(a⋅t) exp(t/τ)⋅sin(a⋅t) exp(-|t|/τ)⋅sin(a⋅t) 
exp(-t/τ)⋅cos(a⋅t) exp(t/τ)⋅cos(a⋅t) exp(-|t|/τ)⋅cos(a⋅t) 
exp(-t/τ)⋅sinh(a⋅t) exp(t/τ)⋅sinh(a⋅t) exp(-|t|/τ)⋅sinh(a⋅t) 
exp(-t/τ)⋅cos(a⋅t) exp(t/τ)⋅cos(a⋅t) exp(-|t|/τ)⋅cos(a⋅t) 
exp(-t/τ)⋅t   
exp(-t/τ)⋅t2   

Table 3 – Special basis functions for analytical convolutions 
 
 

Gauss exp  ൬െଵ
ଶ ቀ
ݔ െ݉
ݏ ቁ

ଶ
൰ RooGaussModel(name,title,x,m,s) 

Gauss⊗Exp exp ൬െଵ
ଶ ቀ
ݔ െ ݉
ݏ ቁ

ଶ
൰ٔ exp ቀെ

ݔ
߬ቁ 

RooGExpModel(name,title,x,m,s,tau) 

Truth ߜሺݔሻ RooTruthModel(name,title,x) 

Composite  ݂ܴሺݔሻ RooAddModel(name,title,…) 

Table 4 – Special resolution functions for analytical convolutions 
 

Choosing a resolution model at runtime 
The run time selection of a resolution model for class RooDecay is shown in the following example: 
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// Observable 
RooRealVar t(“t”,”t”,-10,10) ; 
 
// Gaussian Resolution model 
RooRealVar mean(“mean”,”mean”,0) ; 
RooRealVar sigma(“sigma”,”sigma”,1) ; 
RooGaussModel gaussm(“gaussm”,t,mean,sigma) ; 
 
// Decay p.d.f analytically convoluted with gaussm 
RooRealVar tau(“tau”,”lifetime”,1.54) ; 
RooDecay model(“model”,”decay (x) gauss”,t,tau,gaussm) ; 

 
 

 
// --- Plot decay (x) gauss --- 
RooPlot* frame = x.frame() ; 
model.plotOn(frame) ; 
   
// --- Overlay with decay (x) truth --- 
RooTruthModel truthm("truthm","truth model",x) ; 
RooDecay modelt("modelt","decay (x) delta",x,tau,truthm) ; 
modelt.plotOn(frame,LineStyle(kDashed)) ; 
 
frame->Draw() ; 

 
 
First we construct a decay function instance model convoluted with a Gaussian resolution model, 
then we create a decay function instance modelt, convoluted with a delta function. The resulting plot 
is shown in Figure 19. 
 
 

 
Figure 19 – Decay p.d.f convolved with Gaussian and delta function (dashed) 

 

 
Using composite resolution models 
A realistic detector resolution is often more complicated than a simple Gaussian. Class 
RooAddModel allows you to add multiple resolution models into a single composite resolution model 
that can be passed to any convolvable p.d.f.  Here is an example using RooAddModel to construct a 
decay function convolved with a double Gaussian resolution. 
 

 
RooRealVar x("x","x",-10,10) ; 
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RooRealVar mean("mean","mean",0) ; 
RooRealVar sigma_core("sigma_core","sigma core",1) ; 
RooGaussModel gaussm_core("gaussm_core","core gauss",x,mean,sigma_core) ; 
   
RooRealVar sigma_tail("sigma_tail","sigma tail",5) ; 
RooGaussModel gaussm_tail("gaussm_tail","tail gauss",x,mean,sigma_tail) ; 
 
 

   
RooRealVar frac_core("frac_core","core fraction",0.9) ; 
RooAddModel gaussm("gaussm","core+tail gauss", 
       RooArgList(gaussm_core,gaussm_tail),frac_core) ; 
   
RooRealVar tau("tau","lifetime",1.54) ; 
RooDecay model("model","decay (x) gauss",x,tau,gaussm); 

 
 
Class RooAddModels functionality is very similar to that of class RooAddPdf, with the restriction that 
you can only specify fraction coefficients and no event yield coefficients as the extended likelihood 
formalism doesn’t apply to resolution models. 
 

Writing your own analytically convoluted p.d.f. 
Instruction on how to write your own implementation of RooAbsAnaConvPdf or 
RooResolutionModel are found in Chapter 14. 

Extracting a single convolution term 
Sometimes it is useful to be able to directly access the individual  ሾܤሺݐ, ߬, ܽሻ ٔ ܴሺݐ, ߬,  ሻሿ terms fromݎ
Equation (1) to construct your own p.d.f or for debugging purposes. To do so you should first create 
the needed resolution model and the basis function expressed as a RooFormulaVar. The 
RooResolutionModel::convolution() method will then allow you to create a new object that 
represents the convolution of the basis function with the resolution function: 
 

 
// Observables 
RooRealVar t(“t”,”t”,-10,10) ; 
RooRealVar tau(“tau”,”tau”,1.54) ; 
 
// Create Gaussian resolution model 
RooRealVar mean(“mean”,”mean”,0) ; 
RooRealVar sigma(“sigma”,”sigma”,1) ; 
RooGaussModel gaussm(“gaussm”,”gaussm”,t,mean,sigma) ; 
 
   // Create basis function     
RooFormulaVar basis(“basis”,"exp(-@0/@1)",RooArgList(t,tau)) ; 
 
// Create basis (x) gauss 
RooAbsReal* decayConvGauss = gaussm.convolution(&basis) ; 
 
// Plot convolution 
RooPlot* frame = t.frame() ; 
decayConvGauss->plotOn(frame) ; 
 

 
The output of the example is shown in Figure 20. Note that the calculation of the convolution does not 
use the interpreted formula expression of basis, the RooFormulaVar is mere used as an object to 
specify with basis function should be used (based on the expression string) and what the associated 
parameters are. It is therefore imperative that the exact string specifications are used that are 
implemented in the various resolution models. The exact expression associated with each basis 
function of Table 3 are listed in Chapter 14. 
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Be aware that the returned convolution objects are not p.d.f.s: they are not normalized and may have 
negative values. This is not a problem, as only the sum of all convolution objects has to meet the 
criteria of normalization and positive definiteness. The returned convolution object do implement 
analytical integrals over the convolution observable so that e.g.  
 
 

RooAbsReal* normdCG = decayConvGauss->createIntegral(t) ; 
 
 
will return an object that can calculate the normalization integral of decayConvGauss over t 
analytically. 
 
 
 

 
Figure 20 – Decay function convolution with a Gaussian resolution model 

 
 

Tutorial macros 
The following tutorial macros are provided with the chapter 
 

• rf208_convolution.C – Example of FFT based convolution of Landau and Gauss 
• rf209_anaconv.C – Example on use of analytically convolvable decay function 
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6. Constructing multi-dimensional models 
Introduction 
Many data analysis problems deal with more than one observable. Extracting information from the 
distributions of multiple observables can be complicated if a lot information is contained in the 
correlations between observables. To deal with such multi-variate problems, two broad lines of 
approach are commonly used. 
 
The first line is to use a machine trainable multi-variate analysis to construct a one-dimensional 
discriminant that capture as much as possible of the information contained in the multi-dimensional 
distribution. This approach is powerful and relatively easy to manage, thanks to tools like TMVA13 that 
present a uniform training and application interface for a variety of techniques such as Neural 
Networks, (Boosted) Decision Trees, Support Vector machines. A final fit is often performed on either 
the discriminant, or on a remaining observable that was not used in the discriminant to extract the final 
result. 
 
Another approach is to construct an explicit multi-dimensional description of signal and background in 
the form of a multi-dimensional likelihood distribution for all input observables. This approach lends 
itself less to automation, except in the case where all observables are uncorrelated, but it is in theory 
no less powerful as the optimal discriminant for any multi-variate distribution, given by the Neyman-
Pearson lemma as 
 

Ԧሻݔሺܦ ൌ ܵሺݔԦሻ/ܤሺݔԦሻ, 
 
where S(x) and B(x) are the true signal and background distributions, and can be achieved in the limit 
where the empirical S(x) and B(x) descriptions match the true distributions. The challenges of this 
approach stem from two sources: it requires a good understanding of the shape of the expected 
distributions and it requires that an explicit formulation is found to describe this multi-dimensional 
distribution. The first challenge is really a feature of this approach: if done well, your model contains 
only parameters that you understand and can interpret well, and only has degrees of freedom that you 
deem relevant, whereas the parameters of a machine trained discriminant can be anywhere from 
totally uninterpretable (e.g. Neural Network weights) to somewhat understandable (e.g. unboosted 
Decision Trees). 
 

 
Figure 21 – Example two-dimensional distribution with correlation 

 
The role of RooFit in this process is to simplify the second challenge, the ability to intuitively formulate 
and explicit model for multi-dimensional distributions with correlations. An illustration of what RooFit 
can do is given by the two-dimensional model shown in Figure 21. The shown distribution is Gaussian 
                                                      
13 Also bundled with ROOT 
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distribution in x for each value of y, where the mean of the Gaussian depends on y. In addition the 
distribution of y is a Gaussian as well.  
 
It can be challenging to formulate a two-dimensional p.d.f. H(x,y) that describe exactly this distribution 
and it correlation in plain C++. In RooFit you can write it exactly in the way the distribution was 
formulated here with four lines of code14: you first write a conditional p.d.f. F(x|y) that represents the 
distribution of x given a value of y,  then you construct a p.d.f G(y) that describes the distribution in y 
and finally you combine these two pieces of information. RooFits ability to write multi-dimensional 
distributions with correlations is powered by its ability to be able to use any p.d.f. as a conditional 
p.d.f, which is made possible by its flexible p.d.f. normalization strategy. 
 
In the remainder of this section we will guide you to the basics of constructing multi-dimensional 
models in a variety of ways. Usage issues specific to multi-dimensional models are covered in 
Chapter 7. 
 

Using multi-dimensional models 
Before we go into the details on how to best construct multidimensional models we start with a brief 
overview on how the RooFit plotting, fitting and event generation interface is extended to models with 
more than one observable.  
 
To illustrate all basic concepts we construct a two-dimensional RooGenericPdf in observables x and 
y. We choose this simplest possible formulation as the internal structure of multi-dimensional p.d.f.s is 
irrelevant in the plotting, fitting and generation interface: these work the same regardless of the 
structure of the model 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar y(“y”,”y”,-10,10) ; 
 
RooRealVar a(“a”,”a”,5) ; 
RooRealVar b(“b”,”b”,2) ; 
 
RooGenericPdf f(“f”,”a*x*x+b*y*y-0.3*y*y*y”,RooArgSet(x,y,a,b)) ; 

 
Example 9 – A simple two-dimensional p.d.f. 

 

Evaluation 
In Chapter 2 it was explained that when you evaluate a RooFit p.d.f. you must always explicitly state 
which variables are the observables. In case there is more than observables, one can simply pass a 
RooArgSet with all observables instead of a single RooAbsArg: 
 
 

f.getVal(RooArgSet(x,y)) ; 
 
 

Generating and fitting 
Since both generation and fitting have a natural definition of observables, the extension of the 
interface to more than one observable is straightforward. In event generation you pass a RooArgSet 
with the observable instead of a single observable, and in fitting nothing changes in the interface as 
the definition of (in this case two) observables is taken automatically from the RooDataSet that is 
passed. 
 
 
 

                                                      
14 Excluding the lines needed to declare the model parameters. Actual code shown in Example 12. 
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Plotting 
The plotting interface is again identical, though we now have the possibility to make a plot for each 
observable: 
 
 

// Plot the x distribution of data(x,y) and f(x,y) 
RooPlot* framex = x.frame() ; 
data->plotOn(framex) ; 
f.plotOn(framex) ; 
 
// Plot the y distribution of data(x,y) and f(x,y) 
RooPlot* framey = y.frame() ; 
data->plotOn(framey) ; 
f.plotOn(framey) ;  

 
 
The output of the above example shown in Figure 22. The fact that the two plots of Figure 22 come 
out as intuitively expected is not entirely trivial and reflect some bookkeeping that RooFit does for you 
in the background.  
 
 

Figure 22 – The x and y projection of p.d.f. f from Example 9. 
 
 
Plotting the data is easy: to obtain the x distribution of data(x,y) one simply ignores the y values and 
fill a histogram with the x values.  
 
Plotting a p.d.f. involves a bit more work: we need to plot the projection of gaussxy(x,y) on either x 
or y to arrive at a distribution that has the same interpretation as that of the data. The default 
technique RooFit uses to calculate the projection is integration, i.e. 
 

 
// Generate a 2-dimensional dataset data(x,y) from gaussxy 
RooDataSet* data = f.generate(RooArgSet(x,y),10000) ; 
 
// Fit the 2-dimensional model f(x,y) to data(x,y) 
f.fitTo(*data) ; 
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;ݔ௫ሺܨ ሻ ൌ නܨሺݔ, ;ݕ  ݕሻ݀

 
A key feature of RooPlots is that they keep track of observables that needs to be projected: If you 
plot a dataset D(x,y,z) in a RooPlot of x, the existence of the observables y,z is remembered. Any 
subsequent p.d.f. with observables y and/or z, that is plotted on that frame will automatically be 
projected over those observables. Information on any projection integrals are announced by an 
informational message: 
 

 
A complete overview of multi-dimensional model use possibilities is covered in Chapter 7. 

Modeling building strategy 
Now we return to the core issue of this Chapter: the formulation of multidimensional models. 
Monolithic multi-dimensional models, as used in the preceding section, are rarely useful in real life 
applications. Most multi-dimensional models are constructed from lower dimensional models using the 
techniques of composition and or multiplication, like the example described in the opening section. 
We briefly describe both techniques here for comparison and work out the technical details in later 
sections 

Multiplication 
Multiplication is a straightforward way to combined two or more p.d.f.s with different observables into 
a higher dimensional p.d.f. without correlations 
 

,ݔሺܥ ;ݕ ܽ, ܾሻ ൌ ;ݔሺܣ ܽሻ⋅ܤሺݕ; ܾሻ 
 
Products of orthogonal p.d.f.s have the appealing property that they are properly normalized p.d.f.s if 
their input are as well 
 

ඵܥሺݔ, ݕݔሻ݀ݕ ൌඵܣሺݔሻܤሺݕሻ݀ݕ݀ݔ ൌ නܣሺݔሻ݀ݔනܤሺݕሻ݀ݕ ൌ 1 

 

Composition 
The technique of composition involves the substitution of a parameter with a function of at least one 
new observable. For example, given a Gauss(x;m,s) in observable x one can create a two-
dimensional p.d.f. F in observable x,y as follows: 
 

,ݔሺܨ ,݉;ݕ ,ݏ ܽሻ ൌ ,ሻݕሺܯ,ݔሺݏݏݑܽ݃ ሻݕሺܯ ሻ withݏ ൌ ݉   ݕ⋅ܽ
 
We have already seen this technique in Chapter 4 where we used it adjust the parameterization of 
existing shapes, the only new aspect introduced here is in the interpretation: there is nothing that 
prohibits to use the newly introduced variable y as an observable, effectively extending our one-
dimensional Gaussian p.d.f. into a two-dimensional Gaussian with a shifting mean in terms of the 
second observable. An important advantage of composition over multiplication is that it allows to 
introduce correlations between observables in a straightforward way. 

Combining composition and multiplication 
Even though composition yields fully functional multi-dimensional p.d.f.s, with good control over 
correlations, composed p.d.f.s in general do not yield good control over the distribution of the new 
observables that are introduced. In the code example above it is clear what the distribution in x is and 
how that distribution changes with y, but not what the distribution y itself is. For that reason composed 
p.d.f.s are often used as conditional p.d.f.s F(x|y) rather than F(x,y) and multiplied a posteriori with a 
separate p.d.f H(x,y) = F(x|y)G(y) to yield a well controlled two dimensional model.  

 
RooAbsReal::plotOn(fxy) plot on x integrates over variables (y) 
RooAbsReal::plotOn(fxy) plot on y integrates over variables (x) 
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Multiplication 
We first explain how construct multi-dimensional models through multiplication of p.d.f.s 

Class RooProdPdf 
In RooFit the construction of any kind of product p.d.f. is done through class RooProdPdf. Here is a 
simple example: 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar meanx(“meanx”,”meanx”,2,-10,10) ; 
RooRealVar sigmax(“sigmax”,”sigmax”,1,0.,10.) ; 
RooGaussian gaussx(“gaussx”,”gaussx”,x,meanx,sigmax) ; 
   
RooRealVar y(“y”,”y”,-10,10) ; 
RooRealVar meany(“meany”,”meany”,-2,-10,10) ; 
RooRealVar sigmay(“sigmay”,”sigmay”,5,0.,10.) ; 
RooGaussian gaussy(“gaussy”,”gaussy”,y,meany,sigmay) ; 
 
RooProdPdf gaussxy(“gaussxy”,”gaussxy”,RooArgSet(gaussx,gaussy)) ; 

 
Example 10 – A 2-dimensional p.d.f. constructed as the product of two one-dimensional p.d.f.s 
 
The product p.d.f. gaussxy can be used for fitting and generating in exactly the same way as the 
monolithic p.d.f. f of Example 9.  
 
 

RooDataSet* data = gaussxy.generate(RooArgSet(x,y),10000) ; 
gaussxy.fitTo(*data) ; 
 
RooPlot* framex = x.frame() ; 
data->plotOn(framex) ; 
gaussxy.plotOn(framex) ; 
 
RooPlot* framey = y.frame() ; 
data->plotOn(framey) ; 
gaussxy.plotOn(framey) ;  
 

 
 
The operator class RooProdPdf can multiply any number of components, in this example we multiply 
two one-dimensional p.d.f.s, but you can equally well multiply e.g. 7 one-dimensional p.d.f.s or 2 five-
dimensional p.d.f.s.  
 

 
Figure 23 – Output from Example 10 
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Behind the scenes 
Even though the fitting, plotting and event generation interface looks the same, the implementation of 
these actions for products of uncorrelated p.d.f.s is considerably different. First, no explicit 
normalization is calculated for the product as the a product of orthogonal p.d.f.s is normalized by 
construction: 
 

ඵܥሺݔ, ݕݔሻ݀ݕ ൌඵܣሺݔሻܤሺݕሻ݀ݕ݀ݔ ൌ නܣሺݔሻ݀ݔනܤሺݕሻ݀ݕ ൌ 1  

 
Projection integrals that occur in plotting can be simplified along similar lines 
 

නܥሺݔ, ݕሻ݀ݕ ൌ නܣሺݔሻܤሺݕሻ݀ݕ ൌ ݕሻ݀ݕሺܤሻනݔሺܣ ൌ  ሻݔሺܣ

 
and these simplifications are applied through logical deduction on the structure of the input p.d.f of 
any RooProdPdf rather than through brute-force calculation. 
 
Event generation is also streamlined through exploitation of factorization properties. In the example of 
C(x,y) the distribution of x and y can be sampled independently from A(x) and B(y) and combined a 
posteriori, rather than through a sampling of the joint distribution. In addition to benefits gained from 
reducing the dimensionality of the problem, this approach allows to delegate the generation of 
observables to the component p.d.f.s which may implement an internal generator that is more efficient 
than the default accept/reject sampling technique. Figure 24 illustrates this distribution generation 
process. 
 

 
Figure 24 – Illustration of distributed generation of uncorrelated products. 

 

 
Composition 
No special operator class is required for the composition technique. The earlier example of a 
Gaussian distribution in observable  x with a mean that depends on observable y, 
 

,ݔሺܨ ,݉;ݕ ,ݏ ܽሻ ൌ ,ሻݕሺܯ,ݔሺݏݏݑܽ݃ ሻݕሺܯ ሻ withݏ ൌ ݉   ݕ⋅ܽ
 

is coded this as follows: 
 
 

// Create observables 
RooRealVar x("x","x",-5,5) ; 
RooRealVar y("y","y",-5,5) ; 
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// Create function f(y) = a0 + a1*y 
RooRealVar a0("a0","a0",-0.5,-5,5) ; 
RooRealVar a1("a1","a1",-0.5,-1,1) ; 
RooPolyVar fy("fy","fy",y,RooArgSet(a0,a1)) ; 
 
// Create gauss(x,f(y),s) 
RooRealVar sigma("sigma","width of gaussian",0.5) ; 
RooGaussian model("model","Gaussian with shifting mean",x,fy,sigma) ;   

 
Example 11 – Construction of a Gaussian p.d.f. with a shifting mean through composition 

 
We can then proceed to use model as a two-dimensional p.d.f. in observable x and y. 
 

 
// Generate 10000 events in x and y from model 
RooDataSet *data = model.generate(RooArgSet(x,y),10000) ; 
 
// Fit model to data 
model.fitTo(*data) ; 
 
// Plot x distribution of data and projection of model on x 
RooPlot* xframe = x.frame() ; 
data->plotOn(xframe) ; 
model.plotOn(xframe) ;  
 
// Plot x distribution of data and projection of model on y 
RooPlot* yframe = y.frame() ; 
data->plotOn(yframe) ; 
model.plotOn(yframe) ; 
 

 
The output of this example code is shown in Figure 25 alongside a two-dimensional view of the p.d.f. 
and illustrates some important observations. First, you see that x projection of the model is the result 
of non-trivial integral and is automatically calculated correctly. Next you see that the predicted 
distribution in y is flat. This is a direct consequence of the formulation of the p.d.f.: the y projection of 
the p.d.f is the ܩሺݔ, ݂ሺݕሻ,  which is the integral over a Gaussian in x that is (nearly) fully ,ݔሻ݀ݏ
contained in the defined range of x for each allowed value of y, hence it yields the same value for all 
values of y. 
 
 

 
Figure 25 – Projection on x and y of p.d.f. of Example 11, 2D view of p.d.f in x and y 

 
If the slope of the f(y) is increased, or if the range of y is chosen to be wider, e.g. [-10,10] instead of [-
5,5] the Gaussian distribution in x will gradually go out-of-range towards higher values of |y| and this 
will result in a different shape of the y distribution of the p.d.f, as illustrated in Figure 26.  
 



 56 

 
Figure 26 – Variation on p.d.f. of Example 11 with a wider range in y 

 
In most realistic scenarios however the distribution of an observable like y is not flat, and one cannot 
use this p.d.f. to describe the data well. Figure 27 illustrates what happens if the model of Example 11 
is fitted to a dataset that has a Gaussian distribution in y rather than a flat distribution: the fit is bad 
and the parameters of the model will not be estimated correctly. Even if one does not care about a 
proper description of y, this presents problems as the mismatch in the distribution of y can also affect 
the quality of the fit in x, as is visible in Figure 27(left).   
 

 
Figure 27 – Fit of p.d.f. of Example 11 to an incompatible dataset  

with a Gaussian distribution in y. 
 
A solution to this problem is to use model as a conditional p.d.f. 
  

Conditional probability density functions 

Mathematical description 
A conditional p.d.f. is a p.d.f. that describes the distribution in one or more observable x given the 
values of other observables y. Symbolically we denote this a G(x|y) rather than G(x,y). Mathematically 
the difference between G(x,y) and G(x|y) is in the normalization. 
 

• G(x,y) is normalized as ܩሺݔ, ݕ݀ݔሻ݀ݕ ؠ 1 
• G(x|y) is normalized as ܩሺݔ, ݔሻ݀ݕ ؠ 1 for each value of y. 
 

RooFit implementation 
In RooFit each p.d.f. object can be used in both ways, it is simply a matter of adjusting the posterior 
normalization operation that is intrinsic to a RooAbsPdf object: 
 

,ݔሺܩ ሻݕ ൌ
݃ሺݔ, ሻݕ

,ݔሺ݃ ݕ݀ݔሻ݀ݕ
ሻݕ|ݔሺܩ       , ൌ

݃ሺݔ, ሻݕ
,ݔሺ݃ ݔሻ݀ݕ
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where g(x) is the ‘raw’ unnormalized value returned by RooAbsPdf::evaluate(). Note that the 
normalization integral of G(x|y) can have a different value for each value of y, so the difference 
between G(x,y) and G(x|y) is not simply a constant overall normalization factor. 
 

Fitting with conditional p.d.f.s 
To fit a p.d.f as a conditional p.d.f. rather than as a full p.d.f. use the ConditionalObservables() 
modifier to fitTo(): 
 
 

// Fit model as M(x|y) to D(x,y) 
model.fitTo(*data,ConditionalObservables(y)) ; 

 
 
You may observe that using model as a conditional p.d.f.s is much slower than using it as a plain 
p.d.f. This happens because the normalization integral over x needs to be calculated separately for 
each event when used a conditional p.d.f., whereas the normalization integral of a plain p.d.f. is the 
same for all events in the likelihood and therefore only calculated when a parameter value changes. 
This effect is most notable if the normalization calculation requires a numeric integration step. 
 

Plotting conditional p.d.f.s 
Plotting a conditional p.d.f. requires some extra work. Whereas a plain two-dimensional p.d.f. G(x,y) 
can be projected on x through integration 
 

;ݔ௫ሺܩ ሻ ൌ නܩሺݔ, ;ݕ  ,ݕሻ݀

 
this cannot be done G(x|y) because it contains – by construction – no information on the distribution of 
y. Thus we need an external source for the distribution of y to perform the projection. To that end we 
rewrite the projection integral as a Monte Carlo integral 
 

;ݔ௫ሺܩ ሻ ൌ නܩሺݔ, ;ݕ ݕሻ݀  ൎ  
1
ܰܩሺݔ, ;ݕ ሻ

ே

ୀଵ

 

 
where the values yi are taken from a sampling of the p.d.f. G. Now, instead using those sampled 
values for yi, we substitute those from the dataset D(x,y) to which G was fitted to calculate the 
projection. The following code fragment shows how this is done 
 
 

// Plot projection of D(x,y) and M(x|y) on x 
RooPlot* frame = x.frame() ; 
data->plotOn(frame) ; 
model.plotOn(frame,ProjWData(y,*data)) ; 

 
 
The modified ProjWData() instructs plotOn() to use MC integration instead of plain integration for 
the projection of observable y and to use the value yi provided by dataset data to perform the 
projection. The modifier is only active when the resulting plot requires an actual integration over the 
indicated observable. If it is used, a messages will be printed with some details 
 
 

[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x averages using data 
variables (y)  
[#1] INFO:Plotting -- RooDataWeightedAverage::ctor(modelDataWgtAvg) constructing 
data weighted average of function model_Norm[x] over 6850 data points of (y) 
with a total weight of 6850 
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The plot that results from the above example is shown in Figure 28. In general, projections calculated 
through Monte Carlo integration can be slow because each point of the curve is calculated as an 
average of potentially large number of samplings (>>1000). In Chapter 7 strategies are discussed to 
tune the performance/precision tradeoff of Monte Carlo projections. 
 

 
Figure 28 – Projection of p.d.f of Example 11 used as conditional p.d.f. G(x|y) through Monte 

Carlo projection technique using distribution of y values from data. 
 
Note that there is no corresponding projection on the y observable because the conditional p.d.f. 
G(x|y) predicts no distribution in y.  
 

Generating events with conditional p.d.f.s 
The generation of events from a conditional p.d.f. G(x|y) requires – like plotting – an external input on 
the distribution of y. You can feed an input dataset with values of y in the generation step using the 
ProtoData() modifier of RooAbsPdf::generate(): 
 
 

RooDataSet *data = model.generate(x,ProtoData(externDataY)) ; 
 
 
where externDataY is a dataset with the values yi to be used for this generation. If a prototype 
dataset is specified, the number of events to generate defaults to the number of events in the 
prototype dataset, but it is still possible to specify a different number. If more events are requested 
than there are events, prototype events will be used multiple times. See Chapter 7 for additional 
details. 
 

Warning on the use of composite models as conditional p.d.f.s 
From a technical point is it entirely unproblematic to use composite models (signal plus background) 
constructed with RooAddPdf as conditional p.d.f.s, you can substitute the example model of this 
section with a RooAddPdf composite model and everything will work the same. However be aware 
that when you do this you assume that all components (signal and background) have the same 
distribution in the conditional observable(s). This is not necessarily a trivial, or correct assumption15. 
 

Products with conditional p.d.f.s 
A product of a conditional p.d.f. G(x|y)  with a second p.d.f. F(y) 
 

,ݔሺܯ ሻݕ ൌ  ሻݕሺܨሻݕ|ݔሺܩ
                                                      
15 See e.g. G. Punzi physics/0401045 on the potential pitfalls of such assumptions 
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offers a construction of all the benefits of a conditional p.d.f.s without its practical and interpretational 
drawbacks. In the form above, the conditional p.d.f G(x|y) provides the description of the distribution 
of x and how that description depends on y, and the plain p.d.f. F(y) provides the description of the 
overall distribution in y. The result is a full p.d.f. in both observables and it eliminates the need for 
extraneous datasets in plotting and event generation steps.  A product of this form is automatically 
normalized if F and G are normalized: 
 

ඵܩሺݕ|ݔሻܨሺݕሻ ݕ݀ݔ݀ ൌ න൬නܩሺݕ|ݔሻ݀ݔ൰ܨሺݕሻ݀ݕ ൌ  න1⋅ܨሺݕሻ݀ݕ ൌ 1 

 
thus no additional normalization overhead is incurred. 

 
Using conditional p.d.f.s with RooProdPdf 
The regular RooProdPdf operator class can be used to construct a product of p.d.f.s. that contain 
conditional terms: you need to indicate what input p.d.f.s are conditional through the Conditional() 
modifier. 
 
To complete the example of the opening section, we now write a Gaussian p.d.f in observable y and 
multiply that with the conditional p.d.f. G(x|y) from the preceding section.  
 

 
// Create f(y) 
RooPolyVar fy("fy","fy",y,RooArgSet(a0,a1)) ; 
 
// Create gauss(x,f(y),s) 
RooGaussian model("model","Gaussian with shifting mean",x,fy,sigma) ;   
 
// Create gaussy(y,0,5) 
RooGaussian gy("gy","Model for y",y,RooConst(0),RooConst(3)) ; 
 
// Create gaussx(x,sx|y) * gaussy(y) 
RooProdPdf condprod("condprod","model(x|y)*gy(y)",gy,Conditional(model,x)) ; 
 

Example 12 – Constructing a product of a conditional p.d.f. with a plain p.d.f to describe a two-
dimensional distribution with correlations 

 
The Conditional() argument instructs RooProdPdf to interpret model as a conditional p.d.f. G(x|כ) 
where כ denotes all observables other than x16.  We have repeated the definition of model here to 
visualize the claim in the opening section that the model shown in Figure 21 can be written in 4 lines 
of code excluding parameter declarations. 
 
 

Plotting, fitting and generating with conditional product models 
Since a product of a conditional p.d.f. G(x|y) with a plain p.d.f. F(y) is a plain p.d.f itself, all operations 
related to plotting, fitting and event generation work as usual. 
 
 

// Generate 1000 events in x and y from model 
RooDataSet *data = condprod.generate(RooArgSet(x,y),10000) ; 
 

                                                      
16 Since RooFit p.d.f. have no static notion of observables vs parameters, the value of כ depends on 
the use context of this object. If the observables are (x,y), G(x|כ) evaluates to G(x|y). If the 
observables are (x), it evaluates to G(x). If x is not among the observables the G term is dropped 
entirely from the product, as happens to all RooProdPdf terms that don’t depend on any observable. 
Additional details on this issue are discussed in Chapter 7. 
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// Fit G(x|y)F(y) to D(x,y) 
condprod.fitTo(*data) ; 
 
// Plot x distribution of data and projection of model on x    
RooPlot* xframe = x.frame() ; 
data->plotOn(xframe) ; 
model.plotOn(xframe) ;  
 
// Plot x distribution of data and projection of model on y 
RooPlot* yframe = y.frame() ; 
data->plotOn(yframe) ; 
model.plotOn(yframe) ;  
 

 
 
The result of the above example is shown in Figure 29. Since condprod is a full p.d.f. we can make 
plots of both the x and y projections. 
 
 

 
Figure 29 – Conditional product p.d.f. G(x|y)⋅F(y) of Example 12 fitted to data D(x,y) 

 

Behind the scenes 
Class RooProdPdf retains much of its internal streamlining abilities if conditional terms are included 
in the product.  
 
As with products of plain p.d.f., no explicit normalization needs to be calculated for the product as the 
a product of orthogonal p.d.f.s is normalized by construction even if some of them are conditional 
 

ඵܥሺݔ, ݕݔሻ݀ݕ ൌඵܣሺݕ|ݔሻܤሺݕሻ݀ݕ݀ݔ ൌ  න൬නܣሺݕ|ݔሻ݀ݔ൰ܤሺݕሻ݀ݕ ൌ  න1⋅ܤሺݕሻ݀ݕ ؠ 1 

 
The normalization of component p.d.f. A(x|y) will need to be calculated for each event in this mode of 
operation, but that is intrinsic to the definition of conditional p.d.f.s. Projection integrals that occur in 
plotting that can be simplified are, e.g. 
 

නܥሺݔ, ݔሻ݀ݕ ൌ නܣሺݕ|ݔሻܤሺݕሻ݀ݔ ൌ ൬නܣሺݕ|ݔሻ݀ݔ൰ܤሺݕሻ ൌ  ሻݕሺܤ

 
While the ones that are not, such as 
 

නܥሺݔ, ݕሻ݀ݕ ൌ නܣሺݕ|ݔሻܤሺݕሻ݀ݕ 
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are calculated through numeric integration. Note that compared to the Monte Carlo integration 
technique, used for the projection of conditional p.d.f. that are used standalone, this is usually faster 
can be calculated with an accurate numeric target precision17. 
 
Also event generation is still handled in a distribution mode. For products involving conditional terms, 
the order in which observables are generated is relevant and is determined automatically. For the 
example for the p.d.f. F(x|y)G(y), first the observable y is generated using the generator context of 
G(y). Then the observable x is generated from F(x|y). If F implements an internal generator, event 
generation for F(x|y)G(y) occurs at the same efficiency as for F(x)G(y). If accept/reject sampling is 
required for F, some performance loss occurs because the maximum value of F must now be found in 
the two-dimensional space (x,y) instead of in the one-dimensional space (x), which requires more trial 
samplings. 
 

Extending products to more than two dimensions 
For illustrational clarity all examples in this section have been chosen to have two observables.  
 
All of the described functionality is available for an arbitrary number of dimensions. In any place where 
a RooArgSet of two observables is passed, a RooArgSet of N observables can be substituted 
 
 

RooDataSet *data = condprod.generate(RooArgSet(x,y,z,t),10000) ; 
 
 
In any place where a single conditional observable was passed, a RooArgSet of conditional 
observables can be passed: 
 
 

model.fitTo(*data,ConditionalObservables(RooArgSet(y,z))) ; 
 
model.plotOn(frame,ProjWData(RooArgSet(y,z),*data)) ; 

 
 
A  RooProdPdf can take arbitrary number of regular input p.d.f.s and up to eight18 conditional p.d.f.s 
specifications. 
 
 

RooProdPdf condprod("condprod","A(x|y)*B(y|z)*C(z)*D(t,u)*E(k)", 
                 RooArgSet(C,D,E), 
                 Conditional(A,x),Conditional(B,y)) ; 

 
 
It is explicitly allowed to ‘chain’ conditional p.d.f.s, i.e. A(x|y)⋅B(y|z)⋅C(z).  
 
You can also introduce cross-correlation terms of the type A(x|y)⋅B(y|x) but terms of this type are not 
automatically normalized if A and B are, and you incur the computational overhead of an explicit 2-
dimensional numeric integration step. This feature should thus be used with some caution. 

Modeling data with per-event error observables. 
We conclude this Chapter with a section that illustrates how the concept of conditional p.d.f.s can be 
used to describe a common type of multi-dimensional problem: The modeling of the distribution of an 
observable t that has associated uncertainty on that measurement for each event quantified in a 
second observable dt. 

                                                      
17 The adaptive Gauss-Kronrod numeric integration algorithm typically needs O(50) function 
evaluations to calculate the integral of a smooth function with a target precision of 10-7. 
18 This limit is imposed by the constructor interface, is not fundamental, and can be extended on 
request. 
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An example from B physics 
An example of such a measurement is that of the lifetime of the decay of a particle through 
reconstruction of its decay vertex. The first step in this measurement is to collect a data sample with 
observed decays. Each decay is described by a decay time, which is derived from a flight length 
measurement between the production vertex of the particle and the decay vertex of the particle. For 
an ideal detector the distribution of observed decay times is an exponential distribution with an 
exponent that is the inverse of the lifetime τ of the particle: 
 

FI(t) = exp(-t/τ) 
 

Figure 30 – Distribution of decay times measure with ideal detector (left) and realistic 
detector(right) 

 
A real-life detector has a finite experimental resolution on each measurement t of the decay time. We 
can adjust our model to incorporate a Gaussian measurement uncertainty on each t by convolving FI 
with a Gaussian: 
 

FR(t) = exp(-t/τ) ⊗ G(t,μ,σ) ≡ ∫ dt’ exp(-t’/τ) G(t-t’,μ,σ) 
 
In this expression G denotes a Gaussian with mean μ and width σ. The width σ expresses the 
experimental resolution on each measurement of t and the mean μ parameterizes the average bias in 
that measurement. We assume the latter to be zero for the sake of this examples simplicity. Figure 30 
shows the ideal and realistic model FI and FR fit to a sample of toy Monte Carlo events. You can see 
from the magnitude of error on the fitted value of τ  that the finite t resolution of the realistic model 
reduces the precision of the measurement of τ.  
 
The tools to formulate such a convolution have been covered in Chapter 5. In this section we will now 
focus on how we can extend the one-dimensional convolution model into a two-dimensional model 
that takes into additional observable dt, and its correlation to t. 
  

Introducing a second correlated observable 
Each measurement of a decay time t in our example is the result of a measurement of the distance 
between two decay vertices that are each calculated from the intersection of a number of charged 
particle trajectories. These vertex positions have uncertainties associated to them that are derived 
from the uncertainties on the participating charged particle trajectories and can be used to assigned 
an experimental error dt to each measurement t. This means that the detector resolution on t is not 
really a fixed value, but rather varies from event to event.  
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This example of a decay time measurement represent a substantial class of measurements where an 
observable x is accompanied by an error estimate dx that can be treated as a second correlated 
observable in the model that describes the experimental results. 
 
Following the composition strategy, we first modify the model such that each event is characterized by 
a pair of values (t,dt) rather than a single number t and thereby we acknowledge that certain events – 
those with small dt – carry more information then others, and use this information to achieve a better 
measurement of τ with the same data. Here is the enhanced p.d.f: 
 

FE(t,dt) = exp(-t/τ) ⊗ G(t,μ,dt) 
 
It is easy to see that this small modification  – replacing the resolution estimate σ by the per-event 
error dt – realizes the intended effect. Given two events A and B with identical observed decay times 
tA=tB=t and uncertainties that differ by a factor of two dtA= dtB/2, the contribution of event A to the total 
likelihood will differ from the contribution of event B because exponential shape of the model for event 
A is convolved with a Gaussian that is twice as small as that for event B. A refit of the data sample of 
Figure 30 to such an enhanced model reflects the enhanced statistical power of this model, by 
reducing the measurement error of τ from 0.067 to 0.060, a 10% improvement of the measurement 
performed on the same data that is equivalent to having 20% more data available19. 
 

Accounting for improper external error estimates 
An important caveat in the enhanced model FE is that it assumes that the provided error estimates dt 
are correct. If these estimates are too small on average, the error on the physics parameter τ will be 
too small as well. As this is usually undesirable, you should verify the correctness of the errors dt by 
looking at pull distributions, i.e. comparing the spread of the measured values (the external error) to 
the distribution of the given errors (the internal error). We can incorporate this check in the model FE 
through the following modification: 
 

FE(t,dt) = exp(-t/τ) ⊗ G(t,μ,σ⋅dt) 
 
Now the model doesn’t make any absolute interpretation of the errors dt, it just assumes that the true 
uncertainty of each t measurement scales linearly with the provided error. The parameter σ serves as 
a global scale factor applied to the per-event errors dt. If you fit this model to the data and the 
uncertainty estimates dt turn out the be correct on average you will find that σ=1. If the error estimates 
are too high or too low on average, this is apparent from a mismatch in the distribution of values and 
errors in the data and the fit will steer σ to a value smaller or greater than 1. Effectively one could 
interpret G as a fit to the pull distribution associated with the vertexing procedure. Thanks to this built-
in correction of the per-event errors the improved model FE has gained an important quality: the error 
on the physics parameter τ is to first order independent of the correctness of the error estimates dt. A 
second order dependency comes in when the pull distribution of the dt errors cannot be accurately 
described by a Gaussian. Also this can be mitigated, for example by replacing G by a sum of two or 
more Gaussians of different width and mean. 
 

Coding the example model 
Here is an example that codes the life time measurement with per-event errors: 
 
 
 
 
 

// Observables 
RooRealVar t("t","t",-2,10) ; 
RooRealVar dt("dt","per-event error on t",0.01,5) ; 
 

                                                      
19 The actual gain depends on the spread of the per-event errors. The shown example has a 
performance that is typical for BaBar experimental data.  
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// Build a Gaussian resolution model scaled  
// by the per-event error = gauss(t,bias,sigma*dt) 
RooRealVar bias("bias","bias",0,-10,10) ; 
RooRealVar sigma("sigma","per-event error scale factor",1,0.1,10) ; 
RooGaussModel gm("gm1","gauss model scaled by per-event error",t,bias,sigma,dt); 
 
// Construct decay(t) (x) gauss1(t|dt) 
RooRealVar tau("tau","tau",1.548) ; 
RooDecay decay_gm("decay_gm","decay",t,tau,gm,RooDecay::SingleSided) ; 

 
Example 13 – Model describing measurement of life time of particle using associated per-event 

error on the lifetime 
 
In this example class RooDecay is used to perform the analytical convolution of the decay distribution 
with the resolution model. We construct the Gaussian resolution model using class RooGaussModel. 
This class has a built-in feature that allows multiple the mean and width parameters, supplied as 
bias and sigma with a common external scale factor, supplied as dterr. This saves the 
construction of a RooProduct instance to calculate sigma*dterr.  
 

Using the example as conditional p.d.f. 
Given an external dataset D(t,dt) we can choose to use the p.d.f of Example 13 as a conditional p.d.f 
 
 

// Specify dterr as conditional observable 
decay_gm.fitTo(*data,ConditionalObservables(dt)) ; 
 
// Make projection of data an dt 
RooPlot* frame = dt.frame(Title("Projection of decay(d|dt) on t")) ; 
data->plotOn(frame) ; 
decay_gm.plotOn(frame,ProjWData(*data)) ; 

 
 
Figure 31c shows the output of the above fit in addition to a two-dimensional view of the conditional 
p.d.f (a) and a view of the t distribution at various values of dt (b) 
 
 

 
Figure 31 – Conditional model describing measurement of lifetime t with associated per-event 

error dt.  a) two-dimensional view, b) shape in t at various dt, c) projection on t overlaid on 
data, using the dt weighting from data to project over dt  

 

Using the example as full p.d.f. 
We can also construct a full p.d.f from the lifetime model by multiplying its conditional form with a full 
p.d.f. that describes the distribution of the per-event errors,  
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// Make empirical p.d.f describing dt shape in data 
RooDataHist* expHistDterr = expDataDterr->binnedClone() ; 
RooHistPdf pdfErr("pdfErr","pdfErr",dterr,*expHistDterr) ; 
 
// Construct production of decay_dm(dt|dterr) with empirical pdfErr(dterr) 
RooProdPdf model("model","model",pdfErr,Conditional(decay_gm,dt)) ; 
 

Example 14 – Full two-dimensional model describing measurement of lifetime and its 
associated error on the lifetime 

which can be used as a regular p.d.f. 
 
 

model.fitTo(*data) ; 
 
RooPlot* frame = dt.frame() ; 
data->plotOn(frame) ; 
model.plotOn(frame) ; 

 
 
Figure 32b shows the projection on the t observable of the fitted p.d.f in addition to the two-
dimensional view (a), 
 

 
Figure 32 – Full model describing measurement of lifetime t with associated per-event error dt.  

a) two-dimensional view,  b) projection on t (through integration) overlaid on data 
 

Tutorial macros 
The following tutorial macros are provided with the chapter 
 

• rf301_composition.C – Multi-dimensional p.d.f.s through composition 
• rf302_utilfuncs.C – Utility functions classes available for use in composition 
• rf303_conditional.C – Use of composed models as conditional p.d.f.s 
• rf304_uncorrprod.C – Simple uncorrelated multi-dimensional p.d.f.s 
• rf305_condcorrprod.C – Multi-dimensional p.d.f.s with conditional p.d.f.s in product 
• rf306_condpereventerrors.C – Complete example of cond/ p.d.f. with per-event errors 
• rf307_fullpereventerrors.C – Complete example of full p.d.f. with per-event errors 
• rf308_normintegration2d.C – Examples on normalization of p.d.f.s in >1 dimension 
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7. Working with projections and ranges 
This chapter reviews a selection of issues that arise in the use of multi-dimensional models. In many 
aspects of fitting and generation multidimensional can be used in the same way as one dimensional 
models. Certain aspects are however different, notably in the area of plotting, where many more 
options exist, such as plots that project regions of interest that can be expression as a (hyper)box cut 
(“2<x<4”), as a region with a parameterized boundary (“0<x<√y”), or as a region defined by a boolean 
selection function(“|x2+y2|<5”).   
 

A toy model 
To illustrate most of the functionality of this chapter, a common 3-dimensional  toy model consisting of 
a polynomial background P(x)⋅P(y)⋅P(z) plus a Gaussian signal G(x)⋅G(y)⋅G(z), is used: 
 

 
  // Create observables 
  RooRealVar x("x","x",-5,5) ; 
  RooRealVar y("y","y",-5,5) ; 
  RooRealVar z("z","z",-5,5) ; 
 
  // Create signal pdf gauss(x)*gauss(y) 
  RooGaussian gx("gx","gx",x,RooConst(0),RooConst(1)) ; 
  RooGaussian gy("gy","gy",y,RooConst(0),RooConst(1)) ; 
  RooGaussian gz("gz","gz",z,RooConst(0),RooConst(1)) ; 
  RooProdPdf sig("sig","sig",RooArgSet(gx,gy,gz)) ; 
 
  // Create background pdf poly(x)*poly(y) 
  RooPolynomial px("px","px",x,RooArgSet(RooConst(-0.1),RooConst(0.004))) ; 
  RooPolynomial py("py","py",y,RooArgSet(RooConst(0.1),RooConst(-0.004))) ; 
  RooPolynomial pz("pz","pz",z,RooArgSet(RooConst(0.1),RooConst(-0.004))) ; 
  RooProdPdf bkg("bkg","bkg",RooArgSet(px,py,pz)) ; 
 
  // Create composite pdf sig+bkg 
  RooRealVar fsig("fsig","signal fraction",0.1,0.,1.) ; 
  RooAddPdf model("model","model",RooArgList(sig,bkg),fsig) ; 

 
Example 15 – Three dimensional model with polynomial background and Gaussian signal 

 
 

Using a N-dimensional model as a lower dimensional model 

Marginalization 
Any model M(x,y,z) is also a model for a subset of the observables, where the reduced model is 
defined as 

Ԧሻݔᇱሺܯ ൌ නܯሺݔԦ,  ԦݕԦሻ݀ݕ

 
This process is called marginalization and eliminates the observable(s) y from the reduced p.d.f 
expression.  For any RooAbsPdf a marginalized expression can be obtained through the 
createProjection() method: 
 

 
// M(x,y) = Int M(x,y,z) dz 
RooAbsPdf* modelxy = model.createProjection(z) ; 
 
// M(x) = Int M(x,y,z) dy dz 
RooAbsPdf* modelx = model.createProjection(RooArgSet(y,z)) ; 
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Automatic marginalization of factorizing products 
For a model M(x,y,z) that consist of a factorizing product of the form 
  

,ݔሺܯ ሻݕ ൌ  ሻݕሺܩሻݔሺܨ
 
the integration step reduces to a simple dropping of the observable terms 
 

ሻݔᇱሺܯ ൌ නܨሺݔሻ݃ሺݕሻ݀ݕ ൌ  ሻݔሺܨ

 
and this step is performed automatically and implicitly by RooProdPdf where appropriate.  
For example, one can use the 3D product sig from Example 15 as a model in (x,y) as follows: 
 

 
RooDataSet* sigData = sig.generate((RooArgSet(x,y),1000) ; 
sig.fitTo(*sigData) ; 
 

 
Specifically RooProdPdf drops all product terms that do not depend on any observable in a given 
use context.  
 

Why automatic marginalization is performed for factorizing products 
If automatic marginalization were not performed on the above code example, model would be used 
with (x,y) as observables and z as parameter. A likelihood calculated from a dataset D(x,y) and a 
p.d.f. M(x,y;z) has the same functional form as the marginal expression, except for the presence of  
gz that serves as overall scale factor: it does not depend on any observable but it does introduces 
extra (fit) parameters. Such terms can easily introduce degrees of freedom in the likelihood that are 
unconstrained20, break the MINUIT minimization process, and are therefore generally undesirable and 
removed by default. 
 
In certain cases you do want such extra terms: if the product term represents an intentional constraint 
on one or more of the parameters that occur in other product terms as well. The declaration of such 
constraint terms is explained in Chapter 12. 
 

Automatic  marginalization in factorizable composite models  
The automatic reduction of product terms is also applied if the RooProdPdf object is not the top level 
of the p.d.f. expression. Thus a sum of factorizable products, of the general form 
 

,ݔሺܯ ሻݕ ൌܿ ⋅ ሾܨሺݔሻܩሺݕሻሿ  
                 
ሳልልልልሰ ܯᇱሺݔሻ ൌܿᇱܨሺݔሻ 

 
also automatically reduces this same way. The toy model of Example 15 is an example of such a 
composite factorizing p.d.f. and can be used in two dimensions the same way sig can: 
 

 
RooDataSet* modelData = model.generate((RooArgSet(x,y),1000) ; 
model.fitTo(*sigData) ; 
 

 
The default behavior of the automatic reduction of composite model is that ܿᇱ ؠ ܿ so that the reduced 
p.d.f. is identical to the integration projection, as illustrated in Figure 33(middle) 
 
 

                                                      
20 In case of gz this happens of both z and the mean of z are floating parameters, in which case z-
zmean is constrained, but z+zmean is not. 
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Figure 33 – Two-dimensional model M(x,y) = fG(x)G(y)+(1-f)P(x)P(y) (left), its one-dimensional 

projection M’(x)=fG(x)+(1-f)P(x) (middle) and its slices at y=0,3,4 (right) 
 

Slicing of factorizable composite models 
Even though a sum of factorizable products are marginalized by default, they do not need to be as 
sums of such of products can (unlike single products ) depend in a meaningful way on variables that 
are automatically marginalized. This is best illustrated in Figure 33a: the shape of M(x;y) – defined as 
a slice in the plot at a given y value – does depend the value of y, even if the shapes of the signal and 
background components themselves don’t. 
 
The difference between this interpretation and that of the marginalized model Figure 33b is in the 
interpretation of the fraction coefficient. In the former case we interpret fsig as the fraction between 
p.d.f.s defined  with observables(x,y), in the latter as a fraction between p.d.f.s with define observable 
(x).  
  
To indicate that a frozen definition of fraction coefficients should be used for composite p.d.f 
interpretations, use the method fixAddCoefNormalization(): 
 

 
// Instruct model to interpret its fraction coefficients in (x,y) regardless of 
// actual choice of observable 
 
model.fixAddCoefNormalization(RooArgSet(x,y)) ; 
 

  
If this option is active, the coefficients ci’ for use with observable (x) are 
 

ܿᇱሺݕሻ ൌ ܿ
,ݔሺܨ /ݔሻ݀ݕ ,ݔሺܨ ݕ݀ݔሻ݀ݕ

∑ ܿԢ
 

 
The slicing expression in c’i consists of a ratio of integrals in the numerator that accounts for ‘surface-
to-volume’ correction of each component p.d.f. It is this ratio of integrals that introduces a functional 
behavior of ci’ on y and thus of model on y. The summation in the denominator normalizes the 
transformed coefficients such that they add up to one.  
 
A plot of M(x) at y=0,3,4 is then plotted as 
 

 
RooPlot* frame = x.frame() ; 
y=0 ; model.plotOn(frame) ; 
y=3 ; model.plotOn(frame) ; 
y=4 ; model.plotOn(frame) ; 
 

 
which is shown in Figure 33-right. 
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Visualization of multi-dimensional models 
 
In Chapter 6 the basics of one-dimensional projection plots of multi-dimensional models have been 
covered. Most of the remainder of this Chapter will explore variations of one-dimensional projection 
plots where the projection range is constrained to a signal-enhanced region in a number of ways. 
Before we explore those issues we make a short digression in to techniques to construct multi-
dimensional plots and one-dimensional slice plots 

Making 2D and 3D plots 
RooFit provides a basic interface for the visualization of data and models in 2 or 3 dimensions.  
 

 
// Create and fill ROOT 2D histogram (50x50 bins) with sampling of pdf 
TH1* hh_pdf = model.createHistogram("x,y",50,50) ; 
hh_pdf->SetLineColor(kBlue) ; 
 

 
A named argument version of createHistogram() exists as well that you can use if you want to 
exert more detailed control over the sampling process: 
 

 
// Create histogram with 20 bins in x and 20 bins in y 
TH2D* hh1 = model.createHistogram("hh_data",x, 
                                  Binning(20), 
                                  YVar(y,Binning(20))) ; 
 
// Create histogram with 20 bins in x in the range [-2,2] and 10 bins in y 
TH2D* hh2 = model.createHistogram("hh_data",x, 
                                  Binning(20,-2,2), 
                                  YVar(y,Binning(10))) ; 
 

 
There is no interface to RooPlots, as 2- and 3-dimensional graphics are usually not overlaid. Figure 
34 shows a couple of examples in 2 and 3 dimensions made using the createHistogram() 
method. A similarly named method exists for making 1,2,3-dimensional histograms from datasets.. 
 
 

 
Figure 34 – Histogram sampled from a 2D p.d.f drawn with SURF, CONT options (left, middle). 

Histogram sampled from a 3D p.d.f drawn with ISO option (right). 

Plotting 1D slices 
If a multi-dimensional model is plotted on an empty RooPlot, no projections are performed, and a 
one-dimensional slice is drawn 
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// Plot model(x) at y=0,z=0 
z=0 ; y=0 ; 
RooPlot* frame = x.frame() 
model.plotOn(frame) ; 
 
// Overlay model(x) at y=5,z=0 
y=5 ; 
model.plotOn(frame,LineStyle(kDashed)) ; 
 

 
If models involve RooAddPdf composite terms, it may be necessary to fix the interpretation of their 
coefficients to a fixed set using fixAddCoefNormalization() before making these slice plots as 
explained in the preceding section. 
 
For models with two or more observables, one can also choose to plot a projection over one or more 
observables, rather than a slice in all but one observable 
 

 
// Overlay Int model(x) dy at z=0 
z=0 ; 
model.plotOn(frame,Project(y)) ; 
 
// Overlay Int model(x) dz at y=3 
y=3 ; 
model.plotOn(frame,Project(z)) ; 
 

 

Definitions and basic use of rectangular ranges 
In Chapter 2 the Range(double,double) modifier was introduced to restrict the action of fitting and 
plotting to the specified range. Using p.d.f.s defined in Example 15, we can construct a simple one-
dimensional p.d.f, and fit and plot it the range [-2,2] as follows 
 

 
// Construct one-dimensionalGaussian+Polynomial model 
RooRealVar f("f","signal fraction",0.1,0.,1.) ; 
RooAddPdf pdf("pdf","pdf",RooArgList(gx,px),f) ; 
 
pdf.fitTo(data,Range(-2,2)) ; 
pdf.plotOn(frame,Range(-2,2)) ; 
 

 

Named ranges 
An alternate way work with ranges is to create a named range associated with the observable that 
can subsequently be referenced by name through the Range(const char*) modifier 
 
 

x.setRange(“signal”,-2,2) ; 
 

pdf.fitTo(data,Range(“signal”)) ; 
pdf.plotOn(frame,Range(“signal”)) ; 

 
 
Named range simplify the management of ranges in user analysis code as the definition of a range 
can be made in one place and be referenced everywhere. Most of the range functionality of RooFit 
works exclusively with named ranges and it is recommended to use named ranges for all but the most 
trivial use cases. 
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Simultaneous fitting and plotting of multiple ranges 
There is no formal concept of composite ranges in RooFit, but most algorithms that work with ranges 
accept multiple range specifications: 
 
 

x.setRange(“sb_lo”,-5,-2) ; 
x.setRange(“sb_hi”,2,5) ; 

 
// Fit background shape only in sidebands 
px.fitTo(data,Range(“sb_lo,sb_hi”)) ; 
 

 
In this example a simultaneous fit is performed to the data in range sb_lo and in the range sb_hi. 
No consistency checks are performed when multiple ranges are specified, e.g. if ranges overlap in the 
above example, some data will be used more than once in the likelihood fit.  

 
If a fit in (one or more) ranges is performed on a p.d.f, a subsequent plot will by default only show the 
p.d.f. projection in those ranges, i.e. this plot 
 

 
RooPlot* frame = x.frame() ; 
data.plotOn(frame) ; 
px.plotOn(frame) ; 
 

 
will result in the solid line of Figure 35. The explicit form of the implied fit range settings of the above 
plot command is  
 

 
px.plotOn(frame,Range(“sb_lo,sb_hi”),NormRange(“sb_lo,sb_hi”)) ; 
 

 
where the Range() modifier changes the ranges in which the curve is drawn and the NormRange() 
modifiers control which ranges of the data are used to normalize the curve to the data. It is possible to 
override this behavior, for example  by specifying a plot ranges that is different from the fit range using 
a Range() modifier: 
 

 
// Draw px in full range 
px.plotOn(frame,Range(-5,5),LineStyle(kDashed)) ; 
 

 
The result of this call is shown as the dashed line in Figure 35. Note that the normalization range used 
in the projection is still sb_lo,sb_hi so that the curve correctly overlays the data in the fitted regions 
(only). Addition of a NormRange(“sb_lo,sb_hi”) would result in the dotted curve in Figure 35.  
 
 

 
Figure 35 – Illustration of plotting and fitting in multiple sideband ranges 
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A 

B 

Semantics of range definitions in multiple observables 
If a range with a given name occurs in more than one observable, the range is defined as the logical 
and of the two regions, i.e. 
 
 

RooRealVar y(“y”,”y”,-10,10) ; 
x.setRange(“signal”,-2,2) ; 
y.setRange(“signal”,-2,2) ; 

 
 
defines the region in (x,y) space defined by (-2<x<2 && -2<y<2).  
 
If a named range has not been explicitly defined on an observable and it is referenced, it is 
automatically defined on the fly as a range equal to the full range 
 
 

RooRealVar z(“z”,”z”,-10,10) ; 
z.getMin(“signal”) ; // returns -10  

 
 
Technically, a range is special type of binning (class RooRangeBinning) with a single bin. A range 
can therefore also be retrieved though the binning definitions interface of RooRealVar: 
 

 
RooAbsBinning& signalBinning = x.getBinning(“signal”) ; 
 

 
A binning does not need to be of type RooRangeBinning to be functional as range, any type of 
binning object can serve as range 
 

 
RooUniformBinning unibin(-2,2,100) ; 
z.setBinning(unibin,”signal”) ; 
 

 

Using multiple ranges with more than observable 
All interfaces that accept the specification of multiple ranges also work with multi-dimensional ranges. 
In such cases the logical ‘and’ between the definitions of the same range in different observables 
takes precedence over the logical ‘or’ between ranges with different names, as illustrated below. 
 

 
// Define range A 
x.setRange(“A”,0,2) ; 
y.setRange(“A”,0,2) ; 
 
// Define range B 
x.setRange(“B”,-2,0) ; 
y.setRange(“B”,-2,0) ;  
  
// Fit to (A||B) 
model.fitTo(data,Range(“A,B”)) ; 
 

Example 16 – Constructing and using multiple ranges in more than one dimensions 
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Fitting and plotting with rectangular regions 
The syntax for a fit in one or more ranges in multiple dimensions is the same as that for one 
dimension, as shown in Example 16. Most of the non-trivial issues with use of ranges are related 
plotting. 
 
Regions are often used in projection plots as the sensitivity of multi-dimensional model to signal is 
generally not well reflected in a plain projection of the model and data on one of its observables. The 
model of Example 15 is shown in Figure 36 and illustrates a common problem: the signal/background 
discrimination power of the model in projected observable (y in Figure 36) is discarded and the 
resulting plot in x is no accurate reflection of the information contained in the full model. 
 

 
Figure 36 – Toy model of Example 15 shown in the x,y plane (left) and projected on x(right) 

 

Projecting the signal region 
While multi-dimensional plots like Figure 36-left are graphically appealing and useful for debugging, 
they are of limited used for publication quality plots as it is difficult to overlay models on data and to 
visualize error bars on data.  
 
A common approach is therefore to visualize the essence of a multi-dimensional problem into a one 
dimensional projection over a well chosen ‘signal’ range of the projected observables. For our toy 
model of Example 15 we can show the distribution of x in the signal enhanced region in y, e.g. [-2,2]. 
For data this is trivial 
 

 
  RooPlot* frame = x.frame() ; 
  data->plotOn(frame,Cut("fabs(y)<2")) ; 
 

 
One of the nice features of RooFit is that it is also trivial to do this for the corresponding model 
projection using the Range() functionality. 
 

 
y.setRange(“signal”,-2,2) ; 
 
RooPlot* frame = x.frame() ; 
data->plotOn(frame,CutRange("signal")) ; 
model.plotOn(frame,ProjectionRange(“signal”)) ; 
 

 
The result of the example is shown in Figure 37-right. The projection over  the full range of y is shown 
on the left pane for comparison. 
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Figure 37 – Toy model of Example 15 projected on x over the full range of y(l) and over [-2,2] (r) 
 
Since range definitions are made in the observable definitions, projection plots over multi-dimensional 
signal regions scale unproblematically with the number of dimensions. One can trivially extend the 
preceding example to three dimensions using the full model of Example 15 and an extra range 
definition in the z observable: 
 

 
y.setRange(“signal”,-2,2) ; 
z.setRange(“signal”,-1,1) ; 
 
RooPlot* frame = x.frame() ; 
data->plotOn(frame,CutRange("signal")) ; 
model.plotOn(frame,ProjectionRange(“signal”)) ; 
 

 
The use of named ranges associated with observables has the added advantage that consistent 
ranges can be plotted for data using the CutRange() argument from a unique definition of each 
range. 

 
Figure 38 – Three dimensional version of toy model of Example 15 projected on x over the full 

range of (y,z) (left) and over [-1,1]⋅[-1,1] (right) 
 
The use of the ProjectionRange() modifier does not affect the functionality of the usual 
plotOn() functionally, one can for example plot component p.d.f.s in range projection the usual way 
 

 
model.plotOn(frame,ProjectionRange(“sig”),Components(“bkg”),LineStyle(kDashed)); 

 
 
Figure 39 illustrate the result of range projections with background components for  a two-dimensional 
B physics p.d.f. in the selection observable mB and the measurement observable t.  
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Figure 39 – Projections of a B physics p.d.f in (mB,t) with signal and background.lLeft) 
projection on mB, middle) projection on t, right) projection on t in mB range [5.27,5.30] 

 
 

Ranges with parameterized boundaries 
It is not required that the boundaries of (named) ranges are fixed numbers, a boundary can be an 
RooAbsReal expression in terms of other observables or parameters. Boundary expressions in terms 
of other observables allow to construct regions in a variety of shapes. Regions selected through 
parameterized boundaries can be used in plotting, fitting and event generation. 

Plotting parameterized ranges 
In a two-dimensional plane one can for example parameterize a triangular and a circular region in a 
boundary prescription as follows 
 

triangle: ݔ א ሾ0,  ሿݕ
circle: ݔ א ሾെඥݎଶ െ ,ଶݕ ඥݎଶ െ  [ଶݕ

 
To implement these and other varieties of parameterized ranges in RooFit use the setRange() 
method that takes to RooAbsReal references rather than two doubles 
 

 
// Observables 
RooRealVar x(“x”,”x”,0,10) ; 
RooRealVar y(“y”,”y”,0,10) ; 
 
// Define triangular range [-10,y] 
x.setRange("triangle",RooConst(-10),y) ; 
 
// Define range circle as (x^2+y^2<8^2)  [-sqrt(8^2-x^2),+sqrt(8^2-x^2)]        
RooFormulaVar xlo("xlo","-sqrt(8*8-y*y)",y) ; 
RooFormulaVar xhi("xhi","sqrt(8*8-y*y)",y) ; 
x.setRange("circle",xlo,xhi) ; 
 

Example 17 – Spherical range defined in terms of observable (x,y) with a fixed radius 
 
In the example above, RooFormulaVar has been used to construct a function expression, but any 
other type of RooAbsReal function is allowed. The triangle region is an example of region that has 
only one parameterized boundary, the fixed lower boundaries is set using a RooConstVar returned 
by the RooConst() helper function.  
 
It is also allowed to introduce functional dependencies on variables that are not observables. Below, 
the circle range is modified to introduce a parameter for the radius 
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// Define range circle as (x^2+y^2<r^2)  [-sqrt(r^2-x^2),+sqrt(r^2-x^2)]        
RooRealVar r(“r,”radius”,8,1,10) ; 
RooFormulaVar xlo("xlo","-sqrt(r*r-y*y)",RooArgSet(r,y)) ; 
RooFormulaVar xhi("xhi","sqrt(r*r-y*y)",RooArgSet(r,y)) ; 
x.setRange("circle",xlo,xhi) ; 

 
Example 18 – Spherical range defined in terms of observables (x,y) and an extra range 

parameter r that defines the radius 
 
For illustrational clarity we demonstrate the effect of these parameterized ranges on a flat p.d.f.  
 

 
// Define a flat p.d.f in (x,y) 
RooPolynomial px(“px”,”px”,x) ; 
RooPolynomial py(“py”,”py”,y) ; 
RooProdPdf flat(“flat”,”flat”,RooArgSet(px,py)) ; 
 
// Generate flat distribution in (x,y) 
RooDataSet* data = flat.generate(RooArgSet(x,y),10000) ; 

 
 
The plotting commands are identical to those of rectangular regions: 
 
 

// Plot both data model in “signal” range 
RooPlot* frame = y.frame() ; 
data->plotOn(frame,CutRange(“triangle”)) ; 
flat.plotOn(frame,ProjectionRange(“triangle”)) ; 
 
// Plot both data model in “circle” range 
RooPlot* frame = y.frame() ; 
data->plotOn(frame,CutRange(“circle”)) ; 
flat.plotOn(frame,ProjectionRange(“circle”)) ; 

 
 
The output of the above example is shown in Figure 40. 
 

 
Figure 40 – Projection on x of a flat p.d.f and dataset in (x,y) of the region ࢞ א ሾ,  ሿ (left) and࢟

࢞ א ሾെඥ࢘ െ ࢘,ඥ࢟ െ  ሿ (right) with r=8࢟
 

Projecting a non-rectangular signal region 
Parameterized ranges can be used in the same way as rectangular regions. One can for example 
define a spherical signal region instead of rectangular signal region for the model of Example 15 and 
use that to construct a projection on the x observable. 
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  RooFormulaVar ylo("ylo","-sqrt(1-z*z)",RooArgSet(z)) ; 
  RooFormulaVar yhi("yhi","sqrt(1-z*z)",RooArgSet(z)) ; 
  y.setRange("circle",ylo,yhi) ; 
  z.setRange("circle",-1,1) ; 
 
  RooPlot* frame = x.frame() ;   
  d->plotOn(frame,Cut("y*y+z*z<1")) ; 
  model.plotOn(frame,ProjectionRange("circle")) ; 
 

 

 
Figure 41 – Projection of model of Example 15 on x in “circle” region in (y,z) defined by 

࢟  ࢠ ൏ 1 
 
The output of this projection is shown in Figure 41. In practice it is difficult construct an explicit 
parameterization for the boundaries of an optimal signal region. Another technique to construct 
projections of a signal region, a likelihood ratio plot, does not require an explicit parameterization and 
is discussed in the section “Working with implicitly defined sub-regions – Likelihood ratio plots” 

Fitting parameterized regions 
Analogous to the plotting example it is also possible to fit data in non-rectangular regions. A likelihood 
constructed on a non-rectangular region implies two changes over the default likelihood construction: 
selecting the subset of events that fit in the selected region and adjusting the normalization of the 
p.d.f. such that it is normalized to unity of the selected region rather than over the full domain. 
 

 
Figure 42 – Distribution of decay times of theoretical distribution (red points) and after an 

acceptance cut (black points) that varies on an event-by-event bases 
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For certain classes of problems, it may be helpful to define such a likelihood for fitting on a non-
rectangular region. A practical example of such a problem is a fit of a decay distribution with an 
acceptance that varies on an event-by-event basis, e.g. due to the implementation of the event 
trigger. An example decay distribution is shown in Figure 42: The red points show the istribution of an 
ordinary exponential decay, whereas the black points show the subset of events that fall within the 
trigger acceptance region.  
 
 
If the trigger acceptance windows is known from the data, expressed as separate observable tacc, it 
possible to account for the trigger acceptance in the model normalization by normalizing the decay 
model on the range [tacc,tmax] that is variable on an event-by-event basis, rather than on a fixed range 
[0,tmax]. 
  

 
// Declare observables 
RooRealVar t("t","t",0,5) ; 
RooRealVar tacc("tacc","tacc",0,0,5) ; 
 
// Make parameterized range in t : [tmin,5] 
t.setRange(tacc,RooConst(t.getMax())) ; 
 
// Make pdf 
RooRealVar tau("tau","tau",-1.54,-10,-0.1) ; 
RooExponential model("model","model",t,tau) ; 
 

 
A fit of this model to a dataset D(t,tacc) will result in a correct lifetime measurement (provided the 
acceptance information in the dataset is correct) even though the data does not show the usual 
exponential distribution as is shown in the blue curve of Figure 42. 
 

 
  RooFitResult* r = model.fitTo(data) ; 
 
 
  RooPlot* frame = t.frame() ; 
  data->plotOn(frame) ; 
  model.plotOn(frame,NormRange(1.5,5)) ; 
 

 
For illustrational clarity the normalization of the projection of model In Figure 42 is chosen to be done 
on the range [1.5,5], which is mostly free of acceptance effects, to result in a curve normalization 
consistent with full decay distribution (red points). Note that in this example we have not used a 
named range into introduce a non-rectangular shape, but have substituted the default normalization 
range – which is used in the normalization of the minimized likelihood – with a parameterized range. 

Integration over parameterized regions 
The basic semantics of constructing integrals over regions in p.d.f.s defined by simple ranges has 
been covered in Chapter two.  The integrals that are required for the projection of and normalization of 
parameterized regions can be constructed in the same way as integrals over plain rectangular 
regions:  
 

 
RooAbsReal* intCircle = flat.createIntegral(RooArgSet(x,y), 
                                            NormSet(RooArgSet(x,y), 
                                            Range(“circle”)) ; 
 

 
Note again that for a integral over normalized p.d.f., the normalization observables must be explicitly 
and separately specified as RooAbsPdf objects have no internal notion of observables versus 
parameters. The above integral calculates the integral of flat(y,z) over (y,z) in the “circle” range 
and returns by definition a number between 0 and 1. The returned integral object depends on any 
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model parameters as well as any extra parameters that the range definition introduced, like the 
radius parameter of Example 18. The example below shows the dependence of the integral over the 
flat p.d.f of Example 17 on the radius 
 

 
RooPlot* rframe = r.frame(0,10) ; 
intCircle->plotOn(rframe) ; 
 

 
The output is shown in Figure 43. 
 

 
Figure 43 – Fraction of flat p.d.f. in (x,y)  over radius with circle r at (0,0) 

 

Relation to cumulative distribution functions 
A special form of an integral over a parameterized range is the cumulative distribution function, which 
is defined as 

Ԧሻݔሺܥ ൌ න ԦԢݔ݀ Ԧᇱሻݔሺܯ
௫Ԧ

௫ೢሬሬሬሬሬሬሬሬሬሬԦ
 

 
and is constructed through the specialized method createCdf() from any p.d.f. This method can 
create a cumulative distribution function in any number of observables just like createIntegral(): 
 

 
RooAbsReal* cdf = pdf->createCdf(RooArgSet(x,y)) ; 
  

 
Additional details on integration and cumulative distribution function are in Appendix B. 
 

 
Figure 44 – Example of cumulative distribution function (right) defined from a two dimensional 

probability density function (left) 
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Regions defined by a Boolean selection function 
Regions defined by parameterized boundaries can describe many, but not all shapes. In addition to 
any difficulties that may arise in the formulation of the boundary expression, shapes that result in 
more than two boundaries in any given observable (e.g. a ring-shaped region) cannot be described 
these way. Regions of arbitrary complexity can be described through the definition of a Boolean 
selection function ܤሺݔԦሻ that returns true or false to indicate if the given coordinate ݔԦ is in the region. 
While regions defined in this way are not supported for high-level operations in RooFit, it is possible to 
use them in a relatively straightforward way in event generation and plotting21.     

Projecting regions defined by a Boolean selection function 
In Chapter 6 it was already shown that the integral used in projection plots can be substituted with the 
Monte Carlo approximation: 
 

;ݔ௫ሺܨ ሻ ൌ
ଵ
ே ,ݔሺܨ ;Ԧݕ ሻ

ୀଵ,ே

ሺ௬ሬԦሻ
 

 
where D(y) is a set of points sampled from the p.d.f itself, and yi are the points in that dataset. 
In case illustrated in Chapter 6, D(y) was an external dataset, here we will work with a dataset that is 
sampled from the p.d.f. itself.  The Monte Carlo approximation can be explicitly performed with a 
couple of lines of code  
 

 
// Sample 10000 events in y from model 
RooDataSet* toyData = model.generate(y,10000) ; 

 
// Project model over y using weighting over toy MC data 
model.plotOn(frame,ProjWData(*toyData)) ; 
 

 
Projections calculated through Monte Carlo integration are generally more computationally intensive, 
so one does not normally use it for a problem like Figure 37, which features a simple rectangular cut 
that can be also be made through an (analytical) integration over a rectangular sub region. However 
MC integration offers the advantage that such projections are not restricted to shapes of which the 
boundary can be parameterized: you can select any region that you can define in terms of a selection 
expression on the projection data. The example below selects a spherical region in (y,z) with radius 2  
 

 
// Select subset of events with |y2+z2|<2 
RooDataSet* projData = toyData->reduce(“(y*y+z*z)<4”) ; 
 

 
While that selection could also be constructed through a range with a parameterized boundary of y in 
terms of z, the following example cannot (easily): 
 

 
// Select subset of events with 1<|y2+z2|<2 
RooDataSet* projData = toyData->reduce(“(y*y+z*z)<4 && (y*y+z*z)>1”) ; 
 

 

Using a likelihood ratio as Boolean selection function 
A particular application of selecting plot projection regions is the likelihood ratio technique. The 
concept is that instead of constructing an ad-hoc signal region, as was done for e.g. Figure 37, one 
uses the information in the likelihood in the projected observable(s) on the signal-to-
(signal+background) ratio to construct a signal-enhanced region that should be plotted. Given a model 
 

                                                      
21 It is not possible to construct likelihoods in regions defined by a selection function in RooFit (yet) as 
there is no infrastructure to calculate p.d.f. normalizations over such regions. 
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,ݔሺܯ ,ݕ ሻݖ ൌ ݂ܵሺݔ, ,ݕ ሻݖ  ሺ1 െ ݂ሻܤሺݔ, ,ݕ  ሻݖ
 

to be projected on x, the signal likelihood ratio in the projected observables (y,z) is defined as 
 

,ݕሺܴܮ ሻݖ ൌ
,ݔሺܵ⋅݂ ,ݕ ݔሻ݀ݖ
,ݔሺܯ ,ݕ ሻݖ ݔ݀

ൌ
݂ܵᇱሺݕ, ሻݖ
,ݕᇱሺܯ ሻݖ  

 
The quantity LR(y,z) expresses the probability that a given event (y,z) is signal-like, according to the 
information in M in the y and z observables. In the limit that S and B describe the true signal and 
background shapes, this likelihood ratio is the optimal discriminant. In this way we construct a 
likelihood ratio projection plot of M(x,y,z) on x that incorporates the model information on signal purity 
in all observables.  
 
For data, the procedure is trivial, one plots the subset of events that match the criterium LR(y,z)>α, 
where α is a value chosen been 0 and 1 depending on the desired purity of the plot.   
 
The corresponding p.d.f projection amounts to the following integral 
 

ሻݔோሺܯ ൌ ඵ ,ݔሺܯ ,ݕ ݖ݀ݕሻ݀ݖ
ோሺ௬,௭ሻவఈ

 

 
where α is again the minimum signal purity predicted by the projection of M on (y,z). The result is a 
plot of the distribution of data D(x,y,z) and model M(x,y,z)  in x on the subset of events with have a 
signal probability greater than α% according to the model M in the observables (y,z).  

Constructing the likelihood ratio 
A likelihood plot can be constructed in a fully automated procedure from a model, and has only one 
input parameter: the desired purity as quantified by the minimum required value of S/(S+B) in the 
projection quantified by α in the formula(s) above.  
The likelihood ratio formula needs to be constructed first 
  

 
  // Calculate signal and total likelihood projected over x 
  RooAbsPdf* sigproj = sig.createProjection(x) ; 
  RooAbsPdf* totproj = model.createProjection(x) ; 
 
  // Construct the signal / signal+background probability  
  RooFormulaVar llratio("llratio","(fsig*@0)/(@1)",  
                                  RooArgList(*sigproj,*totproj,fsig)) ; 
 

 
The createProjection() method of RooAbsPdf used in this example returns an integral of a 
p.d.f. over the listed observables as a new p.d.f. The signal model probability is multiplied with the 
signal fraction from the composite model to yield a number that is by construction in the range [0,1].22 

Making the likelihood ratio projection plot 
A plot of the data with likelihood ratio cut is straightforward once the LR has been added as an 
observable to the dataset 
 

 
// Extract the subset of data with large signal likelihood 
RooDataSet* dataSel = (RooDataSet*) data->reduce(Cut("llratio>0.5")) ; 
 
// Plot selected data 
RooPlot* frame = x.frame() ; 
dataSel->plotOn(frame) ; 
 

                                                      
22 This is not necessary for the formalism to work, but aids the interpretation of the LR value 
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The likelihood ratio projection integral  ܯோሺݔሻ ൌ  ,ݔሺܯ ,ݕ ோሺ௬,௭ሻவఈݖ݀ݕሻ݀ݖ  is then calculated following 
the Monte Carlo approach outlined in the beginning of this section. 
 

 
 
// Generate large number of events for MC integration of pdf projection 
RooDataSet* mcprojData = model.generate(RooArgSet(x,y,z),10000) ; 
 
// Calculate LL ratio for each generated event and select those with llratio>0.5 
mcprojData->addColumn(llratio) ; 
RooDataSet* mcprojDataSel = mcprojData->reduce(Cut("llratio>0.5")) ; 
     
// Project model on x with LR cut    
model.plotOn(frame,ProjWData(*mcprojDataSel)) ; 
 

 
The resulting likelihood ratio plot, along with the plain projection on x are shown in Figure 45.  

 
Figure 45 – Projection of 3D p.d.f. on x without likelihood ratio cut (left)  

and with a LRyz>0.5 requirement (right) 

 

Examining the likelihood ratio function 
Aside from making the likelihood ratio plot, it is insightful to draw the likelihood ratio itself as function 
of y and z. 
 

 
// Plot value of likelihood ratio in (y,z) projection as function of (y,z) 
TH2* hllr_xy = llratio.createHistogram("llr",y,Binning(50), 
                                      YVar(z,Binning(50)),Scaling(kFALSE)); 

 
 
The two-dimensional output plot of this command is shown in Figure 46-left. One can also examine 
the distribution of llratio values in data by adding a column to the dataset with the LR value for 
each event 
 
 

// Calculate the llratio value for each event in the dataset 
data->addColumn(llratio) ; 
 
// Plot distribution of llratio values in data 
TH1* hllr_data = data->createHistogram(“llratio”) ; 
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The addColumn() method of a RooDataSet takes any function or p.d.f. as input arguments, 
calculates it value for the observable values of each event in the dataset and adds a column to the 
dataset with the calculated values. 
 
Te distribution of likelihood ratio values in data are shown in Figure 46-right. The maximum value of 
the likelihood ratio is about 0.6 and occurs in the region around (y,z)=(0,0) consistent with 
expectations from the signal model shape. Most events in data have a LR close to zero, about 5% of 
events have a LR>0.5. 
 
 

 
Figure 46 – left) value pf LR=S(y,z)/[S+B](y,z) as function of (y,z),  

right) distribution of LR(y,z) values in data 

 

Tuning performance of projections through MC integration 
Projection of models through the Monte Carlo integration approach can be slow if the number of 
sampled events is large. This section describes two techniques that can be applied to speed up the 
calculation.  

Binning projection data 
If the projection dataset has only one or two dimensions it can be advantageous to bin the projection 
data. You can do this manually 
 

 
// Project with unbinned data 
model.plotOn(xframe,ProjWData(*data)) ; 
  
// Projected with data in default binning (100 bins) 
RooAbsData* binnedData = data->binnedClone() ; 
model.plotOn(xframe,ProjWData(*binnedData)) ; 
 
// Project with data in custom binning (5 bins) 
((RooRealVar*)expDataY->get()->find("y"))->setBins(5) ; 
RooAbsData* binnedData2 = data->binnedClone() ; 
model.plotOn(xframe,ProjWData(*binnedData2),LineColor(kRed)) ; 
 

 
or request it as an option in ProjWData() 
 
 

// Projected with data in default binning (100 bins) 
model.plotOn(xframe,ProjWData(*binnedData,kTRUE)); 
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There is no automated way to tune the performance/precision tradeoff of these projections. Figure 47 
shows the effect of projecting the conditional p.d.f of Example 11 (Gaussian with shifting mean) with 
an unbinned dataset (blue), with a binned set of 100 bins (cyan) and a binned set of 5 bins (red). The 
effects of precision loss in the latter case are clearly visible. 
 

 
Figure 47 – Effects of precision loss when projecting observable model of Example 11 with 

binned datasets (blue=unbinned, cyan=100 bins, red=5 bins) 
 
If the projection dataset has more than two dimensions, as is common in e.g. likelihood ratio plots, 
binning is usually counterproductive as the number of bins increases more rapidly than the number of 
events. 

Parallelizing the projection calculation 
Another technique to speed up the projection with either binned or unbinned datasets is the option to 
parallelize the calculation of the Monte Carlo integral. This can be requested by adding the NumCPU() 
modifier to the plotOn() command to indicate the number of concurrent processes to be used. 
 

 
model.plotOn(xframe,ProjWData(*data),NumCPU(8)) ;  
 

 
The default partitioning strategy of the data for parallel processing is ‘bulk partitioning’, i.e. each 
process calculates the averages on a contiguous n/Nth fraction of the data, as this is the most efficient 
from the I/O point of view. If you are projecting binned data with many empty bins, this may lead to an 
imbalance in the process load as the calculation time scales with the number of filled bins, and by 
consequence to less than optimal parallel performance. You improve this by switching to ‘interleave 
partitioning’, where each process processes events for which ሺ݅ % ܰ  ؠ ݊ሻ: 
 

 
model.plotOn(xframe,ProjWData(*data),NumCPU(8,kTRUE)) ; // interleave part. 
 

 

Blending the properties of models with external distributions 

Projecting multi-dimensional models with external data 
Preceding sections have focused on using the data weighting projection technique 
 

;ݔ௫ሺܨ ሻ ൌ
ଵ
ே නܨሺݔ, ;Ԧݕ ሻ

ୀଵ,ே
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as a method to implement a Monte Carlo approximation of a projection integral, by using a set of 
events yi that is sampled from the p.d.f. The same technique can be used in a functionally similar but 
conceptually different way by using a dataset D(y) with events that intentionally have a different 
distribution than that predicted by F(x,y).  
 
The effect of using such a different distribution is that one obtains a projection plot that looks like the 
projection one would have obtained from the model if it described the distribution of the external 
dataset D(y) rather than what it predicts internally. 
 
A particularly case is when the experimental data itself is used to perform the projection: this will result 
in a projection is equivalent to that of a model that describes the data perfectly on all projected 
observables (but not necessarily in the plotted observable). Such plot can prove to be useful in the 
debugging of multi-dimensional models with correlations that do not describe the data well. In a model 
without correlations, a poor description of a model in one observable, does not influence its ability to 
model another observable. If correlations are present, this is no longer true, and separating cause and 
consequence may present difficulties and projection plots using experimental data may help to 
disentangle these. 
 
We take the full 2-dimensional version of the B decay life time study with per-event errors of Example 
14 as an example. This model is structured as 
 

,ݐሺܨ ሻݐ݀ ൌ ሾܦ ٔ ܴሿሺݐ݀|ݐሻ⋅ܧሺ݀ݐሻ 
 
where DٔR(t|dt) is describes the distribution of t given the per-event error dt, and E(dt) is an 
empirical p.d.f. describing the distribution of the per-event errors themselves. Suppose that a fit of the  
p.d.f. to experimental data and the fit result look like Figure 48. 
 

 
Figure 48 – Problematic fit of lifetime model ࡲሺ࢚, ሻ࢚ࢊ ൌ ሾࡾٔࡰሿሺ࢚ࢊ|࢚ሻ⋅ࡱሺ࢚ࢊሻ to data 

 
It is clear that the model cannot describe the data well, but it is difficult to pinpoint the source of the 
problem. It could be that the shape of the per-event errors E(dt) cannot fit the data, which in turn 
warps the distribution of DٔR(t|dt). Another possibility is that the pull distribution of the per-event 
errors is not Gaussian in the data which causes a bad fit of DٔR(t|dt) that warps the distribution t 
independently of the poor modeling of the distribution of dt.  
 
In situations like this, a projection with data weighting can provide new insight.  A plot of the projection 
of F(t,dt) on t using data averaging for the projection of dt using the experimental data as input 
eliminates the models predictive power in dt, i.e. the prediction made by E(dt) and replaces it with 
actual distribution data. This projection, shown in Figure 49, demonstrates that the DٔR(t|dt) 
component of the model is fine if the dt distribution is modeled correctly, and that the problem 
therefore originated in the E(dt) component. 
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Figure 49 – Problematic fit of Figure 48 projected on t through integration over dt (dashed line) 

and through weighting with experimental data on dt (solid line) 
 

Generating events using external input data 
Analogous to the use case for projection plots -- which use external (experimental) input data – it can 
also be useful to generate events that take the values of one or more of the observables from an 
existing dataset. The example of the B decay life time study with per-event errors is again a good 
illustration. In the absence of a good analytical description of the distribution of the per-event errors, 
which from a ‘physics’ point of view may be irrelevant anyway, one may choose to generate toy 
experiments with sets of values of (t,dt) that use the set of dt values from experimental data.  
 
In the generation step the external input data is introduced in the generation process through a 
prototype dataset declaration: 
 

 
RooDataSet* genData = model.generate(t,ProtoData(extDtdata)) ; 
 

 
In this example, the generation of observable dt is skipped, and is substituted with fetching one of the 
values from the external dataset extDtdata. The observable t is subsequently generated for the 
given value of dt.  
 
If a prototype dataset is specified, the default event count becomes the number of entries in the 
prototype dataset, thus it is not required to specify an event count. If an event count is specified and it 
is different from the ProtoData() event count the prototype data will be either undersampled or 
oversampled, which may lead to unnatural statistical fluctuations in your sample. If the order of events 
in the prototype data is not random, e.g. it is a collation of multiple independent samples, it is 
important to request that the prototype data is traversed in a random walk rather than sequentially to 
avoid biases, which is done as follows: 
 

 
// Traverse prototype data in random order 
RooDataSet* genData = model.generate(t,ProtoData(extDtdata,kTRUE)) ; 
 

 
The random walk mode strictly changes the traversal order, it does not address any issues that arise 
from oversampling itself. To address those, it may be useful to switch to a random sampling strategy: 
 

 
// Sample from prototype data, rather than traverse it 
RooDataSet* genData = model.generate(t,ProtoData(extDtdata,kFALSE,kTRUE)) ; 
 

 



 87

which samples events from the prototype dataset with uniform probability. This  will result more 
frequent multiple use of the same events, i.e. even if Ngen<Nproto, but may result in more natural 
statistical fluctuations in certain applications 
 
The generator setup with prototype data works for any type of model: factorizing products of p.d.f.s, 
conditional p.d.f., products involving conditional p.d.f.s and non-factorizing multi-dimensional p.d.f.s. In 
case of factorizing products, a distribution sampled from a component p.d.f. is simply replaced with 
that of the external data. In case of conditional p.d.f.s in a product, the conditional observable is taken 
from the external dataset, instead of a value generated by another model in the product. For multi-
dimensional non-factorizing terms, the specified observables are again loaded from the prototype 
dataset and then passed to an adapted generator context that only generates the remaining 
observables, treating the prototype data observables as parameters. 
 

Tutorial macros 
The following tutorial macros are provided with the chapter 
 

• rf309_ndimplot.C – Making 2 and 3 dimensional plots of p.d.f.s and datasets 
• rf311_rangeplot.C – Projecting p.d.f and data ranges in continuous observables 
• rf312_multirangefit.C – Performing fits in multiple (disjoint) ranges 1-,N-dimensions 
• rf313_paramranges.C – Using parameterized ranges to define non-rectangular regions 
• rf314_paramfitrange.C – Working with parameterized ranges in a fit. 
• rf315_projectpdf.C – Marginalization of multi-dimensional p.d.f.s through integration 
• rf316_llratioplot.C  – Construction of a likelihood ratio plot 
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8. Data modeling with discrete-valued variables 
RooFit has a hierarchy of classes that represents variables and functions with discrete values. 
Discrete variables can be used to describe fundamentally discrete observables such as the electric 
charge of a particle but can also serve a role as ‘meta’-observable that divides a sample into a 
number of sub-samples (“run-1”, “run-2”) or be used to represent the decision of a selection algorithm 
(event is “accepted” or “rejected”). This Chapter focuses on the role of discrete variables in data 
modeling, how discrete observables can be used in standard fitting, plotting and event generation 
operations.  
 
Two common fitting problems involving discrete observables are explicitly worked out in the final two 
section: how do an unbinned maximum likelihood fit to an efficiency function and how to extract a 
(CP) asymmetry from data. 

Discrete variables 
RooFit class RooCategory represent discrete-valued variables: 
 

 
// Define discrete-valued observable 
RooCategory b0flav("b0flav","B0 flavor eigenstate") ; 
 
// Define allowed states with name and code 
b0flav.defineType("B0",-1) ; 
b0flav.defineType("B0bar",1) ; 
 

 
Variables of class RooCategory can take a finite set of values declared through defineType(). 
Each value consists of a string label and integer numeric representation. The numeric representation 
can be explicitly chosen for each state, but it is not required 
 

 
// Define discrete-valued observable 
RooCategory tagCat("tagCat","Tagging category") ; 
 
// Define a category with labels only 
tagCat.defineType("Lepton") ; 
tagCat.defineType("Kaon") ; 
tagCat.defineType("NetTagger-1") ; 
tagCat.defineType("NetTagger-2") ; 
 
Example 19 – Example of discrete observable with four valid states defined by name only 

 
If no numeric representation is assigned, a code is automatically assigned. 

 
Models with discrete observables 
Discrete variables represented by class RooCategory can be used as parameters or observables of 
functions and p.d.f. in the same way as continuous variables represented by RooRealVar. 

Example model with discrete observables 
An example of a p.d.f. with discrete variables is class RooBMixDecay which describes the distribution 
of the decay time difference (t1-t2) for the decay ԃሺ4ݏሻ ՜  ,തതതത between the two B0 meson decaysܤܤ
which includes the physics effect of flavor oscillations. The final state of such decay is characterized 
by three observables 
 

• t - The decay time difference (continuous) – RooRealVar 
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• tagFlav - The flavor of the reconstructed ܤ decay (ܤ or ܤതതതത) – RooCategory 
• mixState - The relative flavor of the two ܤ decays (same or opposite) – RooCategory 

 
The distribution of RooBMixDecay in (t,mixState) summed over both states of tagFlav is shown 
in Figure 50.23  
 
 

 
Figure 50 – Distribution of RooBMixDecay in dt for mixState=mixed (front) and 

mixState=unmixed (back) 
 
A decay model with mixing is set up as follows 
 

 
// Continuous observable 
RooRealVar dt("dt","dt",-20,20) ; 
 
// Discrete observables 
RooCategory mixState("mixState","B0/B0bar mixing state") ; 
mixState.defineType("mixed",-1) ; 
mixState.defineType("unmixed",1) ; 
 
RooCategory tagFlav("tagFlav","Flavour of the tagged B0") ; 
tagFlav.defineType("B0",1) ; 
tagFlav.defineType("B0bar",-1) ; 
 
// Some parameters 
RooRealVar dm("dm","dm",0.472) ; 
RooRealVar tau("tau","tau",1.547) ; 
 
// Construct p.d.f. 
RooTruthModel tm("tm","delta function",dt) ; 
RooBMixDecay bmix("bmix","decay",dt,mixState,tagFlav,tau,dm, 
                  RooConst(0),RooConst(0),tm,RooBMixDecay::DoubleSided) ; 
 

Example 20 – Example model for B decay with mixing with discrete observables 
 

                                                      
23 The physics of RooBMixDecay is largely irrelevant in this context. Additional details on the 
specialized B physics p.d.f.s is provided in Chapter 12 and Appendix B 
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For this particular p.d.f. explicit numeric assignments are made to the states of tagFlav and 
mixState as these have physical interpretations. We will use class RooBMixDecay in the above 
setup as an example to illustrate further features in data modeling with discrete observables. 

Using models with discrete observables 
Fitting and event generation of models with discrete observables works in exactly the same way as for 
models with exclusively continuous observables 
 
 

 
// Generate 10000 events in (dt,mixState,tagFlav) 
RooDataSet* data = bmix.generate(RooArgSet(dt,mixState,tagFlav),10000) ; 
 
// Print contents of dataset 
data->Print(“v”) ; 
 
Dataset bmixData (Generated From bmix) 
  Contains 10000 entries 
  Observables:   RooArgSet::Dataset Variables: (Owning contents) 
    1)        dt = -1.63478  L(-20 - 20)  "dt" 
    2)  mixState = unmixed  "B0/B0bar mixing state" 
    3)   tagFlav = B0bar  "Flavour of the tagged B0" 
 
// Fit bmix to data 
bmix.fitTo(*data) ; 
 

 
In general, any RooArgSet that serves as definition of the observables can contain a mix of 
RooRealVar and RooCategory objects. The continuous observable dt can be plotted as usual 
 

 
// Plot distribution of dt 
RooPlot* frame = dt.frame() ; 
data->plotOn(frame) ; 
model.plotOn(frame) ; 

 
 
When a projection is required over a discrete observables, as is the case in the above example, a 
summation over all states is substituted wherever an integration over continuous observables occurs. 
The above projection thus corresponds to 
 

ሻݐ௧ሺܯ ൌ   ,ݐሺܯ ሻܯ,ܶ
ାଵ

்ୀିଵ

ାଵ

ெୀିଵ

 

 
where T,M represent tagFlav and mixState respectively. 
 

Using models with discrete parameters 
The use of discrete valued parameters (as opposed to observables) presents no special issues in 
RooFit, all functionality works as expected, with one important exception: MINUIT is not capable of 
handling discrete parameters in its minimization, thus one cannot have floating discrete parameters in 
models to be fitted. A fit with a constant discrete parameters presents no issues as constant 
parameters are not exported by default to MINUIT. For example one can choose to only fit the mixed 
decays of preceding example treating bmix as a p.d.f. B(dt,T;M,…) 
 

 
// Construct a reduced dataset with mixed events only 
RooDataSet* dataMix= data->reduce(RooArgSet(dt,tagFlav)) ; 
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// Fit bmix to mixed data with mixed shape 
mixState.setLabel(“mixed”) ; 
mixState.setConstant(kTRUE) ; 
bmix.fitTo(*dataMix) ; 
 

 

Plotting models in slices and ranges of discrete observables 

Ranges in discrete observables 
The concept of named ranges also applies to discrete observables. The specification semantics are 
different and is illustrated on the tagging category of Example 20: 
 

 
// Define range “good” to comprise states “Lepton” and “Kaon” 
tagCat.setRange(“good”,”Lepton,Kaon”) ; 
 
// Extend “good” to include “NetTagger-1” 
tagCat.addToRange(“good”,”NetTagger-1”) 
 
// Remove range “good” 
tagCat.clearRange(“good”) 
 

 
But their use in fitting and plotting is the same 
 

 
// Define range “good”  
tagCat.setRange(“good”,”Kaon,Lepton”) ; 
 
// Plot only projection of states of tagCat in “good” range 
mymodel.plotOn(frame,ProjectionRange(“good”)) ; 
 

 
Ranges in continuous and discrete observables can be combined in the same way that ranges in 
multiple continuous observables are combined: whenever a range specification in more than 
observable occurs the range is automatically formed as the logical “and” of these definitions, e.g. 
 

 
// Define range “good”  
x.setRange(“good”,-5,5) ; 
 
// Plot only projection in range tagCat[“Lepton”,”Kaon”] * x[-5,5] 
mymodel.plotOn(frame,ProjectionRange(“good”)) ; 
 

 
Range plots in categories have the same data normalization properties as range plots in continuous 
observables. 

Plotting continuous observables in slices of discrete observables 
Plotting a slice of a multidimensional p.d.f. in a discrete observable is similar to projecting a range 
consisting of a single state in a discrete observable, but has slightly different normalization properties 
that are reflected in the semantics of the operation.  To project a slice that corresponds to a single 
state of discrete observable use the Slice() modifier of plotOn() 
 

 
RooPlot* frame = dt.frame() ; 
data->plotOn(frame, Cut(“mixState==mixState::mixed”) ) ; 
model.plotOn(frame, Slice(mixState,”mixed”) ) ; 
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In a data plotting operation the standard expression based Cut() modifier can be used to select 
mixed events only. The symbolic name of the mixed state of observable mixState must be 
referenced as mixState::mixed to be unambiguous as multiple observables in the same formula 
expression can potentially declare the same state names. This operation has no meaningful 
equivalent for continuous observables on data24. 
 
The Slice() modifier instructs RooAbsReal::plotOn() to omit summation over the listed 
observable and keep the observable at the provided value during the projection. Multiple Slice() 
modifiers may be specified in the same plot operation to specify slices in more than one observable 
 

 
RooPlot* frame = dt.frame() ; 
data->plotOn(frame, Cut(“mixState==mixState::mixed && tagFlav==tagFlav::B0”) ) ; 
model.plotOn(frame, Slice(mixState,”mixed”), Slice(tagFlav,”B0”) ) ; 
 

 
Figure 51 shows the distribution of dt for all data, the mixed slice and the mixed/B0 slice as 
constructed by the preceding examples.  
 
The Slice() arguments also works without explicit value specification for the sliced observable, in 
that case the current value of the observable is used.  
 
Slicing  is also valid operation on continuous observables: it omits the integration step over the 
selected observable and is the functional counterpart of the Project() modifier discussed in 
Chapter 7 in the section “Visualization of multidimensional models”. It is however rarely useful in 
practice as there is no corresponding data view. 
 

 
Figure 51 – Distribution of decay times from B decay mode with mixing of Example 20 for all 

events (left), for mixed events (middle) and mixed events with a tagged B0 flavor (right) 
 

Normalization of slice plots 
There is an important aspect in the normalization of slice plots in discrete observables projected over 
a dataset: a slice plot is normalized to the total number of events in data multiplied by the fraction of 
events that the model predicts that are in the slice. This event count is not necessarily the same as 
the event count of dataset plotted with a Cut() modifier, which amounts the total number of events in 
data multiplied by the fraction of events that the data says that are in the slice. Thus if data and model 
disagree on the fraction of events in the slice this will be reflected in a discrepancy in the 
normalization in the plot. This behavior is different from that of a Range() plot, which normalizes the 
projected p.d.f. curve to the number of events in the range in data.  
 
 

                                                      
24 A requirement like “x==5.271945” on data will usually result in zero matching event (or one if you 
are lucky). 
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Unbinned ML fits of efficiency functions using discrete observables 
Discrete observables can be used to express acceptance information on a per-event basis that allow 
to fit for acceptance and efficiency functions using an unbinned maximum likelihood fit. Instead of 
constructing a χ2 fit on a histogram of the accepted fraction of events as function of one or more 
observables, a likelihood E(x,a) can be constructed as follows 
 

,ݔሺܧ ܽ; ሻ ൌ ,ݔሺߝ ܽ ሻ         if ൌ 1 
                    ൌ 1 െ ,ݔሺߝ ܽ ሻ  if ൌ 0  

 
where a is a RooCategory with states (0,1) that encodes the acceptance decision and ε(x,p) is the 
efficiency function with a return value in the range [0,1] that should describe the acceptance efficiency 
as function of the observable(s) x. The operator class RooEfficiency constructs such an efficiency 
p.d.f. from an input efficiency function and a category encoding the acceptance 
 

 
// Observable 
RooRealVar x("x","x",-10,10) ; 
 
// Efficiency function eff(x;a,b)  
RooRealVar a("a","a",0.4,0,1) ; 
RooRealVar b("b","b",5) ; 
RooRealVar c("c","c",-1,-10,10) ; 
RooFormulaVar effFunc("effFunc","(1-a)+a*cos((x-c)/b)",RooArgList(a,b,c,x)) ; 
 
// Acceptance state cut (1 or 0) 
RooCategory cut("cut","cut") ; 
cut.defineType("accept",1) ; 
cut.defineType("reject",0) ; 
 
// Construct efficiency p.d.f eff(cut|x) 
RooEfficiency effPdf("effPdf","effPdf",effFunc,cut,"accept") ; 
 

Example 21 – Construction of a  conditional p.d.f. E(a|x) to fit an efficiency function e(x) from a 
dataset D(x,a) where category a(0,1) encodes an acceptance 

 
The efficiency p.d.f constructed by RooEfficiency should be used as conditional p.d.f. E(a|x) as it 
encodes the efficiency in category a for a given value of x, it does not aim to make any prediction of 
the distribution of x itself and is thus fitted as follows to a dataset D(x,a) 
 

 
// Fit conditional efficiency p.d.f to data 
effPdf.fitTo(*data,ConditionalObservables(x)) ; 
 

 
A modifier Efficiency() exists to display the distribution of an efficiency encoded in a RooCategory 
with two states (0,1) for data 
 

 
RooPlot* frame2 = x.frame(Bins(20)) ; 
 
data->plotOn(frame2,Efficiency(cut)) ; 
effFunc.plotOn(frame2,LineColor(kRed)) ; 
 

 
No special efficiency modifier is needed to extract the efficiency function from the efficiency p.d.f., as 
this already exists as the separate entity effFunc. The result of the above plot operation is shown in 
Figure 52. 
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Figure 52 – Visualization of a dataset D(x,a) with an category a that encoded as efficiency. Left: 

all data (black) and data with a=1 (red). Right: Efficiency of a from data overlaid with fitted 
efficiency function of Example 21. 

 
Efficiencies as function of multiple observables can be fitted the same way.  
 
 

// Fit conditional efficiency p.d.f to data 
effPdf.fitTo(*data,ConditionalObservables(RooArgSet(x,y))) ; 

 
 
For visualization of multidimensional efficiencies the multi-dimensional createHistogram() plotting 
tools – covered in Chapter 7 – can be used 
 

 
// Sample histogram from 2D efficiency function 
TH1* hh_eff      = effFunc.createHistogram("hh_eff",x,Binning(50), 
                                           YVar(y,Binning(50)),Scaling(kFALSE)); 
 
// Sample histograms from all data, selected data 
TH1* hh_data_all = data->createHistogram("hh_data_all", 
                                        x,Binning(8),YVar(y,Binning(8))) ; 
TH1* hh_data_sel = data>createHistogram("hh_data_sel", 
                                        x,Binning(8),YVar(y,Binning(8)), 
                                        Cut("cut==cut::accept")) ; 
 
 // Construct data efficiency histogram using TH1 divisions 
TH1* hh_data_eff = hh_data_sel->Clone("hh_data_eff"); 
hh_data_eff->Divide(hh_data_all) ; 
 

 
A fitted two-dimensional efficiency function and its input data are shown in Figure 53. 
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Figure 53 – Visualization of a dataset D(x,y,a) with an category a that encoded as efficiency. 

Left: Fraction of data with a=1 (red). Right: Fitted efficiency function 

 
Plotting asymmetries expressed in discrete observables 
One can also decode asymmetry information in RooCategory observables. Common examples are 
the asymmetry between samples of particles with negative and positive charge, or particle and anti-
particle. These asymmetries can be treated inclusively, or as a function of one or more observables. 
Asymmetries of this type can be represented by a RooCategory observable with either two or three 
states with numeric values (-1,+1) or (-1,0,+1). 
To visualize the asymmetry as function of one or more observables in data one plots 
 

Ԧሻݔേሺܣ ൌ
ାܰሺݔԦሻ െ ିܰሺݔԦሻ
ାܰሺݔԦሻ  ିܰሺݔԦሻ

 

 
For a probability density function ܨሺݔԦ, ܽሻ with a discrete observable a, the corresponding asymmetry 
function is extracted as 

Ԧሻݔிേሺܣ ൌ
,Ԧݔሺܨ ሻ െ Ԧ,െሻݔሺܨ
,Ԧݔሺܨ ሻ   Ԧ,െሻݔሺܨ

 
The asymmetry distribution ܣிേሺݔԦሻis fitted to data by simply fitting the underlying model ܨሺݔԦ, ܽሻ to the 
data, analogous to the case for efficiency fits. There is no generic operator p.d.f. in RooFit to construct 
an ‘asymmetry p.d.f.’ like RooEfficiency as asymmetries – unlike efficiencies – are often driven by 
particular physics models that are directly coded in the underlying p.d.f.   
 
An example of such a physics p.d.f. is RooBMixDecay that predicts the decay distribution F(dt,T,…) 
for B0 and anti-B0 mesons that originate from Y(4s) decays, where dt is the decay time and T is -1 for 
the observation of an anti-B0 and +1 for the observation of a B0 meson. The ratio of observed flavors 
exhibits a decay time dependent asymmetry of the form cos(dm·dt) where dm is the mass difference 
between the B0 mass eigenstates.  
 
A fit of the modeled asymmetry distribution to that of data is performed by fitting the model F(dt,T) to 
the data D(dt,T).  The Asymmetry() modifier in the plotOn() then helps to visualize the asymmetry 
in both data and model 
 
 

 
// Create plot frame in dt 
RooPlot* aframe = dt.frame() ; 
 
// Plot mixState asymmetry of data  
data->plotOn(aframe,Asymmetry(mixState)) ; 
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// Plot corresponding asymmetry predicted by p.d.f 
bmix.plotOn(aframe,Asymmetry(mixState)) ; 
 
// Adjust vertical range of plot to sensible values for an asymmetry 
aframe->SetMinimum(-1.1) ; 
aframe->SetMaximum(1.1) ; 
 

 
When plotting asymmetries in data, binomial error bars are drawn, as is done for efficiencies. The 
resulting asymmetry plot is shown in Figure 54. The Asymmetry() argument is not limited to B physics 
p.d.f.s, it can be applied to any model that has a discrete observable with states (-1,+1) or (-1,0,+1). 
 

 
Figure 54 – Asymmetry in mixState category of the model for B decay  

with mixing defined in Example 20 

Tutorial macros 
The following tutorial macros are provided with the chapter 
 

• rf108_plotbinning.C – Plotting asymmetries in categories with custom binning  
• rf310_sliceplot.C --  Projecting p.d.f and data slices in discrete observables 
• rf404_categories.C -- Working with RooCategory objects to describe discrete variables 
• rf701_efficiencyfit.C – Unbinned ML fit of one-dimensional efficiency function 
• rf702_efficiencyfit_2D.C -- Unbinned ML fit of two-dimensional efficiency function 
• rf708_bphysics.C – Use examples of b physics p.d.f including RooBMixDecay 
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9. Dataset import and management 

This chapter gives an overview on how data can be imported into RooFit from external sources. 
Details are given on the various operations that can be applied to datasets such as merger and 
addition.  

Importing unbinned data from ROOT TTrees 
The basic import syntax of TTrees into one-dimensional RooDataSets has been covered in Chapter 
2. These import rules extend naturally for multidimensional datasets, one can just add more 
observables to the dataset that is the target of the import. 
 

 
TTree* tree = (TTree*) gDirectory->Get(“atree”) ; 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar y(“y”,”y”,-10,10) ; 

 
RooCategory c(“c”,”c”) ; 
c.defineType(“accept”,1) ; 
c.defineType(“reject”,0) ; 

 
RooDataSet data(“data”,”data”,RooArgSet(x,y,c),Import(tree)) ;   

 
 

Branch type conversion rules 
RooFit datasets are by design ‘flat’, i.e. each event is described a set of variables that are either 
discrete or continuous, but are each unstructured, they cannot be arrays or objects. 
 
A RooRealVar member of a dataset can import equally named branches an external tree of type 
Double_t, Float_t, Int_t, UInt_t and Bool_t.  Upon import these are automatically converted 
to Double_t, the native representation of RooRealVar.  
 
A RooCategory member of a dataset can import equally named branches of an external tree of type 
Int_t, UInt_t and Bool_t. Upon import these are converted into two branches: one Int_t branch 
that holds the numeric representation of the type and one const char* branch that holds the string 
representation. The string representations are taken from the RooCategory state definitions at the 
time of lookup and stored in the internal tree representation as well to expedite the loading of dataset 
rows with categories. In the internal representation the integer branch takes a suffix “_idx” and the 
string branch takes a suffix “_lbl” with respect to the category name. 

Application of range cuts 
Each variable that is imported from an external tree must match its default range specification. In the 
code example above this means that only tree entries with -10<x<10 are loaded. If a tree has multiple 
observables, an event is only imported if all observables meet their range requirements. For 
categories in-range requirement means that the integer entry must have been defined as a valid type. 

Application of additional cuts on import 
Additional cuts to be applied during the importation step can be supplied with an Cut() argument 
 
 

RooDataSet data(“data”,”data”,RooArgSet(x,y,c),Import(tree),Cut(“x+y<0”)) ;  
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Importing unbinned data from ASCII files 
A separate interface exists to construct a new RooDataSets from the contents of flat ASCII files. 
 

 
RooDataSet* impData = RooDataSet::read(“ascii.txt”,RooArgList(x,y,c)) ; 
 

 
The ASCII file is assumed to have one line for each event. On each line the values of the observables 
interpreted in the order in which the observables are listed in the RooArgList argument of read(), 
e.g. 
 

 
# Comment lines are allowed and must start with a ‘#’ 
#   X       Y       C 
0.365       8.5689  accept 
2.498      -4.763   reject 

 
 
Lines that start with a ‘#’ are automatically ignored, facilitating comment lines in these files. For 
category observables, both the string representation and the integer representation can be used. 
As in the importing of data from TTrees, events where one or more observables contain a value 
outside the defined range of the corresponding RooRealVar/RooCategory are rejected. 
 

Importing binned data from ROOT THx histograms 

Importing a single THx 
The syntax for importing a single ROOT TH1 histogram into a RooDataHist was already covered in 
Chapter 2. As for unbinned data, the import rules extend naturally to higher dimensional histograms: 
 

 
TH2* hh = (TH2*) gDirectory->Get(“ahisto”) ; 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar x(“y”,”y”,-10,10) ; 
 
RooDataHist data(“data”,”dataset with (x,y)”,RooArgList(x,y),hh) 
 

 
Note that the RooDataHist constructor in this form takes a RooArgList rather than a RooArgSet 
as the order of the observables is essential: it is used to map the x,y and z axis of the imported 
TH1/2/3. 

Application of range cuts 
Since ROOT histograms have a intrinsic range definition  on their observables, unlike TTree 
branches, the handling of ranges during data import is slightly different from that of unbinned data. 
What is the same is that all THx bins that are outside the range definition in the corresponding 
RooRealVar are rejected, thus one can selectively import a subset of a histogram by choosing a 
range definition in the RooRealVar that is narrower than the range of the corresponding axis in the 
histogram. This example 
 
 

TH1* hh = new TH1D(“demo”,”demo histo”,100,-20,20) ; 
 
RooRealVar x(“x”,”x”,-10,10) ; 
RooDataHist data(“data”,”data”,x,hh) ; 
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will only the bins of hh that are in the range [-10,10]. What is different with respect to unbinned data 
import is that in case the range specification of a RooRealVar does not exactly match a bin boundary 
of the imported histogram, the bin that contains the range limit is fully imported and the range limit on 
the corresponding RooRealVar is adjusted outward to match the outer bin boundary. Observables 
associated with RooDataHists may thus have (slightly) different range definitions after a THx import 
operation. 

Import of binning definition 
When a RooDataHist is constructed from a THx, the bin definition of the THx is copied in each 
imported observable. This also applies if the THx has a custom (variable) binning. 
 

Importing a projection of a histogram 
If multi-dimensional THx is imported in a lower-dimensional RooDataHist its contents is 
automatically projected (i.e. integrated over the dimensional that are not imported) 
 

Importing multiple histograms into a N+1 dimensional RooDataHist 
It is also possible to import a ‘stack’ of THx histograms into a single RooDataHist. In this case an 
extra RooCategory observables is introduced that labels source histograms 
 

 
// Declare observable x 
RooRealVar x("x","x",-10,10) ; 
 
// Create category observable c that serves as index for the ROOT histograms 
RooCategory c("c","c") ; 
 
// Create a datahist that imports contents of all TH1 mapped by index category c 
RooDataHist* dh = new RooDataHist("dh","dh",x,Index(c), 
                                  Import("SampleA",*hh_1), 
                                  Import("SampleB",*hh_2), 
                                  Import("SampleC",*hh_3)) ; 

 
 
The Index() argument designates category c as the index category to label the source histograms. 
The Import() argument imports one histogram and sets the associated label of the index category 
c. If the index category does not have a state defined with the given label, it is defined on the fly, 
otherwise the preexisting state is used. All imported histogram must be of the same dimensions.  
 
The histogram stack import can also be done through an alternate constructor that takes and 
map<string,TH1*>, which lends itself better to embedded applications 
 
 

  // Alternative constructor form for importing multiple histograms 
  map<string,TH1*> hmap ; 
  hmap["SampleA"] = hh_1 ; 
  hmap["SampleB"] = hh_2 ; 
  hmap["SampleC"] = hh_3 ; 
 
  // Construct RooDataHist using alternate ctor 
  RooDataHist* dh2 = new RooDataHist("dh","dh",x,c,hmap) ; 
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Manual construction, filling and retrieving of datasets 

Creating empty datasets 
An empty RooDataSet or RooDataHist is created with a constructor that only takes the name, title 
and list of observables 
 
 
   
   // Observables 

RooRealVar  x("x","x",-10,10) ; 
RooRealVar  y("y","y", 0, 40) ; 
RooCategory c("c","c") ; 
c.defineType("Plus",+1) ; 
c.defineType("Minus",-1) ; 

 
   // Construct empty dataset 
   RooDataSet d(“data”,”data”,RooArgSet(x,y,c)) ; 
 

// Construct empty datahist 
   RooDataHist h(“histo”,”histo”,RooArgSet(x,y,c)) ; 
 
 
Upon construction a clone is made of all value objects that are passed as observables. This set of 
cloned observable objects, retrievable through the RooAbsData::get() method 
  

 
d.get()->Print() ; 
 

 
act as TTree branch buffers: whenever a new ‘current’ event is loaded of a dataset these object will 
represent their values25.  The ‘original’ observables, i.e. the objects (x,y,c) passed to the 
RooDataSet/RooDataHist constructor will remain unconnected to the dataset 

Filling dataset one event at a time 
Single events can be added to a dataset by passing a RooArgSet with value objects to the dataset 
add() method: 
 

 
   // Fill dataset by hand 

Int_t i ; 
for (i=0 ; i<1000 ; i++) { 
  x = i/50 - 10 ; 
  y = sqrt(1.0*i) ; 
  c.setLabel((i%2)?"Plus":"Minus") ; 

 
  d.add(RooArgSet(x,y,c)) ; 
  h.add(RooArgSet(x,y,c)) ; 
} 
 

 
Note that an explicit reference to the objects x,y,c that contain the values of the new event must be 
passed to add() as neither d nor h have a connection to these objects. This is an intentional design 
feature of RooFit datasets. It makes the filling of datasets in this way somewhat less efficient, but 
allows model definitions in terms of these same observables to be independent of dataset actions26,27.  

                                                      
25 The internal value data member of RooRealVar and RooCategory are in fact branch buffers of 
the internal TTree that RooAbsData datasets use to store the information 
26 If this were not done, a loading of a  new event in a dataset would change the value of a p.d.f. Also 
issues arise with using multiple datasets with the same observable  
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Storing observable errors in unbinned data 
By default only the values of RooRealVar objects are stored in a RooDataSet. One can request that 
also the error is stored in addition to the value by setting a Boolean attribute on the RooRealVar that 
is used to define the dataset 
 

 
   // Observables 

RooRealVar  x("x","x",-10,10) ; 
RooRealVar  y("y","y", 0, 40) ; 
 
x.setAttribute(“StoreError”) ; 
y.setAttribute(“StoreAsymError”) ; 
 
// Construct empty dataset 

   RooDataSet d(“data”,”data”,RooArgSet(x,y,c)) ; 
 

 
A RooRealVar can have both a symmetric and an asymmetric error associated which can both be 
stored in the dataset independently. If a variable represents a fitted parameter, the HESSE error is 
stored in the symmetric error container, and the MINOS error is (if calculated) stored in the 
asymmetric error container. 

Retrieving dataset contents one event at a time 
To retrieve the particular event from a dataset use the get() method: 
 
 

 
// Retrieve ‘current’ event 
RooArgSet* obs = d.get() ; 
 
// Retrieve 5th event 
RooArgSet* obs = d.get(5) ; 
 

 
The returned pointer to the RooArgSet with the event observables is always the same for a given 
dataset. The difference between the first and second call of get() in the above example is that in the 
latter case the 5th event is explicitly loaded into the current event prior to returning the event buffer. In 
processing loops it is efficient to make the explicit assumption that the event buffer is invariant 
 

 
// Retrieve and parse event buffer before loop 
RooArgSet* obs = d.get() ; 
RooRealVar* xdata = obs->find(x.GetName()) ; 
 
// Loop over contents of dataset and print all x values 
for (int i=0 ; i<d.numEntries() ; i++) { 
   d.get(i) ; 
   cout << xdata->getVal() << endl ; 
} 
 
 

Retrieving the event weight 
For binned datasets the RooDataHist::get() method will return the coordinates of a bin center. 
The corresponding weight of that bin is returned by the weight() method: 
                                                                                                                                                                     
27 Bulk operations like fitting, plotting and event generation do not suffer from this performance loss as 
here a (disposable) copy of both data and model is used in which the model observable are directly 
connected to the dataset branch buffers. 



 102

 
 
// Retrieve and parse event buffer before loop 
RooArgSet* obs = h.get() ; 
RooRealVar* xdata = obs->find(x.GetName()) ; 
 
// Loop over contents of dataset and print all x values 
for (int i=0 ; i<h.numEntries() ; i++) { 
   h.get(i) ; 
   cout << xdata->getVal() << “ = “ << h.weight() << endl ; 
} 
 

 
Unbinned datasets can also have associated event weights, if the weighting option is active. For 
binned datasets these weights can have errors associated with them, retrievable through the 
weightError() method 
 

 
Double_t elo,ehi,err ; 
 
// Retrieve (asymmetric) ‘Poisson’ errors associated with current event weight 
xdata->weightError(elo,ehi,RooAbsData::Poisson) ; 
 
// Retrieve (symmetric) sum-of-weight^2 errors associated with current event 
err = xdata->weightError(RooAbsData::SumW2) ; 
 

 
For unbinned datasets, either weighted or unweighted, the returned error on the weight is always 
zero. Use of weighted unbinned datasets is explained in more detail below. 
 

Working with weighted events in unbinned data 
 
RooFit supports the concept of weighted events on both binned and unbinned datasets. For binned 
data weights are native to the concept, for unbinned data this is optional and it is necessary to first 
designate one of the existing observables as “event weight”: 
 

 
RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar y(“y”,”y”,-10,10) ; 
RooRealVar w(“w”,”w”,-10,10) ; 
 
// Declare dataset D(x,y,w) ; 
RooDataSet data1(“data1”,”data1”,RooArgSet(x,y,w)) ; 
 
// Assign w as event weight 
data1.setWeightVar(w) ; 
 
// Alternatively declare event weight interpretation upfrone 
RooDataSet data2(“data2”,”data2”,RooArgSet(x,y,w),WeightVar(w)) ; 

 
 
The variable designated as weight container will no longer appear as an explicit observable of the 
dataset, i.e. 
 

 
root [7] d.get()->Print() 
RooArgSet:: = (x,y) 
 
root [6] d.Print() 
RooDataSet::d[x,y,weight:w] = 0 entries (0 weighted) 
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Nevertheless, the name of the weight variable is relevant when data is imported from an external 
source, e.g. 
 
 

// Alternatively declare event weight interpretation upfrone 
RooDataSet data3(“data2”,”data2”,RooArgSet(x,y,w),WeightVar(w),Import(myTree)) ; 

 
 
imports the event weights from the tree branch named w. When filling an unbinned weighted dataset 
by hand one can simply add the weight to the add() method: 
 

 
// Add weighted event to unbinned dataset 
Double_t wgt=0.5 ; 
data1.add(RooArgSet(x,y),wgt) ; 
 

 
Use of weighted data presents some fundamental issues28 in maximum likelihood fits and should be 
used with due care. Chapter 12 has additional details on fitting of weighted datasets. 

Plotting, tabulation and calculations of dataset contents 

The RooPlot interface 
The preceding Chapters have already covered a variety of ways to make plots of continuous 
observables from datasets, either through the plotOn() method on 1-dimensional RooPlot frames 
 

 
RooPlot* frame = x.frame() ; 
d.plotOn(frame) ; 
 

 
and no further details are offered here.  
 
The THx interface 
The createHistogram() method that creates and fills 1-,2- or 3-dimensional ROOT histograms 
has also been covered in earlier Chapters and is not elaborated here. 
 

 
TH1* hh = d.createHistogram(“x,y”,100,100) ; 
 

 
The TTree Draw() and Scan() interface 
It is also possible to directly access the internal TTree representation of a RooDataSet through the 
tree() method, which gives access to methods like Draw() and Scan() that are useful for 
debugging and quick data exploration 
 

 
d.tree().Draw(“x”) ; 
d.tree().Scan(“x”) ; 
 

 

                                                      
28 In the likelihood formalism the sum of the weights is interpreted as a number of events, thus the 
statistical error reported by a ML fit to weighted data will be proportional to the sum of the weights 
which is in general incorrect. 
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Tabulating discrete observables 
A separate interface is provided to tabulate the values of discrete RooCategory observables that 
occur in a dataset 
 

 
Roo1DTable* btable = data->table(b0flav) ; 
 
btable->Print() ; 
Roo1DTable::b0flav = (B0=5050,B0bar=4950) 
 
btable->Print("v") ; 
 
Table b0flav : pData 
+-------+------+ 
|    B0 | 5050 | 
| B0bar | 4950 | 
+-------+------+ 
 

 
The RooAbsData::table() method fills a Roo1DTable object with the information from the 
dataset. The default Print() implementation of the table summarizes the contents on a single line 
whereas the verbose (“v”) configuration produces an ASCII art table. It is possible to specify a cut to 
be applied prior to tabulation using the Cut() argument, similar to what can be done in plotOn(): 
 

 
// Create table for subset of events matching cut expression 
Roo1DTable* ttable = data->table(tagCat,"x>8.23") ; 
 
 
ttable->Print("v") ; 
 
Table tagCat : pData(x>8.23) 
+-------------+-----+ 
|      Lepton | 439 | 
|        Kaon | 442 | 
| NetTagger-1 | 446 | 
| NetTagger-2 | 425 | 
+-------------+-----+ 
 

 
The information contained in tables can be retrieved through the get() method to get the event 
count of a single state, or using the getFrac() method to return the fraction of events in a given 
state 
 

 
  // Retrieve number of events from table 
  Double_t nb0 = btable->get("B0") ; 
 
 
  // Retrieve fraction of events with "Lepton" tag 
  Double_t fracLep = ttable->getFrac("Lepton") ; 
 

 
All internal bookkeeping of tables, as well as the table interface methods, work with Double_t 
representations rather than Int_t for event counts as event counts for weighted datasets are 
generally not integers. 
 
To tabulate the event counts in permutations of states of multiple categories, pass a set of categories 
to table() instead of single category 
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  // Create table for all (tagCat x b0flav) state combinations 
  Roo1DTable* bttable = data->table(RooArgSet(tagCat,b0flav)) ; 
 
  bttable->Print("v") ; 

 
  Table (tagCat x b0flav) : pData 
  +---------------------+------+ 
  |         {Lepton;B0} | 1262 | 
  |           {Kaon;B0} | 1275 | 
  |    {NetTagger-1;B0} | 1253 | 
  |    {NetTagger-2;B0} | 1260 | 
  |      {Lepton;B0bar} | 1280 | 
  |        {Kaon;B0bar} | 1214 | 
  | {NetTagger-1;B0bar} | 1236 | 
  | {NetTagger-2;B0bar} | 1220 | 
  +---------------------+------+ 
 

 
Tables can, like RooPlots be persisted in ROOT files 
 

Calculation of ranges of observables 
The method getRange() returns information on the lowest and highest value of a given observable 
that occurs in the dataset. In it simplest form it reports the lowest and highest occurring value of a 
given continuous observable x: 
 

 
Double_t xlo, xhi ; 
data->getRange(x,xlo,xhi) ; 
 

 
But it can also account for some amount of margin, expressed as a fraction of actual xhi-xlo, by 
which the returned range is widened. 
  

 
data->getRange(x,xlo,xhi,0.05) ; 
 

 
This option can be useful to calculate ranges for  of plots and is interfaced in the AutoRange() 
argument of RooRealVar::frame()  
 

 
RooPlot* frame = x.frame(AutoRange(*data,0.05)) ; 
 

 
Alternatively, the definition of the range can be widened such that mean of the distribution is at the 
center of the returned range, which is requested by a Boolean kTRUE argument in getRange() and 
is interfaced with the AutoSymRange() argument 
 
 

RooPlot* frame = x.frame(AutoSymRange(*data,0.05)) ; 
 

 
Calculation of moments and standardized moments 
For each continuous observable the (standardized) moments of a dataset, defined as 
 

ሺ݊ሻܯ ൌ ሺܺۃ െ ሺ݊ሻܵ     ,ۄሻۄܺۃ ൌ
ሺܺۃ െ ۄሻۄܺۃ

ߪ , 
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can be calculated as follows 
 

 
// Any moment  
Double_t m5 = data.moment(x,5) ; 
 
// Any standardized moment 
Double_t m5s = data.standMoment(x,5) ; 
 

 
For convenience the following synonyms have been defined 
 

 
// Mean and sigma  
Double_t mean = data.mean(x) ;  // 1st moment 
Double_t rms  = data.sigma(x) ; // 2nd moment 
 
// Skewness and kurtosis 
Double_t skew = data.skewness(x) ; // 3rd standardized moment 
Double_t kurt = data.kurtosis(x) ; // 4th standardized moment 

 
 
The value of the 1st and 2nd standardized moments are 0 and 1 respectively by construction. In any of 
the above methods, a cut expression string or cut range can be specified that is applied to the data 
prior to calculation of the requested moment 
 

 
// Mean with cut expression 
Double_t mean_cut = data.mean(x,”y>5.27”) ; 
 
// Mean with range cut 
Double_t mean_ranfe = data.mean(x,””,”good”) ; 
 

 

Operations on unbinned datasets 
Unbinned datasets support a variety of operations like merging, appending, splitting and reduction to 
alter their contents.  

Counting events  
All datasets have two separate counting methods: numEvents() which returns the number of event 
records and sumEvents() which returns the sum of the weights in all event records. For unbinned 
datasets without weights both method return the same answer 
 

Appending datasets 
Given two datasets with the same observables, one can append the contents of one dataset to the 
other through the append() method: 
 

 
// The append() function adds   
// two datasets row-wise 
data1->append(*data2) ;  
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Joining datasets 
A joining operation is similar to an appending operation, except that the provenance information is 
kept and stored in an extra RooCategory. The joining semantics of unbinned datasets are similar to 
those of importing a stack of THx histograms into a RooDataSet 
 

 
// Imports contents of all the above datasets mapped by index category c 
RooDataSet* dsABC = new RooDataSet("dsABC","dsABC",RooArgSet(x,y),Index(c), 
                                   Import("SampleA",*dsA), 
                                   Import("SampleB",*dsB), 
                                   Import("SampleC",*dsC)) ; 
 

Merging datasets 
Given two datasets with different observables but the same number of entries, one can merge these 
through the merge() method: 
 

 
// The merge() function combines  
// two datasets column-wise 
data1->merge(*data2) ; 

 
 

Reducing datasets 
The reduce() method returns a reduced clone of a dataset  in which events have been selected 
through a cut expression, a range expression, and event number range or a specification of 
observable to be kept: 
 
  
 
   // Fill reduced dataset (x,y,c) with events that match x<5.27 

RooDataSet* rdata1 = data->reduce(Cut(“x<5.27”)) ; 
 
 
 

    
   // Fill reduced dataset (x,y,c) with events that good range in (x,y) 

x.setRange(“good”,1,8) ; 
y.setRange(“good”,-5,5) ; 
RooDataSet* rdata2 = data->reduce(CutRange(“good”)) ; 
 
 
// Fill reduced dataset (y) without event selection 
RooDataSet* rdata3 = data->reduce(SelectVars(y)) ; 
 
 
// Fill reduced dataset (x,y,c) with event numbers 1000-2000 only 
RooDataSet* rdata4 = data->reduce(EventRange(1000,2000)) ; 
 
 
// Combined multiple reduction types in one pass 
RooDataSet* rdata5 = data->reduce(SelectVars(y),Cut(“x<5”),EventRange(0,100)) ; 
 

 
In all cases the original dataset is unaffected by the reduce operation. 

Splitting datasets 
A special form of reducing datasets with at least one category observable is splitting. Given a splitting 
category observable c in the dataset,  the split() function returns a TList of datasets that contain 
the events that match c==state_i, where state_i is one of the defined states of the category c. 
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The category c itself will not be part of the returned datasets, instead each dataset carries the name 
of the state of c to which it belongs. If no events are associated with given state of c, no dataset is 
created for that state. 
 

 
TList* datasetList = data.spit(tagCat) ; 
 

 
The splitting function is used internally by RooFit in the construction of likelihoods of simultaneous fits, 
which is covered in more detail in Chapter 11. 

Adding columns to datasets 
The addColumn() method takes a function or p.d.f.s of the type RooAbsReal/RooAbsPdf, 
calculates their value for each event in the dataset and adds a column to the dataset with those 
values so that they can be used as an observable 
 

 
// Create function that calculates r = √x2+y2 
RooFormulaVar radius_func(“radius”,”sqrt(x*x+y*y)”,RooArgSet(x,y)) ; 
 
// Add values of r to dataset 
RooRealVar* radius_obs = (RooRealVar*) data->addColumn(radius_func) 
 

 
The return value of addColumn() is a pointer to a RooRealVar with the same name as the function 
that can be used as observable object for plotting and subsequent model building in terms of this new 
observable.  
 

 
RooPlot* frame = radius_obs->frame() ; 
data->plotOn(frame) ; 
 

 
The default range of the returned RooRealVar automatically set such that it (just) brackets all values 
contained in the dataset, as shown in Figure 55. 
 

 
Figure 55 – Distribution of derived observable ࢘ ൌ ඥ࢞    from example dataset࢟

 

Operations on binned datasets 
Most of the operations supported on unbinned datasets are also supported on binned datasets 
represented by class RooDataHist. They are covered in a separate section because the effect of 
operations that are logically identical to those on unbinned datasets can have different practical 
consequences for the layout of the datasets. 
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Counting events  
The event record counted return by numEvents() on binned datasets is a fixed and reflects the 
number of bins defined in the dataset. The sumEvents() which returns the sum of the weights all 
bins. 

Adding data 
The addition of two datasets that is performed in unbinned datasets with the append() operation is 
done with the add(const RooDataHist&) method for binned data. The different name reflect the 
different process by which datasets are combined. In unbinned datasets, a new event record is 
created for each newly added event, in binned datasets the weights of existing event records (at pre-
determined coordinates) are merely updated. 
 

 
// The add() function adds  
// two datasets 
data1->add(*data2) ;  
 
 
 
 

Joining datasets 
A joining operation is similar to an addition operation, except that the provenance information is kept 
and stored in an extra RooCategory. The joining semantics of binned datasets are similar to those of 
importing a stack of THx histograms into a RooDataHist 
 

 
// Imports contents of all the above datasets mapped by index category c 
RooDataSet* dsABC = new RooDataHist("dsABC","dsABC",RooArgSet(x,y),Index(c), 
                                   Import("SampleA",*dsA), 
                                   Import("SampleB",*dsB), 
                                   Import("SampleC",*dsC)) ; 
 

Merging datasets 
The merge operation is not defined on binned datasets 

Reducing datasets 
The reduce() method returns a reduced clone of a binned dataset  in which events have been 
selected through a cut expression, a range expression, and event number range or a specification of 
observable to be kept. The semantics are the same as that of unbinned datasets. The number of bins 
in each returned clone, as returned by numEvents(), is the same as the original for all reduction 
operations except SelectVars(). The EventRange() reduction technique is also implemented for 
binned datasets and operates as a ‘bin range’.  

Splitting datasets 
The splitting of binned datasets works in exactly the same way as splitting of unbinned datasets. 

Constructing an binned weighted dataset 
Binned datasets are by construction weighted, so every binned dataset is a weighted dataset.  

Tutorial macros 
The following tutorial macros are provided with the chapter 
 

• rf401_importttreethx.C – Importing data from TTrees and THx into RooFit datasets  
• rf402_datahandling.C – Demonstration of various dataset content operations  
• rf403_weightedevts.C – Example of handling of dataset with weighted events 
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10. Organizational tools 
The section is scheduled for the next update of the manual and will cover the use of the Workspace to 
organize analysis projects, give details on how to use ASCII configuration files in RooFit, how to tune 
and customize the RooFit message service and illustrate the use of various debugging tools that are 
available. The tutorial macros associated with this section already exist, are fully functional, and to a 
large extent self-documenting 

Tutorial macros 
The following tutorial macros are provided with the chapter 
 

• rf502_wspacewrite.C – Persisting pdfs and data into a ROOT file through the workspace 
• rf503_wspaceread.C – Reading persisted pdfs and data from a workspace in a ROOT file. 
• rf505_asciicfg.C – Reading and writing ASCII configuration files for p.d.f parameters 
• rf506_msgservice.C – Customizing the RooFit message service 
• rf507_debugtools.C – Demonstration of RooFit debugging and memory tracing tools 
• rf508_listsetmanip.C – Illustration of manipulations on RooArgSet and RooArgList 
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11. Simultaneous fits 
The section is scheduled for the next update of the manual and will cover all aspects of simultaneous 
fits including their use in a variety of analysis scenarios and how to use RooSimWSTool to 
automatically construct simultaneous p.d.f. from a prototype specification. The tutorial macros 
associated with this section already exist, are fully functional, and to a large extent self-documenting 

Tutorial macros 
The following tutorial macros are provided with the chapter 
 

• rf504_simwstool.C – How to use RooSimWSTool to construct simultaneous p.d.f.s 
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12. Likelihood calculation, minimization 
The section is scheduled for the next update of the manual and will cover construction and calculation 
of likelihood and χ2 functions in RooFit, the low level interface to the MINUIT minimizer, explain the 
various optimization and parallelization techniques that are available in likelihood calculations, 
describe how profile likelihoods can be constructed, how evaluation errors are handled in likelihood 
calculations and finally how constraints on parameter can be included in likelihood fits. The tutorial 
macros associated with this section already exist, are fully functional, and to a large extent self-
documenting 

Tutorial macros 
The following tutorial macros are provided with the chapter 
 

• rf601_intminuit.C – Demonstration of interactive MINUIT minimization of a likelihood 
• rf602_chi2fit.C – Demonstration of a χ2 fit in RooFit 
• rf603_multicpu.C – Parallelization of likelihood calculation on a multi-core host 
• rf604_constraints.C – How to include constraints in a likelihood fit 
• rf605_profilell.C – Construction and use of a profile likelihood estimator 
• rf606_nllerrorhandling.C – Demonstration of likelihood error handling techniques 
• rf607_fitresult.C – Illustration of functionality of the RooFitResult class 
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13. Special models 
The section is scheduled for the next update of the manual and will cover a number of special p.d.f. 
implement in RooFit. These include RooEffProd, which multiplies a p.d.f. with an efficiency function,  
RooRealSumPdf, which construct a p.d.f. as the sum of a number of amplitude functions, 
RooHistPdf and RooKeysPdf that facilitate non-parametric representations of data as a p.d.f 
though histogramming and kernel estimation respectively, RooLinearMorph, which implement a 
linear transformation algorithm between two arbitrary input p.d.f. shapes. Finally a number of 
specialized B physics p.d.f.s is discussed. The tutorial macros associated with this section already 
exist, are fully functional, and to a large extent self-documenting 

Tutorial macros 
The following tutorial macros are provided with the chapter 
 

• rf703_effpdfprod.C – Operator p.d.f. multiplying efficiency with a p.d.f. 
• rf704_amplitudefit.C – Operator p.d.f. that sums a series of amplitude functions 
• rf705_linearmorph.C – Operator p.d.f. implanting linear shape interpolation between pdfs 
• rf706_histpdf.C – P.d.f. representing the shape of a histogram 
• rf707_kernelestimation.C – Kernel estimation p.d.f. based on unbinned dataset 
• rf708_bphysics.C – Illustration of various B physics p.d.f.s 
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14. Validation and testing of models 
The section is scheduled for the next update of the manual and will cover tools for automated toy MC 
validation studies using the RooMCStudy class and the various extension models that exist for these 
studies such as c2 calculation, significance calculation and parameter randomization. A separate 
section on the handling of parameter constraints on such studies will be included. The tutorial macros 
associated with this section already exist, are fully functional, and to a large extent self-documenting 

Tutorial macros 
The following tutorial macros are provided with the chapter 
 

• rf109_chi2residpull.C – Calculating χ2 and residual distributions in RooPlots  
• rf801_mcstudy.C – Basic toy MC validation study 
• rf802_mcstudy_addons.C – Toy MC study with χ2 calculation and separate fit model 
• rf803_mcstudy_addons2.C – Toy MC study with randomized params & significance calc. 
• rf804_mcstudy_constr.C – Toy MC Study with external parameter constraints 
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15. Programming guidelines 
The section is scheduled for the next update of the manual and will cover programming guidelines for 
RooFit functions and p.d.f.s and a variety of other classes. 

  



 116

Appendix A – Selected statistical topics 
The section is scheduled for the next update of the manual and will cover some basic statistical topics 
related to probability density functions, maximum likelihood and parameter estimation. 
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Appendix B – Pdf gallery 
The section is scheduled for the next update of the manual and will contain a gallery of available basic 
RooFit p.d.f.s 
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Appendix C – Decoration and tuning of RooPlots 
The section is scheduled for the next update of the manual and will contain details on how RooPlots 
can be decorated with arrows, text boxes and information on fit parameters and how the appearance 
of curves and histograms can be changed. The tutorial macros associated with this section already 
exist, are fully functional, and to a large extent self-documenting 

Tutorial macros 
The following tutorial macros are provided with the chapter 
  

• rf106_plotdecoration.C – How to add text, arrows, parameters to a RooPlot  
• rf107_plotstyles.C –  How to change the appearance of curves and histograms 
• rf108_plotbinning.C – How to change the binning of data plotted on a RooPlot 
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Appendix D – Integration and Normalization 
The section is scheduled for the next update of the manual and will contain details on how 
normalization and integration is handled in RooFit. The tutorial macros associated with this section 
already exist, are fully functional, and to a large extent self-documenting 

Tutorial macros 
The following tutorial macros are provided with the chapter 
  

• rf110_normintegration.C – Normalization and integration in one dimension 
• rf308_normintegration2d.C – Normalization and integration in multiple dimensions 
• rf111_numintconfig.C – Configuring numeric integrators used in RooFit 
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Appendix E – Quick reference guide 
This appendix summarizes the most core named argument methods of RooFit for plotting, fitting and 
data manipulation. The named argument formalism chief advantage is that it is a flexible and self-
documenting way to call methods that have a highly variable functionality. Here is the list of methods 
that is documented in this section 
 

Action Method Page# 

Make a plot frame RooAbsRealLValue::frame() 120 

Draw a PDF on a frame  RooAbsPdf::plotOn() 121 

Draw the parameters of a PDF on a frame RooAbsPdf::paramOn() 123 

Draw data on a frame RooAbsData::plotOn() 123 

Draw data statistics on a frame RooAbsData::statOn() 125 

Fill a 2D or 3D root histogram from a dataset    RooAbsData::createHistogram() 125 

Fill a 2D or 3D root histogram from a pdf           RooAbsReal::createHistogram() 126 

Fit a PDF to data RooAbsPdf::fitTo() 127 

Print fit results as a LaTeX table                        RooAbsCollection::printLatex() 129 

Generate toy Monte Carlo datasets RooAbsPdf::generate() 129 

Create integrals of functions RooAbsReal::createIntegral() 130 

Reduce a dataset RooAbsData::reduce() 130 

Automated fit studies RooMCStudy 130 

Project management RooWorkspace::import() 130 

Simultaneous p.d.f. building RooSimWSTool::build() 133 

 

  Plotting  
 

Make a plot frame – RooAbsRealLValue::frame() 
 
Usage example: RooPlot* frame = x.frame(…) 
 
Create a new RooPlot on the heap with a drawing frame initialized for this object, but no plot 
contents. Use x.frame() as the first argument to the y.plotOn(...) method, for example. The caller 
is responsible for deleting the returned object. 
 
This function supports the following optional named arguments 
  

Range(double lo, double hi) Restrict plot frame to the specified range 
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Range(const char* name) Restrict plot frame to range with the specified name 

Bins(Int_t nbins) Set default binning for datasets to specified number of bins 

AutoRange(const RooAbsData& 
data, double margin=0.1) 

Choose plot range such that all points in given data set fit 
inside the range with given fractional margin. 

AutoSymRange(const RooAbsData 
data, double margin=0.1) 

Choose plot range such that all points in given data set fit 
inside the range and such that center of range coincides 
with mean of distribution in given dataset. 

Name(const char* name) Give specified name to RooPlot object 

Title(const char* title) Give specified title to RooPlot object 

   

Some examples: 
 

 
// Create frame with name “foo” and title “bar” 
x.frame(Name(“foo”),Title(“bar”)) ;  
 
// Create frame with range (-10,10) and default binning of 25 bins 
x.frame(Range(-10,10),Bins(25)) ; 
 
// Create frame with range that fits all events in data with 10% margin that 
// is centered around mean of data 
x.frame(AutoSymRange(data)) ; 
 

 
 

Draw a PDF on a frame – RooAbsPdf::plotOn() 
 
Usage example: RooPlot* frame = pdf.plotOn(frame,…) ; 
 
Plots (projects) the PDF on a specified frame. If a PDF is plotted in an empty frame, it will show a unit 
normalized curve in the frame variable, taken at the present value of other observables defined for 
this PDF. 
 
If a PDF is plotted in a frame in which a dataset has already been plotted, it will show a projected 
curve integrated over all variables that were present in the shown dataset except for the one on the x-
axis. The normalization of the curve will also be adjusted to the event count of the plotted dataset. An 
informational message will be printed for each projection step that is performed 
 
This function takes the following named arguments 
 

Projection control 

Slice(const RooArgSet& set) Override default projection behavior by omitting 
observables listed in set from the projection, resulting a 
'slice' plot. Slicing is usually only sensible in discrete 
observables 

 Project(const RooArgSet& set) Override default projection behavior by projecting over 
observables given in set and complete ignoring the default 
projection behavior. Advanced use only. 
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 ProjWData(const RooAbsData& d) Override default projection technique (integration by 
default). For observables present in given dataset projection 
of PDF is achieved by constructing a Monte-Carlo 
summation of the curve for all observable values in given 
set. Consult Chapter 7 for details 

 ProjWData(const RooArgSet& s, 
const RooAbsData& d) 

As above but only consider subset 's' of observables in 
dataset 'd' for projection through data averaging 

 ProjectionRange(const char* rn) Override default range of projection integrals to a different 
range specified by given range name. This technique allows 
you to project a finite width slice in a real-valued observable 

NormRange(const char* rn) Calculate curve normalization w.r.t. data only in specified 
ranges. Note that a Range(), which restricts the plotting 
range, by default implies a NormRange() on the same 
range, but this option allows to override the default, or 
specify a normalization ranges when the full curve is to be 
drawn 

  
Miscellaneous content control 

Normalization(Double_t scale, 
ScaleType code)  

Adjust normalization by given scale factor. Interpretation of 
number depends on code: Relative: relative adjustment 
factor, NumEvent: scale to match given number of events. 

 Name(const chat* name) Give curve specified name in frame. Useful if curve is to be 
referenced later 

 Asymmetry(const RooCategory& c) Show the asymmetry of the PDF in given two-state category 
(A+-A-) / (A++A-) rather than the PDF projection. Category 
must have two states with indices -1 and +1 or three states 
with indices -1,0 and +1. 

 ShiftToZero(Bool_t flag) Shift entire curve such that lowest visible point is at exactly 
zero. Mostly useful when plotting -log(L) or χ2 distributions 

 AddTo(const char* name,Double_t 
wgtSelf, double_t wgtOther) 

Add constructed projection to already existing curve with 
given name and relative weight factors 

 
Plotting control 

LineStyle(Int_t style) Select line style by ROOT line style code, default is solid 

 LineColor(Int_t color) Select line color by ROOT color code, default is blue 

 LineWidth(Int_t width) Select line with in pixels, default is 3 

 FillStyle(Int_t style) Select fill style, default is not filled. If a filled style is 
selected, also use VLines() to add vertical downward lines 
at end of curve to ensure proper closure 

 FillColor(Int_t color) Select fill color by ROOT color code 

 Range(const char* name) Only draw curve in range defined by given name 

 Range(double lo, double hi) Only draw curve in specified range 
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 VLines() Add vertical lines to y=0 at end points of curve 

 Precision(Double_t eps) -- Control precision of drawn curve w.r.t to scale of plot, 
default is 1e-3. Higher precision will result in more and more 
densely spaced curve points 

 Invisble(Bool_t flag) Add curve to frame, but do not display. Useful in 
combination AddTo() 

Draw parameters of a PDF on a frame – RooAbsPdf::paramOn() 
 
Usage example: pdf.paramOn(frame,…) 
 
Add a box with parameter values (and errors) to the specified frame 
 
The following named arguments are supported 
 

   Parameters(const RooArgSet& 
param) 

Only the specified subset of parameters will be shown. By 
default all non-constant parameters are shown 

   ShowConstant(Bool_t flag) Also display constant parameters 

   Format(const char* optStr) Classic parameter formatting options, provided for 
backward compatibility 

   Format(const char* what,...) Parameter formatting options, details are given below 

   Label(const chat* label) Add header line with given label to parameter box 

   Layout(Double_t xmin, 
Double_t xmax, Double_t ymax) 

Specify relative position of left, right side and top of box. 
Vertical size of box is calculated automatically from number 
lines in box 

                                   
 
 The Format(const char* what,...) has the following structure 
 

   const char* what Controls what is shown. "N" adds name, "E" adds error, "A" 
shows asymmetric error, "U" shows unit, "H" hides the value 

   FixedPrecision(int n) Controls precision, set fixed number of digits 

   AutoPrecision(int n) Controls precision. Number of shown digits is calculated 
from error + n specified additional digits (1 is sensible 
default) 

 
Example use: pdf.paramOn(frame,Label("fit result"),Format("NEU",AutoPrecision(1))); 
 

Draw data on a frame – RooAbsData::plotOn() 
 
Usage example: data.plotOn(frame,…) 
 
Plots the dataset on the specified frame. By default an unbinned dataset will use the default binning of 
the target frame. A binned dataset will by default retain its intrinsic binning. 
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The following optional named arguments can be used to modify the default behavior 
 

Data representation options 

Asymmetry(const RooCategory& c) Show the asymmetry of the data in given two-state category 
(A+-A-) / (A++A-). Category must have two states with 
indices -1 and +1 or three states with indices -1, 0 and +1. 

Efficiency(const RooCategory& c) Show the efficiency encoded by a two-state category as 
(accept) / (accept+reject). Category must have two states 
with indices 0 and 1 that are interpreted as reject and 
accept respectively. 

 DataError(RooAbsData::EType) Select the type of error drawn: Poisson (default) draws 
asymmetric Poisson confidence intervals. SumW2 draws 
symmetric sum-of-weights error, None draws no errors 

 Binning(double xlo, double xhi, 
int nbins) 

Use specified binning to draw dataset 

 Binning(const RooAbsBinning&) Use specified binning to draw dataset 

 Binning(const char* name) Use binning with specified name to draw dataset 

 RefreshNorm(Bool_t flag) Force refreshing for PDF normalization information in 
frame. If set, any subsequent PDF will normalize to this 
dataset, even if it is not the first one added to the frame. By 
default only the 1st dataset added to a frame will update the 
normalization information 

 
Histogram drawing options 

DrawOption(const char* opt) Select ROOT draw option for resulting TGraph object 

 LineStyle(Int_t style) Select line style by ROOT line style code, default is solid 

 LineColor(Int_t color) Select line color by ROOT color code, default is black 

 LineWidth(Int_t width) Select line with in pixels, default is 3 

 MarkerStyle(Int_t style) Select the ROOT marker style, default is 21 

 MarkerColor(Int_t color) Select the ROOT marker color, default is black 

 MarkerSize(Double_t size) Select the ROOT marker size 

 XErrorSize(Double_t frac) Select size of X error bar as fraction of the bin width, default 
is 1 

 
 

Misc. other options 

Name(const chat* name) Give curve specified name in frame. Useful if curve is to be 
referenced later 

 Invisble(Bool_t flag) Add curve to frame, but do not display. Useful in 
combination AddTo() 

 AddTo(const char* name, 
Double_t wgtSelf, Double_t 

Add constructed histogram to already existing histogram 
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wgtOther) with given name and relative weight factors 

  
                                     

Draw data statistics on a frame – RooAbsData::statOn() 
 
Usage example: data.statOn(frame,…) 
 
Add a box with statistics information to the specified frame. By default a box with the event count, 
mean and RMS of the plotted variable is added. 
 
The following optional named arguments are accepted 
 

   What(const char* whatstr) Controls what is printed: "N" = count, "M" is mean, "R" is 
RMS. 

   Format(const char* optStr) Classic parameter formatting options, provided for 
backward compatibility 

   Format(const char* what,...) Parameter formatting options, details given below 

   Label(const chat* label) Add header label to parameter box 

   Layout(Double_t xmin, 
Double_t xmax, Double_t ymax) 

Specify relative position of left, right side of box and top of 
box. Vertical size of the box is calculated automatically from 
number lines in box 

   Cut(const char* expression) Apply given cut expression to data when calculating 
statistics. 

   CutRange(const char* 
rangeName) 

Only consider events within given range when calculating 
statistics. Multiple CutRange() argument may be specified 
to combine ranges 

 
The Format(const char* what,...) has the following structure 
 

   const char* what 

  

Controls what is shown. "N" adds name, "E" adds error, A" 
shows asymmetric error, "U" shows unit, "H" hides the value 

   FixedPrecision(int n) Controls precision, set fixed number of digits 

   AutoPrecision(int n) Controls precision. Number of shown digits is calculated 
from error + n specified additional digits (1 is sensible 
default) 

   VerbatimName(Bool_t flag) Put variable name in a \verb+   + clause. 

 

Fill a 2D or 3D root histogram from a dataset –  
                                                     RooAbsData::createHistogram() 
 
Usage example: TH1* hist = data.createHistogram(name,xvar,…) 
 
Create and fill a ROOT histogram TH1,TH2 or TH3 with the values of this dataset.  
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This function accepts the following arguments 
 

const char* name Name of the ROOT histogram 

const RooAbsRealLValue& xvar Observable to be mapped on x axis of ROOT histogram 

 

 Binning(const char* name) Apply binning with given name to x axis of histogram 

 Binning(RooAbsBinning& binning) Apply specified binning to x axis of histogram 

Binning(double lo, double hi, 
int nbins) 

Apply specified binning to x axis of histogram 

AutoBinning(Int_t nbins, 
Double_t margin) 

Construct binning with nbins bins with a range that just fits 
that of the data with a given extra fractional margin. 

AutoSymBinning(Int_t nbins, 
Double_t margin) 

Construct binning with nbins bins with a range that just fits 
that of the data with a given extra fractional margin, but with 
the additional padding on one side to make the mean of the 
data distribution coincide with the center of the range. 

 

 YVar(const RooAbsRealLValue& 
var,...) 

Observable to be mapped on y axis of ROOT histogram 

 ZVar(const RooAbsRealLValue& 
var,...) 

Observable to be mapped on z axis of ROOT histogram 

 
The YVar() and ZVar() arguments can be supplied with optional Binning() arguments to control the 
binning of the Y and Z axes, e.g. 
 
 createHistogram("histo",x,Binning(-1,1,20),  
                 YVar(y,Binning(-1,1,30)), ZVar(z,Binning("zbinning"))) 
 
The caller takes ownership of the returned histogram 

Fill a 2D or 3D root histogram from a PDF –  
                                                     RooAbsReal::createHistogram() 
 
Usage example: TH1* hist = pdf.createHistogram(name,xvar,…) 
 
Create and fill a ROOT histogram TH1, TH2 or TH3 with the values of this function.  
 
This function accepts the following arguments 
 
  

const char* name Name of the ROOT histogram 

const RooAbsRealLValue& xvar Observable to be mapped on x axis of ROOT histogram 

 

 Binning(const char* name) Apply binning with given name to x axis of histogram 
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 Binning(RooAbsBinning& binning) Apply specified binning to x axis of histogram 

 Binning(double lo, double hi, 
int nbins) 

Apply specified binning to x axis of histogram 

 ConditionalObservables(const 
RooArgSet& set) 

Do not normalized PDF over following observables when 
projecting PDF into histogram 

Scaling(Bool_t flag) Apply density-correction scaling (multiply by bin volume), 
default is kTRUE 

 

 YVar(const RooAbsRealLValue& 
var,...) 

Observable to be mapped on y axis of ROOT histogram 

 ZVar(const RooAbsRealLValue& 
var,...) 

Observable to be mapped on z axis of ROOT histogram 

 
The YVar() and ZVar() arguments can be supplied with optional Binning() arguments to control the 
binning of the Y and Z axes, e.g. 
 
 createHistogram("histo",x,Binning(-1,1,20),  
                 YVar(y,Binning(-1,1,30)), ZVar(z,Binning("zbinning"))) 
 
The caller takes ownership of the returned histogram. 

Fitting and generating 
 

Fit a PDF to data – RooAbsPdf::fitTo() 
 
Usage example: pdf.fitTo(data,…) 
 
Fit PDF to given dataset. If dataset is unbinned, an unbinned maximum likelihood is performed. If the 
dataset is binned, a binned maximum likelihood is performed. By default the fit is executed through 
the MINUIT commands MIGRAD, HESSE and MINOS in succession. 
 
The following named arguments are supported 
 

Options to control construction of -log(L) 

ConditionalObservables(const 
RooArgSet& set) 

Do not normalize PDF over listed observables 

 Extended(Bool_t flag) Control addition of extended likelihood term, automatically 
determined by default 

 Range(const char* name) Fit only data inside range with given name 

 Range(Double_t lo, Double_t hi) Fit only data inside given range. A range named "fit" is 
created on the fly on all observables. 

 NumCPU(int num)  Parallelize NLL calculation on num CPUs 

 Optimize(Bool_t flag) Activate constant term optimization (on by default) 
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 SplitRange(Bool_t flag) Use separate fit ranges in a simultaneous fit. Actual range 
name for each subsample is assumed to by 
rangeName_{indexState} where indexState is the state 
of the master index category of the simultaneous fit 

Constrain(const RooArgSet& pars) Include constraints to listed parameters in likelihood using 
internal constrains in p.d.f 

ExternalConstraints(const 
RooArgSet& cpdfs) 

Include given external constraint p.d.f.s to likelihood 

                                     
 

Options to control flow of fit procedure 

 InitialHesse(Bool_t flag)  Flag controls if HESSE before MIGRAD as well, off by 
default 

 Hesse(Bool_t flag)  Flag controls if HESSE is run after MIGRAD, on by default 

 Minos(Bool_t flag)  Flag controls if MINOS is run after HESSE, on by default 

 Minos(const RooArgSet& set)  Only run MINOS on given subset of arguments 

 Save(Bool_t flag)  Flag controls if RooFitResult object is produced and 
returned, off by default 

 Strategy(Int_t flag)  Set MINUIT strategy (0 through 2, default is 1) 

 FitOptions(const char* optStr)  Steer fit with classic options string (for backward 
compatibility). Use of this option excludes use of any of the 
new style steering options 

EvalErrorWall(Bool_t flag) Activate ‘likelihood wall’ to force MIGRAD to retreat when 
evaluation errors occur in the likelihood expression. On by 
default. 

 
Options to control informational output 

 Verbose(Bool_t flag) Flag controls if verbose output is printed (NLL, parameter 
changes during fit 

 Timer(Bool_t flag) Time CPU and wall clock consumption of fit steps, off by 
default 

 PrintLevel(Int_t level) Set MINUIT print level (1 through 3, default is 1). At 1 all 
RooFit informational messages are suppressed as well. 

PrintEvalErrors(Int_t numErr) Control number of p.d.f evaluation errors printed per 
likelihood evaluation. A negative value suppress output 
completely, a zero value will only print the error count per 
p.d.f component,  a positive value is will print details of each 
error up to numErr messages per p.d.f component. 
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Print fit results as a LaTeX table –  
                                                   RooAbsCollection::printLatex()  
 
Usage example: paramList.printLatex(…) ; 
 
Output content of collection as LaTex table. By default a table with two columns is created: the left 
column contains the name of each variable, the right column the value. 
 
The following optional named arguments can be used to modify the default behavior 
 

   Columns(Int_t ncol) Fold table into multiple columns, i.e. ncol=3 will result in 3 x 
2 = 6 total columns 

   Sibling(const 
RooAbsCollection& other) 

Define sibling list. The sibling list is assumed to have 
objects with the same name in the same order. If this is not 
the case warnings will be printed. If a single sibling list is 
specified, 3 columns will be output: the (common) name, 
the value of this list and the value in the sibling list. Multiple 
sibling lists can be specified by repeating the Sibling() 
command. 

   Format(const char* str) Classic format string, provided for backward compatibility 

   Format(...) Formatting arguments, details are given below 

   OutputFile(const char* fname) Send output to file with given name rather than standard 
output 

 
 The Format(const char* what,...) has the following structure 
 

   const char* what Controls what is shown. "N" adds name, "E" adds error, "A" 
shows asymmetric error, "U" shows unit, "H" hides the value

   FixedPrecision(int n) Controls precision, set fixed number of digits 

   AutoPrecision(int n) Controls precision. Number of shown digits is calculated 
from error + n specified additional digits (1 is sensible 
default) 

   VerbatimName(Bool_t flag) Put variable name in a \verb+   + clause. 

 
 Example use:  
 
list.printLatex(Columns(2), Format("NEU",AutoPrecision(1),VerbatimName()) ) ; 
 
 

Generate toy Monte Carlo datasets – RooAbsPdf::generate() 
 
Usage example: RooDataSet* data = pdf.generate(x,…) ; 
 
Generate a new dataset containing the specified variables with events sampled from our distribution. 
Generate the specified number of events or expectedEvents() if not specified. 
 
Any variables of this PDF that are not in whatVars will use their current values and be treated as fixed 
parameters. Returns zero in case of an error. The caller takes ownership of the returned dataset. 
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The following named arguments are supported 
 

 Verbose(Bool_t flag) Print informational messages during event generation 

 NumEvent(int nevt) Generate specified number of events 

 Extended() The actual number of events generated will be sampled 
from a Poisson distribution with mu=nevt. For use with 
extended maximum likelihood fits 

 ProtoData(const RooDataSet& 
data,  Bool_t randOrder, Bool_t 

resample) 

Use specified dataset as prototype dataset. If randOrder is 
set to true the order of the events in the dataset will be read 
in a random order the order of the events in the dataset will 
be read in a random order number of events in the 
prototype dataset. If resample is true events are taken from 
the prototype dataset through sampling rather than through 
traversal.  

                                         
If ProtoData() is used, the specified existing dataset as a prototype: the new dataset will contain the 
same number of events as the prototype (unless otherwise specified), and any prototype variables not 
in whatVars will be copied into the new dataset for each generated event and also used to set our 
PDF parameters.   
 
The user can specify a  number of events to generate that will override the default. The result is a 
copy of the prototype dataset with only variables in whatVars randomized. Variables in whatVars that 
are not in the prototype will be added as new columns to the generated dataset.   

Create integrals of functions– RooAbsReal::createIntegral() 
 
Usage example: RooAbsReal* intOfFunc = func.createIntegral(x,…) ; 
 
Create an object that represents the integral of the function over one or more observables listed in iset 
 
The actual integration calculation is only performed when the return object is evaluated. The name of 
the integral object is automatically constructed from the name of the input function, the variables it 
integrates and the range integrates over 
 
The following named arguments are accepted 
 

 NormSet(const RooArgSet&) Specify normalization set, mostly useful when working with 
PDFS 

NumIntConfig(const 
RooNumIntConfig&) 

Use given configuration for any numeric integration, if 
necessary 

 Range(const char* name) Integrate only over given range. Multiple ranges may be 
specified by passing multiple Range() arguments 

                                            

Data manipulation 
 

Reduce a dataset – RooAbsData::reduce() 
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Usage example: RooAbsData* reducedData = data.reduce(…) ; 
 
Create a reduced copy of this dataset. The caller takes ownership of the returned dataset 
 
The following optional named arguments are accepted 
 

   SelectVars(const RooArgSet& 
vars) 

Only retain the listed observables in the output dataset 

   Cut(const char* expression) Only retain event surviving the given cut expression 

   Cut(const RooFormulaVar& 
expr) 

Only retain event surviving the given cut formula 

   CutRange(const char* name) Only retain events inside range with given name. Multiple 
CutRange arguments may be given to select multiple 
ranges 

   EventRange(int lo, int hi) Only retain events with given sequential event numbers 

   Name(const char* name) Give specified name to output dataset 

   Title(const char* name) Give specified title to output dataset 

 
 

  Automation tools  
 

Automated fit studies – class RooMCStudy 
 
Usage example: RooMCStudy mgr(model,observables,…) ; 
 
Construct Monte Carlo Study Manager. This class automates generating data from a given PDF, 
fitting the PDF to that data and accumulating the fit statistics. 
 
The constructor accepts the following arguments 
 

const RooAbsPdf& model The PDF to be studied 

const RooArgSet& observables The variables of the PDF to be considered the observables 

 FitModel(const RooAbsPdf&) The PDF for fitting, if it is different from the PDF for 
generating 

 ConditionalObservables(const 
RooArgSet& set) 

The set of observables that the PDF should not be 
normalized over 

 Binned(Bool_t flag) Bin the dataset before fitting it. Speeds up fitting of large 
data samples 

 FitOptions(const char*) Classic fit options, provided for backward compatibility 

 FitOptions(....) Options to be used for fitting. All named arguments inside 
FitOptions()are passed to RooAbsPdf::fitTo(); 
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 Verbose(Bool_t flag) Activate informational messages in event generation phase 

 Extended(Bool_t flag) Determine number of events for each sample anew from a 
Poisson distribution 

 ProtoData(const RooDataSet&, 
Bool_t randOrder) 

Prototype data for the event generation. If the randOrder 
flag is set, the order of the dataset will be re-randomized for 
each generation cycle to protect against systematic biases 
if the number of generated events does not exactly match 
the number of events in the prototype dataset at the cost of 
reduced precision with mu equal to the specified number of 
events 

Constrain(const RooArgSet& pars) Apply internal constraints on given parameters in fit and 
sample constrained parameter values from constraint p.d.f 
for each toy. 

ExternalConstraints(const 
RooArgSet& cpdfs) 

Apply given external constraints in likelihood and sample 
constrained parameter values from constraint p.d.f. for each 
toy. 

 
The plotParam() method plots the distribution of the fitted value of the given parameter on a newly 
created frame. This function accepts the following optional arguments 
 
  

FrameRange(double lo, double hi) Set range of frame to given specification 

FrameBins(int bins) Set default number of bins of frame to given number 

Frame(...) Pass supplied named arguments to 
RooAbsRealLValue::frame() function. See frame() 
function for list of allowed arguments 

 
If no frame specifications are given, the AutoRange() feature will be used to set the range. Any other 
named argument is passed to the RooAbsData::plotOn() call. See that function for allowed options 
 
The plotPull() method plots the distribution of pull values for the specified parameter on a newly 
created frame. If asymmetric errors are calculated in the fit (by MINOS) those will be used in the pull 
calculation This function accepts the following optional arguments 
 

 FrameRange(double lo, double 
hi) 

Set range of frame to given specification 

 FrameBins(int bins) Set default number of bins of frame to given number 

 Frame(...) Pass supplied named arguments to 
RooAbsRealLValue::frame() function. See frame() 
function for list of allowed arguments 

 FitGauss(Bool_t flag) Add a Gaussian fit to the frame 

 
 If no frame specifications are given, the AutoSymRange() feature will be used to set the range 
 Any other named argument is passed to the RooAbsData::plotOn() call. See that function for 
allowed options 
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Project  management – RooWorkspace::import() 
 
Usage example: ws.import(pdf,RenameConflictNodes(“_my”)) ; 
 
Import a RooAbsArg object, e.g. function, p.d.f or variable into the workspace. This import function 
clones the input argument and will own the clone. If a composite object is offered for import, e.g. a 
p.d.f with parameters and observables, the complete tree of objects is imported. If any of the -
variables of a composite object (parameters/observables) are already in the workspace the imported 
p.d.f. is connected to the already existing variables. If any of the function objects (p.d.f, formulas)  to 
be imported already exists in the workspace an error message is printed and the import of the entire 
tree of objects is cancelled.  Several optional arguments can be provided to modify the import 
procedure.  
 
The import accepts the following arguments for importing value objects (functions & variables) 
 

const RooAbsArg& inArg The imported function/p.d.f  

RenameConflictNodes(const char* 
suffix) 

Add suffix to branch node name if name conflicts with 
existing node in workspace 

RenameNodes(const char* suffix) Add suffix to all branch node names including top level 
node 

RenameVariable(const char* 
inputName, const char* 

outputName) 

Rename variable as specified upon import 

RecycleConflictNodes() If any of the function objects to be imported already exist in 
the name space, connect the imported expression to the 
already existing nodes. WARNING: use with care! If 
function definitions do not match, this alters the definition of 
your function upon import 

 
The import accepts the following arguments for importing data objects 
 

const RooAbsData& inData The imported dataset. 

RenameDataset(const char* 
suffix) 

Rename dataset upon insertion 

RenameVariable(const char* 
inputName, const char* 

outputName) 

Change names of observables in dataset upon insertion. 

 

Simultaneous p.d.f building – RooSimWSTool::build() 
 
Usage example: wstool.build(“simPdf”,”protoPdf”,SplitParam(mean,runBlock)) ; 
 
Construct a simultaneous p.d.f. from a prototype p.d.f. with one or more parameter splitting 
specifications. 
 
The build function accepts the following arguments 
 

const char* simPdfName Name of the output simultaneous p.d.f. that is built 
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const char* protoPdfName Name of the prototype p.d.f. in the workspace that is to be 
used as template for the build 

SplitParam(const char* varName, 
const char* catName) 

Split parameter with given name(s) in categories with given 
name(s). Each argument may contain wildcards and 
comma separated lists. All referenced variables and 
categories must exist in the associated workspace 

SplitParam(const RooArgSet& 
vars, const RooArgSet& cats) 

Split given parameter(s) in given categories. All referenced 
variables and categories must exist in the associated 
workspace 

SplitParamConstrained(const 
char* varName, const char* 

catName, const char* 
remainderStateName 

Split parameter with given name(s) in categories with given 
name(s). The specialization for the category state name 
matching remainderState will be a formula object that 
evaluates to 1 minus the sum of all other specialization, 
thus effectively constructing a constrained split with 
fractions adding up to one over the split. Each argument 
may contain wildcards and comma separated lists. All 
referenced variables and categories must exist in the 
associated workspace 

SplitParamConstrained(const 
RooArgSet& varSet, const 

RooArgSet& catSet, const char* 
remainderStateName 

Version of constrained split argument with references to 
variables and categories instead of name specifications. 

Restrict(const char* catName, 
const char* stateNameList) 

Restrict build to list of states given in stateNameList for 
given category. 

 


