
Lecture 2
The basic concepts behind an Object-Oriented framework

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.1/18

Exercise 1

Find out which method changes the markerstyle of a 1D histogram.

Inheritance tree of a 1D histogram (e.g. a TH1D):
class TH1D : public TH1, public TArrayD

class TH1 : public TNamed, public TAttLine, public TAttFill, public TAttMarker

Class TAttMarker:
--*-*-*-*-*-*-*-*-*-*-*Marker Attributes class*-*-*-*-*-*-*-*-*-*-*-*-*-*
- =======================
- Marker attributes are:
- Marker Color
- Marker style

- Marker Size
-
- This class is used (in general by secondary inheritance)
- by many other classes (graphics, histograms).
...

Answer: virtual void SetMarkerStyle(Style_t mstyle = 1)

Example: myHistoPtr->SetMarkerStyle(kFullSquare)

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.2/18

Exercise 1: Marker styles
- List of the currently supported markers (screen and PostScript)
- ===
- 1 : dot kDot
- 2 : + kPlus
- 3 : * kStar
- 4 : o kCircle
- 5 : x kMultiply
- 6 : small scalable dot kFullDotSmall
- 7 : medium scalable dot kFullDotMedium
- 8 : large scalable dot kFullDotLarge
- 9 -->15 : dot
- 16 : open triangle down kOpenTriangleDown
- 18 : full cross kFullCross
- 20 : full circle kFullCircle
- 21 : full square kFullSquare
- 22 : full triangle up kFullTriangleUp
- 23 : full triangle down kFullTriangleDown
- 24 : open circle kOpenCircle
- 25 : open square kOpenSquare
- 26 : open triangle up kOpenTriangleUp
- 27 : open diamond kOpenDiamond
- 28 : open cross kOpenCross
- 29 : open star kOpenStar
- 30 : full star kFullStar

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.3/18

Exercise 2

Create a 2D histogram and fill it with a gaussian distribution.

Slightly modify Johan’s example:
void doit()
{

TH2F *myHis = new TH2F("myHis","A Histogram Example",100,-1.,1.,100,-1.,1.);

TRandom *ranNumGen = new TRandom();
TCanvas *myCanvas = new TCanvas("myCanvas","This is a drawing table",1);
myCanvas->SetFillColor(kWhite);
myCanvas->SetFrameFillColor(kYellow);
myHis->SetFillColor(kBlue);
myHis->SetLineColor(kBlue);
for (Int_t i=0; i<100000; i++)
{

myHis->Fill(ranNumGen->Gaus(0.5,0.2),ranNumGen->Gaus(0.5,0.2));

if ((i%200)==0)
{
myHis->Draw();
// myCanvas->Refresh(); <=== TYPO
myCanvas->Update();

}
}

}
KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.4/18

Exercise 3

Create a canvas and put a text with your name in it. Specify which classes are
used and which methods and print the results as a postscript file.

From the Root tutorials on
http://root.cern.ch/root/html/examples/hello.html:

Root > TPaveLabel hello(0.2,0.4,0.8,0.6,"Gerco says Hello!");
Root > hello.Draw();
Root > c1->Print("hello.eps");

Gerco says Hello!

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.5/18

Exercise 4

Find the longest chain of pointers possible using the TH1 as base class, I.e.
object-

�

a()-

�

b()-

�

c()...

Many possibilities

h->Rebin(1)->Rebin(1)->Rebin(1)......

h->GetDirectory()->FindObject("h")->.....

h->GetFunction("pol1")->GetExpFormula()->Contains("pol")

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.6/18

Lecture 3
Finding your way in ROOT memory:

Names, Lists, Directories, Browsers and Files

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.7/18

This Lecture in Short

As soon as you start to have a significant analysis session using
ROOT, keeping track of all the objects you created may become
difficult.

To make things easier, objects are usually created with a name, which
can be used to look up the object.

Compare this with you (the Object), your phone number (pointer to the
Object) and the phone book which links you and your phone number
via your name.

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.8/18

Objects with Names

Nearly every object inherits from TNamed, i.e. it has a name. For
example, the TH1 class definition reads:

class TH1 : public TNamed, public TAttLine, public TAttFill, public TAttMarker

and in the constructor you find:

TH1(const char* name, const char* title, Int_t nbinsx, Axis_t xlow, Axis_t xup)

This is how it is used:

TH1D* myHistoPtr = new TH1D("myHisto","Title of this histo",10,0,1);

Be careful not to use the same name twice or you’ll get
Warning in <TH1::Build>: Replacing existing histogram: myHisto (Potential memory leak).

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.9/18

Listing objects

You can see which objects you created using the .ls command:

root [1] .x test.cxx

root [2] TH2D* h2 = new TH2D("anotherHisto","This is a 2D hist",10,0,1,10,0,1)
root [3] .ls

TROOT* Rint The ROOT of EVERYTHING

OBJ: TH1F myHis A Histogram Example : 0 at: 0x8c784c8

OBJ: TH2D anotherHisto This is a 2D hist : 0 at: 0x8c865d0

This may become cumbersome if there are a lot of objects around ...

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.10/18

TBrowser

The alternative to .ls is the TBrowser class:

The browser is simply started with the command

root [1] new TBrowser

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.11/18

Browsing the Contents of a ROOT File

A file can be opened via the Browser

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.12/18

Browsing the Contents of a ROOT File

A file can be opened via the Browser

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.12/18

Browsing the Contents of a ROOT File

A file can be opened via the Browser

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.12/18

Browsing the Contents of a ROOT File

A file can be opened via the Browser

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.12/18

Browsing the Contents of a ROOT File

A file can be opened via the Browser

Alternative:

root [1] f = new TFile("/tmp/timeScan_low_noasymw_gain_nolosses_fitcbo27.root")

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.12/18

Drawing a Histogram From a File

Option 1: in the browser, click on the histogram

Option 2: the proper commandline/macro version

root [1] TFile* f = new TFile("/tmp/timeScan_fitcbo27.root")

root [2] TH1D* h = (TH1D*)f->Get("fastRot24")
(class TH1D*)0x8d9fdd8
root [3] h->Draw()

Get uses the name to look up an object in the file, reads it into memory
and returns a pointer to it.

Option 3: the sloppy version

root [1] TFile* f = new TFile("/tmp/timeScan_fitcbo27.root")
root [3] fastRot24->Draw()

Here, ROOT uses the name of the object to find it by itself

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.13/18

A Few Words on TFile

ROOT has its own IO interface, which is implemented in the class TFile

A ROOT file (like a Unix file system) may contain objects and
directories. There are no restrictions for the number of levels of
directories.

A ROOT file can be used interactively. In this case, one has the
possibility to delete or change existing objects and add new ones. An
opened file behaves as any other directory in memory.

A ROOT file is by default compressed, so that it uses a minimal
amount of disk space

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.14/18

Directory Structure

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.15/18

Making New Directories

The top level directory is gROOT:

root [0] TDirectory* d1 = gROOT->mkdir("d1","This is directory1")
root [1] TDirectory* d2 = d1->mkdir("d2","This is subdir1")
root [2] TDirectory* d3 = gROOT->mkdir("d3","This is directory2")
root [3] .ls
TROOT* Rint The ROOT of EVERYTHING
TDirectory* d1 This is directory1
TDirectory* d2 This is subdir1
TDirectory* d3 This is directory2

root [4] d2->cd()
(Bool_t)1
root [5] .ls
TDirectory* d2 This is subdir1

You can navigate through this directory structure with the browser or by
hand

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.16/18

Global Variables

In addition to gROOT, there are some more global variables that apply
to the session:

gROOT: gROOT holds information relative to the current session. By using the gROOT
pointer you get the access to basically every object created in a ROOT program.

gFile: gFile is the pointer to the current opened file.

gDirectory: gDirectory is a pointer to the current directory.

gPad: A graphic object is always drawn on the active pad. It is convenient to access the
active pad, no matter what it is. For that we have gPad that is always pointing to the
active pad.

gRandom: gRandom is a pointer to the current random number generator.

gEnv: gEnv is the global variable with all the environment settings for the current session.

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.17/18

Exercises

➀ Use the browser to find out which standard presentation styles are
available in ROOT. Hint: there are 5

➁ Read http://root.cern.ch/root/htmldoc/TFile.html
and the ROOT tutorial #6 on the web. Create a file with a
histogram in it. Make sure you close the file. Start ROOT again
and open the file you just created with the browser. See if the
histogram is indeed there

➂ Open the file you created in (2) in update mode and change the
title of the histogram. Describe what you did.

➃ From gEnv (an instance of the TEnv class), get the name of the
default fitter in ROOT: "Root.Fitter". Hint: for dflt use ""

KVI Root-course, Mar. 1 2005 – Gerco Onderwater, KVI – p.18/18

	
	Exercise 1
	Exercise 1: Marker styles
	Exercise 2
	Exercise 3
	Exercise 4
	
	This Lecture in Short
	Objects with Names
	Listing objects
	TBrowser
	Browsing the Contents of a ROOT File
	Drawing a Histogram From a File
	A Few Words on TFile
	Directory Structure
	Making New Directories
	Global Variables
	Exercises

