eClure

Graphs and Histograms

KV! KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.1/21

KV’ KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.2/21

}
gr = new TG aph(n, X, y);

gr->SetFill Col or (19);

gr->Set Li neCol or (2);

gr->Set Li neW dt h(4);

gr - >Set Mar ker Col or (4);

gr - >Set Mar ker St yl e(21) ;
gr->SetTitle("a sinple graph");
gr - >Draw(" ACP") ;

/1 Add axis titles.
/1A graph is drawn using the services of the THLF hi st ogram cl ass.
/1 The histogramis created by TG aph:: Paint.

/1 TGraph: :Paint is called by TCanvas:: Update. This function is called by default
/Iwhen typing <CR> at the keyboard. In a macro, one nust force TCanvas: : Updat e.

cl->Updat e();

cl->Cet Frame()->Set Fill Col or(21);

cl- >Get Frane() - >Set Bor der Si ze(12) ;
gr->CetHi stogran()->SetXTitle("X title");
gr->CetHi stogram()->Set YTitle("Y title");
cl->Modified();

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.3/21

KV’ KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.4/21

eClure

Ntuples and Trees

KV! KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.5/21

Why Should You Use a Tree?

In the Input/Output chapter, we saw how objects can be saved in
ROQT files. In case you want to store large quantities of same-class
objects, ROOT has designed the TTree and TNtuple classes
specifically for that purpose. The TTree class is optimized to reduce
disk space and enhance access speed. A TNtuple is a TTree that is
limited to only hold floating-point numbers; a TTree on the other hand
can hold all kind of data, such as objects or arrays in addition to all the

simple types.

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.6/21

What isa Tree?

A Tree is like a large and wide table:
A Tree is an array of ‘entries’ or ‘events’, similar to a row of a table.

Within each entry, there are independent ‘branches’. Each branch can

contain an object or sub-branches. This can be compared to a column
of a table.

Within each branch, there are ‘leaves’, which hold the
member-variables of complicated classes. These are the final values.

There are several Tree-like classes in ROOT:
Tree ‘array’ of TODbjects

TNtuple TTree with only Float _t

TNtupleD TTree with only Double t

THbookTree Direct access to a HBook (Paw) file
TChain collection of files containing TTree objects

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.7/21

Making a Tree Object

A tree has a very simple constructor:

TTree(const char *name,const char *title, Int_t splitlevel = 99)

The Tree is created in the current directory

Use the various Branch functions to add branches to the Tree.

If the first character of ‘title’ is a "/*, the function assumes a folder name. In this case, it
creates automatically branches following the folder hierarchy. splitlevel may be used in
this case to control the split level.

Example:

TTree* tree = new TTree("treeName","treeTitle");

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.8/21

Non-Object Branches

TBranch* Branch(const char *name, void *address, const char *leaflist,Int_t bufsize)

This constructor supports non-objects, e.g. C-style structs, or arrays of
variables.

address is a pointer to the beginning of the data

leaflist is the list of variable names, separated by ":". Variable types are
separated by "/"

Example:

ROOT [0] TTree* mytree = new TTree("mytree","Test Tree");
ROOT [1] Double_t values[5];

ROOT [2] TBranch *b = tree->Branch("val",values, "a/D:b:c:d:e")

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.9/21

i
D
I

a 32 bit unsigned integer (UlInt_t)
a 64 bit floating point (Double_t)
a 64 bit unsigned integer (ULong64 t)

a 32 bit floating point (Float_t)
a 64 bit signed integer (Long64 t)
a boolean (Bool 1)

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.10/21

Object Branches

The constructor:

TBranch* Branch(const char* name, const char* classname, void*** addobj, - - -)

classname refers to the class of the object you want to store
addobj is the address of the pointer to the object you want to store

(poorly documented)

Example:

ROOT [0] TTree* mytree = new TTree("mytree","Test Tree");
ROOT [1] TH1D* h = new TH1D("h","h",10,0,1);
ROOT [2] TBranch *branch = tree->Branch("hBranch","TH1D",&h);

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.11/21

Filling a Tree

Extremely simple:

mytree->Fill();

This function loops over all the branches of the tree. For each branch,
It copies the current values of the leaves to the branch buffer.

Example:

ROOT [0] TTree* mytree = new TTree("mytree","Test Tree");

ROOT [1] TH1D* h = new TH1D("h","n",10,0,1);

ROOT [2] Double t values[5] = {0,0,0,0,0};

ROOT [3] TBranch *bl = mytree->Branch("bl1","TH1D",&h);

ROOT [4] TBranch *b2 = mytree->Branch("b2",values, "a/D:b:c:d:e");
ROOT [5] mytree->Fill();

ROOT [6] h->FillRandom("gaus");

ROOT [7] values[0] = 1; values[3] = -3.14;

ROOT [8] mytree->Fill();

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.12/21

Browsing the Tree

A graphical interface to play with a tree is started using:

mytree->StartViewer()

v TreeViewer sl k|
Eile. Edit Bun Options Help
Command | | Optian | | Histagram |htemp I Hist [T Scan W Rec

“ | Current Folder Current Tree : mytree
Er e |G _ITreelist 2| ¥ e -empty- %—empty— E{x-empty- ECx-empty- O -empty- .r:'bE ﬁbz.n:
N = B [mytree ¥ -empty- ﬁﬁcan box EC-emply- ECY-empty- B -emply- ﬁbE.a ﬁbE.d
ET =l ﬁﬁ Z-empty- E»-empty- B -emply- B -emply- By -empty- ﬁ b2 bk ﬁ bh2.e
il | = 1k =]
|1 ol & | 0%
ILIstl [:.|_|5¢| | First entry : O Last entry : 1 H | 4 I * | k | H I j HESET!

LF— e

&

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.13/21

Tree on the Command Line

The contents of the tree can be drawn from the commandline:

Draw(const char *exp, const char *cut, Option_t *option, Long64 t nent, Long64 t first)

exp: expression describing what to draw, e.g. "y:x", or "sqrt(x/y*z*z)". For 2-D (or 3-D) plots,
expressions are separated by a ":". Convention: z : y : x. Statement "x»histoname" will save to
predefined histogram.

cut: expression describing some conditions, e.g. "z>0"

option: drawing option (see histograms)

Example:

ROOT [0] TTree* mytree = new TTree("mytree","Test Tree");
ROOT [1] Double t values[3];

ROOT [2] TBranch *bh2 = mytree->Branch("b2",values, "x/D:y:z");
ROOT [3] macroToFillTree();

a ROOT [4] mytree->Draw("sqrt(z):x*y","z>0","surf4",1000,10);
)

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.14/21

Tree on the Command Line (Cont’d)

The structure of the Tree can be printed:

mytree->Print();

SRR R R Sk b b S S S S S b b b b b S S S R kb b S S I S I kb b S S I I b b b b b b S S R R Ik Sk b b b S S S R S b S

*Tree snmytree . TestTree *
*Entries : 2 . Total = 1281 bytes File Size = 0 *
* : Tree conpression factor = 1. 00 *

SRR R R Sk b b S e S S S I R b b b b b S S S R Rk kS S I S I kb b b S S I S kb b b b b S Rk Sk b b b S S S S S I

*Br 0 :b2 . a/lD:b:c:d:e

*Entries : 2 . Total Size= 1001 bytes One basket in nenory *
*Basket s : 0 : Basket Size= 32000 bytes Conpression= 1.00 *

&

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.15/21

Tree on the Command Line (Cont’d)

You can get a list of (part of) the contents:

mytree->Scan("a:b");

R I b A b b b I S i b i S b i i i i e i S i i i S b i i S b i S b i 3

* Row * a * b *
R I b A b b b i b i b i i b i i i i e I S i i i i b i i i b i S b i 3
* O * O * O *
* l * 1 * O *

R e S i i i b i i i b b b b b b b b b b i b b b b b b i b b b b b b b ¢

KV’ KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.16/21

Tree on the Command Line (Cont’d)

You can also inspect the contents of a specific entry numerically:

mytree->Show(1);

OO O T
T O I A B
oNoN

O 1

KV’ KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.17/21

Reading a Tree from a Macro

Very similar to the filling method:

GetEntry(Long64 tentry =0, Int_t getall = 0)

Of course, you have to tell the tree first, where to store the data:

SetBranchAddress(const char* bname, void** add)

Example:

ROOT [0] TFEile* file = new TFiIe("teSt.rOOt");
ROOT [1] TTree* mytree = (TTree*)file->Get("mytree”);
ROOT [2] TH1D* h =0;

ROOT [3] mytree->SetBranchAddress("b1",&h);

ROOT [4] mytree->GetEntry(0);

ROOT [5] h->Draw();

ROOT [6] mytree->GetEntry(1);

ROOT [7] h->Draw();

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.18/21

Some Very Helpful Tools

For large trees, with many branches and leaves, and complicated
objects, reading a tree may become a lot of work. Work is simplified
with

MakeClass(const char* classname = "0", Option_t* option)

MakeCode(const char* filename = "0")

Example:

ROOT [0] TTree* mytree = new TTree("mytree","Test Tree");
ROOT [1] Double t values|3];

ROOT [2] TBranch *b = tree->Branch("val",values, "a/D:b:c");
ROOT [3] mytree->MakeCode("fastCode.cxx");

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.19/21

I
I
Il
I

Il
/1
/1

rancn aaddr esses.

myt r ee- >Set BranchAddr ess(" b2", &2 a);
myt r ee- >Set Br anchAddr ess(" b2", &2 b);
myt r ee- >Set Br anchAddr ess("b2", &2 c);

This is the | oop skel eton

To read only selected branches, Insert statenments |ike:
mytree- >Set BranchStatus("*",0); // disable al
TTreePl ayer - >Set BranchSt at us(" branchnane”, 1) ;

Long64_t nentries = mytree->CetEntries();

I nt _

t nbytes = 0;

for (Long64_t i=0; i<nentries;i++) {

}

nbytes += nytree->GetEntry(i);

br anches
/] activate branchnane

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.20/21

Now an Ntuple Is straightforward!

TNtuple is a derived class from a TTree. So it can do all the things a
TTree can. The only difference is that it can only contain Float_t
(TNtuple) or Double t (TNtupleD) variables. Each variable behaves as
a separate branch.

Constructor:

TNt upl e(const char* nane, const char* title, const char* varlist, Int_t bufsize = 32000)

Filling:
- Fill(Float t x0, Float t x1 =0, Float t x2 =0, , Float _t x14 = 0)

- Fill(const Float t* x)

Example:

ROOT [0] TNtuple* nt = new TNtuple("ntName","ntTitle","a:b:c");
ROOT [1] nt->Fill(3.1415,2.7182818,1.41421);
ROOT [2] nt->Fill(1/3.1415,1/2.7182818,1/1.41421);

ROOT [3] nt->Draw("cos(a):In(b):c*c","b>0&&c>0");

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.21/21

Exercises

[1 Download the root-file on the website:
http://kvirO3.kvi.nl/rootcourse/. Inside you'll find a tree containing

histograms and an array of Double_t's. Write a macro that draws
the histograms of the third entry and prints the values of the array.

[1 Download the ascii file from the root-course website and convert it
iInto an Ntuple. Make a 2D histogram with the fourth value on the

x-axis and the second on the y-axis. Plot it with a smooth surface
and label the axes. Send me the postscript file of this plot
(onderwater@kvi.nl).

KVI Root-course, March 8 2005 — Gerco Onderwater, KVI — p.22/21

	
	Exercises
	
	Exercises
	
	Why Should You Use a Tree?
	What is a Tree?
	Making a Tree Object
	Non-Object Branches
	Supported Simple Types
	Object Branches
	Filling a Tree
	Browsing the Tree
	Tree on the Command Line
	Tree on the Command Line (Cont'd)
	Tree on the Command Line (Cont'd)
	Tree on the Command Line (Cont'd)
	Reading a Tree from a Macro
	Some Very Helpful Tools
	What the generated code looks like
	Now an Ntuple is straightforward!
	Exercises

