
Lecture 4
Graphs and Histograms

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.1/21

Exercises

➀ Modify example 25. of the tutorial to display three full periods of a
sin-wave (and get rid of the ugly brown background color). Make
the marker a full square and change the line color to yellow.

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.2/21

{
//
// To see the output of this macro, click here.
//
gROOT->Reset();
c1 = new TCanvas("c1","A Simple Graph Example",200,10,700,500);

c1->SetFillColor(42);
c1->SetGridx();
c1->SetGridy();

const Int_t n = 20;
Float_t x[n], y[n];
for (Int_t i=0;i<n;i++) {

x[i] = i*0.1;
y[i] = 10*sin(x[i]+0.2);
printf(" i %i %f %f\n",i,x[i],y[i]);

}
gr = new TGraph(n,x,y);
gr->SetFillColor(19);
gr->SetLineColor(2);
gr->SetLineWidth(4);
gr->SetMarkerColor(4);
gr->SetMarkerStyle(21);
gr->SetTitle("a simple graph");
gr->Draw("ACP");

//Add axis titles.
//A graph is drawn using the services of the TH1F histogram class.

//The histogram is created by TGraph::Paint.
//TGraph::Paint is called by TCanvas::Update. This function is called by default
//when typing <CR> at the keyboard. In a macro, one must force TCanvas::Update.

c1->Update();
c1->GetFrame()->SetFillColor(21);
c1->GetFrame()->SetBorderSize(12);
gr->GetHistogram()->SetXTitle("X title");
gr->GetHistogram()->SetYTitle("Y title");
c1->Modified();

}

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.3/21

Exercises

➀ Experiment with the histogram drawing options, starting from
example 24. of the tutorials.

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.4/21

Lecture 5
Ntuples and Trees

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.5/21

Why Should You Use a Tree?

In the Input/Output chapter, we saw how objects can be saved in
ROOT files. In case you want to store large quantities of same-class
objects, ROOT has designed the TTree and TNtuple classes
specifically for that purpose. The TTree class is optimized to reduce
disk space and enhance access speed. A TNtuple is a TTree that is
limited to only hold floating-point numbers; a TTree on the other hand
can hold all kind of data, such as objects or arrays in addition to all the
simple types.

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.6/21

What is a Tree?

A Tree is like a large and wide table:

A Tree is an array of ‘entries’ or ‘events’, similar to a row of a table.

Within each entry, there are independent ‘branches’. Each branch can
contain an object or sub-branches. This can be compared to a column
of a table.

Within each branch, there are ‘leaves’, which hold the
member-variables of complicated classes. These are the final values.

There are several Tree-like classes in ROOT:
Tree ‘array’ of TObjects
TNtuple TTree with only Float_t
TNtupleD TTree with only Double_t
THbookTree Direct access to a HBook (Paw) file
TChain collection of files containing TTree objects

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.7/21

Making a Tree Object

A tree has a very simple constructor:

TTree(const char *name,const char *title, Int_t splitlevel = 99)

The Tree is created in the current directory

Use the various Branch functions to add branches to the Tree.

If the first character of ‘title’ is a "/", the function assumes a folder name. In this case, it
creates automatically branches following the folder hierarchy. splitlevel may be used in
this case to control the split level.

Example:

TTree* tree = new TTree("treeName","treeTitle");

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.8/21

Non-Object Branches

TBranch* Branch(const char *name, void *address, const char *leaflist,Int_t bufsize)

This constructor supports non-objects, e.g. C-style structs, or arrays of
variables.

address is a pointer to the beginning of the data

leaflist is the list of variable names, separated by ":". Variable types are
separated by "/"

Example:

ROOT [0] TTree* mytree = new TTree("mytree","Test Tree");
ROOT [1] Double_t values[5];
ROOT [2] TBranch *b = tree->Branch("val",values, "a/D:b:c:d:e")

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.9/21

Supported Simple Types

C a character string terminated by the 0 character B an 8 bit signed integer (Char_t)
b an 8 bit unsigned integer (UChar_t) S a 16 bit signed integer (Short_t)
s a 16 bit unsigned integer (UShort_t) I a 32 bit signed integer (Int_t)
i a 32 bit unsigned integer (UInt_t) F a 32 bit floating point (Float_t)
D a 64 bit floating point (Double_t) L a 64 bit signed integer (Long64_t)
l a 64 bit unsigned integer (ULong64_t) O a boolean (Bool_t)

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.10/21

Object Branches

The constructor:

TBranch* Branch(const char* name, const char* classname, void*** addobj, � � �)

classname refers to the class of the object you want to store
addobj is the address of the pointer to the object you want to store
(poorly documented)

Example:

ROOT [0] TTree* mytree = new TTree("mytree","Test Tree");
ROOT [1] TH1D* h = new TH1D("h","h",10,0,1);
ROOT [2] TBranch *branch = tree->Branch("hBranch","TH1D",&h);

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.11/21

Filling a Tree

Extremely simple:

mytree->Fill();

This function loops over all the branches of the tree. For each branch,
it copies the current values of the leaves to the branch buffer.

Example:

ROOT [0] TTree* mytree = new TTree("mytree","Test Tree");
ROOT [1] TH1D* h = new TH1D("h","h",10,0,1);
ROOT [2] Double_t values[5] = {0,0,0,0,0};
ROOT [3] TBranch *b1 = mytree->Branch("b1","TH1D",&h);
ROOT [4] TBranch *b2 = mytree->Branch("b2",values, "a/D:b:c:d:e");
ROOT [5] mytree->Fill();
ROOT [6] h->FillRandom("gaus");
ROOT [7] values[0] = 1; values[3] = -3.14;

ROOT [8] mytree->Fill();

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.12/21

Browsing the Tree

A graphical interface to play with a tree is started using:

mytree->StartViewer()

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.13/21

Tree on the Command Line

The contents of the tree can be drawn from the commandline:

Draw(const char *exp, const char *cut, Option_t *option, Long64_t nent, Long64_t first)

exp: expression describing what to draw, e.g. "y:x", or "sqrt(x/y*z*z)". For 2-D (or 3-D) plots,
expressions are separated by a ":". Convention: � � � � � . Statement "x»histoname" will save to
predefined histogram.

cut: expression describing some conditions, e.g. "z>0"

option: drawing option (see histograms)

Example:

ROOT [0] TTree* mytree = new TTree("mytree","Test Tree");
ROOT [1] Double_t values[3];
ROOT [2] TBranch *b2 = mytree->Branch("b2",values, "x/D:y:z");
ROOT [3] macroToFillTree();

ROOT [4] mytree->Draw("sqrt(z):x*y","z>0","surf4",1000,10);

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.14/21

Tree on the Command Line (Cont’d)

The structure of the Tree can be printed:

mytree->Print();

**
*Tree :mytree : TestTree *
*Entries : 2 : Total = 1281 bytes File Size = 0 *
* : : Tree compression factor = 1.00 *
**
*Br 0 :b2 : a/D:b:c:d:e
*Entries : 2 : Total Size= 1001 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
..

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.15/21

Tree on the Command Line (Cont’d)

You can get a list of (part of) the contents:

mytree->Scan("a:b");

* Row * a * b *

* 0 * 0 * 0 *
* 1 * 1 * 0 *

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.16/21

Tree on the Command Line (Cont’d)

You can also inspect the contents of a specific entry numerically:

mytree->Show(1);

======> EVENT:1
a = 1
b = 0
c = 0
d = -3.14
e = 0

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.17/21

Reading a Tree from a Macro

Very similar to the filling method:

GetEntry(Long64_t entry = 0, Int_t getall = 0)

Of course, you have to tell the tree first, where to store the data:

SetBranchAddress(const char* bname, void** add)

Example:

ROOT [0] TFile* file = new TFile("test.root");
ROOT [1] TTree* mytree = (TTree*)file->Get("mytree");
ROOT [2] TH1D* h = 0;
ROOT [3] mytree->SetBranchAddress("b1",&h);
ROOT [4] mytree->GetEntry(0);
ROOT [5] h->Draw();
ROOT [6] mytree->GetEntry(1);
ROOT [7] h->Draw();

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.18/21

Some Very Helpful Tools

For large trees, with many branches and leaves, and complicated
objects, reading a tree may become a lot of work. Work is simplified
with

MakeClass(const char* classname = "0", Option_t* option)
MakeCode(const char* filename = "0")

Example:

ROOT [0] TTree* mytree = new TTree("mytree","Test Tree");
ROOT [1] Double_t values[3];
ROOT [2] TBranch *b = tree->Branch("val",values, "a/D:b:c");
ROOT [3] mytree->MakeCode("fastCode.cxx");

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.19/21

What the generated code looks like
{

... some stuff deleted here
TTree *mytree = (TTree*)gDirectory->Get("mytree");

//Declaration of leaves types
Double_t b2_a;
Double_t b2_b;
Double_t b2_c;

// Set branch addresses.
mytree->SetBranchAddress("b2",&b2_a);
mytree->SetBranchAddress("b2",&b2_b);
mytree->SetBranchAddress("b2",&b2_c);

// This is the loop skeleton
// To read only selected branches, Insert statements like:
// mytree->SetBranchStatus("*",0); // disable all branches
// TTreePlayer->SetBranchStatus("branchname",1); // activate branchname

Long64_t nentries = mytree->GetEntries();

Int_t nbytes = 0;
// for (Long64_t i=0; i<nentries;i++) {
// nbytes += mytree->GetEntry(i);
// }
}

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.20/21

Now an Ntuple is straightforward!

TNtuple is a derived class from a TTree. So it can do all the things a
TTree can. The only difference is that it can only contain Float_t
(TNtuple) or Double_t (TNtupleD) variables. Each variable behaves as
a separate branch.

Constructor:
TNtuple(const char* name, const char* title, const char* varlist, Int_t bufsize = 32000)

Filling:
- Fill(Float_t x0, Float_t x1 = 0, Float_t x2 = 0, , Float_t x14 = 0)

- Fill(const Float_t* x)

Example:

ROOT [0] TNtuple* nt = new TNtuple("ntName","ntTitle","a:b:c");
ROOT [1] nt->Fill(3.1415,2.7182818,1.41421);
ROOT [2] nt->Fill(1/3.1415,1/2.7182818,1/1.41421);

ROOT [3] nt->Draw("cos(a):ln(b):c*c","b>0&&c>0");

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.21/21

Exercises

➀ Download the root-file on the website:
http://kvir03.kvi.nl/rootcourse/. Inside you’ll find a tree containing
histograms and an array of Double_t’s. Write a macro that draws
the histograms of the third entry and prints the values of the array.

➁ Download the ascii file from the root-course website and convert it
into an Ntuple. Make a 2D histogram with the fourth value on the
x-axis and the second on the y-axis. Plot it with a smooth surface
and label the axes. Send me the postscript file of this plot
(onderwater@kvi.nl).

KVI Root-course, March 8 2005 – Gerco Onderwater, KVI – p.22/21

	
	Exercises
	
	Exercises
	
	Why Should You Use a Tree?
	What is a Tree?
	Making a Tree Object
	Non-Object Branches
	Supported Simple Types
	Object Branches
	Filling a Tree
	Browsing the Tree
	Tree on the Command Line
	Tree on the Command Line (Cont'd)
	Tree on the Command Line (Cont'd)
	Tree on the Command Line (Cont'd)
	Reading a Tree from a Macro
	Some Very Helpful Tools
	What the generated code looks like
	Now an Ntuple is straightforward!
	Exercises

