
Lecture 7
Simulations and Event Generators

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.1/18

Exercise 1

Write a macro which performs a benchmark comparison between
TRandom, TRandom2, TRandom3. Compare the performance of the
Gaus method of these classes. Also judge the randomness for 200 mln
events by making a fit through the simulated data.

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.2/18

Exercise 1: Solution

void doit(UInt_t rgNr = 1, Int_t nrEvents = 200000000)
{
if (gRandom) delete gRandom;
switch (rgNr)
{
case (2)
gRandom = new TRandom2(0);
break;

case (3)
gRandom = new TRandom3(0);
break;

default:
gRandom = new TRandom(0);
break;

}

TH1D* hist=new TH1D("hist","TRandom",500,-10,10);

TStopwatch *st=new TStopwatch();

st->Start();
for (Int_t i=0; i<nrEvents; i++) hist->Fill(gRandom->Gaus(0,1));
st->Stop();

TF1* gs = new TF1("gs","gaus",-10,10);
hist->Fit("gs");
Double_t normchi2 = gs->GetChisquare()/gs->GetNDF();
printf("%s : %.1fs %.2f mus/event %.4f\n",
gRandom->GetName(), st->GetCpuTime(), st->GetCpuTime()/nrEvents, normchi2);

}
KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.3/18

Exercise 1: Solution
Results for 200 mln events:

Random : 92.7 s 0.46 �s/event 2.0889
Random2: 135.6 s 0.68 �s/event 0.9439
Random3: 86.6 s 0.43 �s/event 0.9839

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.4/18

Exercise 1: Solution
Results for 200 mln events:

Random : 92.7 s 0.46 �s/event 2.0889
Random2: 135.6 s 0.68 �s/event 0.9439
Random3: 86.6 s 0.43 �s/event 0.9839

This seems to contradict Johan’s findings last week, where he showed
a small � �� �� �

for TRandom. Here is why (unform distribution):

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.4/18

Exercise 1: Solution
Results for 200 mln events:

Random : 92.7 s 0.46 �s/event 2.0889
Random2: 135.6 s 0.68 �s/event 0.9439
Random3: 86.6 s 0.43 �s/event 0.9839

This seems to contradict Johan’s findings last week, where he showed
a small � �� �� �

for TRandom. Here is why (unform distribution):

Number of Events in 1000 bins
0 100 200 300 400 500 600 700 800 900 1000

610×

/N
D

F
2 χ

0

0.2

0.4

0.6

0.8

1

1.2
TRandom3

TRandom

TRandom2

claimed period

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.4/18

Exercise 1: Final Remarks

Be careful with random number generators

Always use TRandom3

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.5/18

Exercise 2

Write a macro which generates kinematically allowed events for the
reaction p+d->p+p+n with an incident proton energy of 200 MeV and a
deuteron at rest. Make a histogram of the scattering angle of the
neutron in the lab. frame and in the center-of-mass frame.

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.6/18

Exercise 2: Solution

static const Double_t md = 1.87561282; // deuteron mass in GeV/c**2
static const Double_t mp = 0.938272029; // proton mass in GeV/c**2
static const Double_t mn = 0.939565360; // neutron mass in GeV/c**2

void zoem()
{

// gSystem->Load("libPhysics");
TLorentzVector target(0.0, 0.0, 0.0, md);
Double_t pp = 0.2; // GeV/c
TLorentzVector beam(0.0, 0.0, pp, sqrt(mp*mp+pp*pp));
TLorentzVector W = beam + target;
Double_t masses[3] = { mp, mp, mn};
TGenPhaseSpace event;
event.SetDecay(W, 3, masses);

TH1D *h = new TH1D("his", "Theta_{lab}", 100, 0, 180);
TH1D *k = new TH1D("kis", "Theta_{CM}", 100, 0, 180);
TH1D *k2 = new TH1D("k2is", "cos(Theta_{CM})", 100, -1, 1);

h->SetXTitle("#Theta_{lab} [ˆ{#circ}]");
k->SetXTitle("#Theta_{CM} [ˆ{#circ}]");
k2->SetXTitle("cos(#Theta_{CM}) [-]");

for (Int_t n=0; n<1000000; n++)
{

event.Generate();
TLorentzVector *pNeutron = event.GetDecay(2);
h->Fill(pNeutron->Theta()*57.3);
pNeutron->Boost(-W.BoostVector());
k->Fill(pNeutron->Theta()*57.3);
k2->Fill(cos(pNeutron->Theta()));

}
h->Draw();

}

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.7/18

Exercise 2: Solution

]
°

 [labΘ
0 20 40 60 80 100 120 140 160 180

0

5000

10000

15000

20000

25000

]
°

 [CMΘ
0 20 40 60 80 100 120 140 160 180

0

2000

4000

6000

8000

10000

12000

14000

16000

) [-]CMΘcos(
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

0

2000

4000

6000

8000

10000

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.8/18

Lecture 8
Towards your own analysis code: ACLiC

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.9/18

Using ROOT for your analysis

With ROOT there are several ways to perform an analysis:

Method complexity speed flexibility

By mouse click-and-play slowest lowest
Line-by-line in CINT command line “C++” and keyboard slow large
Via a macro interpreted by CINT C++ and editor medium large
Using a shared library made by ACLiC some ROOT insight fastest nearly maximum
With your own code linked with ROOT programmer fastest maximum

This lecture, we’ll discuss the “shared library” option.

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.10/18

ACLiC

ACLiC — The Automatic Compiler of Libraries for CINT

What the ROOT developpers say about ACLiC:

" Instead of having CINT interpret your script there is a way to have
your scripts compiled, linked and dynamically loaded using the C++
compiler and linker. The advantage of this is that your scripts will run
with the speed of compiled C++ and that you can use language
constructs that are not fully supported by CINT. On the other hand, you
cannot use any CINT shortcuts (see CINT extensions) and for small
scripts, the overhead of the compile/link cycle might be larger than just
executing the script in the interpreter.

ACLiC will build a CINT dictionary and a shared library from your C++
script, using the compiler and the compiler options that were used to
compile the ROOT executable. You do not have to write a makefile
remembering the correct compiler options, and you do not have to exit
ROOT. "

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.11/18

Before using ACLiC

Because your script is passed to the C++ compiler, you’ll have to
provide proper C++ source code. Some things to pay attention to:

No sloppy CINT-like constructs, like mixing objects and object-pointers,

W->Theta()

��� W.Theta()

Also, you will have to properly terminate each line in your script

W->Theta() will not work

W->Theta(); will work

Variables need to be declared before first use:
CINT: Warning: Automatic variable z is allocated FILE:test.cxx LINE:3

ACLiC: test.cxx:3: ‘z’ undeclared (first use this function)

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.12/18

Declaring all Classes

Also all classes you use need to be declared via their include-files.

This is what your script might look like:

#include "TH1.h"
#include "TRandom3.h"
void test()
{
TH1D* h = new TH1D("h","h",1000,-10,10);
if (gRandom) delete gRandom;
gRandom = new TRandom3();
h->Fill(gRandom->Gaus(0,1));
}

Include-files for the ROOT classes can (typically) be found in
$ROOTSYS/include ($ROOTSYS is where you installed ROOT).

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.13/18

Creating a shared library

Once your code is ready, simply load the script with a “+” behind the
name:

root [0] .L test.cxx+
Info in <TUnixSystem::ACLiC>: creating shared library ./test_cxx.so

Now just proceed as before

... or start debugging ...

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.14/18

What happens when you call ACLiC

➀ ACLiC will call rootcint to create a CINT dictionary so that you
can use all functions and classes in your script on the command
line.

➁ ACLiC will pass the file, e.g. test.cxx, to the C++ compiler with all
the flags used to compile ROOT (such as debugging or
optimization options)

➂ A shared library file is created by adding the proper file extension
(platform dependent). In Linux a file test_cxx.so is made.

➃ Also a file test_cxx.d is made, which lists the dependencies of
your shared library (there are many!!!)

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.15/18

Some options/alternatives worth mentioning

ROOT[0] .L test.cxx+ will recompile if needed
ROOT[0] .L test.cxx++ will always recompile
ROOT[0] .x test.cxx++ will recompile and execute
ROOT[0] .x test.cxx++ (4000) recompile and execute with arg. 4000
ROOT[0] .x test.cxx+g will recompile with debug symbols (c.f. -g)
ROOT[0] .x test.cxx+O will recompile with optimizations (c.f. -O)
ROOT[0] .L test_cxx.so load previously compile code
gSystem->SetAclicMode(TSystem::kDebug) set default to debug
gSystem->SetAclicMode(TSystem::kOpt) set default to optimizations
gROOT->ProcessLine("test.cxx+") call ACLiC from another script
gROOT->LoadMacro("test.cxx+) the same
gSystem->AddIncludePath(" -I/tmp/lala ") add “/tmp/lala” to include
path
gSystem->SetIncludePath(" -I/tmp/lala ") make “/tmp/lala” include path

WARNING: do NOT give your script a “.c” extension

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.16/18

Moving between Interpreter and Compiler

If you program properly, your scripts will always run with both

If you feel a need to use CINT limitations, you can do so using the
variables __CINT__ and __MAKECINT__ to comment in/out pieces of
code (see user manual).

My suggestion: don’t do it!! Or don’t ask for help ...

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.17/18

Exercises

(1) use ACLiC to compile the scripts you used for the exercises in the
previous lecture. How much acceleration do you get?

(2) Complete the script below. Determine the speed (�s/event) for
each of the 5 methods to fill a histogram when you run it in CINT or
ACLiC mode. Comment on the difference ...

Double_t mygaus(Double_t* c, Double_t* par)
{
Double_t x = c[0];
return par[0]*exp(-0.5*(x-par[1])*(x-par[1])/par[2]/par[2]);
}

void compare()
{
TF1* gs1 = new TF1("gs1","gaus",-10,10); gs1->SetParameters(1,0,1);
TF1* gs2 = new TF1("gs2",mygaus,-10,10,3); gs2->SetParameters(1,0,1);

hist1->FillRandom(g1,nEvents); // method 1
hist2->FillRandom(g2,nEvents); // method 2
for(Int_t i=0;i<nEvents;i++) hist3->Fill(gRandom->Gaus(0,1); // method 3
for(Int_t i=0;i<nEvents;i++) hist4->Fill(gs1->GetRandom()); // method 4
for(Int_t i=0;i<nEvents;i++) hist5->Fill(gs2->GetRandom()); // method 5
}

KVI Root-course, April 19 2005 – Gerco Onderwater, KVI – p.18/18

	
	Exercise 1
	Exercise 1: Solution
	Exercise 1: Solution
	Exercise 1: Final Remarks
	Exercise 2
	Exercise 2: Solution
	Exercise 2: Solution
	
	Using ROOT for your analysis
	ACLiC
	Before using ACLiC
	Declaring all Classes
	Creating a shared library
	What happens when you call ACLiC
	Some options/alternatives worth mentioning
	Moving between Interpreter and Compiler
	Exercises

