
ROOT Course
Part II

“The basic concepts behind an
Object-Oriented framework”

ROOT - An Object-Oriented
 Data Analysis Framework

Gerco’s view on Object-
Oriented Framework

Well, this might be true...

but what does it really mean?

Procedural Oriented Programming

Procedure 1

 M
ain Procedure 3

Procedure 2

Procedure 4

Procedure 5

PROGRAM SUBROUTINE/FUNCTION

call Procedure1()

Result

Data

Procedural Oriented Programming

Although widely used and, from a computer
perspective, very efficient, it is limited since…

1. …unreadable for large complex codes
2. …difficult to manage
3. …far from the “real world”

User and Programmer Unfriendly!

Object Oriented Programming

Modularity and Information Hiding

PROGRAM

message

data

interface

data

interface

data

interface

data

interface

Object1 Object2

Object3 Object4

An example Object

… a histogram

An abstract model
of histogram object…

methods

variables

variables = data
methods = operations (interface)

An example Object

… a histogram

An abstract model
of histogram object…

Draw()

Fi
ll(

)

Print()

Integrate()

Get
St

at
s(

)

…
…

…

#bins
Array of counts

TitlesDraw options

Abstract Data Types (ADTs)
= collection of Methods and Variables as new data type
= prototype for an object!

C++ (=ROOT!) :

CLASSCLASS

A CLASS example
A Histogram data type :
class TH1

Public:
TH1()
~TH1()
void Fill(arguments)
void Draw(arguments)
void Print()
Double_t Integral(arguments)
…

Protected:
Int_t fNCells
Float_t fArray[]
TAxis fXaxis
TAxis fYaxis
…

Class name
= new Data Type
Public Methods
Creator of object
Destructor of object

Interface/Methods/
Member functions

Hidden Variables/
Data members

Data Types and Conventions
•Classes begin with T : TH1, TAxis, TBrowser
•Non-class types begin with _t : Int_t, Double_t, ..
•Data members begin with f : fNcells, fArray, …
•Constants begin with k : kInitialSize, kRed, …
•Global variables begin with g : gEnv, gROOT
 …for the rest see Manual

NOTE: c++/root is case sensitive !!!

Machine Independent Types:

Char_t Character 1 byte CHARACTER*1
Short_t Short Integer 2 bytes INTEGER*2
Int_t Integer 4 bytes INTEGER*4
Float_t Float 4 bytes REAL*4
Double_t Float 8 bytes REAL*8
Bool_t Boolean (0=false, 1=true) LOGICAL

Our CLASS example
A Histogram data type:
class TH1

Public:
TH1()
~TH1()
void Fill(arguments)
void Draw(arguments)
void Print()
Double_t Integral(arguments)
…

Protected:
Int_t fNCells
Float_t fArray[]
TAxis fXaxis
TAxis fYaxis
…

Non-Class types

Class type TAxis:
class TAxis

Public:
TAxis()
~TAxis()
…

Protected:
…

Even more CLASS features: Inheritance

Draw()

Fi
ll()

Print()

Integrate()

Get
St

at
s(

)

…
TH1F/TH1D/… -
1D Histogram

Draw()
Fi

ll()

Print()

Integrate()
Get

St
at

s(
)

…

TH2 -
2D Histogram

Draw()

Fi
ll()

Print()

Integrate()

Get
St

at
s(

)

…

TH3 -
3D Histogram

Draw()

Fi
ll()

Print()

Integrate()

Get
St

at
s(

)

…

TH1 - Generic
Histogram Master Class:
Describe common behavior
Abstract parent classInheritance:

code re-use,
re-implementation,
and extension

Why Inheritance ?

For the programmer …

1) Re-use of existing code
2) Gives a better insight in the code

For the user …

1) Provides a good overview of the software
2) Provides a common standard on how to
 operate a variety of different objects

-> USER FRIENDLY!

Inheritance in C++/ROOT

class TH1F : public TH1

Public:
TH1F()
~TH1F()
void Fill(…)
Double_t Integral(…)
…

Protected:
Int_t fNCells
Float_t fArray[]
…

class TH1

Public:
TH1()
~TH1()
virtual void Fill(…)
virtual void Draw(…)
virtual void Print()
…

Protected:
…

Public and protected
member functions and data
of TH1 become member
functions and data for TH1F
unless overwritten

Histogramming and Minimization Hierarchy Tree in ROOT

So what is now an object?

An object is the instance of a class

Class (TH1F) Objects of
Type TH1F

Histo1

Histo2

Histo3

Creating a 1-D histogram object
1) Static method

TH1F myHisto(arguments)

 Creates the static object myHisto of type TH1F

 Static: cannot be removed on-the-fly, done by the program

Similar to :

INTEGER*2 I,J,K (Fortran)
float array[10] (C)

Creating a 1-D histogram object
2) Dynamic method

TH1F *myHistoPtr ;
myHistoPtr = new TH1F(arguments)

 line 1: declares myHistoPtr as a pointer (=memory address)
 of type TH1F

 line 2: creates the object and returns its memory address

 Dynamic: can be created/removed on-the-fly, done by YOU:

delete myHistoPtr

Pointers and all that…
Memory Stack

0x4bbb200 myHistoPtr = (NULL)

TH1F *myHistoPtr
Creates a NULL pointer to
the type TH1F

Pointers and all that…
Memory Stack

0x4bbb200 myHistoPtr =0xffeea0

myHistoPtr = new TH1F(…)

Functions
+

Data members

Object in Memory
0xffeea0

0xffef00

*myHistoPtr

Allocates memory for
object of type TH1F and
return the address

Pointers and all that…
Memory Stack

0x4bbb200 myHistoPtr = (NULL)

delete myHistoPtr
Memory is released and
myHistoPtr becomes
NULL pointer

Pointers and all that…

TH1F *myHistoPtr = new TH1F(arguments)

But also … :

Combined on one line :

TH1F myHisto(…) ;
TH1F *myHistoPtr = &myHisto ;

TH1F *myHistoPtr = new TH1F(…) ;
TH1F myHisto = *myHistoPtr ;

& = address operator

* = dereference operator

What are the arguments
for creating an object?

class TH1F : public TH1

Public:
TH1F()
TH1F(char* name, char* title, Int_t nbinsx, Axis_t xlow, Axis_t xup)
TH1F(char* name, char* title, Int_t nbinsx, Float_t* xbins)
TH1F(char* name, char* title, Int_t nbinsx, Double_t* xbins)
~TH1F()
…

Pick your favorite! => creator methods are often defined
in several ways => function overloading

TH1F *myHistoPtr = new TH1F(“myHisto”,”My Title”,100,0.,1.)

How to operate on an object?
(lets say you like to fill the histogram)

Also member functions
are often overloaded

1) Static object:

myHisto.Fill(…)
use a dot!

class TH1F : public TH1

Public:
…
Int_t Fill(Axis_t x)
Int_t Fill(Axis_t x, Stat_t w)
….

How to operate on an object?
(lets say you like to fill the histogram)

2) Dynamic pointer object:

myHistoPtr->Fill(…)
use arrow for address pointers (“pointer to”)!

Also member functions
are often overloaded

class TH1F ; public TH1

Public:
…
Int_t Fill(Axis_t x)
Int_t Fill(Axis_t x, Stat_t w)
….

How to operate on an object?
(lets say you like to fill the histogram)

class TH1F : public TH1

Public:
…
Int_t Fill(Axis_t x)
Int_t Fill(Axis_t x, Stat_t w)
….

3) Alternatives for the real freaks :

(&myHisto)->Fill(…)
(*myHistoPtr).Fill(…)

Also member functions
are often overloaded

Pointer to pointer…
an example

class TH1 : …

Public:
…
TAxis* GetXaxis()
….

Protected:
…
TAxis fXaxis
…

myHistoPtr->GetXaxis()->SetTitle(“x-axis”)

=return (&fXaxis)

class TAxis : …

Public:
…
void SetTitle(char *name)
….

= (TAxis *)

TH1F *myHistoPtr = new TH1F(….)

Good news for those who cannot
deal with pointers…

In the ROOT C/C++ interpreter you can use
a pointer (->) or a dot (.), whatever you like!

… but certainly advised to stick to the rules!!

What kind of classes
are there and

how to operate?

http://root.cern.ch

1) Read the f@&#cking manual

2) Look it up on WWW …

{
 TH1F *myHis = new TH1F("myHis","A Histogram Example",100,0.,1.);
 TRandom *ranNumGen = new TRandom();
 TCanvas *myCanvas = new TCanvas("myCanvas","This is a drawing table",1);

 myCanvas->SetFillColor(kWhite);
 myCanvas->SetFrameFillColor(kYellow);

 myHis->SetFillColor(kBlue);
 myHis->SetLineColor(kBlue);

 for (Int_t i=0; i<100000; i++)
 {
 myHis->Fill(ranNumGen->Gaus(0.5,0.2));
 if ((i%200)==0)
 {
 myHis->Draw();
 myCanvas->Refresh();
 }
 }
}

A simple example code…

Create a few objects

Fill the histogram with random numbers
and update every 200 events

Set the colors of the
drawing table (canvas)

Set some colors of histogram

Lets try with the ROOT
C/C++ interpreter…

Exercises
1) Find out which method changes the

markerstyle of a 1D histogram.

2) Create a 2D histogram and fill it with a
gaussian distribution.

3) Create a canvas and put a text with
your name in it. Specify which classes
are used and which methods and print
the results as a postscript file.

4) Find the longest chain of pointers
possible using the TH1 as base class,
I.e. object->a()->b()->c()...

