
ROOT for beginners

Second Day
Programming

Now this won't
hurt a bit…

Writing scripts

• Today:

•Creation and destruction of objects
•Manipulating objects

•Finding the information - the user's
guide to the user's guide
•Finding "lost" objects

•Writing functions
•Analysis scripts

Creation and destruction of objects

Commands "new" & "delete"
Object pointers

The "new" command

• Yesterday we began the day with:
new TBrowser

which made a "ROOT object browser" appear.

The "new" command

• Yesterday we began the day with:
new TBrowser

which made a "ROOT object browser" appear.

• If you type
new TCanvas

a canvas appears!
But what is going on in the
command window ???

The command window
• The command window is a C++ interpreter!!
• It displays the value of each function, expression

or command that you type - try e.g. 2+2…

The command window
• The values displayed after a new command are

the type (class) & the address in memory of the
created objects

address in memory of the "TCanvas"
class object which is currently
displayed on your screen

Object pointers

• To use the object, you have to put its address in to
a special variable, an object pointer (or pointer)

Declaration of an
(object) pointer : ObjectType* toto;

You have to declare the
type of object whose
address this will hold
(object type = class name)

The '*' tells us
this is a pointer

Object pointers

• To use the object, you have to put its address in to
a special variable, an object pointer (or pointer)

Declaration of an
(object) pointer : ObjectType* toto;

Object pointers

• The value held by the object pointer is the address
of the object in memory

Initialisation of an
object pointer : toto = (ObjectType*)address ;

Initialise the pointer with the
address of your object of
type (class) TCanvas

Object pointers

• The value held by the object pointer is the address
of the object in memory

Initialisation of an
object pointer : toto = (ObjectType*)address ;

Object destruction
• The delete command frees the memory space

occupied by the objects
• You must use it to destroy all the objects you

don't need any more or you will fill the memory!

Destroy an object: delete toto;

Object destruction
• The delete command frees the memory space

occupied by the objects
• You must use it to destroy all the objects you

don't need any more or you will fill the memory!

Destroy an object: delete toto; Executing this command
makes the canvas
disappear!

The object (and its
graphical representation)
no longer exists, the space
in memory it occupied is
freed.

Constructors
• Most of the time we will declare a pointer, create an

object, and initialise the pointer with the address of the
object in one single line !!

Object creation with
declaration and
initialisation of pointer:

ObjectType* toto = new ObjetType;

This is a special function
called a constructor.

The constructor defines
how all objects of a given
class are made.

*a new canvas
appears !

Constructors
• Most of the time we will declare a pointer, create an

object, and initialise the pointer with the address of the
object in one single line !!

Object creation with
declaration and
initialisation of pointer:

ObjectType* toto = new ObjetType;

Constructors

• Generally, constructors have arguments

ObjectType* toto = new
ObjectType(…);

Object creation with
declaration and
initialisation of pointer:

E.g. you can create a
canvas and specify its
name, title, position and
size on screen

In the previous example, the canvas had
default name "c1" and default title "c1"

Constructors

• Generally, constructors have arguments

ObjectType* toto = new
ObjectType(…);

Object creation with
declaration and
initialisation of pointer:

Manipulating objects

Getting to grips with class methods

Interacting with objects
• Graphically, we can interact with an object using

its context menu:

Example from
yesterday, when we
divided a canvas in 4

Interacting with objects
• With an object pointer, we can also interact with

the object…

Interact with an
object using a pointer: toto-> Method(arguments);

The object pointer
with the '->' operator
define which objet we
interact with

toto-> Method(arguments);

One of the methods
of the object's class.
For example, one of
the functions in the
context menu.

All objects of the same class
have the same methods.

Interacting with objects
• With an object pointer, we can also interact with

the object…

Interact with an
object using a pointer:

canvas->Divide(2,2);

Interact with object "c1" using the
pointer "canvas". We use its
"Divide" method with nx=2 & ny=2.

Interacting with objects
• With an object pointer, we can also interact with

the object…

Interact with an
object using a pointer:

The "c1" canvas
divides in to 4

canvas->Divide(2,2);

Interacting with objects
• With an object pointer, we can also interact with

the object…

Interact with an
object using a pointer:

another_canvas->Divide(10,1);

Interact with "c2" using pointer
"another_canvas". We use c2's
"Divide" method with nx=10 & ny=1.

Interacting with objects
• With an object pointer, we can also interact with

the object…

Interact with an
object using a pointer:

Canvas 'c2' divides itself

another_canvas->Divide(10,1);

Interacting with objects
• With an object pointer, we can also interact with

the object…

Interact with an
object using a pointer:

Interacting with objects
• Other operations on canvases:

canvas->Clear();
Clear the contents of
the canvas, including
any divisions

Make a canvas (or a
pad) 'active', i.e. its
border will become
yellow and the next
object to be drawn
will appear on this
canvas

canvas->cd();

Example with a histogram

• You can create a 1-D spectrum in much the same
way as you create a canvas:

TH1F* histo = new TH1F("h1","My histo", 10, 0., 10.);Creating a 1-D
histogram

ObjectType* toto = new
ObjectType(…);

TH1F ? Histogram in 1 dimension
of Floating-point values

N.B. The histogram does not appear
automatically on screen!

Example with a histogram

• Display and fill the histogram:

histo->Draw();Display a
histogram:

histo->Fill(3);Fill a
histogram:

The "3" corresponds
to a X-axis value

Nothing seems
to happen ?

Example with a histogram

• Refresh the canvas:

canvas->Modified();
Tell the canvas
that an object
it is displaying
has changed:

canvas->Update();
Force the
canvas to
refresh:

When using the command window, this
automatically causes the canvas to refresh.

However, in a script/programme you also have to
ask for the canvas to redraw its objects!

Example with a histogram

• Starting to get bored ?

histo->Fill(1.43);
histo->Fill(6.9);
 …
histo->Fill(9, 2);
canvas->Modified();

We could carry on like this until we finish
filling our histogram…

But we'd be happier if we wrote a loop…
…in a function…
…programmed in C++
…!!!

Fill with a weight,
i.e. the value '9'
has occurred
twice

Don't look at
me like that…

Creating objects without "new"

There is another way…
'Temporary' vs. 'Permanent' objects

The other way…
• There is another way to create and manipulate

objects…

ObjectType toto(…);Creating an object
without "new"

ObjectType toto(…);

Creating an
object with "new"

ObjectType* toto_ptr = new ObjectType(…);

If the constructor has
arguments, put them here

The other way…
• There is another way to create and manipulate

objects…

Creating an object
without "new"

TCanvas can("c3","title",250,100,50,500);

TCanvas* can_ptr = new TCanvas("c3","title", …);Creating an
object with "new"

The other way…
• There is another way to create and manipulate

objects…

Creating an object
without "new"

The other way…
• The way we interact with the object isn't quite the

same as before…

toto. Methode(arguments);Interact with an
object created
without "new"

toto. Methode(arguments);

Interact with an
object using a pointer: toto_ptr-> Methode(arguments);

In one case we use the
'.' operator, in the
other '->'

The other way…
• The way we interact with the object isn't quite the

same as before…

Interact with an
object created
without "new"

can.Divide(1,6);

can_ptr->Divide(1,6);Interact with an
object using a pointer:

The other way…
• The way we interact with the object isn't quite the

same as before…

Interact with an
object created
without "new"

The other way…
• We can also obtain the address in memory of an

object created in this way, and then use a pointer

ObjectType* toto_ptr = &toto;Initialise a pointer
with the address of
an existing object

ObjectType* toto_ptr = &toto;

Operator returning
the address of the
object 'toto'

The other way…
• We can also obtain the address in memory of an

object created in this way, and then use a pointer

Initialise a pointer
with the address of
an existing object

The other way…

toto_ptr ->Methode(arguments);Interact with an
object using a pointer

• The use of a pointer to interact with the object is
identical to the previous cases…

can_ptr ->Clear();

The other way…

Interact with an
object using a pointer

• The use of a pointer to interact with the object is
identical to the previous cases…

The other way…

• What's the difference ? We don't need to delete
the object when we've finished with it…

Objects created this way are
automatically destroyed at the end of
the code block* in which they are
created.

Objects created with "new" are only
destroyed by the user, with "delete".

*Function, loop,
"if-else", etc.

Temporary
objects

Permanent
objects

The other way…

• What's the difference ? We don't need to delete
the object when we've finished with it…

Objects created this way are
automatically destroyed at the end of
the code block* in which they are
created.

Objects created with "new" are only
destroyed by the user, with "delete".

*Function, loop,
"if-else", etc.

Getting information on classes

Where's the manual ?
Where's the manual for the manual ?
Do I have to learn it all by heart ?*

*NO!!!!

Getting to know your way around
• How can I find out all the possible ways to interact with

an object ?
• How do I find out all the methods of a class ?

1. command line completion with <TAB>

Very efficient, reduces to bare
minimum the amount you have to
type (and so reduces typing
errors…)

TIP 1:
most methods which change an
object begin "Set…"
TIP 2:
most methods which give an
information about an object begin
"Get…"

<TAB>

<TAB>

Getting to know your way around
• The best method: http://root.cern.ch

1. click on
"Reference Guide"

2. Look at the ROOT
web site

2. list of classes by
category (histos,
matrices, 3D
geometry, etc.)

Getting to know your way around
• The best method: http://root.cern.ch

2. complete list of
all classes for each
version of ROOT

Getting to know your way around
• The best method: http://root.cern.ch

2. keyword search

Getting to know your way around
• The best method: http://root.cern.ch

type "TCanvas"
then <ENTER>/
<RETURN>

Getting to know your way around
• The best method: http://root.cern.ch

searching using the name
of a class works best…

…but don't neglect the
other responses which
can be very interesting!!

Getting to know your way around
• The best method: http://root.cern.ch

Presentation of a page
documenting a class

• All necessary information is here… as long as
you know where to look

Class name and
name of its closest
family relation
(parent class)

Complete family tree
for the class

Presentation of a page
documenting a class

• All necessary information is here… as long as
you know where to look

Complete family tree
of the class

parents and grand-
parents to the left

Presentation of a page
documenting a class

• All necessary information is here… as long as
you know where to look

Complete family tree
of the class

parents and grand-
parents to the left

children and grand-
children to the right

Presentation of a page
documenting a class

• All necessary information is here… as long as
you know where to look

(a bit further down)

complete list of class
methods

each method name is a
link to an explanation of
the method

Presentation of a page
documenting a class

• All necessary information is here… as long as
you know where to look

The class methods list
• There are three types of method: "private",

"protected", and "public"

you cannot use the
"private" or
"protected" methods…

… so we'll only
look at the
"public" ones

The class methods list
• The "public" methods list is always organised in

the same way:

First the constructors
of the class (methods
with the same name as
the class)

A destructor
"~ClassName()" called when
the object is destroyed,
e.g. by delete*

*the destructor cannot be
called directly i.e.
 toto->~ClassName();
does not work. we use:
 delete toto;

The class methods list
• The "public" methods list is always organised in

the same way:

An alphabetical list of all of
the methods of the class…?

Where is "Divide" ?

The class methods list
• The "public" methods list is always organised in

the same way:

Finding ALL the methods of a
class

• If a method seems to be missing from a class, it
might be defined by its (grand-)parents…

The objects of a class
inherit all the
characteristics & know-
how of their ancestors…

…whilst adding a few
particularites of their
own.

Start with the
parent class

Found it!
Let's look at the
explanation…*

*…we'll explain the
function declaration
(variable types, default
arguments etc.) later

Finding ALL the methods of a
class

• If a method seems to be missing from a class, it
might be defined by its (grand-)parents…

Here is the on-line HTML
documentation for method
"Divide" of class "TPad",
the parent class of
"TCanvas".

As TCanvas does not
define another 'Divide'
method, this is the one
used by objects of class
TCanvas.

Finding ALL the methods of a
class

• If a method seems to be missing from a class, it
might be defined by its (grand-)parents…

Lost & found

Retrieving lost objects
Or:

 Why (most) objects have a name

Finding 'lost' objects
• ROOT keeps lists of objects, allowing to find

them easily

Double-
click 'root'

Finding 'lost' objects

• You can browse these lists using the TBrowser

Click on
'Canvases'

Finding 'lost' objects

• Each object has to have an unique name for us to
find it.

Here are our 2
canvases, we recognise
their names (and titles)

Finding 'lost' objects

• You can interact with the objects using their
context menu…

Right-click to open
the context menu
of "c1"

Choose e.g.
"Divide", and you
can cut "c1" in 4,
just like
yesterday…

Finding 'lost' objects

• You can interact with the objects using their
context menu…

Finding 'lost' objects

• …or if you knew the address of the object, you
could use a pointer:

gROOT->GetListOfCanvases()->FindObject("c1");

gROOT->GetListOfCanvases()->FindObject("c1");

This global pointer contains
the address of the 'root'
folder of the folder tree.

You can use it to access all
the other objects*

Finding 'lost' objects

• …or if you knew the address of the object, you
could use a pointer:

*gROOT points to an object
of the class TROOT.

gROOT->GetListOfCanvases()->FindObject("c1");

Going down a level in
the tree structure, this
is the equivalent of the
'Canvases' folder

Finding 'lost' objects

• …or if you knew the address of the object, you
could use a pointer:

gROOT->GetListOfCanvases()->FindObject("c1");

In the list/folder of
all Canvases, we look
for an object named
"c1".

Finding 'lost' objects

• …or if you knew the address of the object, you
could use a pointer:

Finding 'lost' objects

• If you aren't sure which folder to look in, you can
recursively search through all the folders:

gROOT->GetListOfCanvases()->FindObject("c1");

gROOT->FindObject("name");

This is the MAGIC FORMULA which
allows to find (nearly) any object
anywhere anytime.

You'll use it all the time!!

Finding 'lost' objects

• All you have to do now is put the address in the
appropriate pointer and use it:

ClassName* toto = (ClassName*) gROOT->FindObject("nom");

We have to re-
specify the class
of the object we
hope to find here

TCanvas* c1_ptr = (TCanvas*) gROOT->FindObject("c1");
c1_ptr->Clear();

Example: we look for
canvas "c1" and wipe it
clean:

Testing if an object exists

• You use the same function to know if an object
with a given name exists or not:

Histogram "h1" exists.
The function returns its
address.

There is no histogram
named "hh".

The function returns an
address equal to ZERO!!

Testing if an object exists

• You use the same function to know if an object
with a given name exists or not:

Testing if an object exists

• To be rigorous, you should always test the value
of a pointer before trying to use it…

What happens if you try to use a
pointer holding the address 0 ?

The interpreter is very kind…
…in a compiled programme this
would give a "segmentation
violation" (OUCH!)

Testing if an object exists

• To be rigorous, you should always test the value
of a pointer before trying to use it…

Function programming

C++ for everybody…

A function
• Here is an example of a C++ function

HEADERS:
a declaration for each
class used in the function

DECLARATION:
type of value returned,
name of function,
arguments*

A function
• Here is an example of a C++ function

*void = no returned value
() = no arguments

an 'if-else'
block

A function
• Here is an example of a C++ function

A loop over 'x', from
x=0 to x=99,
incrementing x by 1
each time

A function
• Here is an example of a C++ function

Clear out the
contents of the
spectrum

gPad = pointer to the currently
active pad or canvas

A function
• Here is an example of a C++ function

Compiling and using the function
• To compile and load the definition of the function:

.L fillHisto.C+

Name of file
containing the
function definition

• To execute the function:

DrawGaussian()

Name of the function
(don't forget the '()' !)

Why use 'new' to create the
histogram ?

• Let's see what happens if we don't use "new"

Temporary object,
it only exists inside
this block (function)

We see the histogram
filling up…

… and then
disappear at the
end of the function

Using functions with arguments
• A function with arguments:

List of arguments
with their type

Use of the arguments
inside the function

Arguments with default values

e.g. default
width for the
gaussian

DrawGaussian() => amp=20, moy=50, large=10
DrawGaussian(5) => amp=5, moy=50, large=10
DrawGaussian(5,30) => amp=5, moy=30, large=10
DrawGaussian(5,30,5) => amp=5, moy=30, large=5

Returning values/objects

• Functions can return ALL sorts of variables…

Gaussian
function

We return
the value
of 'f'

Type of
returned value

We return a pointer
to a histogram object

Here we use the
gaussian function

We return the value of 'h' i.e. the
address of the histogram

Returning values/objects

• Functions can return ALL sorts of variables…

Returning values/objects

• Compiling and using the functions:
We can use the gaussian
function independently of
DrawGaussian4()

Execute the function
DrawGaussian4(), stock the
address of the histogram in a
pointer and plot it…

Analysis example

I told you it
wouldn't hurt…

Analysis example

Declaration of the
I/O system of
ROOT/C++

An example of an analysis script: we read the data from an
ASCII file basic.dat; generate a few histograms; and save
them in the file basic.root.
http://caeinfo.in2p3.fr/root/Formation/en/Day2/basic.dat

this variable type
means 'a string'

Object for reading
an ASCII file

opening the
ASCII file

Analysis example

Declaring a few
working variables

Creation of a new
ROOT file, if it exists
already we overwrite
(recreate) it

Creation of a NtupleAll histograms, Ntuples, trees (Day 4)
created after the creation of the file
belong to the file…

Analysis example
A 'while' loop: keeps executing as long as the
condition is true i.e. as long as the file is
readable

we read three Double_t
values from the file

Print the values we read on
the screen
endl => carriage-return

Fill the histogram and
the ntuple with the
values we read

Increment
the number
of lines read

Analysis example

Close the
ASCII file

The file and all objects belonging to it
are written to disk (f->Write())
Deleting the TFile object (delete f)
has the effect of closing the file.

WARNING:
once the file has been closed, the
objects belonging to it no longer exist
in memory (only on disk)!

• Compile and execute:

• Open the file and plot spectrum 'h1':

Perform the analysis and look at
the results

.L basic.C+
basic()

TFile* fich = new TFile("basic.root")
fich->ls()
TH1F* histo = (TH1F*) fich->Get("h1")
histo->Draw()Print the

contents of
the file Copy the object 'h1'

into the memory.
Return the address of
this copy.

The last two lines in one:
fich->Get("h1")->Draw()

Closing remarks

Some hints and tips for those dark
moments of the soul (when it's just you

and the C++ compiler)

Examples of functions/scripts
• On the ROOT web site, under the heading

Tutorials, you can find lots of useful examples
• Caution! if the file doesn't have a proper function

declaration then you can't compile it:

.x toto.CExecuting a
script without
full declaration

In this case, the code will be
interpreted, not compiled.

WARNING: we really don't
recommend you do this for
your own scripts!!

The 'rootlogon.C' file

{
gStyle->SetPalette(1);
cout << "Salut " << gSystem->Getenv("USER") << "!" << endl;
gSystem->Exec("date");
}

• This script without a function declaration is executed
automatically when ROOT is launched from the same
directory as the file

This way all your 2-D
histograms will have
nice colours (aah!)

Returns the value of
the system environment
variable 'USER'Executes the system

command 'date'

For more information, see classes TStyle & TSystem

Exercise

Another example of analysing data

Exercise
(Episode 1: The ROOT menace)

http://caeinfo.in2p3.fr/root/Formation/en/Day2/exo_j2.data

• Write a script to analyse the data in ASCII file exo_j2.data .
Each line of the file has 4 values corresponding to variables
x,y,z et e (How original!)
x de -25 à 25, y de -25 à 25,
z de -10 à 10, e de -500 à 2500

– Create and fill the following histograms:
● 1-D: 'z' distribution (TH1F)
● 2-D: 'y' vs 'x', 'z' vs 'x', 'z' vs 'y' (TH2F)
● Profiles: <e> vs x, <e> vs y (TProfile)
● 3-D: 'z' vs 'y' vs 'x', 'e' vs 'y' vs 'x' (TH3F)

– Save them in a ROOT file called exo_j2.root.

Exercise
(Episode 2: The return of

exo_j2.root)
• Open exo_j2.root.
• Find the 3 most populated intervals of 'z'

– Keep a note of them!
• Using the FitPanel:

– fit the TProfile "<e> vs x" with a polynomial and note
the values of the last two parameters, ex1 et ex2.

– fit the TProfile "<e> vs y" with a polynomial and note
the values of the last 3 parameters, ey1, ey2 et ey3.

• Close exo_j2.root.

Exercise
(Part 3: The analysis strikes

back)
• Write another script to analyse exo_j2.data.

– Create and fill the following:
● 1-D: histogram (TH1F) of
de=e-ex1*x-ex2*x*x-ey1*y-ey2*y*y-ey3*y*y*y

● 2-D: 'y' vs 'x' for each 'z' interval determined in Part 2
(TH2F)

● 2-D Profiles: <z> vs y vs x, <e> vs y vs x (TProfile2D)
– ADD them to file exo_j2.root.

Exercise
(Part 4: The final shot)

• Find the width of the de distribution by fitting
with a gaussian.

• Write a script to display, on the same canvas, the
following 4 figures:
– 'y' vs 'x' for z < 1 with option col
– 'y' vs 'x' for 3 < z < 5 with option box
– <z> vs y vs x with option zcol
– <e> vs y vs x with option surf1

• Save the picture in a ".gif" file

