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Abstract

This analysis document is a user’s guide to the RooFitTools package for per-
forming unbinned maximum likelihood fits, and includes working examples and
instructions on how to run them. RooFitTools is a library of C++ classes for creat-
ing compact and self-documenting macros to perform unbinned likelihood fits and
display the results, without needing to compile and link any code. The package
provides a flexible framework for building complex fit models and is straightforward
to extend. This note describes several examples which are included in the package
to help new users get started.
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1 Introduction

This guide describes how to use the general framework for performing unbinned maximum
likelihood fits that is implemented in the BaBar software package RooFitTools1. This
document is intended to serve as a practical user’s guide rather than a technical reference
to the package’s implementation. This guide does not assume expertise with ROOT or
BaBar software.

RooFitTools is a library of C++ classes whose goal is to provide a reasonably natural
vocabulary for efficiently specifying a unbinned maximum likelihood fit. To illustrate this
goal, consider the following example of a binned χ2 fit performed in PAW

PAW> h/file 1 data.hbook

PAW> hrin 10

PAW> h/fit 10 g+e

These instructions are compact and the notation g+e is a reasonably intuitive way
to request a fit to the sum of a Gaussian and an exponential. One shortcoming of this
notation, which the RooFitTools package tries to address, is that it is not self documenting:
what data does histogram 10 contain? How are the fit parameters defined? etc. The main
shortcoming, which is the real motivation for this package, is that PAW only provides
convenient support for binned fits.

An analogous fit using an unbinned maximum likelihood method in RooFitTools looks
like this:

RooRealVar // define the data variables and fit model parameters

m("m","Reconstructed Mass",0.5,2.5,"GeV"),

rmass("rmass","Resonance Mass",1.5,1.4,1.6, "GeV"),

width("width","Resonance Width",0.15, 0.1, 0.2, "GeV"),

bgshape("bgshape","Background Shape",-1.0,-2.0,0.0, "GeV"),

frac("frac", "signal fraction",0.5, 0.0, 1.0);

// create the fit model components: Gaussian and exponential PDFs

RooGaussian signal("signal","Signal Distribution",m,rmass,width);

RooExponential bg("bg","Background Distribution",m,bgshape);

// combine them using addition (add a relative normalization parameter)

RooAddPdf model("model","Signal + Background",signal,bg,frac);

// read values of ’m’ from a text file

RooDataSet *data= RooDataSet::read("mvalues.dat", m);

1The examples in this document were tested with V00-02-40 of the RooFitTools package.
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// fit the data to the model with an unbinned maximum likelihood method

model.fitTo(data);

This is a working example which can either compiled into a standalone program, or
else run interactively as an interpreted macro in ROOT2 (since most of the computa-
tionally intensive code is already compiled into shared libraries, there is generally little
performance benefit in compiling your macros.) The rest of this guide explains how to
get started by running the examples in this guide and then describes each of the main
sections in a typical fit macro which are used to:

• specify of the variables use to describe the data and the parameters used in the fit
model,

• construct a probability model to fit to the data by combining basic building blocks,
and

• run the fit and plot the results.

The final section covers techniques for using Monte Carlo samples to validate a fit and
study statistical and systematic errors.

1.1 Building the Library

In order to use the RooFitTools package, you need a copy of the library containing its
code. There are two versions of the library for each platform architecture: one (the “static”
library) which you can link your compiled programs against, and one (the “shared” li-
brary) which you can load dynamically in an interactive ROOT session. The shared
library, which is the most useful, is not normally built as part of a standard BaBar release
so you will need to build your own copy.

Use the following steps to create your own BaBar test release in a directory fitrel

and build the RooFitTools dynamic library (you can replace newest with your favorite
recent release, use V00-02-40 for <version> or else a more recent tag announced in the
“Interactive ROOT Help” hypernews forum)

newrel -t newest fitrel

cd fitrel

srtpath

addpkg RooFitTools <version>

addpkg workdir

gmake workdir.setup

gmake RooFitTools.rootlib ROPT=-Shared

2Experience with ROOT is not a prerequisite for using this package. Refer to http://root.cern.ch
for an introduction to ROOT. You can post general ROOT questions and questions about RooFitTools
to the BaBar “Interactive ROOT Help” hypernews forum.
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Note that the srtpath will prompt you for two parameters: you can hit RETURN and
use the defaults in both cases. This whole process should only take a few minutes, and
the size of the resulting library should be a few Mb.

1.2 Running Interactively in ROOT

Once you have created the RooFitTools shared library in your test release, you can start
an interactive ROOT session from your release’s workdir subdirectory using the command
bbrroot. You should see something like this (and a colorful opening graphic which you
can suppress using bbrroot -l)

% cd workdir

% bbrroot

...

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

...using style ’plain’

...found RELEASE directory

...found PARENT directory

...running in release 8.6.5a-physics-1

root [0]

Your input will now be parsed by ROOT’s C++ interpreter, which accepts standard
C++ expressions as well as some cryptic built-in commands that begin with a period: the
ones to remember are .x (to execute a macro – see below) and .q to quit ROOT. Note that
the output lines above beginning with ‘...’ are generated by a startup file RooLogon.C

in your workdir directory (equivalent to PAW’s pawlogon.kumac) which you are free to
customize.

Once you have a ROOT prompt, load the RooFitTools dynamic library with the
commands3

gSystem->Load("libProof.so");

gSystem->Load("libTreePlayer.so");

loadSrtLib("RooFitTools");

To do this automatically when you start ROOT, add the command to your RooLogin.C
file (see the comments at the end of the file). You are now ready to test and run macros
using the classes in the RooFitTools package. A ROOT macro is a sequence of C++
statements enclosed in a subroutine (the subroutine’s return type is optional)

3The first two of these commands are usually only necessary on Linux platforms (due to a linking
problem in the core ROOT libraries), but will not do any harm on other platforms.
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hello() {

cout << "hello world" << endl;

}

To run this macro in ROOT, save it to a file called hello.cc in your workdir directory
and execute it using

.x hello.cc

The .x command reads a file and executes a subroutine with the same name. To run
any of the examples in this guide, simply enclose them in a subroutine and save it to a file
of the same name. You can use the RELEASE and PARENT links in your workdir directory
to access macros in your test release (RELEASE) or your base release (PARENT). To run the
example in Section 1, copy the data file mvalues.dat from RooFitTools/examples/ into
your workdir/ directory and run the macro in ROOT (after loading the shared library)
using

.x RELEASE/RooFitTools/examples/intro.cc

When reading a macro, remember that all class names in the RooFitTools package
begin with ‘Roo’ and most ROOT built-in class names begin with the letter ‘T’.

Comments in ROOT macros follow C++ conventions. Semicolons at the end of each
statement are optional at the command line, but required in a macro. ROOT has some
useful shell-like features which make interactive work easier. Use the up/down arrow keys
to access your recent commands. Use the tab key to complete the command you have
started, or get a list of possible completions. Tab completion is a convenient way to find
out what methods an object supports and what arguments they take.

If you have general questions about ROOT or specific questions about this package,
please post them to the BaBar “Interactive ROOT Help” hypernews forum.

2 Defining Variables

The first section of a fit macro is where you define your data’s dependent variables and the
parameters of your likelihood model. RooFitTools does not make a distinction between
dependent variables and model parameters: they are all RooRealVar objects. Variables
have a value, minimum and maximum limits, an error, a name, a description, and (option-
ally) units. Variables can also be fixed, which means that they are treated as constants
in a fit. Section 2.1, below, describes the general methods available for working with
variables. There is a special type of discrete variable, called a “category” variable, which
is described in Section 2.2.
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2.1 General-Purpose Variables

You can choose from three forms of the constructor for a variable

RooRealVar

eta("eta","Mistag Rate",0.15,0.0,1.0), // specify value and range

m("m","Invariant Mass",0.5,2.5,"GeV"), // specify range, no value

tauB("tauB","B Lifetime",1.63,"ps"); // specify value only: fixed

The form with a value specified is convenient for fit parameters: the value will be
used as the starting point in the fit. The form without a value specified is convenient for
dependent variables whose value will be taken from data.

All forms of the constructor begin with a name and description, and end with an
optional string describing their units. The name is used in messages and as a key for
storing variable objects to a file, and by convention should be set equal to the object’s
name. The description and units are used to create histogram labels. Choosing a useful
description makes it easier for others reading your macro to understand how you are
performing a fit. A variable’s range is used differently for dependent variables and fit
parameters: the range of a dependent variable specifies an effective cut on the data and
so specifies the region for normalizing a likelihood probability density function. The range
of a variable used as a fit parameter is not normally limited in the fit, unless you request
this with

eta.setLimits();

In either case, the range is used to construct histograms for a variable. Variable errors
are set from a fit and not by hand. Once a variable is constructed, you can change its
value

eta= 0.2;

Eoverp= (Double_t)E/(Double_t)p;

Note that an explicit cast is required when using a variable on the right-hand side of
an assignment. To fix a variable so that it will not be floating in a fit use (kFALSE is a
ROOT built-in boolean constant)

eta.setConstant(); // fixed

eta.setConstant(kFALSE); // floating

To get information about a variable you can print its value, range, description, and
units using

eta.Print();

To access a parameter’s fitted error, use the GetError() method, or to print its value
and error use

eta.Print("E");
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2.2 Category Variables

RooFitTools supports a specialized type of variable which is useful for identifying different
types of events being used in a fit (e.g., from a signal or background control sample). These
are called “category” variables, and have their own construction method in which you only
specify a name and title (which have the same meaning as for other variables)

RooCategory eventCat("eventCat","Type of Event (Signal,BG1,BG2)");

A newly created category variable does not define any cateogries. Use the defineType()
method to declare the types of categories you are interested in

eventCat.defineType("B0 -> D* l nu signal candidate");

eventCat.defineType("Fake lepton control sample candidate");

eventCat.defineType("Uncorrelated control sample candidate");

Use the general-purpose ROOT Print() method with the "T" option to list the types
defined for a category variable

root [1] eventCat.Print("T")

[0] "B0 -> D* l nu signal candidate" (code = 1)

[1] "Fake lepton control sample candidate" (code = 2)

[2] "Uncorrelated control sample candidate" (code = 3)

Note that each type of category is associated with an integer code: by default these
are assigned automatically in ascending order starting from one. These codes are used
to assign the value of a category variable and for reading and writing data sets to ASCII
files (as described in Section 3). You can override the default code assignments for any
category by providing an extra parameter to the defineType method

mixingCat.defineType("Mixed Events",-1);

mixingCat.defineType("Unmixed Events",+1);

Category variables are also RooRealVariables and so inherit all of the behavior de-
scribed above (although in some cases this does not make much sense). For example, you
can assign a value like this

root [1] mixingCat = -1;

root [2] mixingCat.Print()

RooCategory: mixingCat = "Mixed Event" (code=-1) : Mixing Event Category

If the right-hand side of an assignment (after rounding to the nearest integer) does
not match a defined type, then a default value will be used and you will get the following
warning message

root [1] mixingCat = 0;

mixingCat: code 0 is not a valid category: forcing to -1
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2.3 Blind Analysis Variables

RooFitTools supports the use of blind model parameters. A blind parameter is imple-
mented as a RooBlindVar object which is derived from RooRealVar and can as such be
used in any place where a RooRealVar is expected.

Before creating a blind variable the type of blinding needs to be defined as a blinder
of type RooBlindBase.

// Define blinding string and magnitude.

Double_t mag=0.00003;

RooBlindGaussian blinderMass("blinderMass", "This is a blinding string",mag);

The blinding string is used to compute a seed for a platform independent random
number generator. For objects of type RooBlindGaussian the blind offset will be a
random number from a Gaussian distribution with 0 mean and σ = mag. It is also
possible to get a blind offset taken from a uniform distribution in the interval [−mag; mag]
by declaring a blinder of type RooBlindUniform. A blind variable is then declared by
giving the blinder in the constructor as

RooBlindVar rDeltaM("rdeltaM","Mass Difference",&blinderMass,

0.1454,0.13957,0.15457, "GeV");

Each blind variable should use its own blinder unless there is a specific requirement
for two blind variables to have the same blind offset. A specific example of using blind
variables can be found in section A.5.

Care should be taken not to show yourself the blind offset used. This means you
should never use blinding on MC data where you presumably know the true answer. The
way to solve this is to turn off the blinding before the actual fit

rDeltaM.setBlind(kFALSE);

modelDeltaM.fitTo(data,"M");

Also do not turn on/off the blinding using setBlind(kFALSE) after the fit has been
performed as this might reveal the offset.

If a variable only has a physical meaning within a given interval this interval will be
changed by the blinding method. An example could be the relative fraction of signal
and background events which only is physical on the interval [0; 1] and most likely give
negative values of the PDF outside the limits. Two problems arise from this:

• The start value might be outside the physical region causing the fit to fail straight
away. This can be solved by using the RooBlindUniform blinder and have the
maximum blind offset and start value defined such that the hidden start value is
guaranteed to be within the interval.

• If the variable during the fit either gets “stuck” at the edge of the interval or runs
outside the physical region causing the fit to fail, you might by accident be able to
infer the blind offset.
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3 Reading Data

After defining your variables, the next section of a fit macro specifies the data you want to
fit to. The data used in a fit consists of a set of values for a vector of dependent variables,
{�xk}n

k=1. Data sets in RooFitTools are represented by RooDataSet objects. There are two
ways to fill a dataset with values: from a text file, or from a ROOT tree (the equivalent of
a PAW ntuple). If instead you want to fit data contained in a PAW ntuple, you can either
create an intermediate text file (using the PAW ntuple/dump command) or else convert
the PAW ntuple into a ROOT tree (using the h2root command provided with ROOT).

The easiest way to create a RooDataSet object using data from an external source is
to read values from a text file

RooDataSet *data= RooDataSet::read("JPsiKsMC.dat", dz, sigma, tag);

In this example, the variables dz, sigma, and tag must already be defined (see Sec-
tion 2). The ranges you specify for these variables will be interpreted as cuts to apply on
the data being read: any event with at least one dependent variable out of range will be
excluded from the data set. By default, the read() method will print a warning for each
excluded entry. To supress these warnings, add "Q" (for Quiet) at the end of the read()

arguments:

RooDataSet *data= RooDataSet::read("JPsiKsMC.dat", dz, sigma, tag, "Q");

After reading the file, the read() method prints a summary of the number of events
which were read and which passed these cuts. A dataset may contain variables which are
not used in a fit.

The text file containing the data may include blank lines or comment lines beginning
with a hash (#) symbol. Any other lines are expected to contain a list of values for each
dependent variable, in the order in which they are declared in the read() method. There
are no special spacing or formatting requirements.

An alternative way of initializing a dataset is from a TTree (the ROOT equivalent of
a PAW ntuple). If the TTree is already in memory, then use:

RooRealVar m("xmjpsi","Muon Pair Invariant Mass",2.5,3.4,"GeV");

...

RooDataSet *data= new RooDataSet("dataset",tree,m,...);

where tree is a pointer to a TTree object and you can list up to six variables. The
names of the variables (more precisely, the first argument of the variable’s constructor)
determines the value that will be used to fill that variable from each entry in the tree.
In the simplest case, the name exactly matches a variable in the tree. For example, to
convert the following tree:
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root [1] dataTree->Print()

******************************************************************************

*Tree :dataTree : data for fitting *

*Entries : 4302 : Total Size = 188126 bytes File Size = 97373 *

* : : Tree compression factor = 2.54 *

******************************************************************************

*Branch :dt : dt/F *

*Entries : 4302 : Total Size = 21365 bytes File Size = 14377 *

*Baskets : 1 : Basket Size = 32000 bytes Compression= 1.49 *

*............................................................................*

*Branch :dtTrue : dtTrue/F *

*Entries : 4302 : Total Size = 21365 bytes File Size = 14377 *

*Baskets : 1 : Basket Size = 32000 bytes Compression= 1.49 *

*............................................................................*

*Branch :error : error/F *

*Entries : 4302 : Total Size = 21371 bytes File Size = 13994 *

*Baskets : 1 : Basket Size = 32000 bytes Compression= 1.53 *

*............................................................................*

to a dataset use:

RooRealVar dt("dt","Measured delta(t)",-15,+15,"ps");

RooRealVar error("error","Per-Event Error",0.1,2.4,"ps");

RooDataSet dataset("dataset","Resolution Data",dt,error);

Note that not all variables need to be transferred into the dataset. More generally,
the name can be any valid expression involving the names of tree variables and built-in
functions. For example:

RooRealVar pull("(dt-dtTrue)/error","Delta(t) Pull",-150,+150);

RooDataSet dataset("dataset","Resolution Pulls",pull);

If the TTree you would like to use is not in memory, but is stored in a ROOT file
(which may or may not have already been opened) then use instead:

RooDataSet dataset("dataset","file.root","h1",dt,error);

where file.root is the name of the ROOT file to use (which will be opened if nec-
essary) and h1 is the name of the TTree object in the file. As with the read() methods
described above, the ranges specified for variables are used to select events.

You can apply standard TTree cuts on any of the TTree variables (including ones not
transferred to the dataset) to select which entries are used in the dataset using an optional
extra parameter with the constructors described above, for example:
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RooDataSet dataset("dataset","file.root","h1",pull,"abs(dtTrue)<10");

If you encounter problems with undefined symbols when you try this example, make
sure that you have loaded the Proof and TreePlayer shared libraries, as described in
Section 1.2.

Once you have created a data set, you can plot the distribution of any of its variables
using

data->Plot(dz)->Draw(); // 1-d histogram

data->Plot(dz,tag)->Draw(); // 2-d histogram

The return value of the Plot() method is actually a pointer to a ROOT histogram
object: see Section 4.8.2 for more information on using histograms. You can also use a
data set just like a TTree (the ROOT equivalent of a PAW ntuple) and make plots of
functions of a variable with optional cuts

data->Draw("dz*tag","abs(sigma)<0.2");

In this case, the histogram range will be calculated automatically and you will need
to add labels yourself.

4 Defining a Fit Model

A fit model consists of a normalized probability density function (PDF), F (�x ; �p), of
the dependent variables used to describe the data being fit, �x, which is parameterized by
variables �p. The corresponding likelihood to be maximized (with respect to the parameters
�p) for a sample of events, {�xk}n

k=1, is

L(�p) =

n∏
k=1

F (�xk ; �p) .

A PDF must be positive over the range of �x values covered by the data in order to avoid
L ≤ 0, and must be normalized so that

∂

∂pk

∫
dx1 . . .

∫
dxn F (�x ; �p) · θ(�x) = 0 ,

where the term θ(�x) represents any cuts applied to the dependent variables before mak-
ing the fit (i.e., the variable limits), and so generally introduces normalization factors
which depend on cut values. Figure 1 shows the importance of including cuts in the
normalization: the two curves compare exponential fits to a dataset with cuts sampled
from an exponential distribution, using PDFs normalized with and without cuts taken
into account. Cuts are also important when using PDFs like a polynomial which are not
necessarily well behaved beyond the region covered by the data.
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Figure 1: A comparison of fits to data generated from an exponential distribution with
τ = 5 and cut at 0.5 ≤ t ≤ 2.5. The solid curve is the result of fitting with the cut taken
into account in the normalization, which gives the expected result. The dashed curve is
the result of fitting without taking the cut into account, which gives a value of about
< t >� 1.5.

The general approach to building a PDF in RooFitTools is to combine a set of pre-
defined PDFs using addition, multiplication, and convolution. The software takes care of
normalizing the model you build, and includes checks to avoid parameters which can give
probabilities ≤ 0. It is straightforward to extend the package with new predefined PDFs
or composition methods (see Section B).

This section describes how to use predefined PDFs and how to combine them. It also
covers some general tools for displaying information about any PDF.

4.1 Model Building Blocks

This section reviews the predefined building-block PDFs available in RooFitTools. The
names of the PDF objects and variables constructed in the examples in this section
are arbitrary: choosing suitable names will make your fit macro easier for others to
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understand. The symbol N represents a normalization factor in the equations below,
which generally depends on the parameter values and the limits on the dependent variables
(and which the package calculates for you.)

The first two arguments used to construct any predefined PDF are a name and a title.
The name is used in printed messages and, by convention, should be set equal to the
object’s name. The title should be descriptive and will be used in plots (the titles in this
guide do not set a good example since they are generally kept short to fit within one line.)

4.1.1 Exponential Distribution

This section describes two general-purpose parameterizations of an exponential distribu-
tion which are intended as building blocks for more complex shapes. For lifetime fits to a
decay time distribution, consider using the more powerful PDFs described in Section 4.2
instead.

Create the exponential distribution

E1(t ; τ) =
1

N
exp(−t/τ) · θ (t ≥ 0)

with the constructor

RooLifetime E1("E1","A Lifetime Distribution",t,tau);

(The symbol names E, t, and tau are arbitrary.) Note that this function is defined
to be zero for negative values of t. The minimum value of τ must be positive and the
minimum value of t must be ≥ 0. An alternate constructor

RooExponential E2("E2","An Exponential Distribution",x,c);

creates the double-sided exponential distribution

E2(x ; c) =
1

N
exp(c x)

with no restrictions on the ranges of x or c.

4.1.2 Quadratic Exponential Distribution

The function

E(x ; a, b, c) =
1

N
· exp

(
a(x+ b)2 + c

)
can be constructed using

RooQuadExponential E("E", "Quadratic Exponential", x, a, b, c);

This function has been found to be useful to parameterise PDFs of the cosine of the
angle of B candidates w.r.t. the thrust axis.
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4.1.3 Gaussian Distribution

The Gaussian distribution

G1(x ;µ, σ) =
1

N
· exp

(−(x− µ)2/(2σ2)
)

can be constructed using

RooGaussian G1("G1","A Gaussian Distribution",x,mu,sigma);

This form of the Gaussian is appropriate when you are fitting to a global resolution
parameter, σ. If you have measured a per-event error then use the alternate form

G2(x, σ ;µ, s) =
1

N
· exp

(−(x− µ)2/(2s2σ2)
) · g(sσ, xmin, xmax) · ρ(σ)

which can be constructed using

RooGaussEvt G2("G2","Per-Event Weighted Gaussian",x,sigma,mu,s,rho);

where rho is a one-dimensional PDF describing the distribution of σ. An alternate
form of the constructor does not use the rho parameter and corresponds to a flat distribu-
tion in σ: this model is generally not realistic, but will not bias fitted parameters (which
don’t model the σ distribution) as long as the true distributions of x and σ are uncorre-
lated (see Section A.3 for a demonstration of this.) The per-event error PDF replaces the
global resolution parameter, σ, by a global scale factor parameter, s, which multiplies the
per-event error estimate. The function, g(sσ, xmin, xmax), is chosen so that the projected
distribution of σ reproduces ρ(σ)∫ xmax

xmin

G2(x, σ ;µ, s) dx =
1

N
=

1

σmax − σmin
.

This is generally not true of the data, but using this model will not bias the fitted param-
eters (which don’t model the σ distribution) as long as the distributions of x and σ are
uncorrelated.

Refer to Section 4.4 for an alternate method of implementing PDFs which depend on
a per-event error, without using the RooGaussEvt building block.

4.1.4 Bifurcated Gaussian Distribution

The bifurcated Gaussian distribution is a Gaussian with a different value of σ on either
side of the mean:

Gb(x ;µ, σ) =
1

N
· exp

(−(x− µ)2/(2σ(x− µ)2)
)
,

where σ(x− µ) = σL for x < µ and σR for x ≥ µ. This PDF is constructed using

RooBifurGauss Gb("Gb","A Bifurcated Gaussian Distribution",x,mu,sigL,sigR);

Note that when the validity range of x contains only values larger (smaller) than µ,
then σL (σR) must be fixed by a call to setConstant() in order for the fit to work properly.
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4.1.5 Polynomial Distribution

The polynomial distribution

P (x ; c0, . . . , cn) =
1

N
·
(

1 +

n∑
k=1

ckx
k

)

can be constructed using

RooPolynomial P("P","A Polynomial Distribution",x,c1,c2);

where the number of parameters used in the constructor (up to a maximum of 5)
determines the order of the polynomial: using two parameters gives a second order, or
quadratic, distribution.

4.1.6 Chebychev Polynomial Distribution

The polynomial distribution

T (x ; c0, . . . , cn) =
1

N
·
(
T 0(x) +

n∑
k=1

ckT
k(x)

)

where T k(x) is a kth order Chebychev polynomial can be constructed using

RooChebychev T("T","A Chebychev Distribution",x,c1,c2);

where the number of parameters used in the constructor (up to a maximum of 5) de-
termines the order: using two parameters gives a second order, or quadratic, distribution.

The ’natural’ domain of Chebychev polynomials is the range [−1, 1], so the range spec-
ified by the (instance of the) RooRealVar class specified in the RooChebychev constructor
is used to map the variable onto this range.

Chebychev polynomials have properties which make them usefull for fitting: they
are orthogonal in the interval [−1, 1] over a weight (1 − x2)−1/2, and at all the maxima
(minima) T k(xmax) = 1 (T k(xmin) = −1).

4.1.7 Argus Background Distribution

The ARGUS distribution[1] for the background shape in a beam-constrained mass plot

A(m ;m0, c) =
1

N
· m

√
1 − (m/m0)2 · exp(c (1 − (m/m0)

2)) · θ(m < m0)

is constructed using

RooArgusBG A("A","ARGUS Background Shape",m,mmax);
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Note that m0 represents the kinematic upper limit for the constrained mass and is
usually held fixed at half of the center of mass energy (nominally 5.29 GeV for e+e− →
Υ(4S)) in a fit. The minimum value of m0 must be ≥ the maximum value of m. Using
c = 0 gives the the expected distribution of beam-constrained mass values for background
which is uniformly distributed in phase space[1]. Figure 6 shows an example of a model
which uses this PDF.

4.1.8 Breit wigner Distribution

The Breit Wigner distribution takes the form [2]

B(x ;m,Γ) =
1

N
· 1

(x−m)2 + (Γ/2)2

1/N is a normalization factor that depends on the range of x, and the parameters m and
Γ are the central mass and width of the resonance, respectively. Create the PDF with

RooBreitWigner bw("bw", "A Breit Wigner Distribution", x, m, Gamma);

4.1.9 Crystal Ball Lineshape Distribution

The Crystal Ball lineshape distribution[3]

C(m ;m0, σ, α, n) =
1

N
·
⎧⎨
⎩

exp (−(m−m0)
2/(2σ2)) , m > m0 − ασ

(n/α)n exp(−α2/2)

((m0 −m)/σ + n/α− α)n , m ≤ m0 − ασ

is useful for fitting a radiative tail, e.g., me+e− in J/ψ → e+e−(γ) decays. It consists of a
Gaussian signal peak matched to a power law tail. Figure 7 shows an example of a model
using this distribution. Construct this PDF using

RooCBShape C("C","Crystal Ball Lineshape",m,m0,sigma,cut,power);

Note that the parameter n is not necessarily integer, and is usually held fixed in a fit:
lower values generate a longer tail. The parameter α determines the crossover point from
the Gaussian distribution to the power law tail distribution, in units of the peak width,
σ. Typical values for |α| are 0.6–1.1. With α > 0 the tail is below the peak, and with a
negative value the tail is above the peak.

4.1.10 Threshold Background Distribution

The background distribution for a mass (or mass difference) spectrum near a lower thresh-
old is well described by a PDF of the form

D(m ;m0, c, a) = (1 +m−m0)
a [1 − exp (−(m−m0)/c)] · θ(m > m0)

which can be constructed with either of these forms
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RooDstarBG D("D","Mass Diff Background Shape",deltam,deltammax,c);

RooDstarBG D("D","Mass Diff Background Shape",deltam,deltammax,c,a);

Note that the a parameter is optional and defaults to the constant zero if it is not
specified in the constructor. The choice of name for this class reflects the fact that this
PDF is often used to model the background contributing to a D∗ − D0 mass difference
distribution. The parameter m0 is the kinematic threshold to use, and should be equal to
the π± mass for a D∗ − D0 mass difference fit. The minimum value of m must always be
set larger than m0 (to avoid regions with exactly zero probability). Figure 10 shows an
example of a model which uses this threshold background distribution.

4.1.11 Johnson SU Distribution

The Johnson SU distribution [4]

J(x; ξ, λ, γ, δ) =
δ

λ
√

2π

√
1 +

(
x−ξ
λ

)2
exp

{
−1

2

[
γ + δArgsh

(
x − ξ

λ

)]2
}

can be constructed using

RooJohnsonSU J("J","Johnson SU distribution",x,xi,lambda,gamma,delta);

This distribution can be used to fit experimental data that are ’almost’ gaussian, ex-
cept for a Landau-like tail on one side. An example is shown in figure 2. The parameters δ
and γ determine the shape of the distribution: for δ > 0, J(x; ξ, λ, γ, δ) is positive and
normalized to one, and the sign of γ determines if the tail is located at low x (γ > 0)
or at high x (γ < 0). Higher values of |δ| and |γ| result in a more symmetrical distribu-
tion and a sharper peak. The parameters ξ and λ control the position and width of the
distribution, respectively.

4.1.12 Non-Parametric Distributions

A non-parametric PDF describes a distribution empirically, without referring to any model
of the expected shape. A histogram is an example of a non-parametric description of a
dataset, but is not directly suitable for use in unbinned fits where we require a continuous
distribution. One solution is to smooth a histogram and use the resulting sequence of
splines as a continuous description of the underlying distribution. A more powerful tech-
nique is advocated in Reference [5], and leads to the “KEYS” (Kernel Estimating Your
Shapes”) method which has been developed by Kyle Kranmer in ALEPH, and used by
the LEP Higgs working group.

The basic idea in the KEYS approach is to model the distribution of a sample of events
as the sum of individual equal-area Gaussian kernels, G, for each event

K(x) =
n∑

k=1

1

nhk

G

(
x− xk

hk

)
,
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Figure 2: The Johnson SU distribution for a particular choice of parameter values.

where the extent of each event’s contribution, hk, is calculated adaptively as a function
of the local density of events.

Construct a non-parametric KEYS PDF using

RooKeysPdf K("K","Monte-Carlo Background Shape",mass,mcData);

to describe the distribution of the dependent variable mass in the dataset mcData. To
load a new dataset mcData1 of the same dependent variable mass

K->LoadDataSet(mcData1);

For distributions which have substantial density near the range boundaries, the de-
fault parameterization can have difficulties. If kernals are thought of as tiny gaus-
sians at each event value, one can imagine that probability is “leaking” out the edges
for points near the edge. To solve this problem, a final, optional parameter can be
specified. It takes values RooKeysPdf::NoMirror (default), RooKeysPdf::MirrorLeft,
RooKeysPdf::MirrorRight, or RooKeysPdf::MirrorBoth.

RooKeysPdf K("K","Monte-Carlo Background Shape",mass,mcData,RooKeysPdf::MirrorBoth);

This causes the distribution to be mirrored on neither, the left, the right, or both
boundaries when summing the kernals. One should choose to mirror a distribution at
least on the boundaries where significant density occurs. An event’s contribution in the
kernal is still adaptively calculated using the original distribution only. Events in the
mirrored distributions have identical contributions as their counterparts in the original
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distibution. This type of mirroring does not increase the computation time significantly,
so it is recommended to use this option to obtain the best distributions.

A non-parametric PDF is useful for including distributions in a fit that have a complex
shape which cannot be easily modelled. Examples would be a background distribution
obtained from a Monte Carlo simulation, or the distribution of a neural-network output
used as a background discriminating variable. Refer to Section A.6 for an example of
using a non-parametric PDF.

4.1.13 DIRC Cerenkov angle PDFs

The RooDircPdf model allows the calculation of PDFs of the DIRC Cerenkov angle, θC .
The PDFs are represented as double gaussian functions, as outlined in [11]. A primary
(core) gaussian is used to describe the distribution of the difference between the observed
and expected Cerenkov angles for the given hypothesis (pion or kaon), while a satellite
(tail) gaussian represents the contamination (mis-identification) from tracks of the other
hypothesis. The mean and sigma values of the core and tail parts, as well as the relative
normalisation between them, are parameterised in terms of the track momentum (at the
DIRC), p, and/or the cosine of the angle of the track, cosθ. The total PDF, for kaons,
can be written as:

PK(θC ; p, cosθ) =
RK

σcore,K

√
2πNcore

exp

⎡
⎢⎣−

(
θC −

(
θoff

K + θexK

))2

2σ2
core,K

⎤
⎥⎦+

1 −RK

σtail,K
√

2πNtail
exp

⎡
⎢⎣−

(
θC −

(
θoff

K + θexπ

))2

2σ2

tail,K

⎤
⎥⎦

Here, the mean and sigma values of the core gaussian are θoff
K + θexK and σcore,K ,

repectively. The variable θoff
K is the offset (for the kaon hypothesis), while θexK is the

expected Cerenkov angle for the kaon hypothesis

θexK = cos−1 (1/nβK)

The offset and sigma values are parameterised in terms of functions of p and/or cosθ:

θoff
K = f(cosθ, p)

σcore,K = g(cosθ, p)

The tail gaussian has the mean and sigma values θoff
K +θexπ and σtail,K , repectively, where

the variable θexπ is just the expected Cerenkov angle for the track under the alternative
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(pion) hypothesis. The sigma value for the tail is also parameterised in terms of p and/or
cosθ:

σtail,K = h(cosθ, p)

The relative normalisation, RK , is equal to the ratio of the area of the core gaussian to
that of the total distribution (core plus tail), and can also be parameterised in terms of p
and cosθ. The values Ncore and Ntail are just the extra normalisation factors to ensure
that, depending on the range of Cerenkov angles used, the total PDF is normalised to
unity. The PDF for pions follows the same form as above, with appropriate substitutions
between K and π in the above variables. The constructor for the class is

RooDircPdf dirc("dirc", "Dirc Model", drcMtm, thetaC, trkTheta,

refraction, mass, otherMass, coreMeanFun, coreSigmaFun,

tailMeanFun, tailSigmaFun, relNormFun, milliRadians);

Here, drcMtm is the momentum of the track at the DIRC, thetaC is the Cerenkov
angle, while trkTheta is the polar angle of the track (w.r.t the z axis). Also, we have the
constants refraction, mass and otherMass, which are the index of refraction, the mass
for the given hypothesis (pion or kaon) and the mass for the other hypothesis (kaon or
pion), respectively. All of these are represented by RooRealVar objects.

The parameterisations of the mean and sigma values of the core and tail gaussians
are given by the ROOT TF1 objects coreMeanFun, coreSigmaFun, tailMeanFun and
tailSigmaFun. The parameterisation of the relative normalisation is given by the TF1

object realNormFun. All of these functions use both cosθ and p as input variables, in
that order. Note that if any of the these functions are just constants, then they can be
represented by functions like

TF1 constant("constant", "pol0");

constant.SetParameter(0, <value>);

Also, if any of the above TF1 functions only depend on one of the variables (p or
cosθ), then the other variable must be set to zero when reading in the data. Finally,
there is the option to use either radians or milliradians in the calculation (depending on
what the parameterisations use). The milliRadians boolean needs to be set to true (or
kTRUE) if milliradians are used (default is false). An example using the RooDircPdf class
can be found in RooFitMacros/BBDecays/Charmless/TestD0piFit.cc in the package
RooFitMacros V00-00-18.

4.2 Decay-Time Distributions

In addition to the basic building blocks described in the previous section, RooFitTools
provides some more complex models for the efficient fitting of a class of decay-time dis-
tributions which are often encountered in particle physics. In order to introduce the
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formalism used in this package, we first define a “true” physics decay-time distribution
(i.e., one that is not biased or smeared) as

f0(t ; τ, �p) =
1

2τ
exp(−|t|/τ) g(t ; �p) θ(t) ,

where g(t ; �p) is an arbitrary function (with parameters �p) which modulates a lifetime
distribution characterized by the parameter τ . The function θ(t) takes the values zero
and one, and restricts the range of t over which f0 takes non-zero values: for example,
a fit in which the decay time is measured relative to a primary decay vertex would be
restricted to t ≥ 0 (in the absence of smearing or bias), while a fit to the relative decay
time between two particles would cover the full range of t.

Next, we introduce possible biases and the effects of resolution smearing using

f(t ; τ, �p, �q) =

∫ ∞

−∞
ds f0(s ; τ, �p) h(t− s ; �q) ,

where h(t−s ; �q) models the probability density (in terms of the parameters �q) of measuring
a value t corresponding to a true value s. Finally, we define normalized PDFs for three
different possible ranges of the true value (“double-sided”, “single-sided”, and “flipped”)
as

fdouble ≡ f+ + f−
N+ +N−

, fsingle ≡ f+

N+
, fflip ≡ f−

N−
,

where N± are normalization factors, and f+, f−, are restricted to s ≥ 0 and s < 0,
respectively.

We can write the f± functions as integrals over positive (unsmeared) times, s, as

f±(t ; τ, �p, �q) =

∫ ∞

0

ds
1

2τ
exp(−s/τ) [g+(s ; �p) ± g−(s ; �p)] h(t∓ s ; �q) ,

where

g±(s ; �p) =
g(s ; �p) ± g(−s ; �p)

2

are the symmetric (+) and antisymmetric (−) projections of the modulation function. In
order to normalize these decay-time distributions, we use the integrals

F±(x ; τ, �p, �q) =

∫ ∞

0

ds
1

2τ
exp(−s/τ) [g+(s ; �p) ± g−(s ; �p)]H±(s, x ; �q)

where

H±(s, x ; �q) =

∫ x

x0

dt h(t∓ s ; �q)

is a definite integral of the resolution function relative to a conveniently chosen fixed point
x0. Using these integrals, we can write

N± = F±(t2 ; τ, �p, �q) − F±(t1 ; τ, �p, �q) ,
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where we normalize on the interval t1 ≤ t ≤ t2.
The general approach used in RooFitTools is to factorize a decay-time distribution

into separate models for the underlying physics and the resolution smearing and bias. For
example, to apply a double-Gaussian resolution model to a physics model for unmixed
B0B0 events, you would use

RooGaussModel resolution("resolution","Resolution Model",

resid,sig0,nfrac,bias1,sfac1,bias2,sfac2);

RooBMixDecay unmixed("unmixed","Unmixed Events",dtrec,tau,dm,wlep,

resolution,RooBMixDecay::Unmixed);

where the first line declares the resolution model, and the second line applies this
resolution model to a particular physics model.

The sections below describe the various physics and resolution models which have been
implemented. In order to factorize these models, we must assume a definite set of basis
functions, uk(t ; �pk), for the physics models

f0(t ; τ, �p) =
∑

k

ck(�pk) · uk(t ; �pk) .

For the models which are now implemented, the functions {1, cos(ωt), sin(ωt)} are a suf-
ficient set of basis functions.

4.2.1 Physics Models

A physics model is specified by its modulation function, g(s ; �p). The simplest choice is
g = 1 which gives the distribution for a pure lifetime decay. Create this model using

RooDecay Blife("Blife","B0 Lifetime Decay",dt,tauB,resolution);

RooDecay Dlife("Dlife","D0 Lifetime Decay",t,tauD,resolution,

RooDecayPdf::SingleSided);

where the first form assumes the default unrestricted range of the decay-time vari-
able, and the second form specifies a single-sided distribution restricted to s ≥ 0 (you
could also use RooDecayPdf::Flipped for a distribution restricted to s < 0.) In both
of these examples, resolution is the name of a previously-created resolution model (see
Section 4.2.2). The dependent variable in these examples is dt or t, and the single lifetime
parameter is tauB or tauD. Figure 3 shows some examples of this physics model using
different resolution models, and was created with the macro in examples/lifetime.cc.

The remaining physics models involve an oscillating term in the modulation function.
First, we consider B0-B0 mixing which can be parameterized using

g±(t ; τ,∆m, η) = 1 ± (1 − 2ω) cos(∆mt) ,
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Figure 3: Examples of lifetime decay distributions modeled with the RooDecay class.
The left-hand plot shows the default double-sided distribution, and the right-hand plot
shows a single-sided distribution created with the RooDecayPdf::SingleSided option.
The dashed curves show the models created with a “truth” unsmeared resolution model,
and the solid curves use a realistic double-Gaussian resolution model.

where the ± selects between models for unmixed (+) and mixed (−) events, ∆m is
the oscillation frequency, and ω (the “mistag rate”) is the probability for an unmixed
(mixed) event to be incorrectly tagged as a mixed (unmixed) event (these are actually
two probabilities which we assume to be identical). Create this mixing model using

RooBMixDecay Bunmix("Bunmix","Unmixed BB Decays",dt,tau,dm,omega,

resolution,RooBMixDecay::Unmixed);

RooBMixDecay Bmixed("Bmixed","Mixed BB Decays",dt,tau,dm,omega,

resolution,RooBMixDecay::Mixed);

where the choice of sign in the modulation function is specified after the resolution
model: use RooBMixDecay::Unmixed for unmixed events, and RooBMixDecay::Mixed for
mixed events. As in the lifetime case (and for all decay-time PDFs), you can add an
aditional parameter to select the range of t to use (in this example, we use the default
RooDecayPdf::DoubleSided). Figure 4 shows some examples of this physics model using
different resolution models, and was created with the macro in examples/bmixing.cc.
There is also the possibility to express the dilution as:
1-2ω=(1-2Rω1)(1-2ω2)= 1-2(Rω1+ω2)+4Rω1ω2

ω1 and ω2 have different origin and give a resulting dilution which is the product of the
two (e.g mistag due to non perfect PID and to charm cascades).
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R is a scale factor which allows to express a mistag as a function of another (and so to
reduce the number of parameters). To create this model, use:

RooBMixDecayDilu Bunmix("Bunmix","Unmixed BB Decays",dt,tau,dm,omega1,

R,omega2,resolution,RooBMixDecay::Unmixed);

RooBMixDecayDilu Bmixed("Bmixed","Mixed BB Decays",dt,tau,dm,omega1,

R,omega2,resolution,RooBMixDecay::Mixed);
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Figure 4: Examples of B0 mixing distributions modeled with the RooBMixDecay class.
The left-hand plot shows distributions for unmixed (+1) decays, and the right-hand plot
shows mixed (−1) decays. All distributions are shown with a mistag rate of 10%. The
dashed curves are calculated using a “truth” unsmeared resolution model, and the solid
curves use a realistic double-Gaussian resolution model.

Next, we consider the case of CP violating asymmetries in B0 decays, which can be
modeled by

g±(t ; τ,∆m,ω, b) = 1 ∓ ηCP b(1 − 2ω) sin(∆mt) ,

where the new parameters relative to the B0-B0 mixing case are the CP eigenvalue of the
final state being considered, ηCP , and the strength of the asymmetry, b. For B0,B0 →
J/ψKS decays, ηCP = −1 and b = sin(2β). Create this model using the constructors

RooBCPDecay BCP("BCP","CP Asymmetry in BB Decays",dt,tau,dm,omega,etaCP,

sin2beta,resolution,RooBCPDecay::Minus);

RooBCPDecay BCP("BCP","CP Asymmetry in BB Decays",dt,tau,dm,omega,etaCP,

sin2beta,resolution,RooBCPDecay::Plus);
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The final parameter specifies the flavor of the B decaying into the CP eigenstate at
t = 0 (which is opposite to the flavor of the tagging B in the case of B0-B0 decays): B0

(−1) or B0 (+1). The mistag rate, ω, is the probability that this flavor is incorrectly
assigned (again, there are really two probabilities which we assume to be equal). Figure 5
shows some examples of this physics model using different resolution models, and was
created with the macro in examples/cpasymm.cc.
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Figure 5: Examples of CP asymmetry in B0-B0 decays modeled with the RooBCPDecay

class. The left-hand plot shows distributions calculated with a “truth” unsmeared reso-
lution model, and the right-hand plot use a realistic double-Gaussian resolution model.
All distributions are calculated using sin(2β) = 0.5, and a mistag rate of 10%. The solid
curves are for a B0 decay into a CP eigentstate and the dashed curves are for a B0 decay.

We can write a more general form of the CP violating asymmetry with

g±(t ; τ,∆m,ω, a, b) =
1 + a2

2
∓ (1 − 2ω)

[
ηCPa b sin(∆mt) +

1 − a2

2
cos(∆mt)

]
,

which reduces to the case above when a2 = 1. In this case, the parameters a and b are
related to a general CP-violating amplitude λCP by

a = |λCP | and b = sin(arg(λCP )) .

Add an additional parameter in the constructor to use this more general form

RooBCPDecay BCP("BCP","CP Asymmetry in BB Decays",dt,tau,dm,eta,a,b,

resolution,RooBCPDecay::Minus);

RooBCPDecay BCP("BCP","CP Asymmetry in BB Decays",dt,tau,dm,eta,a,b,

resolution,RooBCPDecay::Plus);
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where all other parameters have the same meaning as above.

4.2.2 Resolution Models

With our choice of modulation basis functions, {1, cos(ωt), sin(ωt)}, the integrals we need
to evaluate in order to describe a resolution model are

f±(t ; τ, ω, �q) =
1

2τ

∫ ∞

0

ds exp(−s/τ) exp(±iωs) h(t∓ s ; �q) ,

and

F±(t1, t2 ; τ, ω, �q) =

∫ t2

t1

dt f±(t ; τ, ω, �q) .

With these integrals in hand, we take ω = 0 for g = 1, and use the real or imaginary
parts for g = cos(ωt) and g = sin(ωt), respectively. The first integral is used to evaluate
the smeared physics model, and the second integral is used to normalize it over a finite
domain, [t1, t2].

The simplest scenario we consider is a model with no smearing but a possible bias, t0,

h(t ; t0) = δ(t− t0)

This model is useful for directly viewing the underlying physics model (although most
models will reduce to this case with certain choices of parameters, they may not be
numerically stable in this limit). In this case, we have

f±(t ; τ, ω, t0) =
1

2τ
exp(−t±/τ) exp(±iωt±) · θ(t± > 0) ,

and

F±(t1, t2 ; τ, ω, t0) = ∓ 1

2z

[
exp

(−zy2

τ

)
− exp

(−zy1

τ

)]
,

where
t± ≡ ±(t− t0) , yk ≡ max(0,±(tk − t0)) , z ≡ 1 ∓ iωτ .

Create this resolution model using the constructor

RooTruthModel truth("truth","Truth Resolution Model",residual);

RooTruthModel truth("truth","Truth Resolution Model",residual,bias);

where residual is the model’s dependent variable and the optional parameter bias

specifies the value of t0. Note that the variable residual is not the same as the dependent
variable of a physics model which uses this resolution model: you should declare both of
these, as separate RooRealVar’s. The choice of range for the residual variable only affects
how a plot of the resolution model is displayed (see below).
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The next resolution function we consider is a sum of Gaussians, each with its own
bias, δk, and width, σk,

h(t ; �f,�δ, �σ) =

n∑
k

fkhG(t ; δk, σk) ,

with relative-fraction parameters, {f1, f2, . . . , fn−1}, used to calculate

fn ≡ 1 −
n−1∑
k=1

fk ,

and

hG(t ; δ, σ) ≡ 1√
2πσ

exp(−(t− δ)2/(2σ2)) .

In this case, we can write

f± =
∑

k

f
(k)
± and F± =

∑
k

F
(k)
± .

We can evaluate the necessary integrals analytically, obtaining

f
(k)
± (t ; τ, ω, δ, σ) =

1

4τ
exp

(
z
(
s± + c2z

))
erfc

(s±
2c

+ cz
)

and

F
(k)
± (t1, t2 ; τ, δ, σ) = ∓exp(c2z2)

4z
[erf(y2/2c) − erf(y1/2c)+

exp(zy2) erfc
(y2

2c
+ cz

)
− exp(zy1) erfc

(y1

2c
+ cz

)
] ,

with (z is defined above)

s± ≡ ∓t− δ

τ
, yk ≡ ∓tk − δ

τ
, c ≡ σ√

2τ
.

To create a resolution model with up to three Gaussian contributions, use a constructor
like

RooGaussModel gauss1("gauss1","Single-Gaussian Resolution Model",

residual,sig0,bias1,sfac1);

RooGaussModel gauss2("gauss2","Double-Gaussian Resolution Model",

residual,sig0,frac,bias1,sfac1,bias2,sfac2);

RooGaussModel gauss3("gauss3","Triple-Gaussian Resolution Model",

residual,sig0,frac1,frac2,bias1,sfac1,

bias2,sfac2,bias3,sfac3);
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where residual is the model’s dependent variable and the comments above apply here
too. The parameters frac and frac1, frac2 are the relative fractions for the double- and
triple-Gaussian models, respectively. The RMS parameters for each Gaussian, σk, are
factorized into a base resolution parameter, sig0, which is common to all three models,
and a scale factor, sk (sfac1, etc), for each contribution

σk ≡ sk · σ0 .

The reason for this factorization is to allow decay-time models which use this resolution
model to be easily adapted for per-event errors (see Section 4.4.) By default, the bias
parameters (bias1, bias2, and bias3) are interpreted as absolute biases defined in the
same units as the residual. However, as an alternative you can specify that these pa-
rameters are also relative to the base resolution parameter, sig0, by adding the optional
RooGaussModel::ScaledBias parameter at the end of the constructor

RooGaussModel gauss1("gauss1","Single-Gaussian Resolution Model",

residual,sig0,bias1,sfac1,RooGaussModel::ScaledBias);

This form of the resolution model (when combined with per-event errors) is appropriate
if the parameters are obtained from a fit to a pull distribution.

The third resolution function we consider (“GExp”) is the sum of an unbiased gaussian
with width σ, and the same gaussian convoluted with an exponential e(t; τr):

hGExp(t; fc, σ, τr) = fchG(t; δ = 0, σ) + (1 − fc) hExp(t; τr)

with

hExp(t; τr) =

∫ ∞

−∞
du e(u; τr) hG(t− u; δ = 0, σ)

and

e(t; τr) =

{
1
τr

exp
(

t
τr

)
t ≤ 0

0 t > 0 .

The parameter τr is the “lifetime” of the exponential and fc is the fraction of events
in the central gaussian. We have already evaluated the integrals necessary for the first
contribution to hGExp(t; fc, σ, τr), namely f

(k)
± (t ; τ, ω, δ, σ). The integrals necessary for

the second contribution can be expressed in terms of other integrals that we have already
calculated [6]. We need to evaluate

fExp
± (t ; τ, ω, σ, τr) =

1

2τ

∫ ∞

0

ds exp
(
−s
τ

)
· exp (±iωs) ·

∫ 0

−∞
du

1

τr
exp

(
u

τr

)
· hG(t∓ s− u; δ = 0, σ) .

As outlined in appendix C, this can be expressed in terms of f
(k)
± (t ; τ, ω, δ, σ):

fExp
± (t ; τ, ω, σ, τr) =

1
1
τr
± 1

τ
− iω

·
[

1

τr
f

(k)
± (t ; τ, ω, δ = 0, σ) ± 1

τ
f

(k)
− (t ; τr, 0, 0, σ)

]
.
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Under certain conditions, this expression exhibits a mathematical pathology that can be
circumvented by performing a Taylor expansion of the f

(k)
− ; for details see appendix C.

To create a “GExp” resolution model, use a constructor like

RooGExpModel gexp("gexp","GExp Resolution Model",

residual,sig0,fc,sigma,taur);

RooGExpModel gexp("gexp","GExp Resolution Model",

residual,sig0,fc,sigma,taur,kTRUE);

where the first variant uses only the leading order term of the Taylor expansion,
whereas the second variant also takes into account the next-to-leading-order correction.
The variables residual and sig0 have the same meaning as in the previous examples.
This model can be used with per-event errors in the same way as the RooGaussModel.
In the case of the “GExp” model, σ plays the role of the scale factor, and the values for
fc, σ and τr can be obtained from a simple fit to a pull distribution.

In addition to its role in building a complete decay-time distribution, a resolution
model is also a self-contained PDF in its residual variable. This means, for example, that
you can plot a model by itself, or fit it to a pull distribution.

4.3 Building Complex Models

RooFitTools provides several methods to combine PDFs and construct more complex
PDFs. The PDFs being combined can either be predefined or else themselves combinations
of PDFs. Each combination method is described below.

4.3.1 Adding Distributions

Two PDFs can be added to construct a new PDF

F12(�x12 ; �p12, f) =
f

N1
· F1(�x1 ; �p1) +

1 − f

N2
· F2(�x2 ; �p2)

using

RooAddPdf F12("F12","Signal + Background Model",F1,F2,f);

where f is a new parameter introduced to set the relative normalization of F1 and
F2, and �x12 (�p12) represents the union of the dependent variables (parameters) in F1 and
F2. There are no restrictions on the dependents and parameters used in F1 and F2. In
particular, some parameters can be common to both, and the dependent variables need not
match between them (in this case, any missing dependents are assumed to be uniformly
distributed for that PDF). The normalization factors, N1 and N2, are both one if F1 and
F2 depend on the same variables; otherwise, they are a product of normalization factors
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for the (uniformly distributed) variables which each PDF does not explicitly depend on
(j and k index these variables)

N1 =
∏

j

[xj(max) − xj(min)] , N2 =
∏

k

[xk(max) − xk(min)]

The minimum value of f must be ≥ 0 and the maximum value must be ≤ 1. Note
that since PDFs are normalized in the closed interval ranges specified for each dependent
variable, the value of f gives the fraction of F1 contributing to F12 within this finite region.
Figures 6 and 7 show examples of a fit models constructed using addition of two PDFs.

The generalization to addition of more than two PDFs is

F (�x12...n ; �p12...n, f1, f2, . . . , fn−1) =
n∑

k=1

fk

Nk

· Fk(�xk ; �pk) ,

where the relative fraction of the last PDF, Fn, is

fn ≡ 1 −
n−1∑
k=1

fk .

Use the following constructors for addition of up to five PDFs

RooAddPdf("add3","F1+F2+F3",F1,F2,F3,f1,f2);

RooAddPdf("add4","F1+F2+F3+F4",F1,F2,F3,F4,f1,f2,f3);

RooAddPdf("add5","F1+F2+F3+F4+F5",F1,F2,F3,F4,F5,f1,f2,f3,f4);

An extension of the RooAddPdf class to allow an arbitrary number of PDFs to be
added is planned but not yet implemented.

The printEventStats() utility method described in earlier versions of this guide
is now deprecated. Use the extended maximum likelihood techniques described in Sec-
tion 4.5 instead.

4.3.2 Multiplying Distributions

Up to six independent distributions can be multiplied to construct a new PDF

F (�x1, �x2, . . . �xn ; �p12...n) =
n∏

k=1

Fk(�xk ; �pk)

using the constructors

RooProdPdf F12("F12","F1*F2",F1,F2);

RooProdPdf F123("F123","F1*F2*F3",F1,F2,F3);

RooProdPdf F1234("F1234","F1*F2*F3*F4",F1,F2,F3,F4);

RooProdPdf F12345("F12345","F1*F2*F3*F4*F5",F1,F2,F3,F4,F5);

RooProdPdf F123456("F123456","F1*F2*F3*F4*F5*F6",F1,F2,F3,F4,F5,F6);
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The dependent variables for the Fk must not overlap, but there are no restrictions on
their parameters. Section A.4 provides an example of using PDF products. There is also
the possibility to multiply any number of PDFs using the new constructor

RooProdPdf FProd("FProd","Product of PDFs", pdfArray);

where pdfArray is a ROOT TObjArray containing the PDFs to be multiplied:

TObjArray pdfArray(10);

pdfArray.Add(&F1);

pdfArray.Add(&F2);

.

.

.

pdfArray.Add(&F10);

(The ampersand symbol, &, is required for the Add function because the RooAbsPdf

objects are not pointers in this example).

4.3.3 Convoluting Distributions

Two PDFs can be convoluted to create a new PDF

F12(t
′, �x12 ; �p12) =

∫ smax

smin

F1(t, �x1 ; �p1)|t=t′+s · F2(s, �x2 ; �p2) ds

using the constructor

RooConvPdf F12("F12","Smeared Lifetime Distribution",F1,F2,s,t,tp);

A typical application for convolution is to apply Gaussian resolution smearing, but
this package allows arbitrary convolutions (e.g., to model non-Gaussian tails or biases).
Note that both t and t′ must be specified when constructing a convolution and that these
are distinct because they have different ranges:

t′min = tmin − max(0, smax) , t
′
max = tmax − min(0, smin)

The range of t′ will be set to these values, overriding the existing range if necessary. For
this reason, it is convenient to construct tp as a copy of t like this

RooRealVar tp(t);

There is no requirement that smin = −smax or that F2 have zero mean.
Note that a PDF created using a numerical convolution will generally be quite slow

to evaluate. In some cases, the integrals involved can be done analytically and you can
improve the performance of a PDF by implementing the analytic results directly in a new
PDF. See Section B for general instructions on adding a new PDF, and Section 4.2.2 for a
description of the RooFitTools framework for efficiently implementing decay-time PDFs.
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4.4 Models which Depend on a Per-Event Error

Fit models often include a parameter, σ, which describes the resolution with which a
dependent variable, x, is measured

F (x, . . . ; σ, �p) .

In cases where the value of this resolution parameter can be estimated on an event-by-
event basis, and the distribution of this event-by-event error is sufficiently wide, we can
improve the statistical error of the fit by replacing the parameter σx by a new dependent
variable, σ̃,

F (x, . . . ; σ, �p) → F̃ (x, σ̃, . . . ; �p) ρ(σ̃ ; �q) .

The function ρ(σ̃ ; �q) multiplying the new PDF models the distribution of the new depen-
dent variable, σ̃, and we assume that its parameters, �q, are independent of the original
PDF parameters, �p. The function F̃ matches F at any given value of σ = σ̃:

F̃ (x, σ̃, . . . ; �p) = F (x, . . . ; σ, �p)|σ=σ̃ ,

and so has an implicit dependence on σ̃ due to the normalization factor for F .
You can transform any PDF of a global resolution parameter into a corresponding

PDF that models per-event errors using:

RooEvtErrors perEvtPDF("perEvtPDF","Model Using Per-Event Errors",

PDF,errorsModel,error,sigma);

where PDF is a model with a parameter sigma and the result is a new model, perEvtPDF,
which uses the per-event dependent variable error. In this example, the variables error
and sigma should have the same ranges, with a minimum value greater than zero (the
RooEvtErrors constructor will check this).

The construction of a per-event PDF described above assumes that the distribution
of per-event errors, ρ, is not correlated with the distribution of the other dependent
variables. When this is true, the results of a fit to the parameters, �p, of the original PDF,
F (x, . . . ; σ, �p), do not depend on ρ: different choices of ρ correspond to global translations
of the likelihood surface. This means that you fit using ρ = 1, which is the default when
you omit the errorsModel parameter in the constructor:

RooEvtErrors perEvtPDF("perEvtPDF","Model Using Per-Event Errors",

PDF,error,sigma);

Using this approach will speed up the fit somewhat, but you should include a model
of per-event errors to generate a realistic toy Monte Carlo sample (see Section 4.8.4).

The examples above reduce the number of parameters in a fit by one, by eliminating
sigma. It is often interesting to add a new parameter sfac to the fit which is interpreted
as a global scale factor, s, that multiplies each per-event error,

σ = s · σk .
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You can do this using the constructors (with or without an explicit model for the per-event
errors):

RooRealVar sfac("sfac","Per-Event Error Global Scale Factor",0.5,1.5);

RooEvtErrors perEvtPDF("perEvtPDF","Model Using Per-Event Errors",

PDF,errorsModel,error,sigma,sfac);

RooEvtErrors perEvtPDF("perEvtPDF","Model Using Per-Event Errors",

PDF,error,sigma,sfac);

Note that RooEvtErrors can be used with the decay-time resolution models described
in Section 4.2.2, but that those models define their own scale factors and so no additional
scale factor should be applied in the RooEvtErrors constructor.

Making plots of PDFs that use per-event errors is complicated by the fact that these
PDFs are at least two-dimensional. In the case of PDFs which are exactly two-dimensional
(for example, a RooDecay lifetime distribution with per-event errors), you are usually
interested in the projection of the PDF onto the time axis, which involves integrating out
the per-event error variable for each bin of the histogram. This can be done using the
Project methods described in Section 4.8.2.

4.5 Extended Maximum-Likelihood Fits

The likelihood calculated with a normalized PDF estimates the probability of obtaining
the measured shapes in the distributions of the dependent variables in a sample of events,
given some parameter values. This approach implicitly assumes that the total number of
events expected is independent of the parameter values.

If we want to also determine a parameter corresponding to the expected number of
events, η, we should add a factor to the likelihood which describes the probability of
observing the actual number of events, N , given this parameter. This probability is
described by the Poisson distribution

P (N ; η) =
1

N !
· ηN exp(−η) ,

and we refer to the likelihood including this factor as the “extended likelihood”

L̃(�x,N ; �p, η) ≡ P (N ; η) · L(�x ; �p) .

A fit to a single dataset using this extended likelihood yields exactly the same estimates
of the original parameter values and errors, as well as the additional estimate

η = N ±
√
N ,

and so does not add any useful information. This approach does become interesting,
however, when η is allowed to be a function of other parameters. To allow for this,
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any building-block PDF can implement a method, expectedEvents(), which returns the
expected number of events with the current parameter values. When fitting with the ’E’
option (’E’ stands for extended), this value is used to calculate an extended maximum
likelihood for use in the fit.

4.6 Maximum-Likelihood Fits for Branching Ratio Measure-
ments

The first step towards an analysis usually involves the cut and count method, whereby
progressive cuts are made to some data to yield a branching ratio measurement, for
example. A better way would be to use (unbinned) maximum likelihood fits, since these
can take into account any correlations between the distributions of various discriminating
variables used in an analysis, improving the reconstruction efficiency and background
rejection. This can be done by using the RooBRArrayPdf class.

The aim of the maximum-likelihood method is to find the number of signal and back-
ground events in a given data sample that maximises the likelihood function, L:

L =
e−

∑
nj

N !

N∏
i=1

m∑
j=1

nj Pj

where Pj is the total probability for each of the m (signal and background) hypotheses,

nj is the number of events for the jth hypothesis, and N is the total number of input data
points. Note that the above expression represents the extended likelihood function, since
it contains the relevant Poisson term. The probabilities Pj are just the total PDFs that
represent the probability of observing an event of type j, based on a set of discriminating
variables. Usually, the discriminating variables that are used are uncorrelated (or assumed
to be), so that the total PDF for a given hypothesis is just the product of the individual
PDFs of the discriminating variables (see section 4.3.2):

Pj =
V∏

v=1

Pv

where Pv is the PDF for the vth discriminating variable for the jth hypothesis.
Before doing any fitting, a preliminary set of cuts is usually imposed to clean up the

data sample. However, care must be taken to ensure that the cuts do not impose any
bias in the distributions of the discriminating variables that are used in the fit. After the
relevent PDFs have been found, they are used to form the likelihood function. The fit
then finds the values of nj , the number of events for each hypothesis j.

The constructor of RooBRArrayPdf takes two ROOT TObjArrays. The first stores a
set of RooAbsPdfs, which represent the total PDFs Pj (pdfArray), while the second stores
a set of RooRealVars, which represent the number of events to be fit, nj (coefArray):
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RooBRArrayPdf model("model", "BR Model", pdfArray, coefArray);

We can then perform an extended maximum likelihood fit to the data stored in a given
RooDataSet object, data, by calling the usual function:

model.fitTo(data, "e");

Consider the case where we want to fit for the number of B → ρπ and B → ρK
events in a data sample. Let the total PDF for the B → ρπ and B → ρK hypotheses
be represented by the RooAbsPdf objects Prhopi and PrhoK, respectively. Let us also
assume that we have two background contributions, one containg a pion track, the other
a kaon track, represented by the RooAbsPdf objects PBgpi and PBgK, respectively. We
now form the TObjArray of the PDFs:

TObjArray pdfArray(4);

pdfArray.Add(&Prhopi);

pdfArray.Add(&PrhoK);

pdfArray.Add(&PBgpi);

pdfArray.Add(&PBgK);

and the TObjArray of the number of events (each represented by a RooRealVar object):

TObjArray coefArray(4);

coefArray.Add(&Nrhopi);

coefArray.Add(&NrhoK);

coefArray.Add(&NBgpi);

coefArray.Add(&NBgK);

Note that the ordering of the hypotheses must be the same for both arrays. Also,
if the objects going in the TObjArrays are pointers, the ampersand (&) symbol is not
required in the Add function. The model can then be formed by doing

RooBRArrayPdf model("model", "BR Model", pdfArray, coefArray);

After the fit, the array coefArray will contain the numbers of events for each of the
various hypotheses. It is sometimes necessary to set limits and provide initial estimates
of the errors for the coefficents in coefArray in order for the fit to behave properly. For
example,

Nrhopi.setLimits(); // Set the limits to be those provided in the

// RooRealVar constructor of Nrhopi (say, 0 to N)

Nrhopi.SetError(1e-2); // Set an initial 0.01 error for the number.

An example of using this class can be seen in RooFitMacros/BBDecays/Charmless/

TestD0piFit.cc in the package RooFitMacros V00-00-18. A more extensive description
of the maximum likelihood method (applied to quasi-two-body charmless B decays) can
be found in [12], although they do not use the class described here.
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4.7 Simultaneous Fits to Independent Datasets

We perform a simultaneous fit of two independent samples, {�xi}n
i=1 and {�yj}m

j=1 , to de-
termine a common set of parameters, �p, by maximizing the product of the two likelihoods

L12(�p) = L1(�p) · L2(�p) ,

where

L1(�p) =
n∏

i=1

F1(�xi ; �p) , L2(�p) =
m∏

j=1

F2(�yj ; �p) .

This combined likelihood can be expressed in terms of a combined PDF, F12(�z ; �p), as

L12(�p) = N12 ·
n+m∏
k=1

F12(�zk ; �p) ,

where �z is the union of dependent variables used in the two data sets4, together with a
new discrete “category index” dependent variable c,

�z = (�x, �y, c) ,

with c = 1 for events in the first dataset, and c = 2 for events in the second dataset. The
combined dataset, {�zk}n+m

k=1 , is the concatenation of the two independent data sets,

�z1 = (�x1,�0, 1)

. . .

�zn = (�xn,�0, 1)

�zn+1 = (�0, �y1, 2)

. . .

�zn+m = (�0, �ym, 2)

The combined PDF is defined as

F12(�z ; �p) ≡ ∆(c ; 1)

2Ny
· F1(�xk ; �p) +

∆(c ; 2)

2Nx
· F2(�yk ; �p) ,

where the constants,

Nx ≡
∫

1 · d�x and Ny ≡
∫

1 · d�y ,
4We can always define the two sets of variables to be distinct, even if some have the same definition.
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are defined so that F12 is normalized according to

1 =

∫
F12(�z ; �p) d�z =

2∑
c=1

∫
d�x

∫
d�y F12(�x, �y, c ; �p) .

and ∆(c ;n) is defined to be one if c = n or otherwise zero. With these definitions, the
factor N12 appearing above is

N12 = 2n+m ·Nm
x ·Nn

y ,

and is independent of the parameters so can be ignored for the purposes of maximizing
the likelihood.

Up to this point, we have described a simultaneous fit to the shapes of the distributions
of dependent variables in the two datasets, but which does not exploit any information
that may be contained in the relative sizes of the two samples. To include this information,
we define a “simultaneous extended likelihood”

L̃12(�p) ≡ L̃1(�p) · L̃2(�p) = L12(�p) · P (N1 ; η1) · P (N2 ; η2) .

We can re-write the product of the Poisson probabilities in this expression as the product
of a single Poisson distribution in the total number of observed events, N = N1 + N2,
multiplied by the Binomial probability of the observed fraction, N1/N , of events in the
first dataset

P (N1 ; η1) · P (N2 ; η2) =
ηN1

1

N1!
exp(−η1) · η

N2
2

N2!
exp(−η2)

=
ηN

N !
exp(−η) · N !

N1!N2!

(
η1

η

)N1
(
η2

η

)N2

= P (N ; η) · B(N1, N ; f) ,

where η ≡ η1 + η2, f ≡ η1/η, and the Binomial distribution is

B(N1, N ; f) =
N !

N1!(N −N1)!
fN

1 (1 − f)N−N1 .

In the case where η and f are considered as new parameters, the use of a simultane-
ous extended likelihood does not change the estimated values or errors for the original
parameters, �p, and yields

η = N ±
√
N and f =

N1

N
±
√
N1(N −N1)

N3
.

However, the interesting case is where the fraction, f , expected in the first dataset is itself
a function of the other parameters, �p, and not an independent parameter

f = f(�p) .
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4.8 Tools for Working with PDFs

This section describes some general tools for working with any PDF in RooFitTools. The
examples below use the name PDF for the distribution but any name will work. Use
the common base class for all PDFs, RooAbsPdf if you want to write a general-purpose
subroutine for PDFs in your macros (note the ampersand for a C++ reference)

myPlotMaker(RooAbsPdf &PDF) { ... }

4.8.1 Getting Information

Once you have create a PDF, you can check what dependent variables and parameters it
uses with

PDF.Print()

which produces output like this (a semicolon separates the dependents and the pa-
rameters)

PDF model(m;bmass,bresn,endpt,c,f)

The variable names appearing here are those specified in the constructor which,
by convention, match the object names. To trace the evaluation of a PDF, use the
PDF.setTrace() method: without any argument, the next evaluation will be traced like
this

[1] model(m=5289;bmass=5279,bresn=3,endpt=5290,c=-50,f=0.5) = 0.00142

With an integer argument n, the next n evaluations will be traced. You can also
evaluate a PDF directly using the current values of its dependent variables and parameters

m = 5285.3;

cout << model() << endl;

4.8.2 Making Plots

Use the Plot() method to create and fill a ROOT histogram (classes TH1F and TH2F)
with the values of a PDF sampled at the center of each bin (multiplied by the bin size).
This method can create either one-dimensional histograms

TH1F *hist1d = PDF.Plot(x);

or two-dimensional histograms

TH2F *hist2d = PDF.Plot(x,y);
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where x and y are dependent variables of the PDF. Both of these forms have some
optional parameters which can be added after the mandatory parameters: a normalization
factor to scale the PDF values by (default is one), and the number of bins to use (default
is 100 for one dimension, and 40 × 40 for two dimensions). For example

TH1F *hist1= PDF.Plot(x,12.3); // normalize to 12.3 events

TH2F *hist2= PDF.Plot(x,y,1.0,75); // use 75 bins

The histogram you create will have its ranges specified by the ranges of the dependent
variables, and will have axis labels based on the variable titles and units. There is a
shorthand for using the binning and normalization of an existing histogram

TH1F *model_hist= PDF.Plot(x,data_hist);

which is convenient for overlaying a PDF curve over a histogram of the data being
fit (see the examples in Section A). Note that this probably does not do what you want
unless datahist has the same range as x.

The Plot() method returns a pointer to a histogram object, rather than directly
making a plot. You can use this pointer to set drawing options (line style, fill pattern,
etc) and create a plot. For example, the following macro shows the differences

TH1F *histogram= PDF.Plot(x);

histogram->SetLineStyle(2);

histogram->Draw();

A shorthand for creating and plotting a histogram without changing the default options
is

PDF.Plot(x,y)->Draw();

Refer to the ROOT documentation of the TH1 class for details on setting histogram
options and the Draw() command.

In the special case of a model which, at the top level, is a sum of PDFs, you can plot
either of the individual PDFs correctly scaled for their relative normalization using

RooAddPdf model("model","Signal+Background",signal,bg,f);

model.Plot(x)->Draw(); // plot the combined signal+bg

model.Plot(1,x)->Draw("same"); // superimpose the bg contribution

The new Plot() methods with an extra initial integer parameter are equivalent to the
ones described above. The integer parameter selects which PDF contributing to the sum
to plot: use zero for the first PDF and one for the second. Sub-histograms created this
way will have their default line style set to dashed.

Other histograms you can create from a PDF are a one-dimensional likelihood scan
and a projection. Use
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TH1F *histogram= PDF.Scan(dataset,parameter);

to create a histogram filled with values of the negative log-likelihood evaluated for a
specified data set at varying values of the specified parameter. Use

TH1F *histogram= PDF.Project(u,v);

to plot the projection

f(u, �x ; �p) ≡
∫ v(max)

v(min)

F (u, v, �x ; �p) dv

where u and v are variable objects. The Scan() takes an optional argument to specify
the number of histogram bins to use. The Project() method takes the same optional
normalization and number of bins arguments as the one-dimensional Plot() method (you
can also call it with a reference histogram).

One caveat for C++ experts: you should generally not delete the histogram objects
you use to make plots in a macro since they are still being used by the plot object. This
does not lead to memory leaks since, when you rerun the macro, ROOT recognizes that
you are recreating an existing histogram and deletes the original first.

4.8.3 Displaying Parameters

The Parameters() method creates a graphics box containing text with a PDF’s parameter
values and errors. This method takes three optional arguments and returns a pointer to
a ROOT TPaveText object. The optional parameters are a label to display above the
parameters, the number of significant digits to display, and an option string

TPaveText *box= PDF.Parameters("Fitted Parameter Values:", 2, "EC");

The label parameter is interpreted using the TLatex class and so can include some
mathematical formatting (refer to the ROOT documentation for details). The number of
significant digits defaults to two and is used to truncate the parameter values and errors.
The possible options (combined into a single string, following standard ROOT practice)
are E (requesting that errors be shown) and C (requesting that constant values be shown).
The labels shown for each parameter are, by default, the same as the names used to create
them. To set alternate labels, which will also be interpreted using the TLatex class, use
the variable’s SetLabel() method

bres.SetLabel("#sigma_{B}");

Refer to Section A for examples of displaying parameters.
The TPaveText pointer returned by this method can be used to change its display

attributes (background color, text font, etc) and draw it on the current plot
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box->SetBackgroundColor(7);

box->Draw();

As with histograms, you can use the shorthand

PDF.Parameters("",3)->Draw();

when you do not need to change any display defaults. Once you have displayed the
box of parameter values, you can interactively reposition and resize it with the mouse.

4.8.4 Generating a Data Set

You can create a data set containing events sampled from a PDF’s distribution using

RooDataSet *data= PDF.generate("A Toy MC Sample",1000);

The first parameter is a descriptive title for this sample, and the second parameter is
the number of events to generate. An optional third parameter controls how verbose the
generator is: the default produces output like this

generated 10% of the events

generated 20% of the events

generated 30% of the events

generated 40% of the events

generated 50% of the events

generated 60% of the events

generated 70% of the events

generated 80% of the events

generated 90% of the events

Real time 0:0:34, CP time 17.190

generated 1000000 events after 1339739 calls (eff = 74.6414%)

Set the third parameter to kFALSE to suppress this output. Note that the updates
every 10% will only be printed if the generation is taking long enough. A data set created
this way records the values of the PDF parameters it was generated with. Use the data
set’s Print() method to see these values. Note that the generate() method returns
a pointer to a RooDataSet object, which might be zero in case the data set cannot be
created.

Note that the generate method uses RooRandom to give reproducible random number
sequences every time you re-enter a root session. For more serious toy Monte Carlo studies
the RooMCStudy class is provided (see section ?? for more information).
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5 Performing the Fit

Performing a fit consists of minimizing the negative log-likelihood of a PDF calculated
over a data set

− logL(�p ) =
∑

k

F (�xk ; �p)

with respect to the model’s parameters. The RooFitTools package uses the MINUIT[7]
algorithms5 to find the minimum of this function and estimate the errors in each param-
eter.

To perform a fit of a data set events to PDF model, use

model.fitTo(events);

where events can either be a pointer or a reference to a RooDataSet object. In order
to fix some parameters in the fit, either create them with the fixed form of the constructor

RooRealVar tauB("tauB","B Lifetime",1.63,"ps");

or else force them to be fixed using

tauB.setConstant();

By default, MINUIT will not restrict the range of the fit parameters, but you can
change this behavior for individual variables using

tauB.setLimits();

The initial step size used for each free parameter is 10% of its range. The fitTo()

method generates the usual MINUIT output6 displayed on the standard output stream.
To modify the default behavior of the fitTo() method, use an optional string which can
include any of these characters (in either upper or lower case): Q,L,T or M. The ‘Q’
(for quiet) option suppresses the usual MINUIT output, the ’L’ option writes a log file
which records each iteration of the fit, and the ‘T’ option generates a timing summary for
the fit. The ‘M’ option requests that the errors be calculated using only the MIGRAD
strategy (by default, MIGRAD is followed by a MINOS). To use HESSE rather than
MINOS or just MIGRAD to calculate the errors, include ’MH’ in the option string. The
fitTo() method returns an integer status code which is non-zero if the fit fails to converge
normally.

In order to assess the goodness of a fit, you can use the chiSquare() method to
calculate the χ2 of a PDF with respect to a histogram using the current values of the
PDF’s parameters (which may or may not be fitted)

5ROOT includes a C++ translation of the CERNLIB fortran MINUIT routines.
6Refer to the Reference [7] for details.
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PDF.chiSquare(var,histogram);

where histogram is a pointer to a ROOT TH1F histogram object (see Section 4.8.2)
and var is the name of the PDF variable being histogrammed. Alternatively, you can
compare the minimum value of the negative log-likelihood function with the expected
distribution of values for samples generated according to the fit model (this distribution
is one of the standard plots generated using the Monte Carlo study methods described in
the next Section.)

6 Running Monte Carlo Studies

A “toy Monte Carlo” sample is a set of random events generated according to a known
PDF. These samples are useful for several reasons:

1. generating and fitting a sample using the same PDF tests the technical correctness
of the generator and fit engine,

2. generating and fitting many statistically independent samples using the same PDF
provides a robust estimate of the distribution of fit parameter errors and their
correlations,

3. a comparison of the results from generating and fitting a sample using different PDFs
can be used to study the systematic errors due to incorrect assumptions about the
fit model or the values of fixed parameters, and

4. the distribution of maximum likelihoods obtained from a toy Monte Carlo study
can be used to estimate the goodness of fit of a real sample under the assumption
that the fit model correctly describes the sample.

Section 4.8.4 describes how to generate a single data set from a PDF. This section describes
methods to automatically perform studies based on many independently generated data
sets.

In general, a toy Monte Carlo study uses two different PDFs: one to generate samples
of events, and another to fit them to. The RooMCStudy class controls the generation and
fitting of samples. Create a study object by providing a name and title:

RooMCStudy study("study","Systematics Study");

You then specify the models to use for generating and fitting like this:

study.setGenModel(PDF1);

study.setFitModel(PDF2);
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although they may also be set to the same PDF (to test the correctness of the fit, for
example). The arguments used in the constructor are a short name and a descriptive title
for the study. The PDFs are not specified in the constructor so that the same model may
be used to generate and fit, but using different parameters

tauB= 1.63;

study.setGenModel(PDF);

tauB= 1.68;

study.setFitModel(PDF);

Use this approach to study systematic errors due to incorrect assumptions about the
values of fixed parameters in the fit.

To perform a study use the run() method, specifying the number of independent
samples to generate and fit and the number of events in each sample

study.run(1000,100); // 1000 independent 100 event samples

This method creates the following histograms to record the results for each sample

• the distribution of fit status codes (zero indicates successful convergence),

• the distribution of the minimum value of the negative log-likelihood,

• the distribution of each floating fit parameter’s fitted value,

• the distribution of each floating fit parameter’s fitted pull, and

• the two-dimensional correlation plot of each pair of floating fit parameters fitted
values.

After creating a study using the run command, you can can fit the plots in the study
by using the fit() method. as in: study.fit()

You may also set the options for the fit() function by using the setFitOptions()

method which takes the same arguments as described for the fitTo() function at the end
of Section 5.

Only the first histogram is filled for samples for which the fit does not converge. To
save the results of a study to a file, use

study.save("study.root");

where, by convention, the file extension is .root. The file you create this way can be
graphically browsed using the ROOT TBrowser class. To create a new browser, use

TBrowser browser;
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and then use the browser’s ‘Open’ menu item to open the file and display an icon for
each of the histograms it contains. Click on a histogram to display it. Section A.4 shows
an example of a toy Monte Carlo study and some of the resulting plots.

Once you have saved the file, you can also display the plots by loading it, and issuing
individual commands for each histogram, e.g. below we show the pull distribution for
“variableName”:

TFile *f= new TFile("study.root");

TH1F* h;

h= (TH1F*)f->Get("pulls:variableName");

h->Draw();

A Examples

The code and data for these examples are available in the RooFitTools/examples/ direc-
tory. To try the examples, copy the data files (*.dat) into your workdir directory and use
the path RELEASE/RooFitTools/examples/ to access the macros from a ROOT session
started in workdir. The examples follow the pattern of defining variables, creating a fit
model, reading or generating data, fitting, and then plotting the results. A large part of
these macros is concerned with generating a nice plot after the fit is done. This part of
the macros is not shown here, but is included in the examples directory.

A.1 B Mass

This example demonstrates a fit to the combined data from exclusively reconstructed B0

and B± decays. The data consists of reconstructed mass values and includes about 50%
background after a cut on ∆E. Refer to Section 10 and Figure 26 of Reference [8] for
details. Figure 6 shows the output generated by running the following macro (named
bmass.cc in the examples directory)

bmass() {

RooRealVar // define the variables

mreco("mreco","Beam-Energy Substituted B Mass", 5200.,5290.,"MeV"),

endpt("endpt","Half of Y(4S) Mass", 5290.,"MeV"),

bmass("bmass","B0/B+ Average Mass", 5279., 5265., 5285.,"MeV"),

bresn("bresn","B0/B+ Mass Resolution", 3.0, 0.0, 10.0, "MeV"),

c("c","Background Shape Parameter", -50.0, -100.0, 100.0),

f("f","Signal Fraction", 0.5, 0.0, 1.0);

// create the fit model

RooArgusBG bg("bg","ARGUS Background Shape",mreco,endpt,c);
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RooGaussian signal("signal","Signal Gaussian",mreco,bmass,bresn);

RooAddPdf model("model","Signal+Background Distribution",signal,bg,f);

// read the data and fit it

RooDataSet *data= RooDataSet::read("bmass.dat", mreco);

model.fitTo(data);

// ...code to create the plot omitted here...

}

In this fit, the endpoint mass of the Argus shape model (see Section 4.1.7) is fixed at
half of the nominal Υ(4S) mass.
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Figure 6: A fit to the beam-constrained B0/B± mass distribution described in reference [8].
The fit model consists of the sum of the Argus background shape and a Gaussian. Refer
to Section A.1 for the macro which generated this plot.
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A.2 Charmonium Radiative Decays

This examples demonstrates a fit to data from inclusively selected J/ψ → e+e−(γ) decays[9].
The fit is to m(e+e−) and so has a tail on the low side due to photon bremsstrahlung.
The result of the fit is shown in Figure 7. The macro that was used is (eetail.cc in the
examples directory)

eetail() {

RooRealVar // define the variables

mee("mee","Electron Pair Invariant Mass",2500.,3500.,"MeV"),

mjpsi("mjpsi","J/Psi Mass",3100.,3000.,3200.,"MeV"),

rjpsi("rjpsi","J/Psi Mass Resolution",12.,0.,25.,"MeV"),

taila("taila","Tail Transition",0.7,0.1,1.5),

tailn("tailn","Tail Power",1.0),

bgtau("bgtau","Background Shape Parameter",555.,1.,1000.,"MeV"),

f("f","Signal Fraction",0.3,0.0,1.0);

// create the fit model

RooCBShape cbs("cbs","Signal Lineshape",mee,mjpsi,rjpsi,taila,tailn);

RooLifetime bg("bg","Background Shape",mee,bgtau);

RooAddPdf model("model","Signal + Background Shape",cbs,bg,f);

// read the data and fit it

RooDataSet *data= RooDataSet::read("eetail.dat",mee);

taila.setLimits();

model.fitTo(data);

// ...code to create the plot omitted here...

}

In this example, the tail power parameter (n in Section 4.1.9) is fixed at one. The χ2

for this fit is 107 for 95 degrees of freedom, but similar values are obtained with different
values of the tail shape parameters reflecting the fact that the background under the tail
is poorly constrained.

A.3 B Lifetime

This example demonstrates a fit to a toy Monte Carlo sample of 1000 background-free B
decays. The fit uses per-event errors on the B proper decay time, with the distribution
shown in Figure 8. The corresponding distribution of reconstructed proper decay times
is also shown in Figure 8. The fit is performed using two different models, both with the
B lifetime and the global event-error scale factor (see Section 4.1.3) as free parameters.
The first model includes the correct distribution of per-event errors and the second model
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Figure 7: A fit to the e+e− invariant mass in events with a J/ψ → e+e−(γ) candidate.
The fit model consists of the sum an exponential (for the background) and the Crystal
Ball lineshape (for the signal peak and tail). Refer to Section A.2 for the macro which
generated this plot.

assumes a flat distribution of these errors. Figure 8 compares the projections of these two
models onto the event error and reconstructed proper decay time axes with the generated
data. The macro for this example is (see blife.cc in the examples directory)

blife() {

RooRealVar // define the variables

terr("terr", "Decay Time Reconstruction Error",0.2,1.2,"ps"),

ttru("ttru", "True Proper Decay Time",0.0,7.5,"ps"),

trec("trec", "Reconstructed Proper Decay Time",-0.05,0.10,"ps"),

dt("dt", "Decay Time Resolution Smearing",-5.0,5.0,"ps"),

taub("taub", "B0 Lifetime",1.56,1.5,1.6,"ps"),

bias("bias", "Global Decay Time Bias",0.0, "ps"),

scale("scale","Global Error Scale Correction",1.0,0.5,1.5),

mperr("mperr","Most Probable Decay Time Error",0.5,"ps"),
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errms("errms","RMS Decay Time Error",0.03,"ps"),

errp1("errp1","Error Distribution Shape Parameter 1",-1.0),

errp2("errp2","Error Distribution Shape Parameter 2",2.0);

// create the true distribution of proper decay times

RooLifetime truth("truth","True Decay Time Distribution",ttru,taub);

// create the distribution of per-event decay time errors

RooCBShape errors("errors","Decay Time Error Distribution",

terr,mperr,errms,errp1,errp2);

// convolute the true distribution with the per-event errors

RooGaussEvt realSmear("realSmear","Real Decay Time Error Smearing",

dt,terr,bias,scale,errors);

RooConvPdf realModel("realModel","Real Decay Time Distribution",

truth, realSmear, dt, ttru, trec);

// create some events sampled from this model and fit it

RooDataSet *data= realModel.generate("B Lifetime Toy MC",1000);

realModel.fitTo(data);

// create a model with a uniform distribution of per-event errors

RooGaussEvt flatSmear("flatSmear","Flat Decay Time Error Smearing",

dt,terr,bias,scale);

RooConvPdf flatModel("flatModel","Flat Decay Time Distribution",

truth, flatSmear, dt, ttru, trec);

// reset the initial parameter values and fit to this model

taub= 1.56;

scale= 1.0;

flatModel.fitTo(data);

// ...code to create the plots omitted here...

}

The two fits using different distributions of errors give identical results (within the
numerical tolerances), as expected since neither model has free parameters which deter-
mine the distribution of errors. The fact that the actual distribution of errors is not flat
results in a small probability factor which translates into a constant positive offset of the
negative log-likelihood curve, but otherwise does not affect the minimization and error
estimates. The fitted value of the B lifetime is statistically consistent with the input value
used to generate the data sample, and the fitted scale factor is consistent with one.
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Figure 8: A fit to a toy Monte Carlo sample of background-free B decays. The free param-
eters in the fit are the B lifetime and a global event-error scale factor (see Section 4.1.3).
The data points are the distributions of per-event errors on the reconstructed decay time
(left-hand plot) and the reconstructed decay time (right-hand plot). The curves are the
projections of two different PDF models onto these axes. The solid curves are for a model
using the correct distribution of per-event errors, and the dashed curves are for a model
assuming a flat distribution of these errors. The projections of the second model (dashed
curves) are systematically different from the data distributions, but this does not bias the
lifetime estimate.

A.4 CP Fitting Study

This examples demonstrates a toy Monte Carlo study of a fit for the CP violation param-
eter sin(2β). The data set consists of values for the reconstructed decay time difference
∆t, the B0 candidate’s beam-substituted mass, and a per-event tagging probability which
is assumed to be linearly distributed from −1 (B0) to +1 (B0). Each sample contains 200
events, of which 100 are signal events and the rest are background. The signal is generated
with a Gaussian distribution in the beam-substituted mass, and with perfect ∆t resolu-
tion (adding global or per-event errors is straightforward but significantly increases the
CPU time required for this study). The background is distributed according to the Argus
shape in the beam-substituted mass (see Section 4.1.7), is Gaussian in ∆t, and is flat in
the tagging variable. The distribution of the generated events in the beam-substituted
mass is essentially the same as shown in Figure 6.

The study consists of fits to 10000 independent samples generated and fit with the
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same model. Each fit has two free parameters: sin(2β) and the signal fraction. The macro
to perform this study is (see cpstudy.cc in the examples directory)

cpstudy() {

RooRealVar // define the variables

dt("dt","Decay Time Difference (reco-tag)",-7.5,7.5,"ps"),

x("x","Tagging Variable (+1=B0,-1=B0bar)",-1.,1.),

mreco("mreco","Beam-Energy Substituted B Mass", 5200.,5290.,"MeV"),

tau("tau","Neutral B Average Lifetime",1.56,"ps"),

dm("dm","Neutral B Eigenstate Mass Difference",0.464,"/ps"),

a("a","Magnitude of lambda(CP)",1.0),

b("b","sin(2#beta)",0.0,-1.,1.),

bias("bias","Background Delta(t) Bias",0.0,"ps"),

bgrms("bgrms","Background Delta(t) RMS",1.0,"ps"),

endpt("endpt","Half of Y(4S) Mass", 5290.,"MeV"),

bmass("bmass","B0 Mass",5279.,"MeV"),

bresn("bresn","B0 Mass Resolution",3.0,"MeV"),

c("c","Background Shape Parameter",-50.0),

sigf("sigf","f_{sig}",0.5,0.3,0.7);

// create the signal (dt,x) distribution with linear tagging PDFs

RooCPMixLinear sigdt("sigdt","Signal Delta(t) Distribution",

dt,x,tau,dm,a,b);

// create the signal (mreco) distribution

RooGaussian sigm("sigm","Signal m(reco) Distribution",

mreco,bmass,bresn);

// multiply these together for the signal (dt,x,mreco) distribution

RooProdPdf signal("signal","Signal Distribution",sigdt,sigm);

// create the background (dt) distribution

RooGaussian bgdt("bgdt","Background Delta(t) Distribution",

dt,bias,bgrms);

// create the background (mreco) distribution

RooArgusBG bgm("bgm","Background m(reco) Shape",mreco,endpt,c);

// multiply these together for the bg (dt,x,mreco) distribution

RooProdPdf bg("bg","Background Distribution",bgdt,bgm);

// add together the signal and background contributions

RooAddPdf combined("combined","Signal+Background Distribution",

signal,bg,sigf);

// fix sin(2 beta) to be within +/-1
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b.setLimits();

// initialize and run a toy Monte Carlo study and save the results

RooMCStudy study("study","Sin(2*beta) Study");

study.setGenModel(combined);

study.setFitModel(combined);

study.run(10000,200);

study.save("study.root");

}

Figure 9 shows some of the histograms which are created by this macro (these plots
were made using examples/cpplot.cc). This study demonstrates that the parameter
values and errors are correctly calculated since the pull distributions are unit Gaussians
centered on zero, and that the two parameters are essentially uncorrelated. The distri-
bution of negative log-likelihood values can be used to estimate the goodness of fit for a
particular set of data. The expected statistical errors for a sample of 200 events which are
correctly described by this model are ±0.32 for sin(2β) and ±4.2% for the signal fraction.
All of the fits converged successfully in this example.

A.5 D∗+ Mass Difference Fit

The example dstar.cc shows how to fit the distribution of the mass difference between
the reconstructed D∗+ and D0 state in the decay D∗+ → D0π+ followed by D0 → K−π+.
The signal is fitted with a single Gaussian and the background with the RooDstarBG PDF
described in Section 4.1.10. It is also an illustration of how to use blind variables as
described in Section 2.3.

In the examples directory the files deltam.cc and deltam.dat are used for the fit
shown in Figure 10.

deltam() {

// Fit model parameters for mass difference

RooRealVar deltaM("deltaM","Reconstructed Mass Difference",

0.13957,0.15857,"GeV");

RooRealVar piPlusMass("piPlusMass","The pi0 mass",0.13957,"GeV");

RooRealVar c("c","Background Shape Parameter", 0.002, 0.0, 0.01);

RooRealVar f("f", "Signal Fraction",0.4, 0.0, 1.0);

// Create blind variables

RooBlindGaussian blinderMass("blinderMass",

"This is a blinding string",0.00003);

RooBlindVar rDeltaM("rdeltaM","Mass Difference",&blinderMass,

0.1454,0.13957,0.15457 "GeV");
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RooBlindGaussian blinderWidth("blinderWidth",

"This is a another string",0.00003);

RooBlindVar widthDeltaM("widthDeltaM","Mass Difference Width",

&blinderWidth,

0.0003, 0.0001, 0.01, "GeV");

// create the mass diff fit model components

RooGaussian signalDeltaM("signalDeltaM","Signal Distribution",

deltaM,rDeltaM,widthDeltaM);

RooDstarBG bgDeltaM("bgDeltaM","D* Background",deltaM,piPlusMass,c);

RooAddPdf modelDeltaM("modelDeltaM","Signal + Background",

signalDeltaM,bgDeltaM,f);

// Read a dataset

RooDataSet* data = RooDataSet::read("deltam.dat",deltaM);

// If fitting MC the blinding should be turned off before the fit.

// widthDeltaM.setBlind(kFALSE);

// rDeltaM.setBlind(kFALSE);

// Fit the data

c.setLimits();

modelDeltaM.fitTo(data,"M");

// ...code to create the plot omitted here...

}

A.6 A Non-Parametric Model

The example nonparam.cc demonstrates the use of the KEYS[5] non-parametric PDF (see
Section 4.1.12). This example first constructs a complex shape from a sum of Gaussians
(which happen be centered at the masses of some charmonium states). Next, we generate
1000 events sampled from this distribution and create a non-parametric model of these
events. Note that the non-parameteric model actually appears to describe the data better
than the true underlying model, because it can adapt to include features arising from
statistical fluctuations. The full code for this example is in the examples subdirectory
and generates the plot shown in Figure 11. Here is an excerpt demonstrating the use of
the KEYS non-parametric PDF:

nonparam() {

RooRealVar // define the variables
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mass("mass","Reconstructed Candidate Mass",3.0,3.8,"GeV");

// ...code to create 5 Gaussians and define their relative weights...

// create a PDF as a sum of the 5 Gaussians

RooAddPdf all("all","All States Combined",g1,g2,g3,g4,g5,f1,f2,f3,f4);

// generate and plot some data from this PDF

RooDataSet *data= all.generate("data",1000);

TH1F *dataplot= data->Plot(mass,"",40);

dataplot->Draw("E");

TH1F *exact= all.Plot(mass,dataplot);

exact->Draw("csame");

// make a non-parametric PDF to describe this data and plot it

RooKeysPdf keys("keys","Non-Parametric Model",mass,*data);

TH1F *approx= keys.Plot(mass,dataplot);

approx->SetLineStyle(2);

approx->Draw("csame");

}

B Adding New Models

This section explains how to add a new PDF building block to the RooFitTools package.
First, choose a short but descriptive name such as “PowerLaw” (use capitalization to de-
limit words instead of spaces). You now need to create two new files in the RooFitTools

directory of your test release, for example RooPowerLaw.rdl and RooPowerLaw.cc (us-
ing the common prefix “Roo”). You can do this most easily by copying the existing
RooPdfExample files and replacing all occurrences of “PdfExample” with your chosen
name. You will also need to replace ROO PDF EXAMPLE near the top of the rdl file with
a similarly formatted name for your PDF. An rdl file is essentially the same as a C++
header file, but has a different extension to flag it for special processing so it can be used
in an interactive ROOT session.

Edit the rdl file to declare your PDF’s dependent variables and parameters with
changes to the constructor arguments and public data members. Make a corresponding
change to the constructor arguments in the cc file and edit the calls to the addDependent()
and addParameter() methods (one for each public data member, in the same order as
they are listed in the rdl file). Edit the &x and &c addresses in the RooPdf constructor
to refer to the first dependent variable and parameter, respectively, listed in your public
data members.
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Next, edit the evaluate() method in your cc file to calculate your probability density
in terms of the current values of the public data members which correspond to your
dependent variables and parameters. If your formula is not normalized, then simply scale
the result by the variable norm, as shown in the example. Your formula must at least
be finite for all possible values of the parameters. If you need to make some restrictions
on the allowed ranges of some parameters, you will need to edit the useParameters()

method in your cc file (refer to RooLifetime.cc for an example.) If you know an analytic
expression for your PDF’s normalization, use it instead of the numerical integration in
the useParameters() method (you must do this when your PDF depends on more than
one variable).

At this point, you have created a working PDF which can be used like any other
predefined PDF (see Section 4.8). Simply update your shared library and restart ROOT,
as described in Sections 1.1 and 1.2. Once you have successfully added your PDF, edit
and run the examples/check.cc macro to perform some basic checks that it is working
correctly.

To improve the performance of your PDF for fitting, provide an analytic expression for
the normalization in useParameters() and use temporary variables to avoid duplicating
calculations in evaluate(). To improve the performance of your PDF for toy Monte
Carlo studies you can also implement the initGenerator() and generateDependents()

methods. If you do not implement these methods, then the base class code will generate
samples from your PDF using an accept/reject algorithm and a brute-force numerical
estimate of your PDF’s maximum value. See RooArgusBG.cc for an example of imple-
menting only the initGenerator() method to provide an analytic calculation of the
maximum value. Refer to RooGaussian.cc for an example where both of these methods
are implemented.

C Technical Details of the “GExp” Resolution Model

To evaluate

fExp
± (t ; τ, ω, σ, τr) =

1

2τ

∫ ∞

0

ds exp
(
−s
τ

)
· exp (±iωs) ·

∫ 0

−∞
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1

τr
exp

(
u

τr

)
· hG(t∓ s− u; δ = 0, σ)
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we replace the integration variable u by T = u ± s and change the order of the two
integrations. This procedure leads to

fExp
+ (t ; τ, ω, σ, τr) =

1
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The three integrals over s are straightforward to calculate and we obtain
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which can be expressed in terms of f
(k)
± (t ; τ, ω, δ, σ):
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]
.

For ω = 0 and τr � τ , fExp
− (t ; τ, ω, σ, τr) features a mathematical pathology [10]: both

the denominator of the fraction in front of the square brackets in the previous expression,
and the difference inside the square brackets tend to zero. For

∣∣ τ−τr

τ

∣∣ < 1
260

we replace τ

and τr with τm = τ+τr

2
and ε = τ−τr

2
, and perform a Taylor expansion of fExp

− (t ; τ, ω, σ, τr)
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in ε
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. The contributions to fExp
− in odd powers of ε
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Figure 9: Results of a toy Monte Carlo study of a fit to the CP violation parameter
sin(2β) and the signal fraction using 10000 independent samples of 200 events each. The
top two plots are the distribution of minimum negative log-likelihood values (left side)
and the correlation plot of fitted values for the two parameters. The lower two rows are
the distributions of fitted parameter values (left side) and pulls (right side) for sin(2β)
(middle row) and the signal fraction (bottom row).
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Figure 10: A fit to the mass difference between the reconstructed D∗+ and D0. The fit
model is a sum of a single Gaussian and the RooDstarBG function. The values for δm and
σδm are blind.
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Figure 11: A comparison of the histogram of 1000 events (data points) with the underlying
PDF used to generate these events (solid curve) and a non-parameteric KEYS model of
these events (dashed curve).
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