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ABSTRACT

Target Spin Asymmetry is first measured in the exclusive Deeply Virtual Compton

Scattering (DVCS). The asymmetry is the results of interference between the DVCS and

the Bethe-Heitler (BH) process, and gives access to the Generalized Parton Distributions

(GPD) H̃ and H. The data were recorded with the CLAS detector at the Thomas Jefferson

National Accelerator Facility. Both the electron beam (of energy 5.7 GeV) and the solid

NH3 target were longitudinally polarized. Exclusive DVCS events were selected by requiring

identifying the scattered electron, recoil proton, and detected photon. Monte-Carlo (MC)

simulation is studied to estimate the background from π0 events. The acceptance corrected

single photon asymmetry is well described by the function F = p0sinφ + p1sin2φ with

p0 = 0.252 ± 0.042stat ± 0.020sys and p1 = −0.022 ± 0.045stat ± 0.021sys. This result agrees

rather well with the predictions of a model of GPDs.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Since the electromagnetic form factors were first measured on the proton [1] in the 1950s,

both form factors and parton distributions have been measured using exclusive processes and

inclusive processes respectively. Elastic electron scattering measures the Q2 dependence of

form factors which give us information about the nucleons’ charge and current distributions,

while Deep Inelastic Scattering (DIS) measures the x dependence of structure functions which

give us the information about the internal composition of the nucleon, such as the quark’s

longitudinal momentum and helicity distributions. Both form factors (t dependence) and

parton distribution functions (x dependence) represent different one-dimensional projections

of the nucleon’s internal structure, that, until recently seemed to be unconnected.

The recently developed formalism of “Generalized Parton Distributions” (GPDs)[2, 3, 4,

5] relates the x− and t−dependence of the parton distributions and the form factors. In the

forward limit, the GPDs can be reduced to the usual parton distributions, and with a sum

rule, the first moment of GPDs can be related to the form factors. In addition to the parton

distributions and form factors, GPDs contain more information, which so far is unmeasured,

such as, the quark orbital angular momentum contribution of nucleon’s spin, the interference

between quarks, the transverse parton distributions, etc. Therefore, GPDs provide a unified

description of a hadron structure.

The GPDs can be accessed in hard exclusive processes. One of the simplest processes

is Deeply Virtual Compton Scattering (DVCS) in which electrons scatter off the proton in

hard processes producing a real photon. DVCS can be described in terms of GPDs.
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First experimental results on beam spin asymmetry of DVCS have been reported from

both CLAS[6] and HERMES[7] collaborations. A broad program for studying GPDs via

DVCS is proposed for CLAS at 6 GeV [8] as well as at the energy upgrade at CLAS-12[9].

In this work, we measured target spin asymmetry in the reaction ~e~p → epγ. The data

for this analysis are from EG1b which were taken from Sep. 2000 through Apr. 2001 with

both longitudinally polarized electron beam and longitudinally polarized proton target.

1.2 Generalized Parton Distributions

GPDs were first introduced by F.M. Dittes, and D. Müller, et al. (see Ref[2, 3]). The

physical significance on GPDs were unclear until Ji’s discovery[4] that GPDs provide access

to the quark orbital angular momentum contribution of nucleon’s spin, which is unknown so

far. In the past few years, both experimental and theoretical physicists have shown strong

interest in GPDs, and the full picture of the role of GPDs in nucleon structure has emerged.

Fig. 1.1 visualizes the relationship between GPDs and hard exclusive processes. More reviews

of GPDs can be found in Ref[11, 12, 13, 14, 15].

1.2.1 Notations

To define GPDs, we naturally use light-cone coordinates which are defined by,

v+ =
1√
2
(v0 + v3), (1.1)

v− =
1√
2
(v0 − v3), (1.2)

v⊥ = (v1, v2) (1.3)

for any four-vector v, and v⊥ is the two dimensional transverse vector.

For hard exclusive processes where GPDs appear we use the common notation

P̄ =
p + p′

2
, ∆ = p′ − p, t = ∆2, (1.4)

where p and p′ are the four-momenta of the initial and final nucleon, respectively. For γ∗p

collisions (see Fig 1.2) we have the standard variables

2



Figure 1.1. Schematic overview of different hard processes and fundamental observables
related to GPDs. Figure taken from Ref[10]

Q2 = −q2, W 2 = (p+ q)2, xB =
Q2

2(p · q) , (1.5)

with q for the virtual photon γ∗ four-momentum. Here, W is the hadronic mass, and xB,

the Bjorken scaling variable, represents the inelasticity of the process.

In the calculation of exclusive cross section, we define the Center of Momentum System

(CMS) using virtual photon (q) and the average momentum of initial nucleon and final

nucleon (P̄ ), in order that P̄ and virtual photon are collinear along z-axis and in opposite

direction.

Another two variables related to GPDs are skewedness variable ξ and the averaged

momentum fraction of the quark x,

ξ = − ∆+

2P̄+
=
p+ − p′+

p+ + p′+
(1.6)

where ∆+, P̄+, p+, and p′+ are light-cone four-momenta.
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x =
k+

P̄+
(1.7)

where k is the quark loop momentum. From the above definitions, it is easy to see that

ξ is the longitudinal fraction of the four momentum transfer ∆, and x is the average

momentum fraction carried by a struck quark in the quark loop. Both ξ and x will be

used to parameterize GPDs functions.

1.2.2 Definitions of GPDs

One way to define GPDs is to start from hard exclusive reactions, such as DVCS or

Deeply Virtual Meson Production (DVMP), see Fig. 1.2. Factorization allows to separate

the amplitude for hard exclusive processes into a hard-scattering part, which is exactly

calculable in pQCD, and a non-perturbative nucleon structure (represented by the lower blobs

in Fig. 1.2) described by GPDs. In Fig. 1.2, DVCS is described with a so-called hand-bag

diagram: a quark with plus-momentum (x+ ξ)P̄+ absorbs a virtual photon, produces a real

photon, and the quark plus-momentum becomes (x− ξ)P̄+.

�
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Figure 1.2. Hand-bag diagrams for DVCS (left) and meson production (right).

Through light-cone matrix elements of the quark operators, the non-perturbative ampli-

tude (represented by the lower blobs of Fig. 1.2) can be parameterized as[16]:
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P̄+

2π

∫
dy−eixP̄+y−〈p′ |ψ̄β(−y/2)ψα(y/2)|p〉

∣∣∣∣∣
y+=~y⊥=0

=
1

4

{
(γ−)αβ

[
Hq(x, ξ, t) N̄(p

′

)γ+N(p)

+Eq(x, ξ, t) N̄(p
′

)iσ+κ ∆κ

2mN

N(p)

]

+(γ5γ
−)αβ

[
H̃q(x, ξ, t) N̄(p

′

)γ+γ5N(p)

+ Ẽq(x, ξ, t) N̄(p
′

)γ5
∆+

2mN

N(p)

]}
, (1.8)

where N(p) and N(p′) are nucleon spinors, ψ is the quark field, q is the flavor of the

struck quark (u, d, s), and mN is the nucleon mass. The left hand side of Eq. (1.8) is

a Fourier integral which transforms the matrix element from light-cone distance y− into

momentum space P̄+. The physical model is hand-bag diagram, and it can be interpreted

as the process that at the space-time y/2 one quark is taken out, and then returns to the

nucleon at space-time −y/2. At leading twist accuracy, the right hand side of Eq. (1.8)

parametrizes the nucleon structure (represented by lower blob) as four GPDs, i.e., the

unpolarized distributions Hq, Eq, and the polarized distributions H̃q, Ẽq, which depend upon

x, ξ and t.

As an example, Fig. 1.3 shows GPD H as functions of x, ξ and t at t = 0 point.

1.2.3 Properties of GPDs

In the Fig. 1.2, the active quark longitudinal momentum is (x+ξ)P̄+ in the initial nucleon

and (x − ξ)P̄+ in the final nucleon. The variable x is between -1 to 1, and variable ξ runs

from 0 to 1. Therefore, both x + ξ and x − ξ can be either positive or negative. Since the

positive (negative) momentum corresponds to the quark (anti-quark), there are three regions

for the GPDs:

• for x > ξ, both partons are quarks.

• for x < −ξ, both partons are anti-quarks.

• −ξ < x < ξ, the initial parton is a quark and the final one an anti-quarks.
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Figure 1.3. GPD H(x, ξ, t) at t = 0 calculated using the model of Ref. [17]

Since −ξ < x < ξ is absent in Deeply Inclusive Scattering (DIS), we only think about

the regions x < −ξ and x > ξ. In these two regions, the GPDs are generalized descriptions

of the usual parton distributions which are measured by DIS. Actually, in the forward limit

(Defined by ∆ = 0), the GPDs H reduce to the well-known quark density distribution q(x),

and GPDs H̃ reduces to the well-known quark helicity distribution ∆q(x) :

Hq(x, 0, 0) =

{
q(x), x > 0 ,

−q̄(−x), x < 0 .
(1.9)

H̃q(x, 0, 0) =

{
∆q(x), x > 0 ,

∆q̄(−x), x < 0 .
(1.10)

Since the GPDs E and Ẽ are not measurable in DIS, they are new distribution functions

at twist-2 level.

Besides the connection to the usual parton distributions, the GPDs are related to the

other nucleon structure quantities. At finite momentum transfer (∆), the first moments of

the GPDs give the elastic form factors of the nucleon through sum rules[4].
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∫ +1

−1

dxHq(x, ξ, t) = F q
1 (t) , (1.11)

∫ +1

−1

dxEq(x, ξ, t) = F q
2 (t) , (1.12)

∫ +1

−1

dx H̃q(x, ξ, t) = gq
A(t) , (1.13)

∫ +1

−1

dx Ẽq(x, ξ, t) = gq
P (t) . (1.14)

where F q
1 (t) and F q

2 (t) are the elastic Dirac and Pauli form factors and gq
A(t) and gq

P (t)

are the axial-vector and pseudoscalar form factors for quark flavor q in the nucleon.

Also, Ji’s sum rule[4] relates the second moment of some GPDs to the fraction of the

nucleon’s spin carried by a quark. For quark flavor q, we have

∫ 1

−1

dx x (Hq(x, ξ) + Eq(x, ξ)) = 2Jq . (1.15)

Eq. (1.15) for J q is valid for t = 0. Jq is the fraction of the nucleon’s spin carried by a quark

of the flavor q. The sum of J q over all of quark flavors gives the fraction of the nucleon’s

spin carried by all quarks, JQ =
∑

q J
q. JQ can be decomposed as

JQ =
∆Σ

2
+ LQ, (1.16)

where ∆Σ
2

is the quark spin contribution, and LQ is the contribution from the quark orbital

angular momentum. From inclusive and semi-inclusive polarized DIS, ∆Σ can be measured.

Therefore, in principle LQ can be derived using Eq. (1.16). It provides a way to measure

the quark orbital angular momentum contribution of the nucleon’s spin, which is completely

unknown, so far.

Ji’s sum rule also works for gluons. The gluon’s angular momentum contribution of the

nucleon’s spin is given,

JG =

∫ 1

−1

dx x (Hg(x, ξ) + Eg(x, ξ)) . (1.17)

The nucleon’s spin is given by the gauge invariant sum,

1

2
= JQ + JG . (1.18)

This shows that the complete knowledge of the quark angular momentum contribution

will reveal the gluon angular momentum contribution.
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Figure 1.4. Feynman diagrams for DVCS (a) and for the photon radiation from the scattered
electron (b) or incoming electron (c) in the Bethe-Heitler process.

1.3 Deeply Virtual Compton Scattering

The GPDs can be accessed by the hard exclusive processes, see Fig. 1.1. The simplest

process is DVCS. It turns out that DVCS is the most suitable exclusive process to constrain

GPDs from data in the lower energy domain measured with the electroproduction. The

reaction ep → epγ includes not only the DVCS contributions, but also the Bethe-Heitler

(BH) process, see Fig. 1.4. They represent different physics, but are indistinguishable. For

DVCS, the real photon is radiated by one quark which absorbs the virtual photon, i.e.,

γ∗p→ γp′. While in the BH process, the real photon is emitted from incoming or scattered

electrons. In the low Q2 range, the DVCS cross section is much smaller than the BH cross

section, and it is difficult to directly measure the DVCS cross section. However we can

measure the DVCS contribution through its interference with the BH process.

1.3.1 Cross Section

The four-fold cross section for the process e(k)p(P1) → e(k′)p(P2)γ(q2) is given by[18]

dσ

dxBdyd|∆2|dφ =
α3xBy

16 π2Q2
√

1 + ε2

∣∣∣∣
T
e3

∣∣∣∣
2

. (1.19)

In Eq. (1.19), the lepton energy fraction is y = P1 · q1/P1 · k, with q1 = k− k′, φ is the angle

between the scattering plane and the reaction plane, as shown in Fig. 1.5, and ε ≡ 2xB
M
Q

.
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Figure 1.5. Kinematics for the photon electroproduction in the target rest frame. The scattering
plane is defined by the direction of incoming electron and of the scattering electron, while the
reaction plane is defined by the direction of the outgoing photon and of the recoiled proton. The
ẑ axis is along the direction of the virtual photon, ŷ axis is perpendicular to the scattering plane,
and x̂ is given by x̂ = ŷ × ẑ. φ is the angle between the scattering plane and the reaction plane.

Note that the final state of DVCS is the same as that of BH process, i.e., they are

indistinguishable. Therefore, the amplitude (T ) of photon production is the sum of the

DVCS amplitude (TDV CS) and BH amplitude (TBH), and it reads

T 2 = |TBH + TDVCS|2 = |TBH|2 + |TDVCS|2 + I , (1.20)

with the interference term

I = TDVCST ∗
BH + T ∗

DVCSTBH . (1.21)

The squared BH amplitude |TBH|2, squared DVCS amplitude |TDVCS|2, and interference

term I are given by[18]
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|TBH|2 =
e6

x2
By

2(1 + ε2)2∆2 P1(φ)P2(φ)

{
cBH
0 +

2∑

n=1

cBH
n cos (nφ) + sBH

1 sin (φ)

}
,(1.22)

|TDVCS|2 =
e6

y2Q2

{
cDVCS
0 +

2∑

n=1

[
cDVCS
n cos(nφ) + sDVCS

n sin(nφ)
]
}
, (1.23)

I =
±e6

xBy3∆2P1(φ)P2(φ)

{
cI0 +

3∑

n=1

[
cIn cos(nφ) + sIn sin(nφ)

]
}
, (1.24)

where the + (−) sign in the interference stands for the negatively(positively) charged

lepton beam. The P1 and P2 are the lepton BH propagators,

Q2P1 ≡ (k − q2)
2 = Q2 + 2k · ∆ , Q2P2 ≡ (k − ∆)2 = −2k · ∆ + ∆2 . (1.25)

The coefficients cI1 , s
I
1 , cDVCS

0 , cI0 , cDVCS
1 , sDVCS

1 , cI2 ,and sI2 are defined as linear combina-

tions of the Dirac and Pauli form factors F1 and F2 with the Compton Form factors (CFFs)

H, H̃, E , Ẽ. They are calculated for diverse target polarizations in Ref[18].

For squared BH amplitude,

• Unpolarized target:

cBH
0,unp = 8K2

{(
2 + 3ε2

) Q2

∆2

(
F 2

1 − ∆2

4M2
F 2

2

)
+ 2x2

B (F1 + F2)
2

}
(1.26)

+ (2 − y)2

{
(
2 + ε2

)
[

4x2
BM

2

∆2

(
1 +

∆2

Q2

)2

+ 4(1 − xB)

(
1 + xB

∆2

Q2

) ] (
F 2

1 − ∆2

4M2
F 2

2

)

+ 4x2
B

[
xB +

(
1 − xB +

ε2

2

) (
1 − ∆2

Q2

)2

− xB(1 − 2xB)
∆4

Q4

]
(F1 + F2)

2

}

+ 8
(
1 + ε2

)(
1 − y − ε2y2

4

) {
2ε2

(
1 − ∆2

4M2

) (
F 2

1 − ∆2

4M2
F 2

2

)

−x2
B

(
1 − ∆2

Q2

)2

(F1 + F2)
2

}
,

cBH
1,unp = 8K(2 − y)

{(
4x2

BM
2

∆2
− 2xB − ε2

) (
F 2

1 − ∆2

4M2
F 2

2

)
(1.27)

+ 2 x2
B

(
1 − (1 − 2xB)

∆2

Q2

)
(F1 + F2)

2

}
,

cBH
2,unp = 8x2

BK
2

{
4M2

∆2

(
F 2

1 − ∆2

4M2
F 2

2

)
+ 2 (F1 + F2)

2

}
. (1.28)
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• Longitudinally polarized target:

cBH
0,LP = 8λΛxB(2 − y)y

√
1 + ε2

1 − ∆2

4M2

(F1 + F2)

{
1

2

[
xB

2

(
1 − ∆2

Q2

)
− ∆2

4M2

][
2 − xB (1.29)

− 2(1 − xB)2 ∆2

Q2
+ ε2

(
1 − ∆2

Q2

)
− xB(1 − 2xB)

∆4

Q4

]
(F1 + F2)

+

(
1 − (1 − xB)

∆2

Q2

) [
x2

BM
2

∆2

(
1 +

∆2

Q2

)2

+ (1 − xB)

(
1 + xB

∆2

Q2

)] (
F1 +

∆2

4M2
F2

) }
,

cBH
1,LP = −8λΛxByK

√
1 + ε2

1 − ∆2

4M2

(F1 + F2)

{ [
∆2

2M2
− xB

(
1 − ∆2

Q2

)](
1 − xB + xB

∆2

Q2

)
(F1 + F2)

+

[
1 + xB − (3 − 2xB)

(
1 + xB

∆2

Q2

)
− 4x2

BM
2

∆2

(
1 +

∆4

Q4

)] (
F1 +

∆2

4M2
F2

) }
. (1.30)

For squared DVCS amplitude,

• Unpolarized target:

cDVCS
0,unp = 2(2 − 2y + y2)CDVCS

unp (F ,F∗) , (1.31)
{
cDVCS
1,unp

sDVCS
1,unp

}
=

8K

2 − xB

{
2 − y

−λy

} { <e

=m

}
CDVCS

unp

(
F eff ,F∗

)
. (1.32)

• Longitudinally polarized target:

cDVCS
0,LP = 2λΛy(2 − y)CDVCS

LP (F ,F∗) , (1.33)
{
cDVCS
1,LP

sDVCS
1,LP

}
= − 8ΛK

2 − xB

{ −λy
2 − y

} { <e

=m

}
CDVCS

LP

(
F eff ,F∗

)
. (1.34)

For interference of BH and DVCS amplitudes,

• Unpolarized target:
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cI0,unp = −8(2 − y)<e

{
(2 − y)2

1 − y
K2CI

unp (F) +
∆2

Q2
(1 − y)(2− xB)

(
CI

unp + ∆CI
unp

)
(F)

}
,

(1.35){
cI1,unp

sI1,unp

}
= 8K

{−(2 − 2y + y2)

λy(2 − y)

}{ <e

=m

}
CI

unp (F) , (1.36)

{
cI2,unp

sI2,unp

}
=

16K2

2 − xB

{−(2 − y)

λy

}{ <e

=m

}
CI

unp

(
F eff

)
. (1.37)

• Longitudinally polarized target:

cI0,LP = −8λΛy<e

{(
(2 − y)2

1 − y
+ 2

)
K2CI

LP (F) +
∆2

Q2
(1 − y)(2 − xB)

(
CI

LP + ∆CI
LP

)
(F)

}
,

(1.38){
cI1,LP

sI1,LP

}
= 8ΛK

{−λy(2 − y)

2 − 2y + y2

} { <e

=m

}
CI

LP (F) , (1.39)

{
cI2,LP

sI2,LP

}
=

16ΛK2

2 − xB

{ −λy
2 − y

}{ <e

=m

}
CI

LP

(
F eff

)
. (1.40)

In Eq. (1.26) - Eq. (1.39), λ = ±1 is lepton helicity, and Λ = ±1 is the target helicity.

CDV CS and CI are listed as following,

CDVCS
unp (F ,F∗) =

1

(2 − xB)2

{
4(1 − xB)

(
HH∗ + H̃H̃∗

)
− x2

B

(
HE∗ + EH∗ + H̃Ẽ∗ + ẼH̃∗

)

−
(
x2

B + (2 − xB)2 ∆2

4M2

)
EE∗ − x2

B

∆2

4M2
Ẽ Ẽ∗

}
, (1.41)

CDVCS
LP (F ,F∗) =

1

(2 − xB)2

{
4(1 − xB)

(
HH̃∗ + H̃H∗

)
− x2

B

(
HẼ∗ + ẼH∗ + H̃E∗ + EH̃∗

)

−xB

(
x2

B

2
+ (2 − xB)

∆2

4M2

) (
EẼ∗ + ẼE∗

) }
, (1.42)

CI
unp = F1H +

xB

2 − xB

(F1 + F2)H̃ − ∆2

4M2
F2E , (1.43)

CI
LP =

xB

2 − xB

(F1 + F2)
(
H +

xB

2
E
)

+ F1H̃ − xB

2 − xB

(
xB

2
F1 +

∆2

4M2
F2

)
Ẽ . (1.44)
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The cross section for a polarized target can be written as

dσ = dσunp + dσLP(Λ) . (1.45)

1.3.2 Compton Form Factors

In section 1.3.1, the coefficients of DVCS amplitude are in terms of CFFs H, H̃, E , Ẽ.

These complex CFFs are given by flavor sums of convolutions of the corresponding twist-two

GPDs with perturbatively calculable coefficient functions C(±) [19, 20, 21] via

{H, E} (ξ, t, Q2) =
∑

q

∫ 1

−1

dxC(−)
q (ξ, x) {Hq, Eq} (x, ξ, t, Q2) , (1.46)

{
H̃, Ẽ

}
(ξ, t, Q2) =

∑

q

∫ 1

−1

dxC(+)
q (ξ, x)

{
H̃q, Ẽq

}
(x, ξ, t, Q2) .

1.3.3 Physical Observables

The most accurate information on GPDs can be deduced from the part of the total

cross section, which stems from the interference of the BH process with DVCS amplitude.

While, since the cross section of DVCS is small, the alternative method is to measure diverse

asymmetries involving charge and spin, respectively.

1.3.3.1 Beam Charge Asymmetry

For facilities with positively and negatively charged lepton beams, one can measure the

beam charge asymmetry, which is defined as:

Ac(φ) =
dσ+(φ) − dσ−(φ)

dσ+(φ) + dσ−(φ)
, (1.47)

where dσ+(−) denotes the cross section measurement with positively (negatively) charged

lepton beam. From Eq. (1.22) - Eq. (1.24), we can get

dσ+ − dσ− ∝ 1

xBy3P1(φ)P2(φ)∆2

{
cI0 +

3∑

n=1

[
cIn cos(nφ) + sIn sin(nφ)

]
}
, (1.48)

and
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dσ+ + dσ− ∝ 1

x2
By

2(1 + ε2)2∆2 P1(φ)P2(φ)

{
cBH
0 +

2∑

n=1

cBH
n cos (nφ) + sBH

1 sin (φ)

}

+
1

y2Q2

{
cDVCS
0 +

2∑

n=1

[
cDVCS
n cos(nφ) + sDVCS

n sin(nφ)
]
}
. (1.49)

From Eq. (1.35) - Eq. (1.37), we conclude that the Fourier coefficients sI
n disappear in

Eq. (1.48), assuming the unpolarized beam (λ = 0). Among the Fourier coefficients cI
n, both

cI0 and cI1 are related to the twist-two GPDs, but cI
0 is suppressed by O(1/Q) compared to

cI1. The other coefficients cI2 and cI3 arise at twist-3 and twist-4 GPDs, respectively, and

they are suppressed kinetically comparing to cI
1. Therefore, in Eq. (1.48), cI1 is the leading

term. In Eq. (1.49), squared BH amplitude dominates and the cBH
0 term gives the largest

contribution to the squared BH amplitude. Therefore, cBH
0 is the leading term in Eq. (1.49).

So, the beam charge asymmetry at leading twist can be given by

AC(φ) ≈ −xB

y

cI1
cBH
0

cos(φ). (1.50)

Consequently, the azimuthal angular dependence of the beam charge asymmetry should be

a dominant cosφ function, accompanied by a small offset and by small cos2φ and cos3φ

modulations.

1.3.3.2 Beam Spin Asymmetry

The azimuthal angular dependence of the beam-spin asymmetry is defined by

ALU(φ) =
dσ↑(φ) − dσ↓(φ)

dσ↑(φ) + dσ↓(φ)
, (1.51)

where ALU represents the asymmetry (A) measured using a longitudinally (L) polarized

beam and an unpolarized (U) target. Here dσ↑(↓) is the cross section measurement using the

beam which helicity is parallel (anti-parallel) to the beam direction. The Fourier coefficients

in Eq. (1.22) - Eq. (1.24) depend or don’t depend on λ. Only the coefficients ( sI
1, s

I
2, s

DV CS
1

) which depend on λ are left in the numerator and the other which don’t depend on λ are left

in the denominator. Due the same reason which is given for the beam charge asymmetry,

the leading term in the denominator is cBH
0 . sI

1 arises at twist-two level, while sI
2 and sDV CS

1

14



arise at twist-three level, and are suppressed by ∆/Q. Therefore, the leading term in the

numerator is sI
1. So, the azimuthal dependence of the beam spin asymmetry is approximately

given by the sin(φ) function:

ALU(φ) ∼ ±xB

y

sI1,unp

cBH
0,unp

sin(φ). (1.52)

Combining Eq. (1.36) and Eq. (1.43), we can get a further equation:

ALU(φ) ∝ =m

{
F1H +

xB

2 − xB

(F1 + F2)H̃ − ∆2

4M2
F2E

}
sin(φ) . (1.53)

Hence, ALU(φ) is linear in form factors and CFFs. In the kinematics of small ∆ and

small xB, ALU is sensitive to =mH. In leading order, =mH is directly given by the GPDs

on the diagonal x = ±ξ[18]. The first measurements of ALU were reported by HERMES[7]

and CLAS[6], which will be described in section 1.3.4.3.

1.3.4 Previous Measurements

1.3.4.1 Measurements of Cross Sections

The first DVCS cross section measurements at high energy have been reported by

H1[22, 23] and ZEUS[24] collaborations using HERA collider at DESY. The cross section

was measured as a function of Q2, W , and −t, respectively. The Q2-dependence for W=82

GeV/c2 and |t| < 1 GeV2/c2 is illustrated in Figure 1.6, as well as W -dependence for

Q2 = 8 GeV2/c2 and |t| < 1 GeV2/c2. The t-dependence of the differential γ∗p → γp

cross section is illustrated in Fig 1.7. The data shown are from H1 and ZEUS.

1.3.4.2 Measurements of the Beam Charge Asymmetry

The beam charge asymmetry was measured by HERMES collaboration [25, 26]using

HERA. HERA is the only GeV-range accelerator which provides both electron and positron

beams. So far, there are no published data for the beam spin asymmetry. The preliminary

results of the beam spin asymmetry from HERMES are shown in Fig 1.8.

1.3.4.3 Measurements of the Beam Spin Asymmetry

The first published results of the beam spin asymmetry (ALU) were measured by CLAS

[6] and HERMES [7] collaborations. At CLAS, a 4.25 GeV electron beam scattered off
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Figure 1.6. The differential γ∗p → γp cross section a) as a function of Q2, b) as a function of
W , which was measured by H1 and ZEUS in comparison with GPD-based pQCD predictions. The
inner error bars denote the statistical and the full error bars the quadratic sum of the statistical
and systematic uncertainties. The figure is taken from Ref[23].
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Figure 1.7. The t-dependence of the differential γ∗p → γp cross section measured by H1. The
inner error bars denote the statistical and the full error bars the quadratic sum of the statistical
and systematic uncertainties. The points are fitted as a function e−b|t|. The figure is taken from
Ref[23].

the fixed proton target, and the kinematic coverage is: 1 GeV2/c2 < Q2 < 1.75 GeV2/c2,

0.13 < xB < 0.35, 0.1 GeV2/c2 < −∆2 < 0.3 GeV2/c2, and W > 2 GeV/c2. At HERMES,

a 27.6 GeV positron beam scattered off the fixed proton target, and the average values of

kinematic variables are 〈Q2〉 = 2.6 GeV2/c2, 〈xB〉 = 0.11 and 〈−∆2〉 = 0.27 GeV2/c2. The

azimuthal dependence of ALU is shown in Fig. 1.9.

Since at CLAS the Electromagnetic Calorimeter (EC) acceptance coverage is from 8o

to 45o, most of photons from DVCS can not be detected. Therefore, events containing

exactly one proton and one electron were selected. At large missing energy, the missing

mass squared of (ep) for ~ep→ ep′X can not separate single photons and π0s event by event.

To determine the number of single photon events, the line shape of the missing mass squared

distributions was analyzed. For each φ bin and each beam helicity state, the missing mass

squared distributions were fitted with a function, which is the sum of two Gaussians and a

third order polynomial.
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Figure 1.8. The azimuthal angle φ dependence of the beam charge asymmetry AC on deuteron
for the hard electroproduction of photons. The error bars are only statistical uncertainties.

At HERMES, the recoiled proton can not be detected, therefore, ~e+p → e+γX events

were used. The missing mass of e+γX was used to identify the single photon events.

Since both HERMES and CLAS missed one particle of the final state (HERMES did not

measure the proton, and CLAS did not measure the photon), it is not very convincing to show

the single photon identification. To detect all of three particles of photon electroproduction,

a photon detector was added in CLAS to detect photons with polar angle from 3o to 8o[27].

From March 2005 through May 2005, the new data were taken with an additional photon

detector using CLAS to measure the beam spin asymmetry. This program studies not

only the azimuthal dependence, but also the Q2-, xB-, and t-dependence of the beam spin

asymmetry.
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Figure 1.9. The azimuthal dependence of the beam spin asymmetry for the hard electroproduc-
tion of photons measured by CLAS[6] (a) and HERMES[7](b). Left panel: the dark shaded region
corresponds to the fitted function A(φ) = αsinφ + βsin2φ with the statistical errors. The light
shaded region corresponds to the fitted function A(φ) with the quadratic sum of the statistical and
systematic uncertainties. The curves are model predictions. Right panel: the error bars correspond
to the statistical errors, and the band below correspond to the systematic errors. The dashed curve
is sinφ modulation with an amplitude of 0.23, and the solid curve is a model calculation.

1.4 Target Spin Asymmetry

This work will focus on the target spin asymmetry which is given by

AUL(φ) =
dσ⇑(φ) − dσ⇓(φ)

dσ⇑(φ) + dσ⇓(φ)
, (1.54)

where AUL denotes the asymmetry measured using an unpolarized (U) beam and a longi-

tudinally (L) polarized target. The ⇑ (⇓) represents Λ = +(−)1 longitudinal polarization.

Completely analogous to the beam spin asymmetry, the squared BH amplitude dominates

the denominator and cBH
0 gives the largest contribution to the squared BH amplitude. In

the numerator, the Fourier coefficients (sI
1, s

I
2, s

DV CS
2 ) which depend on Λ are left. Both sI

2

and sDV CS
2 from twist-three level are kinetically suppressed compared to sI

1. So, we get the

approximation,
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AUL(φ) ∼ Λ
xB

y

sI1,LP

cBH
0,unp

sin(φ)

∝ =m{F1H̃ +
xB

2 − xB

(F1 + F2)(H− x

2
E)

− xB

2 − xB

(
xB

2
F1 +

∆2

4M2
F2)Ẽ} sin(φ) (1.55)

Therefore, the measurement of the target spin asymmetry should reveal a dominant sinφ

dependence, and probably accompanied by a sin2φ modulation. At the CLAS kinematics,

i.e., small ∆ and small xB, AUL is sensitive to the imaginary parts of H̃ and H. As we know,

the beam spin asymmetry is sensitive to the imaginary part of H. Therefore, combining the

measurement of the beam spin asymmetry, the target spin asymmetry allows us to access

the imaginary part of H̃, which is directly given by the GPDs H̃.

This measurement is based on the EG1b data taken using CLAS from Sep. 2000 to Apr.

2001 with the longitudinally polarized electron beam and longitudinally polarized proton

target. The main purpose of EG1b experiment is to measure the spin structures of the

proton and the neutron, therefore, the beam energy ranges from 1.6 GeV to 5.7 GeV, and

two targets, ND3 and NH3, are used. As a byproduct, this measurement is based on only

part of EG1b data with 5.7 GeV beam energy and NH3 target. From these data, the DVCS

events will be identified and counted for each φ bin in each target helicity. Then, the target

spin asymmetry will be calculated using

AUL(φ) =
N̄⇑(φ) − N̄⇓(φ)

N̄⇑(φ) + N̄⇓(φ)
, (1.56)

where N̄ represents the normalized number of DVCS events.

1.5 Organization

In this thesis, the experiment and the asymmetry measurement are described in detail. In

Chapter 2, each detector of CLAS is described, in addition, the polarized target is introduced,

including the target materials, and the mechanical system. Chapter 3 introduces the event

reconstruction, including how the electron, the proton, and the photon are reconstructed

in the reconstruction program. To minimize contamination, more strict identifications for

both electrons and protons are developed, especially under the kinematic coverage of the
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DVCS process. In addition, details are given for the electron momentum correction and

the proton energy loss corrections. Finally, the fiducial cuts are explained for each particle.

Chapter 4 listed the data used in this work, and the target polarization measurement is also

described. The DVCS events are identified in Chapter 5, but they are contaminated by π0

events, therefore, the π0 asymmetry is studied in Chapter 6, and Monte Carlo simulation is

performed to estimate the π0 background in Chapter 7. Results and conclusions are presented

in Chapter 8. Finally, the Appendixes list the number of DVCS events as a function of φ for

each data set, as well as the number of π0 events, the target spin asymmetry for each data

set, and the fraction of π0 contamination as a function of φ.
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CHAPTER 2

EXPERIMENTAL SETUP

2.1 Overview

The experiment took place at the Continuous Electron Beam Facility (CEBAF) at the

Thomas Jefferson National Accelerator Facility (JLAB) in Newport News, Virginia. JLAB

is a U.S. Department of Energy facility. There are three experimental halls, A, B and C at

JLAB, and each is designed to investigate the hadronic structure of matter using electron

or photon beams. The experimental data presented in this thesis were taken using the

CEBAF Large Angle Spectrometer (CLAS), which is housed in Hall-B. CEBAF provide

a longitudinally polarized electron beam, and for the data run, a longitudinally polarized

target was installed in CLAS. The accelerator, the polarized target, and the CLAS detector

will be described in detail in this chapter.

2.2 The Accelerator

The schematic layout of JLAB and experimental halls is shown in Fig. 2.1. The

accelerator is composed of two anti-parallel linear accelerators, known as linacs, five sets

of recirculation arcs, and a 45-MeV injector. The linac is equipped with 20 cryomodules,

and each cryomodule is made of 20 superconducting radio-frequency (RF) cavities. The

superconductivity is acquired by holding the RF cavities in 2 K helium bath. The two linacs

are connected by two sets of 180o recirculation arcs so that the beam can be continually

accelerated. Several quadrupole and dipole magnets are used to steer and focus the beam

as it passes through the accelerator. The electron beam is continuously generated with 45

MeV at the injector and accelerated through the two linacs. After the beam reaches the

desired energy, it is delivered to one or more of the experimental Halls. In Hall-B, some runs
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Figure 2.1. Continuous electron beam accelerating facility at Thomas Jefferson National
Accelerator Laboratory

are operated using a photon beam. The photon beam is produced by directing the electron

beam to a thin target, i.e., the radiator. The produced photons from the radiator continue

forward, whereas the electrons are bended away the beam line by the tagging spectrometer.

Fig. 2.2 shows the position of photon-tagging system (the radiator and tagging spectrometer).

Ref[28] gives more details about photon-tagging system. By controlling th polarization of the

electron beam, non-polarized, or circularly polarized, or linearly polarized photon beams can

be acquired according to experiment requirements. Although photon beams are available,

the experiment for this analysis only used the electron beam.

2.3 The CEBAF Large Acceptance Spectrometer

The CEBAF Large Acceptance Spectrometer, as depicted in Fig. 2.2, Fig. 2.3, and

Fig. 2.4, is azimuthally divided into six independent sectors within a large superconducting

toroidal magnet. Each sector is equipped with three regions of drift chambers (DC)
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[29, 30, 31] for track reconstruction and momentum spectrometry of charged particles

between 8o and 142o in polar angular range and within up to 80% azimuthal coverage.

Particle identification utilizes a set of scintillator counters (SC)[32] to determine the time of

flight (TOF) for charged particles. A forward angle electromagnetic calorimeter (EC)[33, 34]

is used to identify and measure electromagnetic showering particles (electrons and photons)

and neutrons. Threshold gas Cerenkov counters (CC)[35] are used in conjunction with the

EC for electron identification and triggering. Each detector subsystem of the CLAS will be

described in details in the following sections.

2.3.1 Torus Magnet

The torus magnet is composed of six individual superconducting coils around the electron

beam line. It provides a magnetic field in the φ direction. Therefore, as the charged particles

transverse through the CLAS, their trajectories in the φ direction remain unchanged whereas

the trajectories are bent either toward or away from the beam line depending on the charge

of the particle and the polarization of the torus. The magnetic field thus allows one to

analyze the momentum of the charged particles.

The maximum designed current in the torus coils is 3860 A, corresponding the integral

magnetic field 2.5 T m in the forward direction, and 0.6 T m at a polar angle of 90o. During

the run (EG1b), the torus was operated with 4 different values: 1500, -1500, 2250, -2250

A, with respective to 38.9% and 58.3% of maximum magnetic field, respectively. When the

current is positive, the magnetic field resulting from the torus bends the electron toward

beam line, therefore, the data taken with positive torus current are called inbending data.

Whereas, the data taken with negative torus current are called outbending data.

2.3.2 Drift Chambers

The drift chambers in each sector are divided into three regions: region 1 (R1), region 2

(R2), and region 3 (R3), see Fig. 2.3 and Fig. 2.4. R1 chambers are located close to the target

and in an area of low magnetic field. R2 chambers are larger and reside between the torus

coils in an area of high magnetic field. R3 chambers are the largest, radially located outside
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Figure 2.2. Side view schematic of the CLAS detector in Hall B
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Figure 2.3. A three dimensional view of the CLAS detector. Some detector components are
pulled out to show the details. The figure at the right bottom of the figure shows the scale. The
beam enters from the back side and the non-interacting beam emerges out the front through a
beam pipe.

of the torus magnet. Both Fig. 2.3 and Fig. 2.4 show the relative position of three regions

of chambers. All drift chamber regions used together form the momentum spectrometer.

Each drift chamber region is subdivided into two separate superlayers. Each superlayer

consists of six layers of drift cells, except for superlayer one in region one which has only

4 layers of drift cells. The drift cell has one sense (anode) wire at a positive potential

surrounded by six normal wires (cathode) in an hexagonal shape at negative potential (see

Fig. 2.5). There are totally 35,148 individually wired drift cells. The CLAS is filled with

the gas of a 90% Ar -10% CO2 mixture. Therefore, as the charged particle passes through
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Figure 2.4. A schematic view of the CLAS detector, showing a cut along the beam line. The
detector components are labeled, and the trajectories of two charged particles are shown on the
figure. The beam enters from the left.

the gas in the DC, it ionizes the atom and produces the ion pairs. The negative ions drift

to the sense wire and create a voltage pulse on the sense wire. The pulse is presented to

the time-to-digital converters (TDC) for digitization. The online data acquisition system

measures and stores these raw TDC times.

2.3.3 Cerenkov Counters

Beyond the drift chambers are threshold Cerenkov counters, which are used to trigger

electrons and identify electrons from pions. These detectors cover the polar scattering angle

from 8o to 45o. The location of the Cerenkov counters in CLAS is shown in Fig. 2.3 and

Fig. 2.4.

27



 

Figure 2.5. Region 3 showing the two superlayers each consisting of six layers of drift cells. The
highlighted cells show a track passing through the DC. The upper right corner is the edge of a
Cerenkov counters. The drift cell has one sense (anode) wire at a positive potential surrounded by
six normal wires (cathode) in an hexagonal shape at negative potential. There are totally 35,148
individually wired drift cells.

When charged particles pass through a medium with speed exceeding the speed of light

in that medium, they emit radiation known as Cerenkov light. The threshold at which

Cerenkov radiation occurs is given by v ≥ c
n
, where c is the speed of the light in vacuum, n

is the refraction index of the medium, and v is the speed of the charged particle. The gas

mixture in the Cerenkov detector is C4F10 (perflourobutane). Its refraction index is 1.00153.

The threshold for the energy is written as E > γm, with γ = 1
q

1− 1

n2

= 18.098. Therefore,

the threshold for electron energy is 9 MeV, while it is 2.5 GeV for pions. Since the pions

don’t emit Cerenkov light with energy below 2.5 GeV, this can separate electrons from pions

up to a pion energy 2.5 GeV.

The Cerenkov light is collected by a system of mirrors, light-collection optics and

photomultiplier tubes (PMTs), see Fig. 2.6. The PMTs lie in the shadows of the magnet coils.

Since the azimuthal angle of the charged particle remains unchanged when going through

the CLAS, the placement of the PMTs doesn’t change the angular coverage. To preserve the

electron polar angle information, the light-collection optics are designed to focus the light

from Cerenkov radiation only in the φ direction. This focusing is achieved by hyperbolic and
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elliptical mirrors. The θ range of each sector is divided into 18 regions, as seen in Fig. 2.4,

and each θ segment is subsequently divided into two modules about the symmetry plane,

as seen in Fig. 2.6. This division results in a total of 12 identical sub-sectors around the φ

direction for each θ segment, and a total of 216 light-collection modules.

PMT

Magnetic Shield
Sector Centerline

Radiation
Cerenkov

Elliptical Mirror Light Collection
Cone

Hyperbolic Mirror

Cone
Light Collection

PMT

Hyperbolic Mirror

Elliptical Mirror

Cylindrical
Mirror

Cylindrical
Mirror

Electron Track

Magnetic Shield

Window

Figure 2.6. A schematic view of one Cerenkov segment. Also shown is how the Cerenkov light is
collected by the light collection cone. PMT lies in the shadow of the magnet coils.

2.3.4 Time of Flight Counters

To determine the mass of a charged particle, TOF counters are used to provide high

resolution timing measurements. The TOF counters cover a polar angle from 8o to 142o and

nearly the entire azimuthal angle. Their relative positioning with respect to other detector

subsystems is seen in Fig. 2.3 and Fig. 2.4. The TOF counters of one sector consist of 48

scintillator strips, as seen in Fig. 2.7. Each scintillator strip is uniformly 5.08 cm thick, and

is positioned perpendicular to the beam direction. The width of a strip varies from 15 cm

for the forward angles and 22 cm for the large angles, and the length is between 30 cm to

450 cm. Therefore, TOF counters cover a total surface area of 206 m2. At each end of the

scintillator strip, there are PMTs to read out the signal.

2.3.5 Electromagnetic Calorimeters

As we discussed in section 2.3.3, Cerenkov counters can separate the electrons from pions

up to a pion energy 2.5 GeV. At 2.5 GeV, pions start emitting Cerenkov light, and therefore,
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Beam

Figure 2.7. TOF counters in one sector, also shown are the scintillator strips with a PMT at
each end. The width of a strip varies from 15 cm to 22 cm, and the length is between 30 cm to 450
cm.

pion electron separation fails by this method. Fortunately, at these higher energies, the

electromagnetic calorimeters can be used to discriminate electrons and high energy pions.

The EC can detect and trigger electrons at energies above 0.5 GeV and photons at energies

above 0.2 GeV. In addition it can also detect neutrons and be used to reconstruct π0 and η

from the measurement of their two decay photons.

Like the Cerenkov counters, the EC covers 80% of azimuthal angle and a polar angle

from 8o to 45o. Each sector contains one calorimeter unit which is made of 39 alternating

layers of 10 mm thick scintillator strips and 2.2 mm lead sheets with a total thickness of 16

radiation lengths. A ratio 0.24 of lead to scintillator thickness is used, requiring 39 cm of

scintillator and 8.4 cm of lead. With this ratio, around 30% of the energy in a shower is

deposited in the scintillator.

In order to fit the hexagonal geometry of the CLAS forward sectors, each lead or

scintillator layer is shaped like an equilateral triangle. For the purposes of readout, each

scintillator layer is divided into 36 strips parallel to one edge of the triangle. Each three

successive scintillator layers are rotated 120o with the orientation of the strip, and labeled

as U, V and W, as shown in Fig. 2.8. Therefore, each EC module consist of 13 U-planes, 13

V-planes, and 13 W-planes. These three orientations or views help to determine the location
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of the shower. To provide longitudinal sampling of the shower for improved electron and

hadron separations, each EC module is subdivided into an inner (15 layers) and outer (24

layers) stack. For each stack, the strips in the same position from the same view are connected

to one PMT through a fiber optic cables. Thus there are 36(strips)× 3(views)×2(stacks)=216

PMTs in each module.

The EC operates on the principle that the particle deposits energy in detector material.

When the particle hits the EC, it deposits the energy in the scintillator material and produces

the light which is collected by PMTs. There are two modes of depositing energy in the

scintillator, ionization and radiation. Electrons release all of the energy through radiation

and produce the showers of e+e− pairs, while heavier hadrons, such as pions, lose energy

through minimum ionization. For minimum ionizing particles, such as pions, the energy

released both in the inner stack and outer stack of the EC is only related with the thickness

of the inner and outer stacks, and independent on the pion energy. This makes it possible

to separator electrons from pions which can not be discriminated by the CC.

Figure 2.8. Exploded view of one of the six CLAS electromagnetic calorimeter modules.
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2.3.6 Data Acquisition System and Trigger

There are two levels of trigger system in the CLAS, the Level-1 and Level-2 trigger.

The Level-1 trigger is dead-timeless, processing all prompt PMT signals. The trigger signal

for Level-1 trigger is the coincidence signal from the CC and EC (the TOF signal can be

included). To reject backgrounds such as cosmic-rays which can set the Level-1 trigger,

the Level-2 trigger is used to find the “likely tracks” in the drift chamber system. If no

correlated tracks are found by the Level-2 trigger, the trigger supervisor send a fast-clear to

the front-end electronics, and reset them.

During EG1b runs, only the Level-1 trigger was used. The trigger thresholds for EG1b

experiment are summarized in Table 2.1. The Level-1 trigger required the matching CC and

EC signals in coincidence. The thresholds were selected appropriately for each beam and

torus setting. The trigger thresholds can be found at [36]. The more information on the

CLAS trigger system is given in Ref.[37].

Table 2.1. EG1b Trigger Thresholds.

System Threshold(in mV) Threshold(in GeV)
Electromagnetic Calorimeter 150 0.6

Cerenkov Counters 20 < 1 photo-electron

If there is a trigger, the data signals from all the detector parts are digitized in 24

FASTBUS and VME crates and collected by the 24 VME Readout Controllers (ROC1 to

ROC24) in these crates. The arrays of digitized values are translated into tables, buffered

and then transfered through fast Ethernet lines to the online data acquisition computer

(CLON10). CLON10 performs three primary processes, the event builder, event transport,

and event recorder, see Fig. 2.9. The event builder puts together the data from various

detector components and builds complete events. The completed event is prefixed by headers,

which contains a run and event number, event type, and the trigger bits. The event builder

transfers the completed events to shared memory on CLON10. Some events are sent to

remote event transport, such as ET2 and ET3, for online monitoring. The event recorder

read out all events from ET1 for permanent storage. The data are written in a single stream
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to RAID (Redundant Array of Inexpensive Disk) disks, then transferred to the remote tape

SILO for permanent storage.
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Figure 2.9. A schematic view of the CLAS data flow. Also shown ET1 shared memory in
CLON10 computer, and remote shared memory (ET2, ET3) for online monitoring. The data are
written in tape SILO for permanent storage.

2.4 Polarized Target

In EG1b experiment, the targets were longitudinally polarized 15NH3 and 15ND3. In

addition to the polarized targets, 4He, 12C and frozen 15N targets were also used to study

the dilution due to the unpolarized material in the target. An 15NH3 or 15ND3 target was

placed in 1 K liquid helium bath, and polarized using Dynamic Nuclear Polarization (DNP)

technique. The polarization of the target was monitored using a Nuclear Magnetic Resonance

(NMR) system. In this section, more details on the target system, target materials and DNP

theory, are discussed.
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2.4.1 The Target System

Typically targets are located in the center of CLAS. To minimize the effect of the CLAS

toroid magnetic field, the polarized target system was not located in the center of the CLAS,

but positioned 55 cm upstream of the center of the CLAS. This shift off of center also makes

the acceptance larger due to the coverage of the coverage of the target magnet. The target

system is shown in Fig. 2.10, which consist of the following subsystems,

• A superconducting magnet produces a 5 T magnetic field parallel to the beam direction.

The field is uniformly good to 10−4 over a cylindrical volume of 20 mm in diameter

and 20 mm long. This uniformity is necessary for DNP. The magnet is composed of a

pair of Helmholtz coils, which are cooled to 4.2 K via a liquid helium reservoir located

outside CLAS. Due to the coils, only the particles with scattering angle 0− 50o as well

as 75 − 105o are allowed to get in the CLAS.

• The 1 K refrigerator cools the target to 1 K.

• The target insert carries the four targets: the top one is ND3, followed by carbon then

NH3, and finally an empty target, as shown in Fig. 2.11. The insert is moved up or

down with a stepping motor, therefore, the target can be switched mechanically. Each

target cell is 10 mm in length and 15 mm in diameter. The thickness of the cell walls

is 0.2 mm. In addition, each cell is sealed using a 0.025 mm thick aluminum foil at

entrance window, and 0.05 mm thick kapton foil at exit window. The insert also carries

the NMR coils to monitor the polarization and the temperature sensors to monitor the

temperature of the target materials.

• A microwave system provides the microwave field necessary to polarize the target

material. The microwave frequency may be varied up to a bandwidth of 2 GHz. This

allows to polarize the target into either negative or positive spin state without reversing

the magnetic field.

• A NMR system. The NMR coils are surrounded the polarized target, and continuous

wave NMR is used to monitor the NH3 or ND3 polarization.

Ref.[38] describes target system in more details.
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Figure 2.10. Cutaway view of EG1b polarized target system. The figure is from Ref.[38].

2.4.2 Polarized Target Materials

The polarized targets were frozen ammonia, 15NH3 and 15ND3. Ammonia was chosen

because of its good resistance to depolarization by beam radiation. In addition ammonia

has a high percentage of free nucleons, roughly 16.5% for 15NH3 and 26.6% for 15ND3.
15N

was chosen rather than usual 14N ammonia because 15N doesn’t have any free neutron,

whereas 14N has one. All free nucleons can be polarized, while we only want the polarized

nucleons in hydrogen or Deuterium. Therefore, 15N ammonia could have a smaller correction

and error than 14N on the spin asymmetry measurement.

In summary, the performance goals of CLAS are summarized in Table 2.2.
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Figure 2.11. Schematic of target insert. The figure is from Ref.[38].
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Table 2.2. Summary of the CLAS detector characteristics [37]

Capability Quantity Range
Coverage charged particle angle 8o ≤ θ ≤ 140o

charged particle momentum p ≥ 0.2 GeV/c
photon angle (4 sectors) 8o ≤ θ ≤ 45o

photon angle (2 sectors) 8o ≤ θ ≤ 75o

photon energy Eγ ≥ 0.1 GeV
Resolution momentum (θ <

∼ 30o) σp/p ≈ 0.5%
momentum (θ >

∼ 30o) σp/p ≈ (1-2)%
polar angle σθ ≈ 1 mrad
azimuthal angle σφ ≈ 4 mrad
time (charged particles) σt ≈ (100-250) ps

photon energy σE/E ≈ 10%/
√
E

Particle ID π/K separation p ≤ 2 GeV/c
π/p separation p ≤ 3.5 GeV/c
π− misidentified as e− ≤ 10−3

Luminosity electron beam L ≈ 1034 nucleon cm−2s−1

photon beam L ≈ 5 × 1031 nucleon cm−2s−1

Data acquisition event rate 4 kHz
data rate 25 MB/s

Polarized target magnetic field Bmax = 5 T
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CHAPTER 3

EVENT RECONSTRUCTION

3.1 overview

The data recorded during the experiment are mostly acquired from time-to-digital

converters (TDCs) or analog-to-digital converters (ADCs). These TDCs and ADCs values,

so-called “raw” data, can not directly be used for physics analysis. A CLAS reconstruction

program converts TDCs and ADCs values into hits and tracks, and ultimately determines

the energy and momentum of the particles. The process of reconstructing hits and tracks

is called geometric reconstruction. To obtain proper measurements each detector element

must be calibrated. Typically each detector component is calibrated separately, and the

proper calibration constants obtained are stored in the database which is later used by data

reconstruction program. Usually, both calibrating the detector and processing the data are

done in several cycles to acquire a desired level of accuracy.

The final state particles of DVCS include an electron, a proton and a photon. Particle

identifications in each event for the electron, proton and photon are crucial and require

careful development. Although, particles are identified during the data processing, more

stringent cuts are required to remove contamination from misidentified particles. Due to

the alignment of the drift chamber position and small unknown shift of the torus magnetic

field used in the reconstruction code, the electron momentum is always slightly shifted. To

improve the accuracy, the electron momentum is studied resulting in momentum correction

which are applied to the data. In addition, in this chapter, the proton energy loss correction,

photon energy correction, and fiducial cuts are also discussed.
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3.2 Track Reconstruction for Charged Particles

When a charged particle passes through the drift chamber, it ionizes the gas and produces

the ions. The negative ions drift to the sense wires and and fire them. Each fired drift cell is

called one “hit”. To reconstruct the track of a charged particle, the adjacent hits are clustered

in groups within each superlayer. In each cluster, there may be one or more track segments,

therefore, a lookup table of road maps, which is generated by Monte Carlo procedure, is

used to find the track segment which is consistent with a track crossing a superlayer. The

identified track segments from each superlayers are linked together to form a track across the

three regions within a sector. This also uses a look-up table. The track’s initial parameters

are estimated by comparing the track to the look-up table. Then, the track is fitted using

the position of each hit, and is propagated through out of DC. This procedure is called

hit-based track (HBT) fitting. The fit provides a preliminary momentum for the charged

particle. Since the drift cell is comparatively small, the resolution of preliminary momentum

is already 3% to 5%.

To further improve the tracking resolution, flight-time information is used to correct

the track position. First, the particle’s time of flight information is used to correct the

measured drift times. The drift times are then converted to drift distances using a calibrated

drift velocity. The final parameters of the track are acquired by fitting the corrected track

positions of each drift cell. This procedure is called time based track (TBT) fitting.

The drift time is given by the following equation[29]:

tdrift = tstart + t0 − tTDC − tflight − tprop − twalk (3.1)

where,

• tstart is the event start time,

• t0 is the fixed time delay for the wire,

• tTDC is the raw time measured by the TDC,

• tflight is the flight time of the particle from the reaction vertex to the wire,

• tprop is the signal propagation time along the wire,
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• twalk is a time-walk correction made for short drift times due to different ionization for

slow and fast particles.

Note that tTDC is subtracted in the equation above because the TDCs are operated in

common stop mode, where the start signal to TDCs is provided from the individual wire hits,

while the stop is provided by a delayed version of the CLAS trigger[39]. All these parameters

are acquired by DC calibrations.

Through a drift velocity function, the drift time determines the distance-of-closest-

approach (DOCA) of the charged particle’s trajectory to the sense wire. However, this

distance can not predict which side of the wire the hit is on. This ambiguity is resolved

within each superlayer by trying all combinations and selecting the most probable one.

Once the sides of wire are decided, the final track is formed for each superlayer.

As described in the previous chapter, the target magnet is used to polarize the target

during the experiment. The target magnet provides the longitudinal magnet field, therefore,

when the charged particle fly from the the target to first Region of DC, the trajectory is

bended in φ direction. Since the target magnet field decreases rapidly as distance increases,

the effect is only limited in the space inside of the first Region of DC. Knowing the track

information at first superlayer of DC and the target magnet field, the charged particle track

is then traced to the reaction vertex to give initial direction (θ and φ).

3.3 Outer Detector Matching

Once the track of the charged particle is formed in DC, the track path is projected to

the outer detector components, such as Cerenkov counters, Time-Of-Flight counters, and

electromagnetic calorimeters. For a good track, each projected track must match a hit

in each detector component. The matching requirements are listed for different detector

components.

• Cerenkov counters

As described in Chapter 2, the light-collection optics of Cerenkov counter system are

placed in the shadows of magnet coils, therefore, Cerenkov counters do not provide

azimuthal information of the reconstructed hit. For a good match, a polar angle

different between projected hit and detected hit is less than 12o.
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• Time-Of-Flight counters

|zp−zh| < 30cm is required for the matching of the projected track with the detected hit

in TOF counters, where zp is the z position of the projected hit and zh is the z position

of the detected hit on the TOF counter. Again no cut on azimuthal information is

required.

• Electromagnetic calorimeter

The three views of the electromagnetic calorimeter allow to reconstruct the hit position

in the calorimeter. A good match to the calorimeter requires that the distance between

the projected hit and detected hit should be less than 30 cm.

3.4 Start Time Reconstruction

In Eq. (3.1), the event start time, tstart, is used to calculate the drift time. The start time

is not measured directly, but calculated from the electron’s time of flight. The scattering

electron is identified from negative tracks using only the signals from Electromagnetic

Calorimeter and Cerenkov Counter. Once the electron is identified, the reaction start time

can be traced back using the TOF signal and the flight path length (l) from target to TOF

counter. The start time is given by following equation:

tstart = ttof − l

βc
(3.2)

where ttof is the time when the electron hits the TOF counter, β is the ratio of the electron

speed to the light speed in the vacuum, and c is the speed of light in vacuum. Due to the

comparatively high momentum and low rest mass for the electron, β = 1 is assumed. The

resolution of the start time given with above equation is approximate 160 ps[40].

To further improve the accuracy of the start time, the information of RF structure of

electron beam is used. Due to the RF structure of the accelerator, the beam is delivered

in bunches referred to as the RF bucket. During experiment, the electron beam bucket

is delivered to Hall-B every 2 ns. This RF time is know very precisely. The arrival time

of the electron beam bucket is recorded. Ideally, the start time calculated with Eq. (3.2)

should coincide with the arrival time of one of the electron buckets. While, due to the finite
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resolution, the reconstructed start time follows a Gaussian distribution with centroid around

RF time. Since the width of the time resolution is much less than the time delay (2 ns)

between two electron buckets, the RF time of the electron bucket initiating the event can be

used to replace the reconstructed start time.

3.5 Neutral Particle Reconstruction

Compared to charged particles, the neutral particle is much easier to reconstruct. Neutral

particles are detected by the electromagnetic calorimeter, scintillator counter, or both. The

neutrals are identified as electromagnetic calorimeter hits that do not have matching DC

tracks. The spatial location, deposited energy, and the time of the EC hit are enough to

determine the four-momentum of the particle. Since both π0 and η mesons decay into two

photons, both of them can be reconstructed by detecting two photon hits. The invariant

mass of two coincident photons can be used to identify π0 or η. From the measured energy

(Eγ) and the angle (θ12) between two photons, the invariant mass (M2γ) is given by[33]

M2γ = 2Eγ1Eγ2(1 − cosθ12) (3.3)

The resolution depends on the measured energy. The neutrons are distinguished from

photons by EC timing (the flight from reaction vertex to EC). The neutron detection

efficiency rises from zero at 0.4 GeV/c to a plateau of approximately 60% above 1.6

GeV/c[33].

3.6 Particle Identification

3.6.1 Electron Identification

During the EG1b run, the hardware trigger required coincident signals of the electro-

magnetic calorimeter and the Cerenkov counters to increase the likelihood that there was

an electron candidate for each event. The CLAS reconstruction program rejects some of

events using a more restrictive definition of an electron candidate. In the processed data, the

electron candidates may be contaminated by negatively charged particles, such as high energy

π−, which can trigger both Cerenkov counters and calorimeter. In order to minimize the
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contamination from negative particles, additional cuts are utilized. This includes using the

number of photoelectrons in Cerenkov counters, and the deposited energy in the calorimeter.

3.6.1.1 Cerenkov Cut

In CLAS, the Cerenkov counters are used to separate electrons from pions up to

momentum of 2.5 GeV/c. However, pions with momentums above 2.5 GeV/c can produce

Cerenkov light, and therefore, they are mis-identified as high energy electrons. To remove

the pion contamination, a cut on the number of photoelectrons is used. The photoelectron

distribution is shown in Fig. 3.1. The peak around 2 photoelectrons is due to detector

acceptance of the Cerenkov light and high energy pions which emit the Cerenkov light.

Detector acceptance is taken into account by fiducial cuts which will be discussed later in

this chapter. The pion contamination is removed by requiring the number of photoelectrons

greater than 2.5.
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Figure 3.1. The number of photoelectrons detected in the Cerenkov counters for 5.625 GeV data.
The dashed line indicates the applied cut, and electrons are selected by requiring the number of
photoelectrons greater than 2.5. Events are from ep → epX, requiring Q2 > 1, W > 2.
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3.6.1.2 Electromagnetic Calorimeter Cuts

Electrons and pions deposit energy in the calorimeter differently. Electrons interact in

the calorimeter producing electromagnetic showers and release all of the energy, Etot, which

is proportional to their momentum, P . The constant fs = Etot/P is the sampling fraction

determined by the detector, and is around 0.27 in the case of CLAS. On the contrary, pions

release the energy in the calorimeter by ionization and hadronic interactions, and only deposit

part of their energy. For pions, the energy deposited in the inner and outer stacks of the

calorimeter is independent on the pion energy and only depends on the detector thickness.

Since the ratio of inner to outer stack thickness is 5:8, the ratio of the deposited energy

in inner stack (Ein) to that in calorimeter (Etot) is given by: Ein : Etot = 5 : 13. The

different interactions can be used to separate electrons from pions. In order to remove the

pion contamination, the following cuts are applied, Etot/P > 0.2 and Ein/P > 0.08, see

Fig. 3.2.

3.6.2 Proton Identification

In this analysis, reaction ~e~p→ epγ is studied, therefore, the proton is measured. During

the standard event reconstruction, the proton is identified, however the proton identification

can be improved.

The protons were identified with the charge, momentum, the track length from target

to scintillator counters (SC) paddles, and the time-of-flight (TOF) from the target to SC

paddles. The velocity of the proton can be calculated using the track length and the time

of flight from the target to the scintillator. Then β can be calculated with the following

equation[41]:

β =
R

c · tTOF
(3.4)

where R is the track path length from the target to SC paddles and tTOF is the time-of-flight

after subtraction of event start time. On the other hand, β can also be calculated with

equation[41]:

βcalc =
p√

p2 +m2
(3.5)
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Figure 3.2. Electromagnetic calorimeter cuts. In the upper plot the straight line shows Etot/p
cut, and in the lower one the line shows Ein/p. Electrons are selected by requiring Etot/P > 0.2
and Ein/P > 0.08. Event samples are from ep → epX, requiring Q2 > 1, W > 2.

45



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

0

1000

2000

3000

4000

5000

6000

7000

P                      GeV/c

β

Figure 3.3. The dependence of β from Eq.(3.4)on the measured momentum for positively charged
particles. Bands for pions, protons and deuterons are clearly visible.

where m is the rest mass of the charged particles(e.g., proton, pion, kaon, deuteron etc.),

and p is the measured momentum.

Fig. 3.3 shows β versus the measured momentum (p) for positively charged particles. Due

to the different rest masses, bands for pions, protons and deuterons are clearly visible. To

isolate the proton band, the β from Eq.(3.4) is compared with βcalc from Eq.(3.5) in which

m is set as the proton mass. The difference between β and βcalc is shown in Fig. 3.4. With

the proton identification defined as |β−βcalc| < 0.05. The proton is well identified, as shown

in Fig. 3.5.

3.6.3 Photon Identification

A neutral particle is identified with the electromagnetic calorimeter information. The

neutrals are identified as EC hits that do not have matching DC tracks. The neutron and

photon can be separated with time-of-flight from the target to the calorimeter. In Figure 3.6,

the sharp peak around β = 1 corresponds to photons. A strict cut β > 0.95 is used to
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Figure 3.4. The distribution of β − βcalc as a function of momentum for positively charged
particles. βcalc is calculated with Eq.(3.5) assuming m = 0.938 (GeV/c2)2. Three clearly
visible bands are corresponding to pions, protons and deuterons. Protons are selected requiring
|β − βcalc| < 0.05.

select photons for photon energy corrections and π0 reconstructions. Here, it is worthwhile

mentioning that the photon identification is not used to select the reaction ~e~p → epγ. In

this analysis, all neutrals are included, and the angular cut (see Chapter 5) can remove the

events with neutrons.

3.7 Corrections

3.7.1 Electron Momentum Correction

The reconstructed electron momentum has systematic uncertainties, which can be seen

from the slight shift of the elastic peak in the W distribution of inclusive electrons, as

shown in Fig. 3.7. The peak is shifted to the left from the theoretical value 0.9382 GeV/c2,

and is also broader than what it should be expected from the CLAS resolution. This is

a well known problem due to the misalignment of the drift chambers to normal positions,
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Figure 3.5. The dependence of β on momentum for positively charged particles after the proton
cut.

incomplete knowledge of the shape and location of the torus coils, and incorrect information

of drift chambers in reconstruction code. An electron momentum correction method was

developed by A. Klimenko [42] for the E6 experiment and is also used for EG1b. This

method corrects both the electron momenta and polar angles, assuming that the momentum

deviations are due to systematic displacements of the drift chambers and magnetic field

differences from the field map used in the reconstruction code. The effect of drift chamber

displacements on the given reconstructed track is written as a change ∆θ in the polar angle

and a change ∆p in the momentum:

∆θ = (A +Bφ)
cosθ

cosφ
+ (C +Dφ)sinθ, (3.6)

and

∆p

p
= ((E + Fφ)

cosθ

cosφ
+ (G+Hφ)sinθ)

p

qBTorus

(3.7)
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Figure 3.6. The total energy of a hit in EC for all of neutrals before (left) and after (right)
photon ID

where q is the particle charge, p is the reconstructed momentum, θ is the reconstructed

scattering polar angle, and φ is the reconstructed azimuthal angle which is untouched in this

method. In Eq. (3.7), p/qBTorus is proportional to the amount of curvature of the track,

which determines the effect of a misalignment of the drift chambers. BTorus is a function

of θ: BTorus = 0.76 ITorus

3375
sin24θ

θ
for θ < π

8
and BTorus = 0.76 ITorus

3375θ
for θ > π

8
. The magnetic

field deviation from the field map encoded in the reconstruction code is corrected by adding

another function f(θ, φ) to Eq. (3.7). The function f(θ, φ) is parameterized as follows:

f = (Jcosθ +Ksinθ + Lsin2θ) + (Mcosθ +Nsinθ +Osin2θ)φ (3.8)

with another 6 parameters (J-O).

The 14 parameters (A-O) in above equations are determined based on sector by sector

using the elastic scattering p(e,e’p’). The elastic events p(e,e’p’) are selected by requiring

179o < |φe − φp| < 181o, |E(miss)| < 0.1 GeV, |Pz(miss)| < 0.1 GeV/c, |Px(miss)| < 0.07
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Figure 3.7. W elastic peak for inclusive electron scattering before (top) and after (bottom)
the momentum correction. The data are 5.6 GeV inbending data. After applying the momentum
correction, both the peak position and peak width are improved.

GeV/c, and |Py(miss)| < 0.07 GeV/c (Fig. 3.8). Technical details about the fitting program

is described in the CLAS note 2003-005[42].

After the 14 parameters are acquired, both electron polar angle and momentum can be

corrected:

θ → θ + ∆θ,

p→ p(1 +
∆p

p
). (3.9)

Fig. 3.7 show the W distribution for inclusive electron scattering after applying the

electron momentum corrections. After corrections, both the centroid and the width of the

peak are improved, and closer to theoretical values.

As discussed above, the 14 parameters for the electron momentum correction are

determined from the elastic p(e,e’p’) events, while in this analysis, the kinematics of DVCS

events are a little bit different with those of elastic events. To verify if the above method is

applicable in this analysis, the MM 2
X of (ep) for both ep → epγ and ep → epπ0 is studied.
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Figure 3.8. The missing four momenta distribution of events within 179o < |φe − φp| < 181o.
The dashed lines represent the cuts applied to select elastic events, which are used to determine
the parameters (A-0).

As deep inelastic scattering (DIS), both epγ and epπ0 are selected requiring Q2 > 1 GeV2/c2

and W > 2 GeV/c2. For epγ selection, the events with only one electron, one proton and

one photon are selected. Due to the calorimeter coverage (8o to 45o), one detected photon

events do not mean the single photon production, because the second photon can escape

the detection. Therefore, to clean photon production, an angular cut θγγ′ < 1o is applied,

where θγγ′ is the angle difference between the detected photon (γ) with the calorimeter

and the calculated photon (γ ′) expected from ep. The π0 can be reconstructed from two

detected photons requiring invariant mass of two photons (Mγγ) between 0.1 GeV/c2 to 1.8

GeV/c2. To clean π0 production, the angular cut θπ0X < 2o is used, where θπ0X is the angle

difference between the reconstructed pion (π0) and the calculated pion (X) expected from

ep. Both inbending data and outbending data are tested. The plots in Fig. 3.9, Figure 3.10,

Figure 3.11, and Figure 3.12 show that the electron momentum correction works well for

deep inelastic scattering events.
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Figure 3.9. The MM 2
X of (ep) for ep → epγ before (left) and after(right) the electron momentum

correction. Events are selected by requiring W > 2 GeV/c2, Q2 > 1GeV2/c2, and θγγ′ < 1o, where
γ is the detected photon with calorimeter, and γ ′ is the calculated photon expected from ep → epX.
The data are from the inbending data set. The centroid and width of the MM 2

X peak is improved
as a result of electron momentum corrections.

3.7.2 Proton Energy Loss Correction

Due to the ionization losses, the low momentum protons lose some energy when they pass

through the target and the CLAS detector. This can be seen in the plot of MM 2
X versus the

proton kinematic energy. In the upper panel of Figure 3.14, due to the proton energy loss,

the centroid of MM 2
X becomes negative as the proton kinetic energy Tp becomes smaller.

The proton energy loss correction function is derived from GEANT simulations which

simulates the physics of energy loss due to material in the trajectory path. The generated

DVCS events were used as an input for GEANT, and the protons were reconstructed with the

CLAS reconstruction program. The relationship between the generated and reconstructed

proton momenta are parameterized, as shown in Fig. 3.13, and the correction function is
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Figure 3.10. The MM 2
X of (ep) for ep → epγ before (left) and after(right) the electron momentum

correction. The data are selected by requiring W > 2 GeV/c2, Q2 > 1GeV2/c2, and θγγ′< 1o,
where γ is the detected photon with calorimeter, and γ ′ is the calculated photon expected from
ep → epX. The data are from the outbending data set.The centroid and width of the MM 2

X peak
is improved as a result of electron momentum corrections.

given by,

Pp = Pm + Pm(5.1771 × 10−2 − 6.4041 × 10−2

Pm

+
2.2657 × 10−2

P 2
m

) (3.10)

where Pm is the measured momentum of the proton, and Pp is the corrected momentum of

the proton in unit of GeV/c.

After applying the above energy loss correction function, the MM 2
X is independent of the

proton kinetic energy as seen in the lower panel of Figure 3.14.

3.7.3 Photon Energy Correction

In the CLAS reconstruction code, the photon energy is calculated with the following

formula,
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Figure 3.11. The MM 2
X of (ep) for ep → epγγ before (left) and after(right) the electron

momentum correction. The data are selected by requiring W > 2 GeV/c2, Q2 > 1GeV2/c2,
0.1GeV/c2 < Mγγ < 0.18GeV/c2 and θπ0X < 2o, where the π0 is reconstructed from two detected
photons with calorimeter, and X is expected from ep. The data are from the inbending data
set. The centroid and width of the MM 2

X peak is improved as a result of electron momentum
corrections.

Eγ = Eec/fs, (3.11)

where Eec is the total visible energy deposited in the scintillators, and fs is the sampling

fraction, which is the ratio of energy deposited in the active part of the calorimeter

(scintillator) and the incident particle energy. The value fs = 0.273 is typically used. It

works well for photons with energy less than 1 GeV. But for high energy photons, especially

those with energy greater than 2 GeV, it does not work well. The reconstructed energy of

the high energy photon is over estimated. See Fig. 3.15.
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Figure 3.12. The MM 2
X of (ep) for ep → epγγ before (left) and after(right) the electron

momentum correction. The data are selected by requiring W > 2 GeV/c2, Q2 > 1GeV2/c2,
0.05GeV/c2 < Mγγ < 0.18GeV/c2 and θπ0X < 2o, where the π0 is reconstructed from two
detected photons with calorimeter, and X is the calculated π0 expected from ep → epX. The data
are from the outbending data set. The centroid and width of the MM 2

X peak is improved as a
result of electron momentum corrections.

To correct the photon energy, fs is estimated using the reconstructed energy and

reconstructed momentum of electrons, for which fs depends also on scintillator quality and

software reconstruction algorithms. The dependence of sampling fraction on the electron

energy is shown in Fig. 3.16, and it is parameterized as the following function,

fs = 0.3065 − 0.03356/E. (3.12)

From Eq.(3.12), fs as a function of Eec can be concluded as follows,
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Figure 3.13. The proton momentum correction function (solid line) from GEANT simulations.
The points are profiles of the difference between the generated proton momentum and the
reconstructed proton momentum versus the reconstructed proton momentum.

fs · Eec = 0.3065 · Eec − 0.03356 · Eec/E,

fs ·Eec = 0.3065 · Eec − 0.03356 · fs,

fs · (Eec + 0.03356) = 0.3065 · Eec,

fs =
0.3065Eec

Eec + 0.03356
. (3.13)

When the energy of the photon is greater than 1 GeV, the energy is recalculated

using the above new sampling fraction with Eq.(3.11). Fig. 3.17 shows the dependence

of missing energy on photon energy for reaction ep→ e′p′γX after photon energy correction.

Comparing with Fig. 3.15, the energy of high energy photon is greatly improved after fs

correction.

One may ask if the sampling fraction of the electron is different from that of the photon.

GEANT studies show that the sampling fraction fs is same for both photons and electrons

with the exception of a few percent difference at low energies. See Fig. 3.18.
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Figure 3.14. Missing mass squared of (ep) dependence with respect to the proton kinetic energy
for the reaction ep → epγ. The upper (lower) panel is before (after) proton energy loss correction.
Due to contribution from π0 events, the centroid of MM 2

X is above 0.

3.8 Fiducial Cuts

The CLAS detector has holes and regions where the acceptance efficiency is not 100%.

The holes are mainly because of the torus coils, and some are due to the hardware problem,

such as dead wires in drift chambers, broken PMTs in Time-Of-Flight counters. For electrons,

the Cerenkov efficiency fluctuates very much at the edge of the detecter, which is pooly

understand (see Fig. 3.19). To reduce the systematic uncertainties due to the inefficient

regions, the events detected by inefficient part are excluded from the data. These cuts are

called fiducial cuts. Therefore, fiducial cuts for electrons, protons, and photons are developed.
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Figure 3.15. The missing energy (EX) vs photon energy for reaction ep → e′p′γX. The average
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over estimated in reconstruction codes.
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Since the acceptance efficiency depends on the torus current, the fiducial cuts are studied

for each data set with different torus current.
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Figure 3.19. The number of photoelectrons vs φDC vs θDC for electrons with momentum between
1 and 3 GeV/c. The inefficient regions close to the edge are clearly visible. The data are 5.6 GeV
inbending data.

3.8.1 Electron Fiducial Cut

The electron fiducial cut for EG1b data is developed by Volker Burkert and modified by

Vipuli Dharmavardane[43, 44]. The cut is determined by evaluating the Cerenkov efficiency

in the θ versus φ plane. For each bin of (θ,φ), the number of photoelectrons is a Poisson

distribution, therefore, the inefficiency for each bin is calculated as:

inefficiency =

n<c∑

n=0

µne−µ

n!
(3.14)

where c is the threshold of Cerenkov counters by unit of number of photoelectrons,

and µ is the expected average number of photoelectrons. In this analysis, 80% efficiency is

acceptable. With known inefficiency, µ is determined for each data set. Then, the inefficiency

function can be extracted.
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For inbending electrons, the efficiency function of θ and φ has been studied[45]. The

fiducial region is defined as the area with an efficiency greater than 80%. For outbending

electrons, the efficiency function is not available. The inefficiency area is identified by the

number distribution of photoelectrons on φ versus θ plane.

The general form of the fiducial cut for inbending electrons is as follows:

30o − ∆φ < φsec < 30o + ∆φ (3.15)

45o > θDC > θcut (3.16)

where φsec is the azimuthal angle at DC superlayer 1 in sector coordinates, i.e., ranging

between 0 and 60o. ∆φ and θcut are given by

∆φ = A(sin(θDC − θcut))
expon (3.17)

expon = B(pscaled)
C (3.18)

θcut = D +
E

pscaled + F
(3.19)

where pscaled = p3375
I

, is the electron momentum normalized to the maximum torus current

3375 A. By the normalization, the torus current effect on the fiducial cut is removed. θcut is

the minimum polar angle for accepted electrons, which depends on the electron momentum.

The parameter D takes care of θcut. The parameter E is related to how much the electron is

bended into the beam direction by the torus magnetic field. The parameter F controls how

much θcut depends on the electron momentum. Parameters A, B, and C control the azimuthal

angle range for accepted electrons. The parameters A through F are found empirically, and

listed in the Table 3.1. Fig. 3.20 shows the example for applied electron fiducial cut. The

angular distribution before and after the cut is shown in Fig. 3.21, and it is clear that the

low efficient region is removed.

The outbending electrons have different inefficient regions with the inbending electrons,

see Fig. 3.22. The center area of each sector is also low efficient region for outbending
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Figure 3.20. The number of photoelectrons distribution on φ vs θ plane for four momentum
bins, and the electrons are detected by sector 2. The region inside black lines represent the fiducial
area. The plots is a courtesy of V. Dharmavardane.

electrons, therefore, in addition to the edge of each sector, the center area is also excluded.

The general forms of the fiducial cut for outbending electrons are as follows,

30o − ∆φ < φsec < 30o + ∆φ, (3.20)

θmas > θDC > θcut, (3.21)
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Figure 3.21. φDC vs θDC before and after the fiducial cut for inbending electrons. The low
efficient region is removed by the cut.
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Table 3.1. Parameters for the fiducial cut of inbending electrons.
Parameters A B C D E F

Values 25.0 0.15 0.25 9.0 16.72 0.075
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Figure 3.22. The same figure as Fig. 3.19 but for out bending electrons. The inefficient area
around 30o is clearly visible, which is not for inbending electrons.

where

∆φ = A′(sin(θDC − 6.5))expon, (3.22)

expon = B′(pscaled/5)C′

, (3.23)

θcut = D′ + E ′(1 − pscaled/5)F ′

, (3.24)

θmax = min(40, θnorm), (3.25)

θnorm = 35[(p
3375

|I| + 2.5)
1

5
]
1

3 andpscaled = p
1500

|I| . (3.26)
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To remove the center area of each sector, the following cut is required,

φsec > 30o + φcenter or φsec < 30o − φcenter, (3.27)

and,

φcenter =
G′

sin(θDC +H ′)
. (3.28)

Parameters A′ through H ′ are also determined empirically. The values are listed in Table 3.2.

Parameters G′ and H ′ are related the sector, then not listed here. An example of the fiducial

cuts for outbending electrons in 6 momentum bins is shown in Fig. 3.23

Table 3.2. Parameters for the fiducial cut of inbending electrons.

Parameters A′ B′ C′ D′ E′ F′

Values 25.0 0.15 1/24 9.0 25. 24

3.8.2 Proton Fiducial Cut

The proton fiducial cut has a similar form as the electron fiducial cut, but it is less

restrictive, because the Cerenkov counter is not used to detect protons. Therefore, the low

efficient regions for protons are mainly at the edge of the detector and due to the hardware

problem, such as broken wires in drift chambers, dead PMTs in Time-Of-Flight counters,

etc. The general form for protons are similar to those of inbending electrons, except the θcut

is

θcut = D + E(1 − pscaled/5)F . (3.29)

θcut is different because the torus magnet field has smaller effect on the proton. The

parameters A through F are also found empirically, and they are listed in the Table 3.3.

As described in Chapter 2, the Helmholtz coils of the target magnet block the particles

with polar angle between 45o to 75o. Therefore, additional cuts are used to remove protons

which scatter off the coils,
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Figure 3.23. The number of photoelectrons distribution on φ vs θ plane for outbending electrons
in six momentum bins. The gray shaded region represents the area with efficiency greater than
80%. The blue line denotes the maximum polar angle for accepted electrons, and black line denotes
the boundary of the appplied cut. The plots is a courtesy of V. Dharmavardane.
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Table 3.3. Parameters for the proton fiducial cuts.
Parameters A B C D E F
inbending 28.5 0.15 1/24 9.0 25.0 24.0
outbending 28.5 0.15 0.33 10.0 25.0 24.0

θDC < 39.5 − 0.223

pscaled − 0.424
+ 15.5pscaled − 6.1p2

scaledforinbendingdata, (3.30)

θDC < 34.5 − 0.223

pscaled − 0.424
+ 15.5pscaled − 6.1p2

scaledforoutbendingdata, (3.31)

The cut depends on the proton momentum which can be understood as follows. When

the charged particles pass through the axial field of the target magnet, they are bended

into the beam direction, in other words, the polar angle θ decreases. The magnet field has

different effect on charged particles with different momenta, and so magnet field cuts depend

on the particle momentum.

The low efficient regions close to the edge of the detector in the θ vs φ plane have been

removed. However, some additional low efficient regions exist, which are related to hardware

problems, such as broken wires in drift chambers, and bad scintillator paddles. These are

nearly independent on φ, and therefore are studied in θ vs p plane based on sector by sector.

The cuts are shown in Fig. 3.24. Fig. 3.25 shows the angular distribution before and after

the cut, and it is clear that the low efficient region is removed.

3.8.3 Photon Fiducial Cut

Since the photon trajectory is a straight line, the photon fiducial cut is much easier to

define. The photon fiducial region definition is described as follows.

When a photon hit location is close to the calorimeter edges, the shower could leak

outside. In this case, the photon energy can not be fully reconstructed. To exclude the

calorimeter edge, a safe region is defined which excludes the region that presents low photon

rates. Fig. 3.26 shows the fiducial region for photons (ep → e′p′γ). ep → e′p′γ events

are selected requiring θγX < 1o, and |Eγ − EX | < 0.2
√
Eγ , where X is expected from the
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Figure 3.24. θDC vs p for protons in six sectors. The proton momentum p is scaled to maximum
torus current 3375 A by a factor 3375

I
. The black lines show the cuts applied to remove the efficient

region.

scattering electron and recoiled proton. With above requirements, photons with energy not

fully reconstructed are excluded.

In summary, the event reconstruction procedure was described. The events are triggered

by the coincidence of Cerenkov counters and electromagnetic calorimeter signals, which

corresponds to one electron ensuring that each event has at least one electron candidate.

The start time was reconstructed using the electron’s flight time information and beam RF

structure. Once the start time was reconstructed, the charged particles were identified using
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Figure 3.26. Fiducial region for photons.

time of flight. Neutral particles were identified with electromagnetic calorimeter information.

After all particles were identified, the electron momentum correction, the proton energy

loss correction, and photon energy correction were applied to each event. To decrease the

systematic errors due to low efficient region of CLAS detector, only the events in the fiducial

region were selected. The remaining events were used in the physics analysis described in

later chapters.
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CHAPTER 4

CLAS DATA

4.1 Overview

This analysis is based on the data acquired from EG1b run period. These were taken from

Sep. 2000 to Apr. 2001. During the run, longitudinally polarized electrons were directed

onto a longitudinally polarized solid 15NH3, with the beam energies: 1.6 GeV, 2.6 GeV, 4.2

GeV, and 5.7 GeV. The polarization of the electron beam (Pe) was around 70% as measured

via a Moller polarimeter. The target[46] polarization was monitored with a NMR system,

and the proton polarization ranged from 60% to 80%. In addition to the polarized targets,

4He,12C and frozen 15N targets were also used to study the dilution due to the unpolarized

material in the target.

EG1b experiment was proposed to measure the spin structure of the neutron, and this

analysis is a by-product. Therefore, 5.7 GeV electron beam data are utilized. The 5.7 GeV

data consists of smaller data sets with different torus current and slightly different beam

energies: 5.764 GeV, 5.735 GeV, and 5.627 GeV. In particular, the data information used in

this analysis are listed in Table 4.1. Usually, when the torus current is positive, the electron

is bended into the beam direction, therefore the recorded data are called inbending data,

and when the torus current is negative, on the contrary, the electron is bended away the

beam direction, therefore, the recorded data are called outbending data.

During the data taking of the experiment, the detector failed and the DAQ system could

crash. To avoid these kinds of data, data quality is checked based on run by run. The

target polarization is measured by a NMR system and recorded during the run, however, it

is not highly reliable. An alternative measurement is to calculate the product Pe ∗ Pt from
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the elastic scattering asymmetry, then extract the target polarization (Pt) using the known

beam polarization (Pe).

In this chapter, the run selections, the data quality check, and the target polarization

calculation are described.

4.2 Quality Check and Run Selection

The terminology “deeply virtual“ means high virtulity (Q2 > 1 GeV2/c2) and high

hadronic mass (W > 2 GeV/c2) to avoid the resonant nucleon states. To satisfy the above

requirements, only the data with 5.7 GeV beam energy are used. The summary of data used

in this work is shown in Table 4.1.

Table 4.1. Data Summary

Beam Energy Torus Current Target Target Polarity(Pt)
5.628 GeV 2250 A NH3 Pt > 0

2250 A NH3 Pt < 0
2250 A 12C

5.736 GeV 2250 A NH3 Pt > 0
2250 A NH3 Pt < 0
2250 A 12C

5.736 GeV -2250 A NH3 Pt > 0
-2250 A NH3 Pt < 0
-2250 A 12C

5.764 GeV -2250 A NH3 Pt > 0
-2250 A NH3 Pt < 0
-2250 A 12C

Based on run by run, the data quality is checked to exclude the runs where some part of

the CLAS detector was not properly operated. Using bad data runs would result in wrong

normalization. Data quality is performed by checking the inclusive electron rates for each

sector. When CLAS works normally, the inclusive electron rate is a constant for each run.

While, if failure occurs, such as hardware problem on sector 5 of electromagnetic calorimeter,

the electron rate for sector 5 would be less than normal. Fig. 4.1 show the inclusive electron

rates for 5.6 GeV data.

72



Figure 4.1. The inclusive electron rate as function of the run number for six sectors[47]. In sector
5, some runs show the large deviation from the other runs, therefore, these runs are rejected.
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4.3 Target Polarization

To obtain the target spin asymmetry it is necessary to know the target polarization.

During data taking, target polarization was measured using the well known NMR system[46].

The NMR coils are positioned outside the target container, therefore, NMR measurement is

mostly the polarization of the outer region of the target material. Since the electron beam

can depolarize the target material, the polarization of the inner region is always smaller than

outer region. In addition, the NMR technique requires the value of the thermal equilibrium

resonance peak, introducing additional uncertainties due to the small thermal equilibrium

signal peak (proton polarization less than 1%) and to possible non linearites of the NMR

system[48]. Fig. 4.2 shows the difference between the target polarization measured with

NMR and the calculated polarization. Therefore, this method is unreliable. For this reason,

an alternative way is used to extract the target polarization[49, 50]. The known asymmetry

for elastic scattering off protons can be used to extract the product of beam and target

polarization. The determination of the electron beam polarization is performed via a Moller

polarimeter with a very small systematic error. So after Pe ∗ Pt is extracted, Pt can be

calculated quickly.

The asymmetry of elastic scattering p(e,e’)p can be calculated theoretically.

Atheo =
2 Q2

4M2

GM

GE
(M

E
+ GM

GE
( Q2

4M2

M
E

+ (1 + Q2

4M2 )tan
2( θe

2
)))

1 + Q2

4M2 (
GE

GM
)2 1

ε

(4.1)

where M is the rest mass of the proton, E is the beam energy, ε is

ε = (1 + 2(1 +
Q2

4M2
)tan2(

θe

2
))−1 (4.2)

and GE and GM are the electric and magnetic form factors of the proton, which are given

by[51],

GE(Q2) =
1

1 + 0.62Q+ 0.68Q2 + 2.80Q3 + 0.83Q4
, (4.3)

GM(Q2) =
µp

1 + 0.35Q+ 2.44Q2 + 0.50Q3 + 1.04Q4 + 0.34Q5
. (4.4)

The asymmetry of elastic scattering for a fixed proton polarization (⇑) is calculated from

Ameas =

N↑⇑

Q↑⇑ − N↓⇑

Q↓⇑

N↑⇑

Q↑⇑ + N↓⇑

Q↓⇑

(4.5)
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Figure 4.2. Comparison of the proton target polarization measured with NMR and elastic
scattering techniques[46]. Clear deviations are shown for some runs. Data are from EG1a which is
different with those used in this analysis.

where N↑⇑ for example is the number of events with positively polarized beam and

positively polarized target, and Q↑⇑ for example represent the total luminosity in this

configuration.

Ameas is related to the physical asymmetry Atheo by

Ameas = Pe ∗ Pt ∗ Atheo (4.6)

So, the product PePt is immediately determined provided that Atheo is known quantity:

PbPt =
Ameas

Atheo

(4.7)

Both the inclusive channel p(e,e’) and the exclusive channel p(e,e’p’) of elastic scattering

can be used to extract the asymmetry. The inclusive channel requires that one electron
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is detected and the corresponding invariant mass is around the rest mass of proton. The

advantage of this method is high statistics, while inclusive channels include many events from

the nitrogen, therefore, this method is not used in this analysis. In the exclusive channel, the

background from the nitrogen can be minimized, and most of events are electrons scattering

off the free proton. The exclusive channel requires that both one electron and one proton are

detected and their 3-momenta satisfy the elastic relation. The exclusive channel p(e,e’p’) of

elastic scattering is selected by requiring:

• |Px(miss)| < 0.07 GeV/c,

• |Py(miss)| < 0.07 GeV/c,

• |Pz(miss)| < 0.1 GeV/c,

• |E(miss)| < 0.1 GeV,

• 0.85 GeV/c2 < W < 1.0 GeV/c2,

• 178o < |φe − φp| < 182o (see Fig. 4.3).

Since the target is ammonia, the elastic asymmetry is given by:

Ameas =
N↑⇑ −N↓⇑

N↑⇑ +N↓⇑ − background
. (4.8)

The product Pe and Pt is extracted for each Q2 bin, as shown in Fig. 4.4.

In this analysis, Pe∗Pt values are used from what Peter Bosted extracted for EG1b[52, 53],

and they are listed in the table 4.2. The beam polarization Pe = 0.71±0.03 is used to extract

the proton target polarization.

The sign of the target polarization is written in the database manually by the experiment

operator. During the run, the sign of target polarization is changed several times, it may

happen that the operator does not put the right sign. Combining runs which have the wrong

target polarization sign would dilute the target spin asymmetry and hence end up with the

wrong result. To check for this, the sign of target polarization is checked and compared with

the value recorded in the database. The uncorrected electron inclusive asymmetry integrated
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Figure 4.3. The distribution of the azimuthal angle difference between the electron and the
proton. Events are selected from elastic region. The blue curve represents the background from
the nitrogen, and the dashed lines denote the applied cuts.

in Q2 and W based on run by run is used to check the target polarization, and the asymmetry

is defined as

Au =
N↑ −N↓

N↑ +N↓
, (4.9)

where N↑, for example, is the number of electrons with electron spin parallel to the beam

direction.

When the target polarity flips, the sign of the asymmetry is changed. Usually the target

polarity is fixed for more than 10 runs, therefore, the asymmetry as function of the run

number should be a step function, as shown in Fig. 4.5. The target polarity from the database

is compared with the asymmetry sign based on run by run. If there is disagreement, the

target polarity from the database would be corrected.
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Figure 4.4. The Pe ∗ Pt as a function of Q2 extracted from ep elastic scattering. The data are
from 5.7 GeV inbending data set, and the target is positively polarized.

In summary, general features and data quality are introduced. To reject data that are

affected by detector malfunctions, the data quality is checked based on run by run study.

Since the target polarization measured using a NMR system is not reliable, the target

polarization is extracted from elastic electron scattering.
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Table 4.2. Beam and target polarization

data set target polarity Pe ∗ Pt Pe Pt

5.628 inbending + 0.453 ± 0.026 0.71 ± 0.03 0.638 ± 0.0455
- 0.575 ± 0.025 0.71 ± 0.03 0.810 ± 0.0501

5.736 inbending + 0.499 ± 0.022 0.71 ± 0.03 0.703 ± 0.0471
- 0.481 ± 0.024 0.71 ± 0.03 0.677 ± 0.0465

5.736 outbending + 0.505 ± 0.029 0.71 ± 0.03 0.711 ± 0.0507
- 0.535 ± 0.026 0.71 ± 0.03 0.754 ± 0.0485

5.764 outbending + 0.447 ± 0.025 0.71 ± 0.03 0.630 ± 0.0441
- 0.470 ± 0.021 0.71 ± 0.03 0.662 ± 0.0407
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Figure 4.5. The uncorrected inclusive asymmetry vs the run number for 5.7 GeV inbending data.
The sign of the asymmetry is changed as the target polarity flips. The runs between 27115 to 27170
correspond to runs with a ND3 target, which are not used in this analysis.
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CHAPTER 5

SINGLE PHOTON ELECTROPRODUCTION

5.1 Overview

The final state of Deeply Virtual Compton Scattering (DVCS) is ep→ epγ, where every

particle in the final state is detected in CLAS. The electromagnetic calorimeter acceptance

coverage is from 8o to 45o and therefore photons can not be detected for scattering angles

less than 8o. Fig. 5.1 shows the distribution of the scattering angle of photons from Monte

Carlo simulation. One can see that photons for most DVCS events can not be detected. So

it is natural to select ep → epX as DVCS candidates where no photons are detected. This

method is used in both DVCS analysis of E1c and E1d. In EG1b, Helmholtz coils are used

for the polarized target. The Helmholtz coils blocked the protons with polar angles from 48o

to 80o. This affects significantly DVCS acceptance, see Fig. 5.2. Considering the target is

15NH3, in epX events, single photon events from hydrogen are small in numbers compared

to the background from nitrogen, see Fig. 5.3. It is therefore not possible to use the same

method as that used in DVCS analysis of E1c and E1d. For this reason, only final states

with scattered electron, recoiled proton and one detected photon are considered, e~p→ epγ.

In this chapter, single photon electroproduction will be identified and the target spin

asymmetry calculated. In addition, the CLAS detector acceptance affects the normalization

of events from different target helicities, the acceptance correction function will be developed

and applied based on event by event.

5.2 DVCS Events Selection

The DVCS events are selected requiring that exactly one positive, one negative, and one

neutral track are found for a given trigger, and that these track correspond to an electron, a
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Figure 5.1. DVCS MC photon scattering angle relative to beam direction.
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Figure 5.2. Polar angle of the photon vs polar angle of the proton for MC DVCS events.
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Figure 5.3. MM 2
X of ep for reaction ep → epX. The black line represent the data from 15NH3, red

points represent the data from 12C which simulate the background from 15N. They are normalized
to each other using the negative tail of the MM 2

X . W > 2, Q2 > 1, −t < 0.6.

proton and a photon, respectively. Here, all neutrals are assumed to be photons, including

neutrons. Further cuts will reject those events where the neutral is not a photon.

In order to select deep inelastic processes and forward production, the following re-

quirements are imposed on the kinematics: Q2 > 1 GeV2/c2, W > 2 GeV/c2, and −t <
0.6 GeV2/c2, where −Q2 is the four momentum squared of the virtual photon, W denotes

the photon-proton invariant mass, and −t represents the square of the four-momentum

transfer to the target.

With above kinematic cuts, MM 2
X distribution of ep is given in Fig. 5.3 for both 15NH3

and 12C data. 12C data are used to simulate the background from the unpolarized 15N.

Fig. 5.3 clearly shows that the epγ events from the target 15NH3 are dominated by those

from the unpolarized nitrogen. In addition, it may happen that one of the π0 decay photons

escapes detection. Therefore, there is still contamination from π0 and large background from

nitrogens. In order to suppress the nitrogen background and remove the π0 contamination,

the observed detected photon is compared with the one (γ ′) expected from the detected

electron and proton assuming scattering of the electron from a free proton (γ ′ = e+p−e′−p′).
First the energy is compared, Fig. 5.4 shows the energy difference between γ and γ ′. The
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DVCS events are selected with a cut on Eγ′ − Eγ < 0.3
√
Eγ . Besides the energy difference,

the angle difference θγγ′ between the detected photon and expected photon is further used

to remove the remaining π0 contamination, see Fig. 5.5.
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Figure 5.4. The energy difference between calculated photon γ ′ and detected photon γ. DVCS
events are selected with a cut on Eγ′ − Eγ < 0.3

√
Eγ . Q2 > 1, W > 2, and −t < 0.6.

Fig. 5.6 shows the missing mass square of ep for reaction ep → epγ after above cuts.

To further improve the separation, the data are selected requiring −0.12 (GeV/c2)2 <

MM2
X < 0.12 (GeV/c2)2. After all above selections, not only the π0 contamination, but

also background from 15N are largely suppressed.

In summary, the ~e~p → epγ events are selected from one detected photon events with

following cuts,

• W > 2 GeV/c2

• Q2 > 1 GeV2/c2

• −t < 0.6 GeV2/c2

• Eγ′ − Eγ < 0.3
√
Eγ GeV

• θγγ′ < 2o
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Figure 5.5. The angle difference between detected photon γ and calculated photon γ ′. DVCS
events are selected requiring θγγ′ < 2o. The black line is from NH3 target, and red stars are
from 12C target, normalized to the corresponding NH3 spectra. Q2 > 1, W > 2, −t < 0.6, and
Eγ′ − Eγ < 0.3

√
Eγ .

• −0.12 (GeV/c2)2 < MM2
X < 0.12 (GeV/c2)2 (4 σ width)

As discussed above, a neutral particle is required to select DVCS events. To verify that

all events with neutrons are removed, the plot of the deposited energy versus β for photons

from the final sample is shown in Fig. 5.7. A clear peak around β = 1 is visible. This shows

that all the neutrals are likely photons.

Since the angular cut (θγγ′ < 2o) and energy difference cut (Eγ − Eγ′ < 0.3
√
Eγ)

can remove photons which hit the edge of the calorimeter where energy can not be fully

reconstructed, the photon fiducial cut is not applied for DVCS events. The hit position in

the calorimeter is studied for photons from DVCS events (see Fig. 5.8), and it shows that

the final samples exclude photons which hit the edge of the calorimeter. Therefore, it is not

necessary to apply the photon fiducial cut.

5.3 Dilution Factor

The dilution factor is defined as the ratio between the hydrogen and the full NH3

contribution to the cross section:
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Figure 5.7. Total energy deposited in scintillators (Etot) vs β for photons from DVCS events.
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f =
3σH

σNH3

= 1 − σN

σNH3

(5.1)

The 15N nucleus is almost unpolarized and therefore it does not produce any sizable effect

on the numerator of the target spin asymmetry calculation, see Eq.(5.8). However it

gives a significant contribution to the denominator of the asymmetry calculation that, as

a consequence, is “diluted” by the nitrogen.

To estimate the dilution factor, it was necessary to evaluate the pure nitrogen contribution

to the studied reaction. During EG1b, the data on a carbon target were taken to simulate

the 15N contribution. The carbon data were normalized to NH3 data by comparing the

negative tails of the missing mass square plots (see Fig. 5.9). The normalization constant

c = 2.575 ± 0.020 was measured.

Following the procedure introduced above, the numbers of epγ events from 15NH3 and

12C for each φ bin are evaluated and used to calculate the dilution factor with Eq.(5.1):

f(φ) = 1 − c ·NC(φ)

NNH3
(φ)

(5.2)
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Figure 5.9. Missing Mass Squared distribution of (ep) for reaction ep → epγ, Q2 > 1, W > 2,
Eγ′−Eγ < 0.3

√
Eγ . Black line denotes 15NH3 target, and red cross denotes 12C target. The carbon

data were normalized to the 15NH3 with negative tail of MM 2
X , and the normalization constant c

is 2.575 ± 0.020.

where NC is the number of events from 12C, and NNH3
is the number of events from 15NH3.

The target spin asymmetry was extracted as a function of φ and therefore the dilution factor

was evaluated for different φ bins. Fig. 5.10 shows the dilution factor for different φ, and

there is no dependence on φ. Therefore, a single dilution factor f = 0.901 ± 0.035 based on

the integrated-φ was calculated and used in the final analysis.

5.4 Acceptance calculation

The target spin asymmetry is defined in Eq.(5.8). we can see that the target spin

asymmetry is the combination of N⇑ and N⇓. N⇑(⇓) is the detected number from the

positively (negatively) polarized target for each φ bin. Since the CLAS acceptance does

not depend on the target helicity, one may expect that the acceptance cancels out in both

numerator and denominator. However, this is true only if the target spin asymmetry is

measured for fixed values of Q2, t, xB , θ, and φ. In this case, the acceptance is constant for

different target helicities and cancels out for each bin. While in Eq.(5.8), N⇑(⇓) is integrated

over the Q2, t, xB, and θ, therefore, the target spin asymmetry is
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Figure 5.10. The dilution factor as a function of φ for reaction ~e~p → epγ. The solid line
represents the average dilution factor f = 0.901 ± 0.035.

AUL(φ) =

∫
σt(Q

2, t, xB, θ, φ)η(Q2, t, xB, θ)dQ
2dtdxBdθ∫

σ0(Q2, t, xB, θ, φ)η(Q2, t, xB, θ)dQ2dtdxBdθ
(5.3)

σt = σ⇑ − σ⇓ (5.4)

σ0 = σ⇑ + σ⇓ (5.5)

where σ⇑(⇓) is the differential cross section for the positively (negatively) polarized target.

Since the cross sections can differ, the effect of the acceptance must be taken into account.

The acceptance of CLAS is usually evaluated using MC methods. For complete

simulations, MC events should be generated in small bins of (Q2,t,xB,θ,φ). The total number

of MC events required would be on the order of NQ2×Nt×Nx×Nθ×Nφ×Nevents−per−bin. For

small bins, i.e. large N’s, the generation of this large volume of MC events would be a very

daunting task. An alternative method is to calculate the acceptance analytically. A method

based on fiducial cuts and uniform fiducial regions has been developed and successfully

utilized. (see references [54, 55, 56].)

The main idea is as follows: the acceptance within the fiducial regions is calculated, and

an event (ep → epγ) identified by the quantities Q2, t, xB, θ, φ in the center of momentum
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system has the corresponding quantities in the lab system: electron momentum and polar

angle, pe, θe; proton momentum and polar angle, pp, θp; the difference between the electron

and proton azimuthal angles, Φ1 ≡ φe − φp; photon energy and polar angle, Eγ, θγ ; and the

difference between the electron and photon azimuthal angles, Φ2 ≡ φe − φγ. The electron

azimuthal angle φe is on the contrary a free variable. For produced physics events, particles

(electrons, protons, photons) can have any azimuthal angle φ with the same probability,

while for observed events, particles can only show up with 100% acceptance in fiducial area

(>80% if a loose fiducial cut is applied). Due to the six sectors in CLAS, it is clear that the

particle azimuthal coverage is not 2π. Therefore, the acceptance is the combined azimuthal

coverage of three particles divided by 2π. This idea can be expressed in a mathimatical way:

N(Q2, t, xB, θ, φ) ∝
∫
σ(Q2, t, xB, θ, φ)η(pe, θe, φe, pp, θp, φp, Eγ, θγ , φγ)dφe

=

∫
σ(pe, θe, pp, θp, Eγ, θγ ,Φ1,Φ2)η(pe, θe, φe, pp, θp, φe − Φ1, Eγ, θγ , φe − Φ2)dφe

= σ(pe, θe, pp, θp, Eγ, θγ ,Φ1,Φ2)

∫
η(pe, θe, φe, pp, θp, φe − Φ1, Eγ, θγ , φe − Φ2)dφe

= σ(Q2, t, xB, θ, φ)

∫
η(pe, θe, φe, pp, θp, φe − Φ1, Eγ , θγ, φe − Φ2)dφe (5.6)

The last integral is the acceptance function for ep→ e′p′γ, which is also the correction factor

we are looking for:

ηtot(Q
2, t, xB, θ, φ) = η(pe, θe, pp, θp, Eγ, θγ ,Φ1,Φ2)

=

∫
η(pe, θe, φe, pp, θp, φe − Φ1, Eγ, θγ , φe − Φ2)dφe

=

∫
ηe(pe, θe, φe)ηp(pp, θp, φe − Φ1)ηγ(Eγ, θγ , φe − Φ2)dφe (5.7)

Therefore, acceptance is corrected by applying the function 1
ηtot

event by event.

In Eq.(5.7), ηe, ηp, and ηγ are acceptance functions for the electron, the proton, and the

photon, respectively. They are step functions, which are unity inside the fiducial area and

zero outside.

To verify the correctness of the analytic procedure, the calculation are compared with

Monte Carlo for fixed values of (Q2 = 2.0GeV 2/c2, −t = 0.5GeV 2/c2, xB = 0.3, θ = 21o),

the results of MC comparison are shown in Fig. 5.11.
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Figure 5.11. Comparison between the results of the analytical calculation (solid line) and
the Monte Carlo (red points). Events are generated with fixed values Q2 = 2.0GeV2/c2,
−t = 0.5GeV2/c2, xB = 0.3, and θ = 21o. Since the fiducial cut is loose (requiring acceptance
greater than 80%), the analytical calculation is scaled by factor 0.712, so that the comparison agrees
well.

5.5 Target Spin Asymmetry

The target spin asymmetry is defined in the following equation:

AUL(φ) =

N⇑(φ)
Q⇑ − N⇓(φ)

Q⇓

f(P ⇓
t

N⇑(φ)
Q⇑ + P ⇑

t
N⇓(φ)

Q⇓ )
(5.8)

In Eq.(5.8), U denotes the unpolarized beam, L denotes the longitudinally polarized target,

N⇑ is the extracted number of epγ events with proton spin anti-parallel to the electron beam

direction (positive helicity), N⇓ is the extracted number of epγ events with proton spin

parallel to the electron beam direction (negative helicity), f is the dilution factor, which was

introduced in Section 5.3, Q⇑(⇓) is accumulated charge at positive(negative) target helicity,

P
⇑(⇓)
t means the target polarization for runs with positive(negative) target helicity.

Following the above procedures, both N⇑ and N⇓ are extracted within 10 φ bins for each

data set (see Appendix A).
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The target spin asymmetry as a function of azimuthal angle φ is calculated using Eq.(5.8)

for each data set (see Appendix B). Two inbending data sets have only slightly different

beam energies, therefore, the target spin asymmetry from inbending data sets is combined

together safely using Eq.(5.9) and Eq.(5.10)(see Fig. 5.12). For the same reason, the target

spin asymmetry can also be combined together directly using Eq.(5.9) and Eq.(5.10) (see

Fig. 5.13). The asymmetries have been corrected for acceptance effects, and should be

independent of the acceptance. In addition, the difference in kinematics for inbending and

outbending data are much smaller than the bin sizes, and the asymmetry does not vary

rapidly with Q2, xB, t. So, combining two asymmetries from inbending and outbending

data is fine as long as the bin average is calculated correctly. Finally, two sets of data

are combined together using Eq.(5.9) and Eq.(5.10), and Fig. 5.14 shows the target spin

asymmetry as a function of azimuthal angle φ from the combined data sets. In Fig. 5.14, the

target spin asymmetry is fitted with function F = p0sinφ+p1sin2φ, with p0 = 0.240±0.042

and p1 = −0.087 ± 0.045. The errors are only statistical. Fig. 5.15 shows the kinematic

coverage for all of the DVCS events.

AUL(φ) = A1(φ)
N1(φ)

N1(φ) +N2(φ)
+ A2(φ)

N2(φ)

N1(φ) +N2(φ)
, (5.9)

and final statistical error for each φ bin is given by

ε(φ) =

√

ε21(φ)[
N1(φ)

N1(φ) +N2(φ)
]2 + ε22(φ)[

N2(φ)

N1(φ) +N2(φ)
]2, (5.10)

where A1(2), ε1(2), N1(2) are the target spin asymmetry, statistical error, and the event

number from inbending (outbending) data set, respectively.

5.6 π0 contamination

Due to the finite spatial resolution of the electromagnetic calorimeter, high energy π0

events can be misidentified as single photons. High energy π0 decay into two photons which

both hit the calorimeter at nearly the same position and are often mistakenly reconstructed

as a single high energy photon. At the same time, the above cuts can not remove all
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Figure 5.12. The target spin asymmetry AUL for single photon observed events as a function of
the azimuthal angle φ from inbending data. Points are fitted with function F = p0sinφ + p1sin2φ,
and p0 = 0.224 ± 0.062, p1 = −0.060 ± 0.062. < Q2 >= 1.85, < −t >= 0.27, and < xB >= 0.28.
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Figure 5.13. The target spin asymmetry for single photon observed events from outbending data.
Points are fitted with function F = p0sinφ+p1sin2φ, and p0 = 0.255±0.058, p1 = −0.119±0.065.
< Q2 >= 1.87, < −t >= 0.31, and < xB >= 0.29.
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Figure 5.14. The target spin asymmetry for single photon observed events from all of data.
Points are fitted with function F = p0sinφ+p1sin2φ, and p0 = 0.240±0.042, p1 = −0.087±0.045.
< Q2 >= 1.82, < −t >= 0.28, and < xB >= 0.28.
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Figure 5.15. Kinematic coverage for all of single photon observed events
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of the π0 events if one of the decay photons escapes detection and carries small part of

energy. Consequently, the current event sample is contaminated by such π0 events. Fig. 5.16

gives the missing mass square of ep after nitrogen background subtraction. Due to the π0

contamination, the centroid of MM 2
X spectrum is above 0.

This contamination will be estimated using Monte Carlo(MC) simulations. To correct

the π0 contaminations for DVCS, the target spin asymmetry for π0 will also be measured

using events with a clearly defined single π0 in the final states, as described in the next

chapter.
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Figure 5.16. Missing mass square of ep for reaction e~p → epγ with the nitrogen background
subtraction. The nitrogen background is shown in Fig. 5.6 as red stars.

In summary, the single photon electroproduction is identified, and the target spin

asymmetry as a function of φ is measured. Due to the NH3 target, a few events from

unpolarized nitrogen are in the final events sample, therefore, the dilution factor is calculated

and taken into account in the asymmetry. Since the electromagnetic calorimeter has a finite

spatial resolution, the final events sample is contaminated by π0 events. The fraction of the

π0 background will be studied using MC simulations in the Chapter 7.
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CHAPTER 6

EXCLUSIVE π0 ELECTROPRODUCTION

6.1 Overview

Due to the resolution of the electromagnetic calorimeter and asymmetric π0 decays where

one photon escapes detection, there are π0 events left among the single photon observed

events. Therefore, the target spin asymmetry for the single photon observed events need to

be corrected for this contamination. It is necessary to extract the target spin asymmetry

of π0 in the same kinematic area (−t < 0.6 GeV/c, W > 2 GeV/c2, Q2 > 1 GeV2/c2).

Meanwhile, the π0 event samples are studied using Monte Carlo simulation to estimate the

fraction of π0 in observed single photon events.

6.2 π0 Selection

The π0 event candidates are selected with the requirements that exactly one positive, one

negative and two neutral tracks are found for a given trigger, and the particle identifications

for these tracks correspond to an electron, a proton and two photons respectively. However,

the two detected photons are not always from π0 decay. In order to remove this kind of event

where two photons are not from π0 decay, the invariant mass of the two photon system is

studied, (Fig. 6.1), and π0 are selected with a cut on invariant mass of two photons from

0.05 GeV/c2 to 0.18 GeV/c2. In Fig. 6.1, there is a second peak around 0.075 GeV/c2

which also corresponds the π0 events. The shift from the π0 mass (0.135 GeV/c2) is because

the photon’s energy is not fully reconstructed. To verify that they are really π0 events,

a MC simulation is performed. In Fig. 6.2 and Fig. 6.3, MC results show the similar π0

distributions, therefore, verifying that the second data peak corresponds π0 events.
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Figure 6.1. Invariant mass of the two photon system. π0 are selected with cut on invariant mass
of two photons from 0.05 GeV/c2 to 0.18 GeV/c2. Black line corresponds to NH3 target, while red
stars correspond to C target, normalized to the corresponding NH3 spectra.
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Figure 6.2. Invariant mass of two photons vs the energy of two photons for ep → epγγ (W > 2,
Q2 > 1) for the data (left plot) and MC simulations (right plot). The MC simulation also gives a
second peak around Mγγ=0.06 GeV/c2.
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Figure 6.3. Invariant mass of two photons for ep → epγγ (W > 2, Q2 > 1) for MC simulations.
The second π0 peak around 0.06 GeV/c2 shows up as in the data.

Since the target is NH3, the final states epπ0 are not only from polarized hydrogen, but

also from unpolarized nitrogen. Actually, most of events are from nitrogen. In order to

suppress the events from nitrogen, the detected π0 kinematics (Pπ0 = k1 +k2) and calculated

π0 kinematics (Pπ0 = q+Pp−P ′
p) are compared, where k1 and k2 are four-momenta of the two

real photons, and q, Pp and P ′
p are the four-momenta of the virtual photon, the target proton

and the recoiled proton. Due to the Fermi motion of protons in nitrogen, the detected π0

kinematics is very different from the calculated π0 kinematics for most nitrogen events (see

Fig. 6.4). Considering the electromagnetic calorimeter resolution, the π0 events are selected

with a missing energy cut on EX < 0.3
√
Eπ0 GeV for epγγX events. Besides the missing

energy, the angle difference between the detected π0 (γγ) and calculated π0 (ep → epX) is

also used to remove not only the events from the unpolarized nitrogen, but also radiative

events. The π0 events are selected with a cut on θπ0X < 2.5o, Fig. 6.5.

The final cut is on the missing mass square of (ep) for reaction ep → epγγ, Fig. 6.6.

Fig. 6.7 shows the spectrum of the missing mass square of (ep) for reaction ep→ epγγ after

nitrogen background subtraction.

In summary, the e~p → epπ0 are selected from two detected photon events with the

following cuts,
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Figure 6.4. The energy difference (left plot) and the angle (right plot) between the detected π0

and the calculated π0(X). The events are ep → epπ0 from the carbon data which simulates the
nitrogen background. The π0 is reconstructed with two detected photons, while X is expected with
the recoiled proton and the scattering electron.
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Figure 6.5. The angle difference between detected π0 (γγ) and calculated π0 (ep → epX)
after cuts W > 2, Q2 > 1, 0.05 < Mγγ < 0.18, |MM 2

X | < 0.2, and missing energy EX(epγγX)
< 0.3

√
Eπ0 , and the π0 are selected with cut on θπ0X < 2.5o. Black line corresponds to NH3 target,

while red stars correspond to C target, normalized to the corresponding NH3 spectra.
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Figure 6.6. Missing mass square of (ep) for reaction ep → epγγ after cuts W > 2, Q2 > 1,
0.05 < Mγγ < 0.18, missing energy EX(epγγX)< 0.3

√
Eπ0 , and θπ0X < 2.5o, and the π0 are

selected with cut on −0.1 < MM 2
X < 0.14. Black line corresponds to NH3 target, while red stars

correspond to C target, normalized to the negative tail of NH3 spectra.
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Figure 6.7. Missing mass square of (ep) for reaction ep → epγγ after nitrogen background
subtraction. The nitrogen background is shown in Fig. 6.6 as red stars.
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• W > 2 GeV/c2

• Q2 > 1 GeV2/c2

• 0.05 GeV/c2 < Mγγ < 0.18 GeV/c2

• EX(epγγX) < 0.3
√
Eπ0 GeV

• θπ0X < 2.5o

• −0.1 (GeV/c2)2 < MM2
X < 0.14 (GeV/c2)2

• −t < 0.6 GeV2/c2

All of the above plots give the spectra of C target, which is normalized to NH3 target

with the negative tail of MM 2
X , see Fig. 6.8. The normalization constant is c = 3.241±0.021.
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Figure 6.8. Missing mass square of (ep) for reaction ep → epγγ after cuts W > 2, Q2 > 1,
and missing energy EX(epγγX)< 0.3

√
E0

π. Black line corresponds to the NH3 data, while red
stars correspond to the C data, normalized to NH3 spectra with negative tail of MM 2

X . The
normalization constant c = 3.241 ± 0.021.
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6.3 Dilution Factor

It is necessary to evaluate the dilution factor which will be used in the asymmetry

calculation. The final dilution factor was obtained selecting epγγ channel with the technique

introduced in the last section and evaluating the ratio (Eq.(5.1)) as a function of φ.

Fig. 6.9 shows that there is no φ dependence for the dilution factor. The final result is

f = 0.782 ± 0.036.
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Figure 6.9. The dilution factor as a function of φ.

6.4 Asymmetry

Following the procedure introduced above in this section, the number of π0 events for

each φ bin and different target helicities are evaluated (see Appendix C) and used to calculate

the target spin asymmetry with Eq.(5.8). The target spin asymmetry (AUL) is calculated

for each φ bin. Fig. 6.10 shows the target spin asymmetry in the reaction e~p → epπ0 for

inbending data. Data are integrated in the range of Q2 from 1 GeV2/c2 to 4 GeV2/c2 and in

the range of −t up to 0.6 GeV2/c2. Points are fitted to the function F = p0sinφ+ p1sin2φ,

p0 = 0.137 ± 0.089, and p1 = −0.317 ± 0.087.
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Fig. 6.11 shows the target spin asymmetry of π0 for the outbending data set. The asym-

metries from the inbending data and outbending data agree well within their uncertainties

and they can be combined together. The target spin asymmetry from the combined π0 data

set is shown in Fig. 6.12. The target spin asymmetry will be used to correct the asymmetry

of single photon events for the π0 contribution. Note that the asymmetry for π0 production

has a dominant sin2φ dependence while the asymmetry for the photon production has a

dominant sinφ dependence. This indicates that the π0 contamination in the single photon

observed events is small.
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Figure 6.10. The target spin asymmetry in the reaction e~p → epπ0 from inbending data
set. Points are fitted with function F = p0sinφ + p1sin2φ, and p0 = 0.137 ± 0.089, and
p1 = −0.317 ± 0.087. < Q2 >= 1.68, < −t >= 0.35, and < xB >= 0.28.

In summary, the target spin asymmetry is measured in order to correct the asymmetry for

DVCS due to the π0 contamination. The exclusive π0 is identified by two detected photons.

For the deep inelastic scattering of π0 production, π0 events are dominated by those from

the unpolarized nitrogen. To suppress the large background from the unpolarized nitrogen,

an angular and energy difference cuts are developed. The identified π0 sample and the

asymmetry will be used in the next two chapters to obtain the final DVCS asymmetry

results.
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Figure 6.11. The target spin asymmetry in the reaction e~p → epπ0 from outbending data
set. Points are fitted with function F = p0sinφ + p1sin2φ, and p0 = 0.092 ± 0.072, and
p1 = −0.315 ± 0.085. < Q2 >= 1.58, < −t >= 0.37, and < xB >= 0.28.
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Figure 6.12. Target Spin Asymmetry in the reaction e~p → epπ0 from all of the data. Points
are fitted with function F = p0sinφ + p1sin2φ, and p0 = 0.109 ± 0.056, and p1 = −0.319 ± 0.061.
< Q2 >= 1.64, < −t >= 0.36, and < xB >= 0.28.
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CHAPTER 7

MONTE CARLO SIMULATION

7.1 Overview

As pointed out in Chapter 5, due to spatial resolution of the calorimeter, the final

DVCS/BH events may be contaminated by π0 events. To estimate the π0 contamination

in the final single-photon events, a Monte Carlo (MC) simulation was performed. The main

idea is to generate both DVCS and π0 physics events, then pass them through a detector

simulation program of CLAS spectrometer. The simulation output is then processed the

same as the data obtained with CLAS. After normalizing the MC data to the real data, the

number of π0 events mis-identified as DVCS events can be extracted.

7.2 Event Generator

A Monte-Carlo DVCS generator based on the procedure developed by V. Korotkov[57]

was developed by H. Avakian for CLAS to simulate photon electroproductions and the

π0s. As described in Chapter 1, the five-fold cross section for photon electroproductions

can be parameterized in terms of GPDs and well known form factors. The DVCS event

generator uses the GPD models from Ref[18]. The bag model calculations[58] show a weak

dependence of the distributions on the skewedness parameter ξ, therefore, in the simplest

way, V. Korotkov assumes that GPDs are independent on the skewedness parameter ξ. In

this case, only u− and d−quark GPDs are non-zero, the GPDs (H, H̃, E, and Ẽ) are

parameterized in the following equations.

Hu(x, ξ,∆2) = u(x) F u
1 (∆2) / 2 ,

Hd(x, ξ,∆2) = d(x) F d
1 (∆2) , (7.1)
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where u(x) and d(x) are the quark density distributions and F
u(d)
1 (∆2) is the elastic Dirac

form factors defined through the proton and neutron electromagnetic form factors:

F u
1 = 2F p

1 + F n
1 , F

d
1 = F p

1 + 2F n
1 . (7.2)

H̃u(x, ξ,∆2) = ∆uv(x) g
u
A(∆2)/gu

A(0) ,

H̃d(x, ξ,∆2) = ∆dv(x) g
d
A(∆2)/gd

A(0) . (7.3)

Here ∆uv(x) and ∆dv(x) are the quark helicity distributions, and g
u(d)
A (∆2) are axial vector

form factors defined through the nucleon isoscalar axial form factors:

gu
A =

1

2
gA +

1

2
g0

A, g
d
A = −1

2
gA +

1

2
g0

A, and g0
A =

3

5
gA. (7.4)

Eu(x, ξ,∆2) = u(x) F u
2 (∆2) / 2 ,

Ed(x, ξ,∆2) = d(x) F d
2 (∆2) , (7.5)

where F
u(d)
2 is the elastic Pauli form factor defined in the same way as F

u(d)
1 in Eq. (7.2).

Ẽu(x, ξ,∆2) = −Ẽd(x, ξ,∆2) =
1

2
Ẽπ−pole(x, ξ,∆

2) , (7.6)

Ẽπ−pole(x, ξ,∆
2) = θ (−ξ ≤ x ≤ ξ) hA(∆2)

1

ξ
Φ

(
x

ξ

)
, (7.7)

where Φ(z) = 3/4(1 − z2) is the pion distribution amplitude, hA(∆2) = 4M2gA

m2
π−∆2 , and θ(x) is

the usual step function.

The main background for DVCS events is from π0 production, and the cross section used

in MC is discussed in Ref.[59]. Neglecting QCD logarithmic evolution of generalized parton

distributions, a simple approach based on a fit to the results of the exact formula [60] is used

for π0simulation:

dσ

dt
(γL p→ π0 p) =

dσ

dt
(x,Q2)

∣∣∣∣
t=tmin

× eB(t−tmin), (7.8)

where:
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d σ

d t
(x,Q2)

∣∣∣∣
t=tmin

=
αS

2(Q2) · PF(x,Q2) · UF(x)

Q2(Q2 +M2)2
. (7.9)

where, αS(Q2) is the one-loop QCD coupling constant (ΛQCD = 0.3 GeV). In this equation,

PF(x,Q2) is given by:

PF(x,Q2) =
Q4 (1 − x)

(−Q2 − 0.881721 x+ Q2 x)2 . (7.10)

UF(x) is the part of the cross-section which is independent of Q2.

A simple approximation is used for UF(x):

UF(x) = (∆u(x,Q2) − ∆d(x,Q2))2.

A total of 200,000 DVCS and 200,000 π0 events were generated with longitudinally

polarized proton target with the following kinematic requirements: x = 0.1 ∼ 0.65,

−t = 0 ∼ 0.6, Q2 = 1 ∼ 6, Ebeam = 5.725. It should be noted that these are the only physics

Monte-Carlo events as no additional background channels are simulated. The kinematic

dependences (Q2, −t, xB, φ) of the DVCS and π0 cross sections are shown in Fig. 7.1 and

Fig. 7.2.

7.3 Detector Simulation

GSIM is the GEANT based simulation program of the CLAS spectrometer. The

generated events (four-vectors of particles) are passed through GSIM. With GSIM, particles

are traced through detectors and hits are generated, then a simulated data file is produced.

The simulated data represent the data that one would obtain with a perfectly working

detector.

The target of EG1b was polarized using a super-conducting Helmholtz magnet. This

magnet blocks the protons with large scattering angle between 50o and 80o, and it substan-

tially affects the acceptance of DVCS events. Besides this, the Helmholtz magnetic field

deflects charged particles. Therefore, to take the polarized target into account, GSIM for

EG1b is different from the standard GSIM for CLAS. The EG1b target magnet geometry

was implemented in the GSIM code by C. Smith[61]. To simulate the Helmholtz magnet

field, a field map was used. This field map was the same as that used in the reconstruction
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Figure 7.1. Kinematic dependences of the DVCS model.

program. Since there are two data sets for EG1b with different torus currents (2250 A and

-2250 A), the generated events are passed through GSIM twice with different torus currents,

2250 A and -2250 A. A CLAS schematic of a GSIM event is shown in Fig. 7.3.

The output file from GSIM is produced with perfect timing resolution for each detector.

After the event is processed with GSIM, it is then processed through the GSIM Post

Processor (GPP) which smears the TOF times and the drift chamber DOCA, by adding

a pseudo-random time from a Gaussian distribution to each detector. GPP also simulates

“dead” detector elements, such as dead wires in the drift chambers, and bad TOF scintillator

paddles.

After GPP processing, the simulated data were processed like the real data using the

CLAS reconstruction program “user ana”. It is important to note that these cooked data

are then analyzed with the same procedure as the real data. In summary, a flowchart shown

in Fig. 7.4 describes the process of performing MC simulations.

Among CLAS experiments, EG1 is the first experiment to use the polarized target,

and this analysis is also the first one to perform MC simulations for CLAS with polarized

107



           2/c2                  GeV2Q
0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

500

1000

1500

2000

2500

3000

3500

          2/c2-t                     GeV
0 0.1 0.2 0.3 0.4 0.5 0.6

0

500

1000

1500

2000

2500

3000

3500

                               Bx
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

1000

2000

3000

4000

5000

                  Degree                    φ
0 50 100 150 200 250 300 350

0

500

1000

1500

2000

2500

3000

Figure 7.2. Kinematic dependences of the π0 model.

target magnet. Given this, it was worthwhile to check the target magnet geometry and

field for correctness. Fig. 7.5 shows the polar angle distributions for generated protons and

reconstructed protons and for protons from EG1b data. Due to the target magnet, the

acceptance decreases largely to zero for protons with polar angle greater than 48o for both

MC and data, which shows that the target magnet geometry is correct. The target magnet

field is approximately axial and parallel to the beam direction, therefore, the trajectory of the

charged particle was deflected azimuthally when the charged particle flies from the target to

the DC superlayer 1. The φ shift (φDC−φvertex) is clearly visible in Fig. 7.6 for both electrons

and protons. The shifts in φ are extracted for both data and MC simulations, and they agree

well with each other. It was concluded that the target magnet field is correctly simulated.

The kinematics of the generated particle and reconstructed particle are compared in Fig. 7.7,

Fig. 7.8, and Fig. 7.9 which show that both electrons and protons are well reconstructed.
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Figure 7.3. The schematic view of a GSIM event in CLAS. From inside to outside, the target, the
target magnet, DC, CC, TOF, and EC are simulated. Two red curves are trajectories of the electron
and proton, respectively. Due to the positive torus current (I=2250 A), the electron trajectory is
bended toward the beam direction, the proton trajectory, in contrast, is bended away the beam
direction.

7.4 π0 contamination

With help of MC simulations, the overall acceptance for one photon detected π0

production (ηπ0(γ)), two photons detected π0 production (ηπ0(γγ)), and one photon detected

DVCS/BH (ηDV CS) can be calculated. Here, both one photon detected π0 events and DVCS

events are selected with the same procedure as the data (see Chapter 5). The two photons

detected π0 events are also selected similar to the data (see Chapter 6). The acceptance
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Figure 7.4. Flowchart describing the process of performing MC simulations.
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Figure 7.5. Left panel: The distribution of the polar angle for generated protons (black curve)
and reconstructed protons (red curve). Right panel: the distribution of the polar angle for protons
from EG1b. Due to the target magnet, the acceptance decreases largely to zero for protons with
polar angle grade than 48o for both MC and data. This shows that the target magnet geometry
is corretly implemented in GSIM code. Since the protons in right panel is not only from DVCS
events, the distributions are different.

ηπ0(γ), ηπ0(γγ), and ηDV CS are defined in the following equations,

ηπ0(γ) =
N

π0(γ)
M

Nπ0

G

≡ N
π0(γ)
D

Nπ0

P

(7.11)

ηπ0(γγ) =
N

π0(γγ)
M

Nπ0

G

≡ N
π0(γγ)
D

Nπ0

P

(7.12)

ηDV CS =
NDV CS

M

NDV CS
G

≡ NDV CS
D

NDV CS
P

(7.13)

where,

• N
π0(γ)
M is the accepted number of one photon detected π0 events from MC,

• Nπ0

G is the generated number of π0 events from MC,

• N
π0(γ)
D is the observed number of one photon detected π0 events from data which is

unknown,

• Nπ0

P is the produced number of π0 events from data,
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Figure 7.6. φDC −φvertex vs p for electrons (left plot) and protons (right plot). The black points
are from data, and blue points are from MC simulation.

• N
π0(γγ)
M is the accepted number of two photons detected π0 events from MC,

• N
π0(γγ)
D is the observed number of two photons detected π0 events from data,

• NDV CS
M is the accepted number of photon production events from MC,

• NDV CS
G is the generated number of DVCS events from MC,

• NDV CS
D is the observed number of DVCS events from data which is unknown,

• NDV CS
P is the produced number of DVCS events from data.

As mentioned in the Chapter 5, the observed single photon events(N γ
D) was contaminated

by one photon detected π0 events (N
π0(γ)
D ). The observed number of DVCS/BH events can

be calculated using equation

NDV CS
D = Nγ

D −N
π0(γ)
D (7.14)
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Figure 7.7. The momentum difference between the generated particle and reconstructed particle
vs the momentum of the generated particle. The top panel is from electrons, and bottom panel
is from protons. In the bottom panel, the up tail is because of proton energy loss, and the upper
band is from the protons which hit the edge of Helmholtz coils, and lose much more energy than
other protons.

N
π0(γ)
D can be calculated from Eq.(7.11) and Eq.(7.12),

N
π0(γ)
D =

ηπ0(γ)

ηπ0(γγ)

N
π0(γγ)
D (7.15)

Then the ratio r between produced DVCS/BH and produced π0 can be evaluated with

the following formula,

r = NDV CS
P /Nπ0

P =
NDV CS

D

ηDV CS

/
N

π0(γγ)
D

ηπ0(γγ)

. (7.16)

Using equations Eq.(7.14) and Eq.(7.15) along with the calculated acceptance via Monte

Carlo, the result obtained for the ratio is r = 4.124 ± 0.386

Finally we can easily calculate the fraction of π0 in photon production events with

Eq. 7.17. The π0 contamination as a function of φ is found to range from 10% to 40%,

and the π0 fraction as a function of φ is shown in Fig. 7.10.
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Figure 7.8. The polar angle difference between the generated particle and reconstructed particle
vs the polar angle of the generated particle. The top panel is from electrons, and bottom panel is
from protons.

fπ0(φ) =
N

π0(γ)
D (φ)

Nγ
D(φ)

=
N

π0(γγ)
D (φ)

Nγ
D(φ)

ηπ0(γ)(φ)

ηπ0(γγ)(φ)
(7.17)

Where φ is the azimuthal angle between reaction plane and scattering plane.

Following the above procedure, the MC simulation is also done for the outbending data

(torus current I=-2250A), and the π0 contamination as a function of φ is found as same as

before (see Fig. 7.10). Considering the π0 contribution is similar for both inbending and

outbending data sets, the target spin asymmetries for two data sets were combined together

before π0 correction, and the average of π0 fractions from two sets was used to correct π0

contamination.

As can be seen from Fig. 7.10, the π0 contamination is largest at φ = 180o, and smallest

at φ = 0 and φ = 360o. Qualitatively, this can be understood from the fact that single

photon events are dominated by BH photons with peaking rates at very forward angles,

which correspond to φ = 0o/360o. At angles corresponding to φ = 180o, the BH/DVCS
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Figure 7.9. The azimuthal angle difference between the generated particle and reconstructed
particle vs the azimuthal angle of the generated particle. The top panel is from electrons, and
bottom panel is from protons.

rates are much smaller. On the other hand, π0 rates are more uniformly distributed in angle

and drop at a much smaller rate compared to the BH/DVCS rate. The ratio between π0

production and photon production is therefore expected to be small at φ = 0o/360o and

large at φ = 180o.

The fraction of DVCS in single-photon events is fDV CS(φ) = 1− fπ0(φ). This fraction is

used to correct π0 contamination (results are given in Chapter 8).

The acceptance functions for π0 events of one or two photons detected and DVCS/BH

events depend on angular cuts, which could affect the estimation of the π0 fraction, therefore,

variation of that angle cut is part of the estimate of the systematic error on the pion

contamination (see Chapter 8).
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Figure 7.10. The fraction of π0 in single-photon events as function of φ. The blue square denote
the inbending data set, while the red circles denote the outbending data set.

7.5 Different π0 models

In Eq. (7.17), the π0 contamination fraction (fπ0(φ)) depends on the both acceptance

functions ηπ0(γ)(φ) and ηπ0(γγ)(φ), which are given by Eq. (7.11) and Eq. (7.12), respectively.

These acceptance functions may depend on the π0 model. To show the dependence, the

acceptance functions are written as forms,

ηπ0(γ) =

∫
nγ(xB, t, Q

2, φ)dxBdtdQ
2

∫
N(xB , t, Q2, φ)dxBdtdQ2

, (7.18)

ηπ0(γ) =

∫
nγγ(xB, t, Q

2, φ)dxBdtdQ
2

∫
N(xB , t, Q2, φ)dxBdtdQ2

. (7.19)

Due to the integration on the xB, t, and Q2 variables, it is clear that the acceptance functions

depend on the π0 model. To study the model dependence, one variable, for example, Q2

dependence of the π0 cross section is changed, while keeping the other variables t, xB,

and φ dependences. The new kinematic dependence of the π0 cross section is not changed

blindly, but changed to agree more with the data than original model. Fig. 7.11 shows the

comparison between MC simulations and data where the π0 model is described in Section 7.2.
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In Fig. 7.11, some distributions of MC simulations and data don’t agree well with each other,

for example, the t distribution. The new π0 models will remove the discrepancy.

The first new π0 model is acquired by varying the Q2 dependence while keeping other

kinematic dependences. As discussed in Section 7.2, the π0 cross section is an order O(1/Q6),

while it is an order O(1/Q8) in the new model. The kinematic dependences of the π0 cross

section for the new model is shown in Fig. 7.12. The acceptances as a function φ from two

models are shown in Fig. 7.13, and the discrepancy shows that the acceptance depends on

the π0 model. The comparison between MC simulations and data is shown in Fig. 7.14.

With the new π0 model, the fraction of π0 contamination is approximated, and listed in

Table 7.1.

Table 7.1. The fraction of π0 acquired using the new π0 model (varying Q2 dependence)

φ (degree) fπ0 ∆fπ0 φ (degree) fπ0 ∆fπ0

0 − 36 0.0897 0.0075 180 − 216 0.4209 0.0223
36 − 72 0.1746 0.0108 216 − 252 0.3521 0.0200
72 − 108 0.2654 0.0186 252 − 288 0.2251 0.0148
108 − 144 0.3063 0.0182 288 − 324 0.1587 0.0112
144 − 180 0.4267 0.0213 324 − 360 0.1751 0.0116

The second new π0 model is acquired by varying the t dependence. The kinematic

dependences of the π0 cross section for the new model is shown in Fig. 7.15. The acceptances

as a function φ from the original and new models are shown in Fig. 7.16. The comparison

between MC simulations and data is shown in Fig. 7.17, it is clear that the discrepancy

on t distributions disappear. With the new π0 model, the fraction of π0 contamination is

approximated, and listed in Table 7.2.

Table 7.2. The fraction of π0 acquired using the new π0 model (varying t dependence)

φ (degree) fπ0 ∆fπ0 φ (degree) fπ0 ∆fπ0

0 − 36 0.1127 0.0094 180 − 216 0.4087 0.0217
36 − 72 0.1756 0.0109 216 − 252 0.3557 0.0202
72 − 108 0.2770 0.0194 252 − 288 0.1819 0.0119
108 − 144 0.3772 0.0224 288 − 324 0.2208 0.0156
144 − 180 0.4957 0.0248 324 − 360 0.1326 0.0088
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The third new π0 model is acquired by varying the xB dependence. The kinematic

dependences of the π0 cross section for the new model is shown in Fig. 7.18. The acceptances

as a function φ from the original and new models are shown in Fig. 7.19. The comparison

between MC simulations and data is shown in Fig. 7.20. With the new π0 model, the fraction

of π0 contamination is approximated, and listed in Table 7.3.

The difference between the new and original π0 models will be taken into account as the

systematic uncertainties, which will be discussed in Chapter 8.

Table 7.3. The fraction of π0 acquired using the new π0 model (varying xB dependence)

φ (degree) fπ0 ∆fπ0 φ (degree) fπ0 ∆fπ0

0 − 36 0.1181 0.0099 180 − 216 0.3852 0.0204
36 − 72 0.2522 0.0156 216 − 252 0.3956 0.0225
72 − 108 0.2511 0.0176 252 − 288 0.1974 0.0129
108 − 144 0.3287 0.0195 288 − 324 0.1186 0.0084
144 − 180 0.5528 0.0276 324 − 360 0.0813 0.0054

7.6 MM2
X for DVCS events

In above section, the fraction of π0 is estimated to be approximately 25% to the observed

single photon events. The squared missing mass MM 2
X of (ep) for identified π0 events is given

in Fig. 6.7. In addition, Fig. 5.16 shows the MM 2
X of (ep) for observed single photon events

which are contaminated by π0 events. To remove the π0 contribution from the spectrum

shown in Fig. 5.16, the spectrum of MM 2
X shown in Fig. 6.7 is normalized to 25% of the

number of photon production events. This distribution is then subracted from the spectrum

shown in Fig. 5.16. The MM 2
X of (ep) for photon production events after π0 subraction

is shown in Fig. 7.21. Note that the MM 2
X centroid is 0.0025 ± 0.0017 (GeV/c2)2 and the

MM2
X centroid for π0 eventa is 0.0217 ± 0.0028, their difference is 138 MeV/c2 with an

uncertainty of 4.8 MeV/c2, which is at the π0 mass 135 MeV/c2. This demonstrates that

the pion subtraction is correct.
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Figure 7.11. The comparison between MC simulations (red points) and the data (black line).
Events are π0s with two decay photons detected. The π0 model is described in Section 7.2.

7.7 Two topologies of π0 events

In the above discussion, π0 events are divided into two topologies, corresponding to one

photon detected (T1), and two photons detected (T2), respectively. The π0 contamination

of the photon production is T1, while the target spin asymmetry for π0 production is

measured from T2. Therefore, in order to correct the asymmetry of DVCS/BH due to

the π0 contamination, the asymmetry of π0 production from T2 must be shown to be the

same as that from T1. Since the π0 asymmetry depends on the kinematics such as Q2, −t,
and xB , the kinematic distributions of T1 and T2 are compared (see Fig. 7.22). Both T1

and T2 are from MC simulations. The comparison shows that the kinematic distributions

are similar for them. This gives credence that the asymmetry extracted from two photons

detected π0 is the same as that resulting from π0 background.

To summarize, the fraction of the π0 background in the observed single photon events

is approximated as a function of φ using MC simulations. Four π0 models are tested and
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Figure 7.12. The kinematic dependences of the π0 cross section for the new model (blue curve)
and original model (black curve). The π0 model has a new Q2 dependence, with an order O(1/Q8).

compared with the data. The results from different models are considered in the systematic

uncertainties. The MM 2
X of ep for photon productions after subtracting π0 background

is studied, and the centroid shows that the π0 background is removed. In addition, the

kinematic distributions of two topologies of π0 productions show that the asymmetry from

one photon detected π0 events is close to that from two photons detected. With the fraction

of the π0 background and the asymmetry for π0 productions, the effect of π0 contribution is

removed from the asymmetry for DVCS production.
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Figure 7.13. The acceptance functions of one photon detected π0 (left plot) and two photons
detected π0 (right plot). The black empty circles represent the the original model, while blue solid
circles represent the new model with different Q2 dependence. The discrepancy shows that the
acceptance depends on the π0 model.

121



                2/c2-t        GeV
0 0.1 0.2 0.3 0.4 0.5 0.6

E
ve

n
ts

   
   

   
   

   
 

0

5

10

15

20

25

                BX
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

E
ve

n
ts

   
   

   
   

  
0

5

10

15

20

25

30

              2/c2        GeV2Q
1 1.5 2 2.5 3 3.5 4 4.5

E
ve

n
ts

   
   

   
   

  

0

5

10

15

20

25

30

35

40

45

50

                Degree                 φ
0 50 100 150 200 250 300 350

E
ve

n
ts

   
   

   
   

   
 

0

5

10

15

20

25

30

35

40

Figure 7.14. The comparison between MC simulations (red points) and the data (black line).
Events are π0s with two decay photons detected. The π0 model has a new Q2 dependence, with
an order O(1/Q8).
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Figure 7.15. The kinematic dependences of the π0 cross section for the new model (blue curve)
and original model (black curve). The π0 model has a new t dependence.
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Figure 7.16. The acceptance functions of one photon detected π0 (left plot) and two photons
detected π0 (right plot). The black empty circles represent the the original model, while blue
solid circles represent the new model with different t dependence. The discrepancy shows that the
acceptance depends on the π0 model.
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Figure 7.17. The comparison between MC simulations (red points) and the data (black line).
Events are π0s with two decay photons detected. The π0 model has a new t dependence.
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Figure 7.18. The kinematic dependences of the π0 cross section for the new model (blue curve)
and original model (black curve). The π0 model has a new xB dependence.
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Figure 7.19. The acceptance functions of one photon detected π0 (left plot) and two photons
detected π0 (right plot). The black empty circles represent the the original model, while blue solid
circles represent the new model with different xB dependence. The discrepancy shows that the
acceptance depends on the π0 model.
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Figure 7.20. The comparison between MC simulations (red points) and the data (black line).
Events are π0s with two decay photons detected. The π0 model has a new xB dependence.
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Figure 7.21. The MM 2
X spectrum of (ep) for DVCS/BH, which is acquired from Fig. 5.16 by

subtracting normalized MM 2
X spectrum of identified π0 as shown in Fig. 6.7.
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Figure 7.22. −t (left panel), xB (middle panel), Q2 (right panel) distributions for two photons
detected π0 (solid curve) and one photon detected π0 (dashed curve). Both of them have the same
kinematic distributions.
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CHAPTER 8

RESULTS AND CONCLUSIONS

8.1 Fully corrected target spin asymmetry

With help of the MC simulations, the fraction of the π0 contamination in observed single

photon sample is approximated as a function of φ, therefore, the target spin asymmetry for

observed single photons can be calculated using the following equation:

Aγ(φ) = fDV CS(φ)ADV CS(φ) + fπ0(φ)Aπ0(φ). (8.1)

Here, Aγ(φ) is the target spin asymmetry extracted from observed single photon data with π0

contaminations, as shown in Fig. 5.14. Aπ0(φ) is the target spin asymmetry from two photons

detected π0 productions, as shown in Fig. 6.12. ADV CS is the asymmetry for observed single

photon productions without π0 background.

In the target spin asymmetry for photon productions, the helicity-independent Bethe-

Heitler contribution cancels out and only helicity-dependent interference between Bethe-

Heitler and Deeply Virtual Compton Scattering remains. As described in Chapter 1, the

target spin asymmetry AUL can be written as a Fourier series,

AUL(φ) = p0sinφ+ p1sin2φ+ · · ·, (8.2)

where the sinφ moment (p0) can be described as the general parton distributions with the

usual form factors (see Eq. (1.55)).

The fully corrected, final target spin asymmetry is shown in Fig. 8.1, and in Fig. 8.2,

which is fitted with different functions, respectively. In Fig. 8.1 and in Fig. 8.2, both dashed

and dotted curves are model calculations based on Ref[17].The dashed curve is the full model

prediction using the ξ-dependent GPD parameterization (bval=bsea=1, and E= Ẽ=0) based
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on MRST02 PDFs [17], including leading twist terms only, and target mass corrections

applied. The dotted curve shows the asymmetry when H̃=0. Since the sinφ moment

does not change too much with different fit functions, and the general parton distribution

model predicts the target spin asymmetry as a function of p0sinφ + p1sin2φ, we choose

p0sinφ + p1sin2φ to fit the final results.

In Fig. 8.2, a significant sinφ moment (p0) of the target spin asymmetry is observed,

and the sin2φ moment (p1) is small. This agrees well with the model predictions. The

amplitude of the theory curve decreases by a half with H̃ = 0, which shows that the target

spin asymmetry is sensitive to GPDs H̃.

Compared to the target spin asymmetry for observed single photon events with π0

contaminations (see Fig. 5.14), the sinφ moment (p0) is only slightly changed. Therefore,

the sinφ moment (p0) is not sensitive to the fraction of π0 contamination, whereas the sin2φ

moment (p1) is. This is easily understood because the target spin asymmetry for DVCS is

dominated by the sinφ moment (p0), while the target spin asymmetry for π0 is dominated

by the sin2φ moment (p1).
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Figure 8.1. The target spin asymmetry in the reaction e~p → epγ. Points are fitted to the
function F = p0sinφ, and p0 = 0.258 ± 0.041. χ2 = 6.6/9. Dashed and dotted curves are model
predictions[17].

131



                   Degree                   φ
0 50 100 150 200 250 300 350

   
   

   
   

   
   

   
 

U
L

A

-0.4

-0.3

-0.2

-0.1

-0

0.1

0.2

0.3

Figure 8.2. The target spin asymmetry in the reaction e~p → epγ. Points are fitted to the function
F = p0sinφ + p1sin2φ, and p0 = 0.252 ± 0.042, p1 = −0.022 ± 0.045. χ2 = 6.4/8. Dashed and
dotted curves are model predictions[17].

8.2 Systematic Error

All of the errors shown before were purely statistical. Due to uncertainties in the

measurements and in π0 models, a systematic errors arises. To understand their importance,

the possible systematic errors are studied.

To determine the systematic error, the first step is to explore possible the sources

(parameters) of systematic errors. Then, each parameter is varied and a new result is

determined. The systematic error arising from that parameter is given by the difference

between the standard result and the new result. Finally, all of the systematic errors are

added in quadrature to give the total systematic error.

In this analysis, the main sources of systematic uncertainties come from the following

contributions,

• Dilution factor

• Estimation of target and beam polarization

• 15N polarization
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• π0 model

• Radiative corrections

• Angular cut

8.2.1 Dilution Factor

The dilution factor is extracted as f = 0.901 ± 0.035. Therefore, it gives a relative

uncertainty < 4%.

8.2.2 Target Polarization

The target polarization was calculated using the known value of Pe and the product PePt.

The beam polarization was measured with a Moller polarimeter to be approximately 0.71

(slightly different for different runs). In the analysis, the maximum error 0.03 was used for

all runs. The value 0.71±0.03 covers all of the values measured from the Moller polarimeter.

PePt is determined using exclusive elastic ep scattering process, and the error is taken into

account the systematic error. The error of target polarization is estimated from Pe and PePt.

The polarizations and errors are listed in the Table 4.3.

The uncertainty in the target polarization directly enters in the final asymmetry as a

systematic error. This error gives a relative uncertainty of ≈ 7%.

8.2.3 Polarization of Nitrogen

During the data collection, the 15N in target 15NH3 was slightly polarized. Therefore,

the contribution from 15N to the numerator in Eq.(5.8) gives a contribution to the target

spin asymmetry. This is taken into account as a systematic uncertainty for the target spin

asymmetry.

Although the polarization of nitrogen was not measured during the data run, it was

estimated. In the dynamic nuclear polarization process, the polarization of all spin species

in the material follow the equal spin temperature hypothesis [62, 63], i.e. they are all at the
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same spin temperature(TS). Therefore, the nitrogen polarization can be estimated using the

following equations,

PN = tanh
µNB

KTS

, andPH = tanh
µpB

KTS

, (8.3)

where µp and µN are the magnetic moments for the proton and nitrogen respectively, TS

is spin temperature, and K is Boltzmann constant. In case of PH ≈ 70%, one obtains

PN = −7%. Actually only the unpaired proton is polarized in nitrogen. Therefore, the

polarization of the unpaired proton is

Pp = −1

3
PN (8.4)

The polarization is ≈ 2%. Considering that there are less than 10% events from 15N, the

increase of the effective proton polarization is ≈ 0.2%, therefore the contribution of nitrogen

to the asymmetry is negligible.

8.2.4 The π0 model

As discussed in Section 7.5, for the MC simulations of π0 events, the acceptance of one

photon or two photons detected π0 events depends on the π0 models. Three different π0

models were tested varying Q2, t, and xB (see Section 7.5), and the fraction of the π0

contamination in observed single photon events was also extracted for each case. With

these different models, the target spin asymmetry was extracted, and compared with the

asymmetry acquired using the original π0 model (see Fig. 8.3, Fig. 8.4, and Fig. 8.5). The

difference between them was taken into account as the systematic error, as shown in Table 8.1.

The respective contribution to the systematic error is <2.5%.

8.2.5 Radiative corrections

In leading order in electromagnetic interactions, the Bether-Heitler amplitude alone does

not give a target spin asymmetry, while when higher-order electromagnetic corrections are

included, QED loop radiative corrections can induce a target spin asymmetry. In Ref[64],

the target spin asymmetry for the Bether-Heitler process is calculated showing that it is less

than 0.1% for the kinematic range of this experiment.
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Figure 8.3. Comparison of the target spin asymmetry AUL vs φ. The red blocks are results
corrected with the original π0 model, while blue circles are results corrected with the different π0

model varying Q2 dependence. Blue circles are fitted to the function F = p0sinφ + p1sin2φ, and
p0 = 0.258 ± 0.043, p1 = −0.02 ± 0.046.
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Figure 8.4. Comparison of the target spin asymmetry AUL vs φ. The red blocks are results
corrected with the original π0 model, while blue circles are results corrected with a varying
t dependent π0 model. Blue circles are fitted to the function F = p0sinφ + p1sin2φ, and
p0 = 0.257 ± 0.043, p1 = −0.005 ± 0.046.
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Figure 8.5. Comparison of the target spin asymmetry AUL vs φ. The red blocks are results
corrected with the original π0 model, while blue circles are results corrected with a varying
xB dependent π0 model. Blue circles are fitted to the function F = p0sinφ + p1sin2φ, and
p0 = 0.252 ± 0.043, p1 = −0.014 ± 0.046.

Another radiative correction in the Bether-Heitler process may come from real-photon

radiation. In this analysis, an angular cut is imposed to remove events with more than one

photon, therefore, the phase space of an undetected photon is relatively small. In this case,

it is shown in Ref[64], that polarization observables are not affected.

8.2.6 Angular cut

In order to remove one photon detected π0 events and suppress nuclear background, the

data are selected with a cut on θγγ′ < 2o, which is a loose cut to maximize statistics. To

study how much the asymmetry depends on the cut, a tight one, θγγ′ < 1.5o, was tested.

The target spin asymmetry was calculated with the same procedure, and the comparison

is shown in Fig. 8.6. In each φ bin, the difference between the asymmetry obtained using

θγγ′ < 2o and θγγ′ < 1.5o is considered as the systematic error, as shown in Table 8.1. The

contribution to the systematic uncertainty is <5%.
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Figure 8.6. Comparison of the target spin asymmetry AUL vs φ. The black squares represent
AUL obtained using θγγ′ < 2o, while the red circles represent AUL obtained using θγγ′ < 1.5o.

8.2.7 Summary of errors

The systematic errors discussed in this section are largely uncorrelated, and the total

systematic uncertainty is the square root of the sum over square of each term. The tested

systematic error is shown in Fig. 8.7 as an error band at the bottom of the Figure. Therefore,

the final fit result for target spin asymmetry is p0 = 0.252 ± 0.042stat ± 0.020sys, and

p1 = −0.022 ± 0.045stat ± 0.021sys. The target spin asymmetry is dominated by statistical

uncertainties.

The systematic uncertainties from different sources in each φ bin are listed in the Table 8.1

for AUL.

8.3 Kinematic Dependences

In addition, the kinematic dependence of the sinφ moment of the target spin asymmetry

as functions of −t and xB was studied. Due to the low statistics, three bins were made for

both −t and xB.

With help of MC simulations, the fraction of π0 was estimated for each bin. See

Appendix D.
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Table 8.1. The systematic uncertainty for AUL in summary
φ (degree) f Pt π0 model Angular cut Total error

0 ∼ 36 0.0030 0.0052 -0.0132 0.0714 0.0728
36 ∼ 72 0.0067 0.0117 0.0117 0.0184 0.0256
72 ∼ 108 0.0089 0.0156 -0.0001 0.0142 0.0228
108 ∼ 144 0.0078 0.0136 0.0148 0.0058 0.0223
144 ∼ 180 0.0055 0.0097 0.0075 -0.0004 0.0134
180 ∼ 216 0.0002 0.0004 0.0031 0.0384 0.0385
216 ∼ 252 0.0013 0.0220 0.0006 -0.0591 0.0642
252 ∼ 288 0.0085 0.0149 0.0027 0.0481 0.0511
288 ∼ 324 0.0067 0.0117 -0.0239 -0.0483 0.0556
324 ∼ 360 0.0112 0.0196 -0.0575 -0.0544 0.0822
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Figure 8.7. The final result for the target spin asymmetry in the reaction e~p → epγ.
Points are fitted to the function F = p0sinφ + p1sin2φ (solid curve) with parameters
p0 = 0.252 ± 0.042stat ± 0.020sys and p1 = −0.022 ± 0.045stat ± 0.021sys. Dashed and dotted
curves are the model predictions[17]. The error band at the bottom represents the systematic
uncertainty.

In order to correct the target spin asymmetry of DVCS due to the π0 contaminations,

the target spin asymmetry of π0 as a function of φ was extracted for each −t bin and xB

bin. For each bin, the asymmetry was fitted to the function p0sinφ + p1sin2φ with free
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parameters p0 and p1. The results are listed in Table 8.2, and are used to correct the target

spin asymmetry for observed single photon events.

For each −t bin or xB bin, both the target spin asymmetry of π0 and the fraction of

π0 background in observed single photon events were extracted. This allows the target spin

asymmetry for single photon production for each −t bin or xB bin to be extracted and

corrected due to the π0 contaminations. The kinematic dependence of the sinφ moment of

the target spin asymmetry as a function of −t or xB is shown in Fig. 8.8. In the figure,

both dashed and dotted curves are model calculations based on Ref[17]. The dashed curve

is the full model prediction using the ξ-dependent GPD parameterization (bval=bsea=1,

and E= Ẽ=0) based on MRST02 PDFs,including leading twist terms only, and target

mass corrections applied. The dotted curve shows the asymmetry when H̃=0. A strong

xB-dependence of the leading term sinφ is observed, in agreement with the model predictions.

Table 8.2. The target spin asymmetry of π0 was function φ for each −t bin and xB bin

bins p0 p1 ∆p0 ∆p1

< −t >= 0.149 0.0418 -0.289 0.139 0.148
< −t >= 0.247 0.0209 -0.366 0.121 0.135
< −t >= 0.437 0.185 -0.376 0.0722 0.0771
< xB >= 0.206 0.0712 -0.291 0.103 0.123
< xB >= 0.296 0.0937 -0.261 0.0790 0.0888
< xB >= 0.403 0.384 -0.434 0.111 0.125

8.4 Summary and Outlook

Recently, the exclusive hard electroproduction of photons, i.e., Deeply Virtual Compton

Scattering (DVCS), attracts strong interests from both the experimental and theoretical

physicists, because it is one of the simplest processes to access general parton distributions.

So far, the cross section of DVCS has been reported by H1 and ZEUS, as well as the beam spin

asymmetry for DVCS reported by HERMES and CLAS. The measurements are promising,

and agree well with GPDs predictions, but they are far from constraining the GPDs. There

are four complex GPDs functions (H, H̃, E , and Ẽ), therefore, it is hard to constrain GPDs
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Figure 8.8. The upper panel shows the −t dependence of the sinφ-moment for hard exclusive
electroproduction of photons, while the lower shows the xB dependence. The dashed and dotted
curves are model predictions[17].
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from one experiment alone. So, a series of experiments are needed, such as diverse azimuthal

asymmetries with respect to the spin and the charge.

In this analysis, the target spin asymmetry for exclusive hard electroproduction of

photons has been measured for the first time, in addition, the sinφ moment of the target

spin asymmetry as functions of xB and −t are studied. A significant sinφ moment of the

target spin asymmetry is observed and is consistent with GPDs predictions. The asymmetry

shows strong sensitivity to the polarized GPD H̃. A small value of sin2φ moment is observed

as predicted by the GPDs theory. The leading term Asinφ
UL has a strong xB dependence and

rises with increasing xB, in agreement with the model prediction.

The fraction of π0 contamination in photon productions is estimated by MC simulations.

The MC simulations is compared with data, and they agree well each other. In addition, the

spectra of MM 2
X of DVCS after the pion subtraction and exclusive π0 events are studied,

the difference between their centroids is 138 MeV/c2 with an uncertainty of 4.8 MeV/c2,

which agrees with the π0 mass 135 MeV/c2. This clearly shows that the pion subtraction is

correct. So, we confidently trust MC simulations.

We also varied the fraction of π0, and the results show that sinφ moment (p0) is only

slightly affected by the fraction of π0. This can be easily understood, because most of π0

contamination is located around 180o in φ, and π0 asymmetry is dominated by sin2φ (p1).

So, it is clear that the significant sinφ moment of the target spin asymmetry is from photon

productions, not pion productions.

The measurement of the target spin asymmetry is based on EG1b data taken with a

longitudinally polarized beam and a longitudinally polarized solid proton target from Sep.

2000 to Apr. 2001. The goal of EG1b experiment was to measure the proton and neutron

spin structures, therefore, the polarized targets were 15NH3 and 15ND3, and the beam energy

varied from 1.6 GeV up to 5.7 GeV. This analysis is a byproduct and based on only part of

EG1b data, with 5.7 GeV beam energy and 15NH3 target. The total run time of the data

used in this analysis was 12 days, therefore, the data is limited by statistics, and does not

allow the extraction of the double spin asymmetry. To decrease the statistical errors and

measure the double spin asymmetry, a new proposal[8] based on this analysis was approved

to measure the DVCS in Hall B at Jefferson Lab with a 6 GeV longitudinally polarized

electron beam, polarized solid 15NH3 target, and the CLAS detector with the newly built
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inner calorimeter[27], which is a photon detector with a polar angle coverage from 3o to 8o.

The approved running time was 60 days at high luminosity (1.5 × 1034 cm−2s−1).

The new experiment will measure the DVCS in the range of Q2 from 1 to 4 GeV2/c2

and xB from 0.15 to 0.55. The main goal will be the extraction of the target azimuthal

spin asymmetry as functions of xB and −t. In addition, the double spin asymmetry will

be measured for the first time. Due to the inner calorimeter, the efficiency of ~e~p → epγ

detection will be doubled. With the 5 times longer run time and double acceptance, the

statistics should be 10 times of that in this analysis.

142



APPENDIX A

NUMBER OF OBSERVED SINGLE PHOTON

EVENTS FOR EACH DATA SET

Table A.1. Number of observed single photon events from 5.6 GeV inbending data

φ (degree) N⇑ N⇓ φ (degree) N⇑ N⇓

0 − 36 10 29 180 − 216 19 90
36 − 72 4 20 216 − 252 12 95
72 − 108 7 41 252 − 288 14 83
108 − 144 14 36 288 − 324 5 41
144 − 180 20 62 324 − 360 6 39

Table A.2. Number of observed single photon events from 5.7 GeV inbending data

φ (degree) N⇑ N⇓ φ (degree) N⇑ N⇓

0 − 36 36 34 180 − 216 66 92
36 − 72 30 29 216 − 252 75 109
72 − 108 42 32 252 − 288 72 74
108 − 144 47 50 288 − 324 34 43
144 − 180 63 63 324 − 360 34 35
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Table A.3. Number of observed single photon events from 5.73 GeV outbending data
φ (degree) N⇑ N⇓ φ (degree) N⇑ N⇓

0 − 36 11 14 180 − 216 18 16
36 − 72 17 13 216 − 252 31 45
72 − 108 48 49 252 − 288 37 58
108 − 144 50 51 288 − 324 21 28
144 − 180 42 45 324 − 360 13 23

Table A.4. Number of observed single photon events from 5.76 GeV outbending data

φ (degree) N⇑ N⇓ φ (degree) N⇑ N⇓

0 − 36 12 27 180 − 216 19 44
36 − 72 30 32 216 − 252 43 80
72 − 108 75 75 252 − 288 59 86
108 − 144 76 46 288 − 324 26 48
144 − 180 69 66 324 − 360 19 41
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APPENDIX B

TARGET SPIN ASYMMETRY FOR OBSERVED

SINGLE PHOTON EVENTS FOR EACH DATA

SET

0 50 100 150 200 250 300 350

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

                    Degreeφ

U
L

A

Figure B.1. The target spin asymmetry AUL as a function of the azimuthal angle φ
from 5.6 GeV inbending data. Points are fitted with function F = p0sinφ + p1sin2φ, and
p0 = 0.347± 0.125, p1 = −0.067± 0.122. < Q2 >= 1.85, < −t >= 0.27, and < xB >= 0.28.
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Figure B.2. The target spin asymmetry AUL as a function of the azimuthal angle φ
from 5.7 GeV inbending data. Points are fitted with function F = p0sinφ + p1sin2φ, and
p0 = 0.182± 0.071, p1 = −0.051± 0.073. < Q2 >= 1.85, < −t >= 0.27, and < xB >= 0.28.
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Figure B.3. The target spin asymmetry AUL as a function of the azimuthal angle φ from
5.73 GeV outbending data. Points are fitted with function F = p0sinφ + p1sin2φ, and
p0 = 0.185 ± 0.088, p1 = 0.024 ± 0.099. < Q2 >= 1.87, < −t >= 0.31, and < xB >= 0.29.
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Figure B.4. The target spin asymmetry AUL as a function of the azimuthal angle φ from
5.76 GeV outbending data. Points are fitted with function F = p0sinφ + p1sin2φ, and
p0 = 0.309± 0.076, p1 = −0.227± 0.086. < Q2 >= 1.87, < −t >= 0.31, and < xB >= 0.29.
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APPENDIX C

NUMBER OF π0 EVENTS FOR EACH DATA

SET

Table C.1. Number of π0 events from 5.6 GeV inbending data

φ (degree) N⇑ N⇓ φ (degree) N⇑ N⇓

0 − 36 0 1 180 − 216 12 26
36 − 72 3 5 216 − 252 18 48
72 − 108 6 11 252 − 288 10 21
108 − 144 20 9 288 − 324 3 4
144 − 180 23 16 324 − 360 3 3

Table C.2. Number of π0 events from 5.7 GeV inbending data

φ (degree) N⇑ N⇓ φ (degree) N⇑ N⇓

0 − 36 4 5 180 − 216 38 35
36 − 72 11 12 216 − 252 33 46
72 − 108 18 10 252 − 288 21 17
108 − 144 26 21 288 − 324 12 9
144 − 180 24 26 324 − 360 6 2
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Table C.3. Number of π0 events from 5.73 GeV outbending data

φ (degree) N⇑ N⇓ φ (degree) N⇑ N⇓

0 − 36 0 4 180 − 216 5 12
36 − 72 5 3 216 − 252 26 29
72 − 108 25 24 252 − 288 30 30
108 − 144 37 26 288 − 324 8 12
144 − 180 24 17 324 − 360 4 2

Table C.4. Number of π0 events from 5.76 GeV outbending data

φ (degree) N⇑ N⇓ φ (degree) N⇑ N⇓

0 − 36 1 2 180 − 216 7 11
36 − 72 2 6 216 − 252 21 55
72 − 108 39 32 252 − 288 30 43
108 − 144 40 32 288 − 324 16 9
144 − 180 23 16 324 − 360 5 6
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APPENDIX D

THE FRACTION OF π0 CONTAMINATIONS IN

OBSERVED SINGLE PHOTON EVENTS

Table D.1. The fraction of π0 for < −t >= 0.149GeV 2/c2

φ (degree) fπ0 ∆fπ0 φ (degree) fπ0 ∆fπ0

0 − 36 0.098 0.008 180 − 216 0.287 0.019
36 − 72 0.058 0.005 216 − 252 0.201 0.015
72 − 108 0.173 0.013 252 − 288 0.192 0.014
108 − 144 0.262 0.018 288 − 324 0.108 0.009
144 − 180 0.320 0.020 324 − 360 0.104 0.009

Table D.2. The fraction of π0 for < −t >= 0.247GeV 2/c2

φ (degree) fπ0 ∆fπ0 φ (degree) fπ0 ∆fπ0

0 − 36 0.173 0.013 180 − 216 0.307 0.020
36 − 72 0.084 0.007 216 − 252 0.292 0.019
72 − 108 0.229 0.017 252 − 288 0.185 0.014
108 − 144 0.294 0.019 288 − 324 0.077 0.007
144 − 180 0.372 0.022 324 − 360 0.062 0.005
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Table D.3. The fraction of π0 for < −t >= 0.437GeV 2/c2

φ (degree) fπ0 ∆fπ0 φ (degree) fπ0 ∆fπ0

0 − 36 0.097 0.008 180 − 216 0.481 0.023
36 − 72 0.191 0.014 216 − 252 0.412 0.023
72 − 108 0.374 0.022 252 − 288 0.269 0.018
108 − 144 0.448 0.023 288 − 324 0.085 0.007
144 − 180 0.552 0.023 324 − 360 0.062 0.005

Table D.4. The fraction of π0 for < xB >= 0.206
φ (degree) fπ0 ∆fπ0 φ (degree) fπ0 ∆fπ0

0 − 36 0.093 0.009 180 − 216 0.367 0.022
36 − 72 0.015 0.001 216 − 252 0.278 0.019
72 − 108 0.292 0.019 252 − 288 0.192 0.015
108 − 144 0.321 0.020 288 − 324 0.129 0.011
144 − 180 0.392 0.022 324 − 360 0.132 0.011

Table D.5. The fraction of π0 for < xB >= 0.296
φ (degree) fπ0 ∆fπ0 φ (degree) fπ0 ∆fπ0

0 − 36 0.103 0.009 180 − 216 0.344 0.021
36 − 72 0.103 0.009 216 − 252 0.324 0.021
72 − 108 0.258 0.018 252 − 288 0.213 0.016
108 − 144 0.340 0.021 288 − 324 0.102 0.009
144 − 180 0.405 0.022 324 − 360 0.082 0.007

Table D.6. The fraction of π0 for < xB >= 0.403
φ (degree) fπ0 ∆fπ0 φ (degree) fπ0 ∆fπ0

0 − 36 0.136 0.011 180 − 216 0.244 0.017
36 − 72 0.120 0.010 216 − 252 0.280 0.019
72 − 108 0.263 0.018 252 − 288 0.228 0.016
108 − 144 0.384 0.022 288 − 324 0.074 0.006
144 − 180 0.492 0.023 324 − 360 0.072 0.006
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