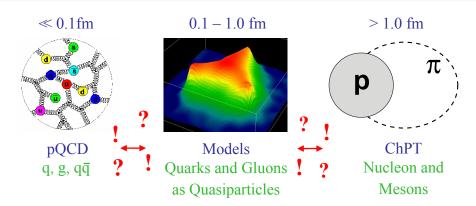
Status of and Prospects for N* Spectroscopy

Volker Credé

Florida State University Tallahassee, FL

Lattice QCD and Experiment

Jefferson Laboratory, 11/21/2008



- Introduction
- Status
 - Hyperon Photoproduction
 - $\eta (\eta')$ Photoproduction
 - Double-Pion
- Towards Complete Experiment
 - Ingredients
 - Polarization
- Summary and Outlook

- Introduction
- Status
 - Hyperon Photoproduction
 - $\eta (\eta')$ Photoproduction
 - Double-Pion
- Towards Complete Experiment
 - Ingredients
 - Polarization
- Summary and Outlook

- What are the relevant degrees of freedom?
- What are the corresponding effective interactions responsible for hadronic phenomena?

The Excited Baryon Program at JLab

The excited baryon program has two main components:

- Establish the systematics of the spectrum
 - → Provides information on the nature of effective degrees of freedom in strong QCD
- Probe resonance transitions at different distance scales (electron beams are ideal to measure transition form factors)
 - → Provides information on the confining forces of the 3-quark system

- Introduction
- Status
 - Hyperon Photoproduction
 - $\eta (\eta')$ Photoproduction
 - Double-Pion
- Towards Complete Experiment
 - Ingredients
 - Polarization
- Summary and Outlook

One of the Main Goals of the N* Program ...

Search for *missing* resonances

Quark models predict many more baryons than have been observed

	****	***	**	*
N Spectrum	11	3	6	2
△ Spectrum	7	3	6	6

- ⇒ according to PDG Phys. Rev. **D66** (2002) 010001
- ⇒ little known (many open questions left)

Possible solutions:

1. Quark-diquark structure

one of the internal degrees of freedom is frozen

2. Have not been observed, yet

Nearly all existing data result from πN scattering experiments

If the missing resonances did not couple to Nπ, they would not have been discovered!!

One of the Main Goals of the N* Program ...

Search for *missing* resonances

Quark models predict many more baryons than have been observed

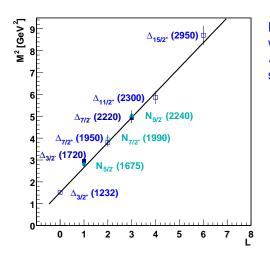
	****	***	**	*
N Spectrum	11	3	6	2
Δ Spectrum	7	3	6	6

- ⇒ according to PDG Phys. Lett. B 667, 1 (2008)
- ⇒ little known (many open questions left)

Possible solutions:

1. Quark-diquark structure

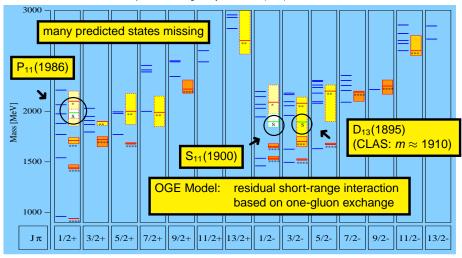
one of the internal degrees of freedom is frozen


2. Have not been observed, yet

Nearly all existing data result from πN scattering experiments

If the missing resonances did not couple to Nπ, they would not have been discovered!!

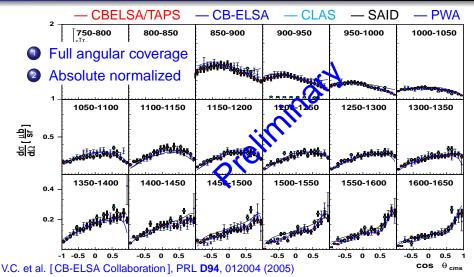
Possible Quark-Diquark Structure?



Regge trajectory for Δ^* states with intrinsic spin S=1/2 and S=3/2, and for N* states with spin S=3/2 (M^2 versus L, not J)

- ① Common Regge trajectory for N/ \triangle states with S = 3/2
- Not shown, but slope of the Regge trajectory for meson and Δ excitations is identical
- → Are baryons quark-diquark excitations?

Nucleon Resonances: Status – 2001


S. Capstick and N. Isgur, Phys. Rev. D34 (1986) 2809

Baryon Resonances in Hyperon Photoproduction

Analysis of $\gamma p \rightarrow p \eta$ (New Data from CB-ELSA/TAPS)

- Introduction
- Status
 - Hyperon Photoproduction
 - $\eta (\eta')$ Photoproduction
 - Double-Pion
- Towards Complete Experiment
 - Ingredients
 - Polarization
- Summary and Outlook

- Introduction
- Status
 - Hyperon Photoproduction
 - $\eta (\eta')$ Photoproduction
 - Double-Pion
- Towards Complete Experiment
 - Ingredients
 - Polarization
- Summary and Outlook

