Status of and Prospects for N^{*} Spectroscopy

Volker Credé

Florida State University Tallahassee, FL

Lattice QCD and Experiment

Jefferson Laboratory, 11/21/2008

イロト イポト イヨト イヨト

Outline

Introduction

- 2
- Status of N* Spectroscopy
- $\eta (\eta')$ Photoproduction
- Analysis of Double-Pion Reactions
- Resonances in Hyperon Photoproduction
- 3 Toward Complete Experiments
 - What do we need?
 - Polarization

4 E N

Outline

Introduction

- Status of N* Spectroscopy
 - $\eta (\eta')$ Photoproduction
 - Analysis of Double-Pion Reactions
 - Resonances in Hyperon Photoproduction
- 3 Toward Complete Experiments
 - What do we need?
 - Polarization

< 🗇 🕨

-∢ ≣ ▶

- What are the relevant degrees of freedom?
- What are the corresponding effective interactions responsible for hadronic phenomena?

The Excited Baryon Program

The excited baryon program has two main components:

- Establish the systematics of the spectrum
 - → Provides information on the nature of effective degrees of freedom in strong QCD
- Probe resonance transitions at different distance scales (electron beams are ideal to measure transition form factors)
 - Provides information on the confining forces of the 3-quark system
 - → Afternoon session on "Hadron Structure"

(4 個) (4 回) (4 回)

One of the Main Goals of the N* Program ...

Search for missing or yet unobserved resonances

Quark models predict many more baryons than have been observed

	****	***	**	*
N Spectrum	11	3	6	2
Δ Spectrum	7	3	6	6

Possible solutions:

1. Quark-diquark structure

one of the internal degrees of freedom is frozen

- \Rightarrow according to PDG
 - Phys. Rev. D66 (2002) 010001
- ⇒ little known (many open questions left)
- 2. Have not been observed, yet

Nearly all existing data result from πN scattering experiments

 If the missing resonances did not couple to Nπ, they would not have been discovered!!

・ロット (雪) (山) (山)

One of the Main Goals of the N* Program ...

Search for missing or yet unobserved resonances

Quark models predict many more baryons than have been observed

	****	***	**	*
N Spectrum	11	3	6	2
Δ Spectrum	7	3	6	6

Possible solutions:

1. Quark-diquark structure

one of the internal degrees of freedom is frozen \Rightarrow according to PDG

Phys. Lett. B 667, 1 (2008)

- ⇒ little known (many open questions left)
- 2. Have not been observed, yet

Nearly all existing data result from πN scattering experiments

 If the missing resonances did not couple to Nπ, they would not have been discovered!!

・ロット (雪) (山) (山)

Possible Quark-Diquark Structure?

Regge trajectory for Δ^* states with intrinsic spin S = 1/2 and S = 3/2, and for N^* states with spin S = 3/2 (M^2 versus *L*, not *J*)

- Common Regge trajectory for N/ Δ states with S = 3/2
- Not shown, but slope of the Regge trajectory for meson and Δ excitations is identical
- → Are baryons quark-diquark excitations?

프 🖌 🖌 프 🕨

Nucleon Resonances: Status – 2001

- S. Capstick and N. Isgur, Phys. Rev. D34 (1986) 2809

Volker Credé Status of and Prospects for *N** Spectroscopy

イロト イポト イヨト イヨ

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Outline

Introduction

2

Status of N* Spectroscopy

- $\eta (\eta')$ Photoproduction
- Analysis of Double-Pion Reactions
- Resonances in Hyperon Photoproduction
- 3 Toward Complete Experiments
 - What do we need?
 - Polarization

< □ > < 同 > < 回 > < 回 > < 回 > < 回

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

 η (η ') Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

What is new?

Many excellent data have been accumulated over the last years

- High-statistics samples with excellent energy/angular coverage
- New resonances have been announced and formerly weakly established states have been verified, e.g.:
 Δ(1940)D₃₃, N(1900)P₁₃, N(2070)D₁₅, N(2200)P₁₃, ...
- However, many of these candidates are not confirmed by other groups or disputed

Analysis techniques and models have been developed (improved):

- Coupled-channel (or combined) analyses
- Event-based likelihood fits

ヘロト 人間 とくほとう ほとう

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Study of $\gamma p ightarrow p \eta$ (2008 Data from CB-ELSA/TAPS)

Volker Credé Status of and Prospects for N* Spectroscopy

 η (η') Photoproduction

Study of $\gamma p \rightarrow p \eta$ (2008 Data from CB-ELSA/TAPS)

Status of and Prospects for N* Spectroscopy

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Analysis of $\gamma p \rightarrow p \eta$: Total Cross Section

Isospin Filter

→ Only N* resonances can contribute!

Bonn-Gatchina (PWA) group: Hint for N^* resonance $N(2070)D_{15}$ (Phys. Rev. Lett. **D94**, 012004 (2005))

Three resonances are dominantly contributing! $N(1535)S_{11}$, $N(1720)P_{13}$, $N(2070)D_{15}$

 η (η ') Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Partial Wave Analysis (PWA Center at ELSA)

- PWA: Operator (Tensor) Formalism (Rarita–Schwinger)
 - Many data sets included
 - Cross section data and polarization observables
 - Solutions not unique

Reference	N _{data}	χ^2/N
CB-ELSA	667	0.91
TAPS	100	1.6
GRAAL 98	51	2.27
GRAAL 04	100	1.75
CB-ELSA	1106	1.50
GRAAL 04	469	3.43
SAID	593	2.87
SAID	1583	2.86
	Reference CB-ELSA TAPS GRAAL 98 GRAAL 04 CB-ELSA GRAAL 04 SAID SAID	Reference Ndata CB-ELSA 667 TAPS 100 GRAAL 98 51 GRAAL 04 100 CB-ELSA 1106 GRAAL 04 469 SAID 593 SAID 1583

Resonance	M (MeV)	Г (MeV)	Fraction
N(1520)D ₁₃	1523 ± 4	105^{+6}_{-18}	0.020
PDG	1520^{+10}_{-5}	120^{+15}_{-10}	
N(1535)S ₁₁ *	1501 ± 5	215 ± 25	
PDG	1505 ± 10	170 ± 80	0.430
N(1650)S ₁₁ *	1610 ± 10	190 ± 20	0.450
PDG	1660 ± 20	160 ± 10	
N(1675)D ₁₅	1690 ± 12	125 ± 20	0.001
PDG	1675^{+10}_{-5}	150^{+30}_{-10}	
N(1680)F ₁₅	1669 ± 6	85 ± 10	0.005
PDG	1680^{+10}_{-5}	130 ± 10	
N(1700)D ₁₃	1740 ± 12	84 ± 16	0.004
PDG	1700 ± 50	100 ± 50	
N(1720)P ₁₃	1775 \pm 18	325 ± 25	0.300
PDG	1720^{+30}_{-70}	250 ± 50	
N(2000)F ₁₅	1950 \pm 25	230 ± 45	0.007
N(2070)D ₁₅	2068 ± 22	295 ± 40	0.171
N(2080)D ₁₃	1943 \pm 17	82 ± 20	0.011
N(2200)P ₁₃	2214 ± 28	360 ± 55	0.051

*K-Matrix Fit, Fraction for the total K-matrix contribution

イロト イポト イヨト イヨト

э

Volker Credé

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Analysis of $\gamma p \rightarrow p \eta$: Total Cross Section

Isospin Filter

→ Only N* resonances can contribute!

Hint for *N** resonance *N*(2070)*D*₁₅ (Phys. Rev. Lett. **D94**, 012004 (2005))

- Confirmed in 2008 analysis!
- ② $N(1720)P_{13} \rightarrow \eta p$ unexpected → η -MAID: $N(1710)P_{11} \rightarrow \eta p$ significant!

・ロト ・ 日本 ・ 日本 ・ 日本

Three resonances are dominantly contributing! $N(1535)S_{11}$, $N(1720)P_{13}$, $N(2070)D_{15}$

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Linearly-Polarized Beam at JLab: $\Sigma(\gamma \rho \rightarrow \rho \eta)$

Good agreement with other data

 Interpretation of Bonn (PWA) and CLAS data (SAID) different: P₁₃(1720) ⇔ P₁₁(1710)

Preliminary analysis of $\gamma p \rightarrow p \eta$ (Mike Dugger, ASU)

- P_{γ} estimated at 0.8
- SAID prediction
- Data with statistical errors (no systematic)

< □ > < 同 > < 回 > < 回 > < 回 > < 回

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Study of $\gamma p ightarrow p \, \eta \, \prime$ at JLab

Set IV

N(1535)S₁₁, N(2090)S₁₁ N(1710)P₁₁, N(2100)P₁₁ N(1700)D₁₃, N(2080)D₁₃

Similar to η analysis: N(1535)S₁₁ and N(1710)P₁₁ dominant (SAID, MAID)!

Analysis of $\gamma p \rightarrow p \eta'$ Phys. Rev. Lett. **96**, 062001 (2006)

ヘロト ヘ帰 ト ヘヨト ヘヨト

Volker Credé

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Linearly-Polarized Beam at JLab: g8b Run Group

Volker Credé

 $\eta (\eta')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Resonances in $\gamma^{(*)} p \rightarrow p \pi^+ \pi^-$

- 2π channel sensitive to N*'s heavier than 1.4 GeV
- Provides complementary information to the 1π channel
- Many higher lying N^* 's decay preferably to $N\pi\pi$ final states via intermediate states

Solid curves are from fits using the recent JM06 model with and without a new $?(1720)P_{73}$ state

 η (η ') Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Resonances in $\gamma^{(*)}p \rightarrow p\pi^+\pi^-$

Background

Resonances

Combined analysis of preliminary real (M. Bellis) and also published virtual photon data (M. Ripani):

Fit needs both the candidate $?(1720)P_{?3}$ and the $N(1720)P_{13}$ state.

Authors claim that combined fit of various single differential cross sections allowed to establish all significant mechanisms.

イロト イポト イヨト イヨト

 η (η ') Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Beam-Helicity Asymmetry I^{\odot} in the reaction $\vec{\gamma} p \rightarrow p \pi^+ \pi^-$

CLAS Measurements

(S. Strauch et al., PRL 95, 162003 (2005))

and model calculations:

- Mokeev et al. (solid)
- Fix and Arenhövel (dashed)

▶ ∢ ≣

Reasonable Description of $N\pi/N\pi\pi$ Electroproduction

The CLAS-Collaboration phenomenological models (UIM/DR/JM) reproduce reasonably well comprehensive CLAS/world data on all observables in $N\pi/N\pi\pi$ electroproduction:

- Isobar used in $N\pi\pi$ electroproduction
 - (1720) All well-established $N^* \rightarrow \pi^- \Delta^{++}$ decays + 3/2⁺(1720)
 - 2 All well-established $N^* \rightarrow p\rho$ decays + 3/2⁺(1720)
 - Observed for the first time in CLAS data: $\pi^+ D_{13}^0(1520), \pi^+ F_{15}^0(1685), \text{ and } \pi^- P_{33}^{++}(1640)$
- Models can be used to evaluate N* electrocouplings
 - ➔ Information on contributing mechanisms will be used by EBAC for N* studies in advanced coupled channel analysis (Julia-Diaz, Lee, Phys. Rev. C76, 065201 (2007))

くロト (得) (目) (日)

 $\eta (\eta')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Analysis of $\gamma p \rightarrow p \pi^0 \pi^0$ (CB-ELSA)

Event-based Maximum Likelihood Fit (arXiv:0707.3592)

Further constraints

- $\gamma p \rightarrow p\pi^0$ (CB-ELSA, TAPS, GRAAL) beam and target asymmetries, recoil polarization, $d\sigma/d\Omega$,
- $\gamma p \rightarrow p \pi^0 \pi^0$ (GRAAL, TAPS), $\pi^- p \rightarrow n \pi^0 \pi^0$ (Crystal Ball)
- $\gamma p \rightarrow p \eta$ (CB-ELSA, GRAAL, TAPS)

・ロト ・ 日本 ・ 日本 ・ 日本

- $\gamma p \rightarrow K\Lambda, K\Sigma$ (CLAS, SAPHIR)
- Mass region below 1.7 GeV/ c^2 dominated by $\Delta^+\pi^0 \rightarrow p \pi^0\pi^0 -$
- Significant contributions from $N(\pi\pi)_S$ -wave $-\cdot \cdot -$

 $\eta (\eta')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Analysis of $\gamma \rho \rightarrow \rho \pi^0 \pi^0$ (CB-ELSA)

Main results

- Observation of decays into Δπ, N(ππ)_S, N(1440)P₁₁π, N(1520)D₁₃π
- N(1900)P₁₃ needed by CLAS spin-transfer data in hyperon photoproduction
- Properties of N(1720)P₁₃ disagree with PDG values (decay mode Δπ strong, Γ_{tot})
 - ➔ Discrepancies interpreted as new P₁₃ state by MSU-JLab group

イロト 不得 とくほ とくほう

- N(1520)D₁₃ decays into (Δπ)_{S-wave} as strong as decays into (Δπ)_{D-wave}
- Mass region below 1.7 GeV/ c^2 dominated by $\Delta^+\pi^0 \rightarrow p \pi^0\pi^0 -$
- Significant contributions from $N(\pi\pi)_{S}$ -wave $\cdot \cdot -$

 η (η ') Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Photoproduction of Strangeness

- Cross Sections for the $\gamma p \rightarrow K^{*0}\Sigma^+$ Reaction at $E_{\gamma} = 1.7 3.0$ GeV (PRC **75** 042201 (2007))
- First Measurement of the Beam-Recoil Observables C_x and C_z in Hyperon Photoproduction (PRC **75** 035205 (2007))
- Separated Structure Functions for the Exclusive Electroproduction of K⁺Λ and K⁺Σ⁰ Final States (PRC **75** 045203 (2007))
- Differential Cross Sections for γp → K⁺ Y for Λ and Σ⁰ Hyperons (PRC **73** 035202 (2006))

イロト 不得 とうき とうとう

 η (η ') Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Nucleon Resonances: Status – 2001

- S. Capstick and N. Isgur, Phys. Rev. **D34** (1986) 2809

Volker Credé Status of and Prospects for *N** Spectroscopy

イロト イポト イヨト イヨ

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Cross Section Measurements for $\gamma p \rightarrow K^+ Y$

Several existing theoretical models are compared to the data, but none provides a good representation of the data

→ Further constraints needed!

SAPHIR data triggered discussion on *missing* $N(1950)D_{13}$ state:

Mart-Bennhold
 → Evidence for N(1890)D₁₃

Saghai

→ Bump due to u-channel and off-shell effects

イロト イポト イヨト イヨト

no need, interference effect, strong evidence, etc.

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Baryon Resonances in Hyperon Photoproduction

Mart & Bennhold:

- including *N*(1895)*D*₁₃ (*)
- · · · · without $N(1895)D_{13}$
- History of the $D_{13}(1895)$
- 2000 D₁₃(1895)
- 2000 $D_{13}(1895) + P_{13}(1720)$
- 2003 D₁₃(1740)

$$2005 \quad D_{13}(1870) = [D_{13}(1520)]$$

2006 D₁₃(1912)

→ Problem: 20 % (energy-dependent) normalization discrepancy between SAPHIR and CLAS

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Hyperon Production: Evidence for $N(1900)P_{13} **$

<u>BoGa</u> (arXiv:0707.3600)

Left panel: without N(1900)P₁₃

Right panel: with $N(1900)P_{13}$

Volker Credé

Status of and Prospects for N* Spectroscopy

 η (η ') Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

Hyperon Production: Evidence for $N(1900)P_{13} **$

Volker Credé

Status of and Prospects for N* Spectroscopy

 $\eta~(\eta~')$ Photoproduction Analysis of Double-Pion Reactions Resonances in Hyperon Photoproduction

(New) Baryon Resonances in Photoproduction

Reaction	Resonances							
$\gamma p ightarrow N \pi$	$\Delta(1232)P_{33}$	N(1520)D ₁₃	N(1680)F ₁₅	S(1535)S ₁₁				
$\gamma p \rightarrow p \eta$	S(1535)S ₁₁	N(1720)P ₁₃	N(2070)D ₁₅	$N(1650)S_{11}$				
$\gamma p ightarrow p \pi^0 \pi^0$	$\Delta(1700)D_{33}$	N(1520)D ₁₃	N(1680)F ₁₅					
$\gamma {oldsymbol p} o {oldsymbol p} \pi^0 \eta$	∆(1940) <i>D</i> ₃₃	$\Delta(1920)P_{33}$	N(2200)P ₁₃	$\Delta(1700)D_{33}$				
$\gamma p ightarrow \Lambda K^+$	S ₁₁ -wave	N(1720)P ₁₃	N(1900)P ₁₃	<i>N</i> (1840) <i>P</i> ₁₁				
$\gamma p ightarrow \Sigma K$	S ₁₁ -wave	N(1900)P ₁₃	N(1840)P ₁₁					
$\pi^- {m ho} o {m n} \pi^0 \pi^0$	N(1440)P ₁₁	N(1520)D ₁₃	S ₁₁ -wave					

The available data sets comprising various high-statistics differential cross sections, beam, target, recoil asymmetries, double polarization observables, and also data resolving isospin contributions are not yet sufficient to converge into a unique solution.

くロト (得) (目) (日)

What do we need? Polarization

Outline

< 🗇 🕨

- < ⊒ → <

What do we need? Polarization

Ingredients

• Measurements off neutron and proton to resolve isospin contributions

- $2 \mathcal{A}(\gamma N \to \pi, \, \eta, \, K)^{I=1/2} \quad \Longleftrightarrow \quad N^*$
- Re-scattering effects: Large number of measurements (and also final states) needed to define the full scattering amplitude
- Double-polarization measurements

Chiang & Tabakin, Phys. Rev. C55, 2054 (1997)

In order to determine the full scattering amplitude without ambiguities, one has to carry out eight carefully selected measurements: <u>four</u> double-spin observables along with the <u>four</u> single-spin observables.

ヘロト ヘアト ヘビト ヘビト

What do we need? Polarization

$\gamma \rho \rightarrow K^+ \Lambda$ Series of JLab Experiments

Photon bean	n beam Target Recoil		Target		l	Target - Recoil										
		<i>x'</i>	y'	z'	<i>x'</i>	<i>x'</i>	<i>x'</i>	y'	y'	y'	z'	<i>z'</i>	z'			
		x	y	z				x	у	Ζ	x	у	Z	x	У	Z
unpolarized	σ0		T			P		<i>T</i> _x ,		$L_{x'}$		Σ		<i>T</i> _{z'}		<i>L</i> _{z'}
linearly P_{γ}	Σ	H	P	G	<i>O</i> _{x'}	Τ	<i>O</i> _{z'}	<i>L</i> _{z'}	<i>Cz</i> [']	<i>T</i> _{z'}	E		F	$L_{x'}$	<i>C</i> _{<i>x'</i>}	$T_{x'}$
circular P_{γ}		F		E	$C_{x'}$		<i>C</i> _{z'}		0 _{z'}		G		H		0 _{x'}	

status	CLAS run period	beam	target	Full set of 16
complete	g1	γ, _{γ̃}	LH ₂	Miskimen/Schumacher
complete	g8	$\vec{\gamma}_L$	LH ₂	Cole
complete	$g9a - P_z^T$	$\vec{\pmb{\gamma}}_L$, $\vec{\pmb{\gamma}}_c$	$FROST - C_4 \vec{H}_9 O \vec{H}$	Klein, Pasyuk
2010	$g9b - P_x^T$	$\vec{\pmb{\gamma}}_L, \vec{\pmb{\gamma}}_c$	$FROST - C_4 \vec{H}_9 O \vec{H}$	Klein, Pasyuk

Picture taken from A. Sandorfi

イロト 不得 とうき とうとう

3

What do we need? Polarization

Beam-Target Polarization Observables

$$\frac{d\sigma}{d\Omega} = \sigma_0 \{ 1 - \delta_I \Sigma \cos 2\phi \\ + \Lambda_x (-\delta_I H \sin 2\phi + \delta_{\odot} F) \\ - \Lambda_y (-T + \delta_I P \cos 2\phi) \\ - \Lambda_z (-\delta_I G \sin 2\phi + \delta_{\odot} E) \}$$
 \Leftarrow Single-Meson Final States (7 Observables)

$$I = I_0 \{ (\mathbf{1} + \vec{\lambda}_i \cdot \vec{\mathbf{P}}) \\ + \delta_{\odot} (\mathbf{I}^{\odot} + \vec{\lambda}_i \cdot \vec{\mathbf{P}}^{\odot}) \\ + \delta_I [\sin 2\beta (\mathbf{I}^{\mathbf{s}} + \vec{\lambda}_i \cdot \vec{\mathbf{P}}^{\mathbf{s}}) \\ \cos 2\beta (\mathbf{I}^{\mathbf{c}} + \vec{\lambda}_i \cdot \vec{\mathbf{P}}^{\mathbf{c}})] \}$$

イロト 不得 とうき とうとう

3

What do we need? Polarization

Double-Polarization Measurements at ELSA

- Longitudinally-Polarized Target
- Polarized Photon Beams
- Excellent Photon Energy Detection

イロト イポト イヨト イヨト

Charged Particle Identification

Volker Credé Status of and Prospects for N* Spectroscopy

What do we need? Polarization

Double-Polarization Measurements at ELSA

Helicity Difference E for $\gamma p \rightarrow p \eta$

- Longitudinally-polarized target
- Circularly-polarized beam

< □ > < 同 > < 回 > < 回 > < 回 > < 回

• \sim 40,000 $p\eta$ events

Volker Credé Status of and Prospects for N* Spectroscopy

What do we need? Polarization

The CLAS Polarization Program

The Double-Polarization Program (FROST) at JLab:

- E 02-112 \Rightarrow Photoproduction of Hyperons (K⁺ Λ (Σ^{0}), K⁰ Σ^{+})
- E 03-105 $\Rightarrow \pi^0 p, \pi^+ n$ Photoproduction E 04-102
- E 05-012 $\Rightarrow \eta$ Photoproduction
- E 06-013 $\Rightarrow \pi^+\pi^-$ Photoproduction

The Polarized Deuterium-Target Program (HD-Ice target from BNL):

• E 06-101 $\Rightarrow \gamma n \rightarrow \pi^- p, \ \pi^+ \pi^- n, \ K \ Y \ (K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^-)$

Polarized photon beams on unpolarized targets:

- g1, g8 \Rightarrow Reactions on Hydrogen (\checkmark)
- g13 \Rightarrow Reactions on Deuterium (\checkmark)

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

What do we need? Polarization

The CLAS Polarization Program

The Double-Polarization Program (FROST) at JLab:

- E 02-112 \Rightarrow Photoproduction of Hyperons (K⁺ Λ (Σ^{0}), K⁰ Σ^{+})
- E 03-105 $\Rightarrow \pi^0 p, \pi^+ n$ Photoproduction E 04-102
- E 05-012 $\Rightarrow \eta$ Photoproduction
- E 06-013 $\Rightarrow \pi^+\pi^-$ Photoproduction

The Polarized Deuterium-Target Program (HD-Ice target from BNL):

• E 06-101 $\Rightarrow \gamma n \rightarrow \pi^- p, \ \pi^+ \pi^- n, \ K \ Y \ (K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^-)$

Polarized photon beams on unpolarized targets:

- g1, g8 \Rightarrow Reactions on Hydrogen (\checkmark)
- g13 \Rightarrow Reactions on Deuterium (\checkmark)

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

What do we need? Polarization

FROST Run Summary: Nov. 2007 - Feb. 2008

Production Data

• Target (Butanol)

Longitudinally-polarized target Average polarization ~ 80 % Additional targets: ¹²C, CH₂

PhotonBeam

Circular and linear Polarization Excellent degrees of polarization

$\Delta B/B \approx 3 \cdot 10^{-3}$ at 0.5 T , ______ $B \approx 0.5$ T

 $B \approx 0.5 \text{ T}$ $T \approx 0.05 \text{ K}$

10.5 Billion events

Status of and Prospects for N* Spectroscopy

What do we need? Polarization

The CLAS Polarization Program

The Double-Polarization Program (FROST) at JLab:

- E 02-112 \Rightarrow Photoproduction of Hyperons (K⁺ Λ (Σ^{0}), K⁰ Σ^{+})
- E 03-105 $\Rightarrow \pi^0 p, \pi^+ n$ Photoproduction E 04-102
- E 05-012 $\Rightarrow \eta$ Photoproduction
- E 06-013 $\Rightarrow \pi^+\pi^-$ Photoproduction

The Polarized Deuterium-Target Program (HD-Ice target from BNL):

• E 06-101 $\Rightarrow \gamma n \rightarrow \pi^- p, \ \pi^+ \pi^- n, \ K \ Y \ (K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^-)$

Polarized photon beams on unpolarized targets:

- g1, g8 \Rightarrow Reactions on Hydrogen (\checkmark)
- g13 \Rightarrow Reactions on Deuterium (\checkmark)

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

What do we need? Polarization

Volker Credé

Status of and Prospects for N* Spectroscopy

What do we need? Polarization

The CLAS Polarization Program

The Double-Polarization Program (FROST) at JLab:

- E 02-112 \Rightarrow Photoproduction of Hyperons (K⁺ Λ (Σ^{0}), K⁰ Σ^{+})
- E 03-105 $\Rightarrow \pi^0 p, \pi^+ n$ Photoproduction E 04-102
- E 05-012 $\Rightarrow \eta$ Photoproduction
- E 06-013 $\Rightarrow \pi^+\pi^-$ Photoproduction

The Polarized Deuterium-Target Program (HD-Ice target from BNL):

• E 06-101 $\Rightarrow \gamma n \rightarrow \pi^- p, \ \pi^+ \pi^- n, \ K \ Y \ (K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^-)$

Polarized photon beams on unpolarized targets:

- g1, g8 \Rightarrow Reactions on Hydrogen (\checkmark) "Linear Beam"
- g13 \Rightarrow Reactions on Deuterium (\checkmark)

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

What do we need? Polarization

Linearly-Polarized Beam at JLab: g8b Run Group

- Many channels being analyzed:
- High statistics > 10 billion events
- High photon polarization from 1.3 – 2.1 GeV

= Preliminary analysis of $\gamma p \to N \pi$ (Mike Dugger ASU)

- P_{γ} estimated at 0.8
- SAID prediction
- Data with statistical errors (no systematic)

≣ ► < ≣ ►

What do we need? Polarization

The CLAS Polarization Program

The Double-Polarization Program (FROST) at JLab:

- E 02-112 \Rightarrow Photoproduction of Hyperons (K⁺ Λ (Σ^{0}), K⁰ Σ^{+})
- E 03-105 $\Rightarrow \pi^0 p, \pi^+ n$ Photoproduction E 04-102
- E 05-012 $\Rightarrow \eta$ Photoproduction
- E 06-013 $\Rightarrow \pi^+\pi^-$ Photoproduction

The Polarized Deuterium-Target Program (HD-Ice target from BNL):

• E 06-101 $\Rightarrow \gamma n \rightarrow \pi^- p, \ \pi^+ \pi^- n, \ K \ Y \ (K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^-)$

Polarized photon beams on unpolarized targets:

- g1, g8 \Rightarrow Reactions on Hydrogen (\checkmark) "Circular Beam"
- g13 \Rightarrow Reactions on Deuterium (\checkmark)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Polarization

C_x (and C_z) in Hyperon Photoproduction

 $\vec{\gamma} p \rightarrow K^+ + \vec{\Lambda}$ Circularly-polarized beam

 C_x/C_z characterize polarization transfer from beam to recoiling hyperon

Volker Credé Status of and Prospects for N^* Spectroscopy

What do we need? Polarization

$(C_x \text{ and}) C_z$ in Hyperon Photoproduction

Volker Credé Status of and Prospects for *N** Spectroscopy

What do we need? Polarization

C_x and C_z in Hyperon Photoproduction

Outline

< 🗇 🕨

-∢ ≣ ▶

Summary and Outlook

Many high-statistics data samples available with excellent energy and angular coverage:

- Several studies provide good description of η , $\pi\pi$, and hyperon photoproduction
 - New baryon resonances have been proposed
 - → Groups and studies do not always agree, ambiguities!
- Other reactions have been studied (not discussed here):
 - Latest GWU analysis of crucial πN channel suggests (ARNDT 06): ** $N(2000)F_{15}$, $\Delta(2400)G_{39}$ and new $N(2245)H_{1.11}$
 - BES observes $N^*(2050)$ in $J/\psi \to p\pi^- \overline{n}$ and $J/\psi \to \overline{p} \pi^+ n$
- Essential polarization measurements have started at all facilities
 - Double-polarization data partly taken

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト