

 Users Guide 5.24
 June, 2009

Comments to: rootdoc@root.cern.ch

__
The ROOT Users Guide:

Authors: The ROOT team.

Editors: Ilka Antcheva, Olivier Couet.

Special Thanks to: Nick West (Oxford), Elaine Lyons, Suzanne Panacek and Andrey Kubarovsky (FNAL), Damir
Buskulic (LAPP).

 Preface i

Preface

In late 1994, we decided to learn and investigate Object Oriented programming and C++ to better judge the
suitability of these relatively new techniques for scientific programming. We knew that there is no better way to
learn a new programming environment than to use it to write a program that can solve a real problem. After a
few weeks, we had our first histogramming package in C++. A few weeks later we had a rewrite of the same
package using the, at that time, very new template features of C++. Again, a few weeks later we had another
rewrite of the package without templates since we could only compile the version with templates on one single
platform using a specific compiler. Finally, after about four months we had a histogramming package that was
faster and more efficient than the well-known FORTRAN based HBOOK histogramming package. This gave us
enough confidence in the new technologies to decide to continue the development. Thus was born ROOT.
Since its first public release at the end of 1995, ROOT has enjoyed an ever-increasing popularity. Currently it is
being used in all major High Energy and Nuclear Physics laboratories around the world to monitor, to store and
to analyze data. In the other sciences as well as the medical and financial industries, many people are using
ROOT. We estimate the current user base to be around several thousand people. In 1997, Eric Raymond
analyzed in his paper "The Cathedral and the Bazaar" the development method that makes Linux such a
success. The essence of that method is: "release early, release often and listen to your customers". This is
precisely how ROOT is being developed. Over the last five years, many of our "customers" became co-
developers. Here we would like to thank our main co-developers and contributors:

Masaharu Goto wrote the CINT C++ interpreter that became an essential part of ROOT. Despite being 8 time
zones ahead of us, we have the feeling he has been sitting in the room next door since 1995.
Andrei and Mihaela Gheata (Alice collaboration) are co-authors of the ROOT geometry classes and Virtual
Monte-Carlo. They have been working with the ROOT team since 2000.
Olivier Couet, who after a successful development and maintenance of PAW, has joined the ROOT team in
2000 and has been working on the graphics sub-system.
Ilka Antcheva has been working on the Graphical User Interface classes. She is also responsible for this latest
edition of the Users Guide with a better style, improved index and several new chapters (since 2002).
Bertrand Bellenot has been developing and maintaining the Win32GDK version of ROOT. Bertrand has also
many other contributions like the nice RootShower example (since 2001).
Valeriy Onoutchin has been working on several ROOT packages, in particular the graphics sub-system for
Windows and the GUI Builder (since 2000).
Gerri Ganis has been working on the authentication procedures to be used by the root daemons and the
PROOF system (since 2002).
Maarten Ballintijn (MIT) is one of the main developers of the PROOF sub-system (since 1995).
Valeri Fine (now at BNL) ported ROOT to Windows and contributed largely to the 3-D graphics. He is currently
working on the Qt layer of ROOT (since 1995).
Victor Perevoztchikov (BNL) worked on key elements of the I/O system, in particular the improved support for
STL collections (1997-2001).
Nenad Buncic developed the HTML documentation generation system and integrated the X3D viewer inside
ROOT (1995-1997).
Suzanne Panacek was the author of the first version of this User‘s Guide and very active in preparing tutorials
and giving lectures about ROOT (1999-2002).
Axel Naumann has been developing further the HTML Reference Guide and helps in porting ROOT under
Windows (cygwin/gcc implementation) (since 2000).
Anna Kreshuk has developed the Linear Fitter and Robust Fitter classes as well as many functions in TMath,
TF1, TGraph (since 2005).
Richard Maunder has contributed to the GL viewer classes (since 2004).
Timur Pocheptsov has contributed to the GL viewer classes and GL in pad classes (since 2004).
Sergei Linev has developed the XML driver and the TSQLFile classes (since 2003).
Stefan Roiser has been contributing to the reflex and cintex packages (since 2005).
Lorenzo Moneta has been contributing the MathCore, MathMore, Smatrix & Minuit2 packages (since 2005).
Wim Lavrijsen is the author of the PyRoot package (since 2004).

Further we would like to thank all the people mentioned in the $ROOTSYS/README/CREDITS file for their

contributions, and finally, everybody who gave comments, reported bugs and provided fixes.

Happy ROOTing!

 Rene Brun & Fons Rademakers

 Geneva, July 2007

 Table of Contents iii

Table of Contents

Preface i

Table of Contents iii

Table of Figures xv

1 Introduction 1

The ROOT Mailing Lists .. 1
Contact Information .. 1
Conventions Used in This Book ... 1
The Framework ... 2

What Is a Framework? .. 2
Why Object-Oriented? .. 3

Installing ROOT ... 3
The Organization of the ROOT Framework ... 3

$ROOTSYS/bin .. 4
$ROOTSYS/lib... 4
$ROOTSYS/tutorials .. 6
$ROOTSYS/test ... 7
$ROOTSYS/include ... 7
$ROOTSYS/<library> .. 7

How to Find More Information ... 7

2 Getting Started 9

Setting the Environment Variables ... 9
Start and Quit a ROOT Session .. 9
Using the GUI ... 10

Main Menus and Toolbar ... 11
The Editor Frame .. 13
Classes, Methods and Constructors .. 14
User Interaction .. 15
Building a Multi-pad Canvas .. 16
Saving the Canvas .. 16
Printing the Canvas ... 16

The ROOT Command Line .. 17
Multi-line Commands ... 17
CINT Extensions .. 17
Helpful Hints for Command Line Typing 17
Regular Expression ... 17

Conventions .. 18
Coding Conventions ... 18
Machine Independent Types ... 18
TObject ... 19

Global Variables ... 19
gROOT ... 19
gFile .. 20
gDirectory ... 20
gPad .. 20
gRandom .. 20
gEnv ... 20

Environment Setup ... 20
Logon and Logoff Scripts ... 21
History File ... 21
Tracking Memory Leaks .. 21

iv Table of Contents

Memory Checker .. 21
Converting from PAW to ROOT .. 22

Converting HBOOK/PAW Files .. 22

3 Histograms 23

The Histogram Classes ... 23
Creating Histograms ... 24
Fixed or Variable Bin Size .. 24

Bin Numbering Convention .. 24
Re-binning .. 25

Filling Histograms .. 25
Automatic Re-binning Option .. 25

Random Numbers and Histograms ... 25
Adding, Dividing, and Multiplying .. 26
Projections .. 26

Drawing Histograms ... 26
Setting the Style .. 27

Draw Options .. 27
The SCATter Plot Option ... 29
The ARRow Option .. 29
The BOX Option .. 29
The ERRor Bars Options .. 29
The Color Option .. 29
The TEXT Option ... 30
The CONTour Options ... 30
The LEGO Options ... 31
The SURFace Options .. 32
The BAR Options ... 33
The Z Option: Display the Color Palette on the Pad 33
The SPEC Option ... 34
3-D Histograms .. 36

Drawing a Sub-range of a 2-D Histogram .. 36
Superimposing Histograms with Different Scales 37
Statistics Display .. 37
Setting Line, Fill, Marker, and Text Attributes ... 38
Setting Tick Marks on the Axis .. 38
Giving Titles to the X, Y and Z Axis .. 39
Making a Copy of an Histogram ... 39
Normalizing Histograms ... 39
Saving/Reading Histograms to/from a File ... 39
Miscellaneous Operations ... 39
Alphanumeric Bin Labels ... 40
Histogram Stacks .. 41
Profile Histograms .. 42

Build Options ... 43
Drawing a Profile without Error Bars ... 44
Create a Profile from a 2D Histogram .. 44
Create a Histogram from a Profile .. 44
Generating a Profile from a TTree .. 44
2D Profiles .. 44

Iso Surfaces ... 45
3D Implicit Functions ... 46
TPie ... 46
The User Interface for Histograms ... 47

TH1Editor ... 47
TH2Editor ... 48

4 Graphs 51

TGraph .. 51
Graph Draw Options ... 51

Superimposing Two Graphs ... 54

 Table of Contents v

Graphs with Error Bars ... 55
Graphs with Asymmetric Error Bars .. 55
Graphs with Asymmetric Bent Errors ... 56
TGraphPolar ... 57
TGraph Exclusion Zone .. 58
TGraphQQ .. 59
TMultiGraph ... 60
TGraph2D ... 61
TGraph2DErrors ... 63
Fitting a Graph .. 63
Setting the Graph's Axis Title ... 63
Zooming a Graph .. 63
The User Interface for Graphs .. 64

5 Fitting Histograms 65

The Fit Method ... 65
Fit with a Predefined Function .. 65
Fit with a User-Defined Function ... 66

Creating a TF1 with a Formula ... 66
Creating a TF1 with Parameters ... 66
Creating a TF1 with a User Function ... 66

Fixing and Setting Parameters’ Bounds .. 67
Fitting Sub Ranges .. 67
The Fit Panel ... 68
Fitting Multiple Sub Ranges ... 69
Adding Functions to the List... 70
Combining Functions .. 70
Associated Function .. 72
Access to the Fit Parameters and Results .. 72
Associated Errors .. 72
Fit Statistics .. 72
The Minimization Package ... 72

Basic Concepts of Minuit ... 73
The Transformation of Limited Parameters 73
How to Get the Right Answer from Minuit 73
Reliability of Minuit Error Estimates ... 74

FUMILI Minimization Package .. 75
Neural Networks ... 76

Introduction .. 76
The MLP ... 76
Learning Methods ... 76
Using the Network .. 77
Examples .. 78

6 A Little C++ 81

Classes, Methods and Constructors .. 81
Inheritance and Data Encapsulation .. 81

Method Overriding ... 82
Data Encapsulation ... 82

Creating Objects on the Stack and Heap ... 83

7 CINT the C++ Interpreter 85

What is CINT? .. 85
The ROOT Command Line Interface ... 86
The ROOT Script Processor ... 87

Un-named Scripts ... 87
Named Scripts .. 88
Executing a Script from a Script ... 89

Resetting the Interpreter Environment .. 89
A Script Containing a Class Definition ... 90
Debugging Scripts... 91

vi Table of Contents

Inspecting Objects... 91
ROOT/CINT Extensions to C++ .. 92
ACLiC - The Automatic Compiler of Libraries for CINT 93

Usage .. 93
Setting the Include Path .. 94
Dictionary Generation .. 94
Intermediate Steps and Files ... 95
Moving between Interpreter and Compiler 95

Reflex .. 96
Overview .. 96
GCCXML Installation .. 97
Reflex API .. 97
Cintex ... 99

8 Object Ownership 101

Ownership by Current Directory (gDirectory) .. 101
Ownership by the Master TROOT Object (gROOT) 101

The Collection of Specials .. 102
Access to the Collection Contents .. 102

Ownership by Other Objects ... 102
Ownership by the User ... 102

The kCanDelete Bit .. 102
The kMustCleanup Bit.. 103

9 Graphics and the Graphical User Interface 105

Drawing Objects ... 105
Interacting with Graphical Objects ... 105

Moving, Resizing and Modifying Objects 105
Selecting Objects .. 106
Context Menus: the Right Mouse Button 106
Executing Events when a Cursor Passes on Top of an Object 107

Graphical Containers: Canvas and Pad ... 108
The Global Pad: gPad ... 109
The Coordinate Systems of a Pad ... 110
Converting between Coordinate Systems 111
Dividing a Pad into Sub-pads ... 111
Updating the Pad .. 112
Making a Pad Transparent .. 112
Setting the Log Scale .. 113
WaitPrimitive method .. 113
Locking the Pad .. 113

Graphical Objects ... 113
Lines, Arrows and Polylines ... 113
Circles and Ellipses .. 114
Rectangles .. 115
Markers ... 115
Curly and Wavy Lines for Feynman Diagrams 116
Text and Latex Mathematical Expressions 116
Greek Letters .. 117
Mathematical Symbols ... 118
Text in a Pad ... 120

Axis ... 121
Axis Title .. 122
Axis Options and Characteristics .. 122
Setting the Number of Divisions .. 122
Zooming the Axis ... 122
Drawing Axis Independently of Graphs or Histograms 123
Orientation of Tick Marks on Axis ... 123
Labels ... 123
Axis with Time Units ... 125
Axis Examples .. 128

 Table of Contents vii

Graphical Objects Attributes ... 130
Text Attributes .. 130
Line Attributes .. 133
Fill Attributes ... 133
Color and Color Palettes ... 134

The Graphics Editor .. 135
TAxisEditor .. 135
TPadEditor .. 135

Copy and Paste ... 135
Using the GUI... 136
Programmatically ... 136

Legends ... 137
The PostScript Interface .. 138

Special Characters .. 139
Writing Several Canvases to the Same PostScript File 139

Create or Modify a Style ... 141
3D Viewers ... 143

Invoking a 3D viewer ... 143
The GL Viewer ... 143
The X3D Viewer .. 149
Common 3D Viewer Architecture .. 149

10 Folders and Tasks 155

Folders .. 155
Why Use Folders? ... 155
How to Use Folders .. 156

Creating a Folder Hierarchy ... 156
Posting Data to a Folder (Producer) ... 156
Reading Data from a Folder (Consumer) 156

Tasks ... 157
Execute and Debug Tasks ... 158

11 Input/Output 159

The Physical Layout of ROOT Files... 159
The File Header .. 160
The Top Directory Description ... 160
The Histogram Records .. 161
The Class Description List (StreamerInfo List) 161
The List of Keys and the List of Free Blocks 162
File Recovery.. 162

The Logical ROOT File: TFile and TKey .. 163
Viewing the Logical File Contents ... 164
The Current Directory .. 165
Objects in Memory and Objects on Disk 165
Saving Histograms to Disk ... 167
Histograms and the Current Directory .. 168
Saving Objects to Disk ... 168
Saving Collections to Disk ... 169
A TFile Object Going Out of Scope ... 169
Retrieving Objects from Disk ... 169
Subdirectories and Navigation .. 169

Streamers .. 171
Automatically Generated Streamers ... 171
Transient Data Members (//!) ... 172
The Pointer to Objects (//->) ... 172
Variable Length Array .. 172
Double32_t ... 172
Prevent Splitting (//||) ... 173
Streamers with Special Additions ... 173
Writing Objects .. 174
Ignore Object Streamers ... 174

viii Table of Contents

Streaming a TClonesArray ... 174
Pointers and References in Persistency ... 175

Streaming C++ Pointers ... 175
Motivation for the TRef Class .. 175
Using TRef ... 175
How Does It Work? .. 176
Action on Demand .. 177
Array of TRef ... 178

Schema Evolution ... 178
The TStreamerInfo Class .. 179
The TStreamerElement Class ... 179
Example: TH1 StreamerInfo .. 179
Optimized StreamerInfo ... 180
Automatic Schema Evolution ... 180
Manual Schema Evolution .. 180
Building Class Definitions with the StreamerInfo 181
Example: MakeProject ... 181

Migrating to ROOT 3 ... 183
Compression and Performance ... 183
Remotely Access to ROOT Files via a rootd .. 184

TNetFile URL ... 184
Remote Authentication ... 184
A Simple Session .. 184
The rootd Daemon .. 185
Starting rootd via inetd ... 185
Command Line Arguments for rootd ... 185

Reading ROOT Files via Apache Web Server .. 186
Using the General Open Function of TFile 186

XML Interface .. 186

12 Trees 189

Why Should You Use a Tree? .. 189
A Simple TTree .. 189
Show an Entry with TTree::Show ... 190
Print the Tree Structure with TTree::Print .. 190
Scan a Variable the Tree with TTree::Scan .. 191
The Tree Viewer ... 191
Creating and Saving Trees .. 193

Creating a Tree from a Folder Hierarchy 193
Tree and TRef Objects .. 193
Autosave ... 194
Trees with Circular Buffers .. 194
Size of TTree in the File ... 194
User Info Attached to a TTree Object .. 194
Indexing a Tree ... 194

Branches ... 195
Adding a Branch to Hold a List of Variables .. 195
Adding a TBranch to Hold an Object ... 196

Setting the Split-level ... 197
Exempt a Data Member from Splitting 198
Adding a Branch to Hold a TClonesArray 198
Identical Branch Names.. 198

Adding a Branch with a Folder ... 198
Adding a Branch with a Collection ... 198
Examples for Writing and Reading Trees ... 199
Example 1: A Tree with Simple Variables ... 199

Writing the Tree ... 199
Viewing the Tree .. 200
Reading the Tree ... 201

Example 2: A Tree with a C Structure .. 202
Writing the Tree ... 203
Analysis .. 205

 Table of Contents ix

Example 3: Adding Friends to Trees .. 206
Adding a Branch to an Existing Tree ... 206
TTree::AddFriend ... 207

Example 4: A Tree with an Event Class ... 209
The Event Class .. 209
The EventHeader Class .. 209
The Track Class .. 210
Writing the Tree ... 210
Reading the Tree ... 211

Example 5: Import an ASCII File into a TTree .. 212
Trees in Analysis .. 213
Simple Analysis Using TTree::Draw .. 213

Using Selection with TTree:Draw .. 213
Using TCut Objects in TTree::Draw .. 214
Accessing the Histogram in Batch Mode 214
Using Draw Options in TTree::Draw ... 214
Superimposing Two Histograms .. 215
Setting the Range in TTree::Draw .. 215
TTree::Draw Examples ... 215
Using TTree::Scan .. 221
TEventList and TEntryList ... 222
Filling a Histogram ... 224

Using TTree::MakeClass .. 225
Using TTree::MakeSelector .. 229

Performance Benchmarks ... 230
Impact of Compression on I/O .. 230
Chains ... 231

TChain::AddFriend ... 232

13 Math Libraries in ROOT 233

TMath ... 233
Random Numbers ... 233

TRandom .. 233
TRandom1 .. 234
TRandom2 .. 234
TRandom3 .. 234
Seeding the Generators ... 234
Examples of Using the Generators ... 234
Random Number Distributions ... 234
UNURAN ... 235
Performances of Random Numbers .. 236

MathCore Library ... 237
Generic Vectors for 2, 3 and 4 Dimensions (GenVector) 237

Example: 3D Vector Classes .. 239
Example: 3D Point Classes ... 241
Example: LorentzVector Classes .. 242
Example: Vector Transformations .. 244
Example with External Packages .. 245

MathMore Library .. 246
Mathematical Functions .. 247

Special Functions in MathCore .. 247
Special Functions in MathMore.. 247
Probability Density Functions (PDF) ... 249
Cumulative Distribution Functions (CDF) 249

Linear Algebra: SMatrix Package ... 250
Example: Vector Class (SVector) ... 251
Example: Matrix Class (SMatrix) ... 252
Example: Matrix and Vector Functions and Operators 254
Matrix and Vector Functions .. 255

Minuit2 Package ... 255
ROOT Statistics Classes ... 256

Classes for Computing Limits and Confidence Levels 256

x Table of Contents

Specialized Classes for Fitting... 256
Multi-variate Analysis Classes ... 256

14 Linear Algebra in ROOT 257

Overview of Matrix Classes .. 257
Matrix Properties .. 258

Accessing Properties .. 258
Setting Properties .. 258

Creating and Filling a Matrix .. 259
Matrix Operators and Methods ... 260

Arithmetic Operations between Matrices 261
Arithmetic Operations between Matrices and Real Numbers 261
Comparisons and Boolean Operations .. 261
Matrix Norms ... 262
Miscellaneous Operators .. 262

Matrix Views .. 263
View Operators ... 264
View Examples ... 265

Matrix Decompositions ... 265
Tolerances and Scaling ... 266
Condition number ... 267
LU ... 268
Bunch-Kaufman ... 268
Cholesky ... 268
QRH ... 268
SVD .. 269

Matrix Eigen Analysis .. 269
Speed Comparisons... 270

15 Adding a Class 271

The Role of TObject ... 271
Introspection, Reflection and Run Time Type Identification 271
Collections .. 271
Input/Output ... 271
Paint/Draw .. 271
Clone/DrawClone ... 271
Browse .. 272
SavePrimitive ... 272
GetObjectInfo ... 272
IsFolder ... 272
Bit Masks and Unique ID ... 272

Motivation... 273
Template Support ... 273

The Default Constructor ... 274
rootcint: The CINT Dictionary Generator .. 274

Dictionaries for STL ... 276
Adding a Class with a Shared Library .. 277

The LinkDef.h File ... 277
Adding a Class with ACLiC ... 282

16 Collection Classes 283

Understanding Collections .. 283
General Characteristics ... 283
Determining the Class of Contained Objects 283
Types of Collections ... 283
Ordered Collections (Sequences) ... 284

Iterators: Processing a Collection ... 284
Foundation Classes ... 284
A Collectable Class ... 285
The TIter Generic Iterator ... 286
The TList Collection ... 287

 Table of Contents xi

Iterating Over a TList ... 287
The TObjArray Collection .. 287
TClonesArray – An Array of Identical Objects .. 288

The Idea Behind TClonesArray .. 288
Template Containers and STL .. 289

17 Physics Vectors 291

The Physics Vector Classes .. 291
TVector3 ... 291

Declaration / Access to the Components 291
Other Coordinates ... 292
Arithmetic / Comparison .. 292
Related Vectors .. 292
Scalar and Vector Products ... 292
Angle between Two Vectors .. 292
Rotation around Axes ... 292
Rotation around a Vector .. 292
Rotation by TRotation Class ... 293
Transformation from Rotated Frame .. 293

TRotation .. 293
Declaration, Access, Comparisons ... 293
Rotation around Axes ... 293
Rotation around Arbitrary Axis .. 293
Rotation of Local Axes ... 294
Inverse Rotation .. 294
Compound Rotations .. 294
Rotation of TVector3 .. 294

TLorentzVector ... 294
Declaration ... 294
Access to Components.. 295
Vector Components in Non-Cartesian Coordinates 295
Arithmetic and Comparison Operators 295
Magnitude/Invariant mass, beta, gamma, scalar product 296
Lorentz Boost ... 296
Rotations ... 296
Miscellaneous ... 296

TLorentzRotation .. 297
Declaration ... 297
Access to the Matrix Components/Comparisons 297
Transformations of a Lorentz Rotation 297
Transformation of a TLorentzVector .. 298
Physics Vector Example ... 298

18 The Geometry Package 299

Quick Start: Creating the “world” .. 299
Example 1: Creating the World .. 299
Example 2: A Geometrical Hierarchy Look and Feel 300

Materials and Tracking Media .. 302
Elements, Materials and Mixtures .. 302
Radionuclides ... 303
Tracking Media .. 304
User Interface for Handling Materials and Media 305

Shapes ... 305
Units ... 306
Primitive Shapes ... 306
Composite Shapes .. 314
Navigation Methods Performed By Shapes 317
Creating Shapes .. 318
Dividing Shapes.. 318
Parametric Shapes .. 318

Geometry Creation .. 318

xii Table of Contents

The Volume Hierarchy ... 319
Creating and Positioning Volumes ... 320
Geometrical Transformations ... 326
Ownership of Geometry Objects .. 328

Navigation and Tracking .. 328
TGeoNavigator Class ... 329
Initializing the Starting Point .. 329
Initializing the Direction ... 329
Initializing the State .. 329
Checking the Current State ... 330
Saving and Restoring the Current State 331
Navigation Queries ... 331
Creating and Visualizing Tracks .. 334

Checking the Geometry .. 335
The Overlap Checker .. 335
Graphical Checking Methods ... 336

The Drawing Package ... 337
Drawing Volumes and Hierarchies of Volumes 337
Visualization Settings and Attributes ... 338
Ray Tracing .. 339

Representing Misalignments of the Ideal Geometry 340
Physical Nodes ... 340

Geometry I/O .. 341
Navigation Algorithms ... 341

Finding the State Corresponding to a Location (x,y,z) 341
Finding the Distance to Next Crossed Boundary 343

Geometry Graphical User Interface .. 345
Editing a Geometry ... 345
The Geometry Manager Editor ... 346
Editing Existing Objects ... 347
Creation of New Objects .. 348
Editing Volumes ... 348
How to Create a Valid Geometry with Geometry Editors 349

19 Python and Ruby Interfaces 351

PyROOT Overview... 351
Glue-ing Applications .. 351
Access to ROOT from Python .. 351
Access to Python from ROOT .. 352
Installation .. 352
Using PyROOT .. 353
Memory Handling .. 356
Performance .. 357
Use of Python Functions ... 357
Working with Trees .. 358
Using Your Own Classes .. 360

How to Use ROOT with Ruby .. 362
Building and Installing the Ruby Module................................... 362

20 The Tutorials and Tests 365

$ROOTSYS/tutorials .. 365
$ROOTSYS/test ... 365

Event – An Example of a ROOT Application 366
stress - Test and Benchmark ... 369
guitest – A Graphical User Interface .. 370

21 Example Analysis 371

Explanation ... 371
Script ... 373

 Table of Contents xiii

22 Networking 377

Setting-up a Connection .. 377
Sending Objects over the Network ... 377
Closing the Connection ... 378
A Server with Multiple Sockets .. 378

23 Threads 379

Threads and Processes .. 379
Process Properties ... 379
Thread Properties .. 379
The Initial Thread ... 379

Implementation of Threads in ROOT ... 379
Installation .. 380
Classes .. 380
TThread for Pedestrians .. 380
TThread in More Details .. 381

Advanced TThread: Launching a Method in a Thread 383
Known Problems .. 384

The Signals of ROOT ... 384
Glossary .. 384

24 PROOF: Parallel Processing 387

25 Writing a Graphical User Interface 389

The ROOT GUI Classes ... 389
Widgets and Frames .. 389
TVirtualX .. 389
A Simple Example .. 390

A Standalone Version ... 393
Widgets Overview .. 395

TGObject .. 395
TGWidget ... 395
TGWindow ... 396
Frames .. 396

Layout Management ... 398
Event Processing: Signals and Slots ... 400
Widgets in Detail .. 404

Buttons.. 404
Text Entries .. 406
Number Entries ... 407
Menus ... 408
Toolbar ... 409
List Boxes ... 411
Combo Boxes ... 412
Sliders ... 412
Triple Slider .. 413
Progress Bars .. 413
Static Widgets ... 414
Status Bar ... 414
Splitters ... 415
TGCanvas, ViewPort and Container .. 416
Embedded Canvas .. 417

The ROOT Graphics Editor (GED) .. 418
Object Editors ... 418
Editor Design Elements .. 418

Drag and Drop .. 419
Drag and Drop Data Class .. 420
Handling Drag and Drop Events ... 420

26 ROOT/Qt Integration Interfaces 423

xiv Table of Contents

Qt-ROOT Implementation of TVirtualX Interface (BNL) 423
Installation .. 423
Applications .. 424
TQtWidget Class, Qt Signals / Slots and TCanvas Interface 429

GSI QtROOT .. 430
Create a New Project in the Designer ... 431
main() ... 432

27 Automatic HTML Documentation 433

Reference Guide ... 433
Product and Module Documentation .. 433

Converting Sources (and Other Files) to HTML 434
Special Documentation Elements: Directives ... 434

Latex Directive ... 434
Macro Directive .. 435

Customizing HTML .. 435
Referencing Documentation for other Libraries 435
Search Engine ... 435
ViewCVS .. 435
Wiki Pages .. 435

Tutorial ... 436

28 Appendix A: Install and Build ROOT 437

ROOT Copyright and Licensing Agreement: ... 437
Installing ROOT ... 437
Choosing a Version ... 437
Installing Precompiled Binaries .. 438
Installing the Source ... 438

Installing and Building the Source from a Compressed File 438
More Build Options .. 438

File system.rootrc.. 439
TCanvas Specific Settings .. 440
THtml Specific Settings.. 441
GUI Specific Settings ... 442
TBrowser Settings .. 443
TRint Specific Settings ... 443
ACLiC Specific Settings .. 443
PROOF Related Variables .. 443

Documentation to Download .. 446

29 Index 447

 Table of Figures xv

Table of Figures

Figure 1-1 ROOT framework directories .. 4
Figure 1-2 ROOT libraries dependencies .. 5
Figure 2-1 A canvas with drawing .. 11
Figure 2-2 A context menu ... 15
Figure 2-3 The SaveAs... dialog .. 16
Figure 3-1 The class hierarchy of histogram classes ... 23
Figure 3-2 The "E1" bars' option ... 29
Figure 3-3 Different draw options ... 30
Figure 3-4 The TEXT option .. 30
Figure 3-5 Different contour options .. 31
Figure 3-6 The earth.C macro output ... 31
Figure 3-7 "LEGO" and "SURF" options ... 32
Figure 3-8 Different surface options ... 32
Figure 3-9 Vertical bar charts.. 33
Figure 3-10 Horizontal bar charts ... 33
Figure 3-11 The picture produced by spectrumpainter.C macro 36
Figure 3-12 The picture produced by fit2a.C macro ... 36
Figure 3-13 Superimposed histograms with different scales 37
Figure 3-14 Histograms with alphanumeric bin labels .. 40
Figure 3-15 Using a *char variable type in TTree::Draw ... 41
Figure 3-16 Stacked histograms .. 42
Figure 3-17 A profile histogram example ... 44
Figure 3-18 A TProfile2D histogram example .. 45
Figure 3-19 Iso surfaces .. 45
Figure 3-20 3D implicit function .. 46
Figure 3-21 The picture generated by tutorial macro piechart.C............................... 47
Figure 4-1 A graph drawn with axis, * markers and continuous line (option AC*).. 52
Figure 4-2 A graph drawn with axis and bar (option AB)... 52
Figure 4-3 A graph drawn with axis and fill (option AF) ... 53
Figure 4-4 Graph markers created in different ways ... 53
Figure 4-5 Superimposing two graphs .. 54
Figure 4-6 Graphs with different draw options of error bars 55
Figure 4-7 A graph with asymmetric error bars .. 56
Figure 4-8 A graph with asymmetric bent error bars .. 57
Figure 4-9 A polar graph ... 57
Figure 4-10 Graphs with exclusion zones ... 58
Figure 4-11 Examples of qq-plots of 2 datasets .. 59
Figure 4-12 Examples of qq-plots of 1 dataset .. 60
Figure 4-13 A multigraph example ... 60
Figure 4-14 Delaunay triangles and Voronoi diagram .. 61
Figure 4-15 Graph2D drawn with option "surfl" and "tril p0" 62
Figure 4-16 Output of macro graph2dfit.C ... 62
Figure 4-17 A graph with axis titles .. 63
Figure 4-18 A zoomed graph .. 64
Figure 5-1 The function x*sin(x) ... 66
Figure 5-2 Fitting a histogram with several Gaussian functions 69
Figure 5-3 The output of the FittingDemo() example ... 71
Figure 5-4 The neural net output ... 79
Figure 5-5 The original and the neural net for Br ... 79
Figure 7-1 ROOT object inspector of TFile .. 92
Figure 7-2 The object inspector of fKeys, the list of keys in the memory 92
Figure 8-1 The ROOT Object Browser ... 102
Figure 9-1 Context menus of different objects in a canvas 106
Figure 9-2 A histogram drawn in a pad ... 109
Figure 9-3 Pad coordinate systems .. 110
Figure 9-4 The status bar ... 110
Figure 9-5 Dividing a pad into 6 sub-pads .. 112

xvi Table of Figures

Figure 9-6 Different arrow formats ... 114
Figure 9-7 Different types of ellipses .. 114
Figure 9-8 A rectangle with a border .. 115
Figure 9-9 Markers .. 115
Figure 9-10 Different marker sizes ... 115
Figure 9-11 The use of non-symmetric markers ... 116
Figure 9-12 The picture generated by the tutorial macro feynman.C 116
Figure 9-13 The picture generated by the tutorial macro latex.C 119
Figure 9-14 The picture generated by the tutorial macro latex2.C 120
Figure 9-15 The picture generated by the tutorial macro latex3.C 120
Figure 9-16 PaveLabels drawn with different options 121
Figure 9-17 PaveText examples .. 121
Figure 9-18 A PaveText example .. 121
Figure 9-19 Y-axis with and without exponent labels ... 124
Figure 9-20 Time axis examples ... 126
Figure 9-21 A histogram with time axis X .. 127
Figure 9-22 The first axis example ... 128
Figure 9-23 The second axis example ... 129
Figure 9-24 An axis example with time display .. 129
Figure 9-25 Font’s examples ... 131
Figure 9-26 The various patterns .. 133
Figure 9-27 The basic ROOT colors ... 134
Figure 9-28 Diferent draw options .. 136
Figure 9-29 A legend example .. 138
Figure 9-30 Invoking external 3D viewers from canvas menus 143
Figure 9-31 The GL 3D Viewer .. 144
Figure 9-32 GL Viewer camera interactions ... 145
Figure 9-33 GL Viewer draw styles .. 146
Figure 9-34 GL Viewer interactive box clipping .. 146
Figure 9-35 GL Viewer object manipulators .. 147
Figure 9-36 Overview of 3D viewer architecture .. 150
Figure 9-37 TBuffer3D class hierarchy... 151
Figure 10-1 Tasks in the ROOT browser .. 158
Figure 11-1 The browser with 15 created histograms ... 159
Figure 11-2 ROOT File/Directory/Key description .. 164
Figure 11-3 The structure of TFile .. 165
Figure 11-4 The file before and after the call to Write ... 167
Figure 11-5 Compression and precision of Double32_t .. 173
Figure 11-6 A diagram of a streamed TH1F in the buffer 174
Figure 11-7 Streaming object pointers .. 175
Figure 11-8 The ROOT schema evolution .. 178
Figure 11-9 The schema evolution for objects written on disk and in memory 179
Figure 12-1 Activating the tree viewer.. 191
Figure 12-2 The TreeViewer ... 191
Figure 12-3 A couple of graphs... 192
Figure 12-4 The TTree class ... 193
Figure 12-5 The tree1.root file and its tree in the browser 200
Figure 12-6 A leaf histogram .. 200
Figure 12-7 The tree viewer .. 201
Figure 12-8 The tree viewer with tree4 example... 212
Figure 12-9 Using draw options in trees ... 215
Figure 13-1 Math libraries and packages .. 233
Figure 13-2 PDF, CDF and quantiles in the case of the normal distribution 250
Figure 14-1 Overview of matrix classes.. 257
Figure 14-2 Speed comparison between the different matrix packages 270
Figure 16-1 The inheritance hierarchy of the primary collection classes 284
Figure 16-2 The internal data structure of a TList .. 287
Figure 16-3 The internal data structure of a TObjArray ... 288
Figure 16-4 The internal data structure of a TClonesArray 288
Figure 18-1Concentration of C14 derived elements ... 304
Figure 18-2 Concentracion of elements derived fromCa53+Sr78 304
Figure 18-3 Primitive Shapes - the general inheritance scheme.............................. 305
Figure 18-4 TGeoBBox class .. 306

 Table of Figures xvii

Figure 18-5 TGeoPara class .. 306
Figure 18-6 TGeoTrd1 class ... 307
Figure 18-7 TGeoTrd2 class ... 307
Figure 18-8 TGeoTrap Class ... 307
Figure 18-9 TGeoGtra class .. 308
Figure 18-10 TGeoArb8 class ... 308
Figure 18-11 TGeoTube Class .. 309
Figure 18-12 TGeoTubeSeg Class .. 309
Figure 18-13 TGeoCtub Class .. 309
Figure 18-14 TGeoEltu Class .. 310
Figure 18-15 TGeoHype Class .. 310
Figure 18-16 TGeoCone Class .. 311
Figure 18-17 TGeoConeSeg Class .. 311
Figure 18-18 TGeoSphere Class ... 311
Figure 18-19 TGeoTorus Class ... 312
Figure 18-20 TGeoParaboloid Class ... 312
Figure 18-21 TGeoPcon Class .. 313
Figure 18-22 TGeoPgon Class .. 313
Figure 18-23 TGeoXtru Class ... 314
Figure 18-24 The composite shapes structure ... 315
Figure 18-25 Representation of A+B+C ... 315
Figure 18-26 Internal representation for composite shapes 316
Figure 18-27 A composite shape example .. 317
Figure 18-28 A geometry hierarchy in memory .. 319
Figure 18-29 Assemblies of volumes .. 326
Figure 18-30 Extruding volumes ... 335
Figure 18-31 Overlap checking ... 336
Figure 18-32 Safety computation checking ... 336
Figure 18-33 Random points ... 337
Figure 18-34 Random rays .. 337
Figure 18-35 Ray-traced view in a pad ... 339
Figure 18-36 Ray-tracing example with box-clipping .. 339
Figure 18-37 Navigation in the geometry hierarchy ... 342
Figure 18-38 Finding the location of a point in the geometry hierarchy 343
Figure 18-39 Finding the distance to the next crossed boundary 344
Figure 18-40 The geometry manager editor .. 346
Figure 18-41 Accessing/creating different categories of editable objects 346
Figure 18-42 Selection dialogs for different TGeo objects 347
Figure 18-43 Editors for shapes, materials, media, matrices 347
Figure 18-44 Setting volume properties and modifying volume hierarchy 348
Figure 18-45 Volume visualisation settings and division interface for volumes 348
Figure 20-1 Native GUI widgets ... 370
Figure 22-1 Server - Client setting-up and closing the connection 378
Figure 24-1 The Multi-tier structure of a PROOF cluster 387
Figure 25-1 Widgets created by ROOT GUI classes .. 395
Figure 25-2 The GUI classes hierarchy ... 396
Figure 25-3 The layout classes hierarchy .. 399
Figure 25-4 Histogram, pad and axis editors .. 418

 Introduction 1

1 Introduction

In the mid 1990's, René Brun and Fons Rademakers had many years of experience developing interactive tools
and simulation packages. They had lead successful projects such as PAW, PIAF, and GEANT, and they knew
the twenty-year-old FORTRAN libraries had reached their limits. Although still very popular, these tools could
not scale up to the challenges offered by the Large Hadron Collider, where the data is a few orders of
magnitude larger than anything seen before.

At the same time, computer science had made leaps of progress especially in the area of Object Oriented
Design, and René and Fons were ready to take advantage of it.

ROOT was developed in the context of the NA49 experiment at CERN. NA49 has generated an impressive
amount of data, around 10 Terabytes per run. This rate provided the ideal environment to develop and test the
next generation data analysis.

One cannot mention ROOT without mentioning CINT, its C++ interpreter. CINT was created by Masa Goto in
Japan. It is an independent product, which ROOT is using for the command line and script processor.

ROOT was, and still is, developed in the "Bazaar style", a term from the book "The Cathedral and the Bazaar"
by Eric S. Raymond. It means a liberal, informal development style that heavily relies on the diverse and deep
talent of the user community. The result is that physicists developed ROOT for themselves; this made it specific,
appropriate, useful, and over time refined and very powerful. The development of ROOT is a continuous
conversation between users and developers with the line between the two blurring at times and the users
becoming co-developers.

When it comes to storing and mining large amount of data, physics plows the way with its Terabytes, but other
fields and industry follow close behind as they acquiring more and more data over time. They are ready to use
the true and tested technologies physics has invented. In this way, other fields and industries have found ROOT
useful and they have started to use it also.

In the bazaar view, software is released early and frequently to expose it to thousands of eager co-developers
to pound on, report bugs, and contribute possible fixes. More users find more bugs, because they stress the
program in different ways. By now, after ten years, the age of ROOT is quite mature. Most likely, you will find
the features you are looking for, and if you have found a hole, you are encouraged to participate in the dialog

and post your suggestion or even implementation on roottalk, the ROOT mailing list.

The ROOT Mailing Lists
The roottalk was the very first active ROOT mailing list. People can subscribe to it by registering at the

ROOT web site: http://root.cern.ch/root/Registration.phtml. The RootTalk Forum http://root.cern.ch/phpBB2/

has been gradually replaced this mailing list since September 2003. The RootTalk Forum is a web-based

news group with about 10 discussion sub-units.

If you have a question, it is likely that it has been asked, answered, and stored in the roottalk or RootTalk

Forum archives. Please use the search engine to see if your question has already been answered before

sending a mail to the roottalk list or post a topic in the Forum.

You can browse the roottalk archives at: http://root.cern.ch/root/roottalk/AboutRootTalk.html. You can send

your question without subscribing to: roottalk@root.cern.ch

Contact Information
Several authors wrote this book and you may see a "change of voice" from one chapter to the next. We felt we
could accept this in order to have the expert explain what they know best. If you would like to contribute a
chapter or add to a section, please contact rootdoc@root.cern.ch. We count on you to send us suggestions on
additional topics or on the topics that need more documentation. Please send your comments, corrections,

questions, and suggestions to the rootdoc list: rootdoc@root.cern.ch

We attempt to give the user insight into the many capabilities of ROOT. The book begins with the elementary
functionality and progresses in complexity reaching the specialized topics at the end. The experienced user
looking for special topics may find these chapters useful: see ―Networking‖, ―Writing a Graphical User Interface‖,
―Threads‖, and ―PROOF: Parallel Processing‖.

Conventions Used in This Book
We tried to follow a style convention for the sake of clarity. The styles in used are described below.

To show source code in scripts or source files:

http://root.cern.ch/root/Registration.phtml
http://root.cern.ch/phpBB2/
http://root.cern.ch/root/roottalk/AboutRootTalk.html
mailto:roottalk@root.cern.ch
mailto:rootdoc@root.cern.ch
mailto:rootdoc@root.cern.ch

2 Introduction

{

 cout << " Hello" << endl;

 float x = 3.;

 float y = 5.;

 int i = 101;

 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;

}

To show the ROOT command line, we show the ROOT prompt without numbers. In the interactive system, the

ROOT prompt has a line number (root[12]); for the sake of simplicity, the line numbers are left off. Bold

monotype font indicates the ROOT class names as TObject, TClass, and text for you to enter at verbatim.

root[] TLine l

root[] l.Print()

TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

Italic bold monotype font indicates a global variable, for example gDirectory. We also used the italic font to

highlight the comments in the code listing.

When a variable term is used, it is shown between angled brackets. In the example below the variable term

<library> can be replaced with any library in the $ROOTSYS directory: $ROOTSYS/<library>/inc.

The Framework
ROOT is an object-oriented framework aimed at solving the data analysis challenges of high-energy physics.
There are two key words in this definition, object oriented and framework. First, we explain what we mean by a
framework and then why it is an object-oriented framework.

What Is a Framework?

Programming inside a framework is a little like living in a city. Plumbing, electricity, telephone, and
transportation are services provided by the city. In your house, you have interfaces to the services such as light
switches, electrical outlets, and telephones. The details, for example, the routing algorithm of the phone
switching system, are transparent to you as the user. You do not care; you are only interested in using the
phone to communicate with your collaborators to solve your domain specific problems.

Programming outside of a framework may be compared to living in the country. In order to have transportation
and water, you will have to build a road and dig a well. To have services like telephone and electricity you will
need to route the wires to your home. In addition, you cannot build some things yourself. For example, you
cannot build a commercial airport on your patch of land. From a global perspective, it would make no sense for
everyone to build his or her own airport. You see you will be very busy building the infrastructure (or framework)
before you can use the phone to communicate with your collaborators and have a drink of water at the same
time. In software engineering, it is much the same way. In a framework, the basic utilities and services, such as
I/O and graphics, are provided. In addition, ROOT being a HEP analysis framework, it provides a large selection
of HEP specific utilities such as histograms and fitting. The drawback of a framework is that you are constrained
to it, as you are constraint to use the routing algorithm provided by your telephone service. You also have to
learn the framework interfaces, which in this analogy is the same as learning how to use a telephone.

If you are interested in doing physics, a good HEP framework will save you much work. Next is a list of the more
commonly used components of ROOT: Command Line Interpreter, Histograms and Fitting, Writing a Graphical
User Interface, 2D Graphics, Input/Output , Collection Classes, Script Processor.

There are also less commonly used components, as: 3D Graphics, Parallel Processing (PROOF), Run Time
Type Identification (RTTI), Socket and Network Communication, Threads.

Advantages of Frameworks

The benefits of frameworks can be summarized as follows:

 Less code to write – the programmer should be able to use and reuse the majority of the existing
code. Basic functionality, such as fitting and histogramming are implemented and ready to use
and customize.

 More reliable and robust code – the code inherited from a framework has already been tested
and integrated with the rest of the framework.

 More consistent and modular code – the code reuse provides consistency and common
capabilities between programs, no matter who writes them. Frameworks make it easier to break
programs into smaller pieces.

 More focus on areas of expertise – users can concentrate on their particular problem domain.
They do not have to be experts at writing user interfaces, graphics, or networking to use the
frameworks that provide those services.

 Introduction 3

Why Object-Oriented?

Object-Oriented Programming offers considerable benefits compared to Procedure-Oriented Programming:

 Encapsulation enforces data abstraction and increases opportunity for reuse.

 Sub classing and inheritance make it possible to extend and modify objects.

 Class hierarchies and containment hierarchies provide a flexible mechanism for modeling real-
world objects and the relationships among them.

 Complexity is reduced because there is little growth of the global state, the state is contained
within each object, rather than scattered through the program in the form of global variables.

 Objects may come and go, but the basic structure of the program remains relatively static,
increases opportunity for reuse of design.

Installing ROOT
To install ROOT you will need to go to the ROOT website at: http://root.cern.ch/root/Availability.html. You have
a choice to download the binaries or the source. The source is quicker to transfer since it is only ~22 MB, but
you will need to compile and link it. The binaries compiled with no degug information range from ~35 MB to ~45
MB depending on the target platform.

The installation and building of ROOT is described in Appendix A: Install and Build ROOT. You can download
the binaries, or the source. The GNU g++ compiler on most UNIX platforms can compile ROOT.

Before downloading a binary version make sure your machine contains the right run-time environment. In most
cases it is not possible to run a version compiled with, e.g., gcc4.0 on a platform where only gcc 3.2 is installed.
In such cases you'll have to install ROOT from source.

ROOT is currently running on the following platforms:

● GNU/Linux x86-32 (IA32) and x86-64 (AMD64)(GCC,Intel/icc,Portland/PGCC,KAI/KCC)

● Intel Itanium (IA64) GNU/Linux (GCC, Intel/ecc, SGI/CC)

● FreeBSD and OpenBSD (GCC)

● GNU/Hurd (GCC)

● HP HP-UX 10.x (IA32) and 11 (IA64) (HP CC, aCC, GCC)

● IBM AIX 4.1 (xlC compiler, GCC)

● Sun Solaris for SPARC (SUN C++ compiler, GCC)

● Sun Solaris for x86 (SUN C++ compiler, KAI/KCC)

● Compaq Alpha (GCC, KAI/KCC, DEC/CXX)

● SGI Irix 32 and 64 bits (GCC, KAI/KCC, SGI C++ compiler)

● Windows ≥ 95 (Microsoft Visual C++ compiler, Cygwin/GCC)

● MacOS X PPC, x86-32, x86-64 (GCC, Intel/ICC, IBM/xl)

● PowerPC with GNU/Linux and GCC, Debian v2

● PowerPC64 with GNU/Linux and GCC

● ARM with GNU/Linux and GCC

● LynxOS

The Organization of the ROOT Framework
Now after we know in abstract terms what the ROOT framework is, let us look at the physical directories and
files that come with the ROOT installation. You may work on a platform where your system administrator has
already installed ROOT. You will need to follow the specific development environment for your setup and you
may not have write access to the directories. In any case, you will need an environment variable called

ROOTSYS, which holds the path of the top ROOT directory.

> echo $ROOTSYS

/opt/root

In the ROOTSYS directory are examples, executables, tutorials, header files, and, if you opted to download it, the

source is here. The directories of special interest to us are bin, tutorials, lib, test, and include. The

next figure shows the contents of these directories.

http://root.cern.ch/root/Availability.html

4 Introduction

Figure 1-1 ROOT framework directories

$ROOTSYS/bin

The bin directory contains several executables.

root shows the ROOT splash screen and calls root.exe

root.exe the executable that root calls, if you use a debugger such as gdb, you will need to

run root.exe directly

rootcint is the utility ROOT uses to create a class dictionary for CINT

rmkdepend a modified version of makedepend that is used by the ROOT build system

root-config a script returning the needed compile flags and libraries for projects that compile and
link with ROOT

cint the C++ interpreter executable that is independent of ROOT

makecint the pure CINT version of rootcint, used to generate a dictionary; It is used by

some of CINT install scripts to generate dictionaries for external system libraries

proofd a small daemon used to authenticate a user of ROOT parallel processing capability
(PROOF)

proofserv the actual PROOF process, which is started by proofd after a user, has successfully

been authenticated

rootd is the daemon for remote ROOT file access (see the TNetFile)

$ROOTSYS/lib

There are several ways to use ROOT, one way is to run the executable by typing root at the system prompt

another way is to link with the ROOT libraries and make the ROOT classes available in your own program.

Here is a short description of the most relevant libraries, the ones marked with a * are only installed when the
options specified them.

 libAsImage is the image manipulation library

 libCint is the C++ interpreter (CINT)

 libCore is the Base classes

 libEG is the abstract event generator interface classes

 *libEGPythia is the Pythia5 event generator interface

 Introduction 5

 *libEGPythia6 is the Pythia6 event generator interface

 libFitPanel contains the GUI used for fitting

 libGed contains the GUI used for editing the properties of histograms, graphs, etc.

 libGeom is the geometry package (with builder and painter)

 libGpad is the pad and canvas classes which depend on low level graphics

 libGraf is the 2D graphics primitives (can be used independent of libGpad)

 libGraf3d is the 3D graphics primitives

 libGui is the GUI classes (depend on low level graphics)

 libGuiBld is the GUI designer

 libGuiHtml contains the embedded HTML browser

 libGX11 is the low level graphics interface to the X11 system

 *libGX11TTF is an add-on library to libGX11 providing TrueType fonts

 libHbook is for interface ROOT - HBOOK

 libHist is the histogram classes (with accompanying painter library)

 libHtml is the HTML documentation generation system

 libMatrix is the matrix and vector manipulation

 libMathCore contains the core mathematics and physics vector classes

 libMathMore contains additional functions, interfacing the GSL math library

 libMinuit is the MINUIT fitter

 libNet contains functionality related to network transfer

 libNew is the special global new/delete, provides extra memory checking and interface for

shared memory (optional)

 libPhysics contains the legacy physics classes (TLorentzVector, etc.)

 libPostscript is the PostScript interface

 libProof is the parallel ROOT Facility classes

 libPython provides the interface to Python

 *libRFIO is the interface to CERN RFIO remote I/O system.

 *libRGL is the interface to OpenGL.

 libReflex is the runtime type database library used by CINT

 libRint is the interactive interface to ROOT (provides command prompt)

 libRIO provides the functionality to write and read objects to and from ROOT files

 libRooFit is the RooFit fitting framework

 libRuby is the interface to Ruby

 libSpectrum provides functionality for spectral analysis

 *libThread is the interface to TThread classes

 libTMVA contains the multivariate analysis toolkit

 libTree is the TTree object container system

 libTreePlayer is the TTree drawing classes

 libTreeViewer is the graphical TTree query interface

Library Dependencies

Figure 1-2 ROOT libraries dependencies

6 Introduction

The libraries are designed and organized to minimize dependencies, such that you can load just enough code
for the task at hand rather than having to load all libraries or one monolithic chunk. The core library

(libCore.so) contains the essentials; it is a part of all ROOT applications. In the Figure 1-2 you see that

libCore.so is made up of base classes, container classes, meta information classes, operating system specific
classes, and the ZIP algorithm used for compression of the ROOT files.

The CINT library (libCint.so) is also needed in all ROOT applications, and even by libCore. It can be used

independently of libCore, in case you only need the C++ interpreter and not ROOT. A program referencing

only TObject only needs libCore and libCint. To add the ability to read and write ROOT objects one also

has to load libRIO. As one would expect, none of that depends on graphics or the GUI.

Library dependencies have different consequences; depending on whether you try to build a binary, or you just
try to access a class that is defined in a library.

Linktime Library Dependencies

When building your own executable you will have to link against the libraries that contain the classes you use.
The ROOT reference guide states the library a class is defined in. Almost all relevant classes can be found in

libraries returned by root-config –glibs; the graphics libraries are retuned by root-config --libs.

These commands are commonly used in Makefiles. Using root-config instead of enumerating the

libraries by hand allows you to link them in a platform independent way. Also, if ROOT library names change
you will not need to change your Makefile.

A batch program that does not have a graphic display, which creates, fills, and saves histograms and trees, only

needs to link the core libraries (libCore, libCint, libRIO), libHist and libTree. If ROOT needs access

to other libraries, it loads them dynamically. For example, if the TreeViewer is used, libTreePlayer and all

libraries libTreePlayer depends on are loaded also. The dependent libraries are shown in the ROOT

reference guide‘s library dependency graph. The difference between libHist and libHistPainter is that

the former needs to be explicitly linked and the latter will be loaded automatically at runtime when ROOT needs
it, by means of the Plugin Manager.

In the Figure 1-2, the libraries represented by green boxes outside of the core are loaded via the plugin
manager or equivalent techniques, while the white ones are not. Of course, if one wants to access a plugin

library directly, it has to be explicitly linked. An example of a plugin library is libMinuit. To create and fill

histograms you need to link libHist.so. If the code has a call to fit the histogram, the "fitter" will dynamically

load libMinuit if it is not yet loaded.

Plugins: Runtime Library Dependencies for Linking

The Plugin Manager TPluginManager allows postponing library dependencies to runtime: a plugin library will

only be loaded when it is needed. Non-plugins will need to be linked, and are thus loaded at start-up. Plugins
are defined by a base class (e.g. TFile) that will be implemented in a plugin, a tag used to identify the plugin

(e.g. ^rfio: as part of the protocol string), the plugin class of which an object will be created (e.g.

TRFIOFile), the library to be loaded (in short libRFIO.so to RFIO), and the constructor to be called (e.g.

―TRFIOFile()‖). This can be specified in the .rootrc which already contains many plugin definitions, or by

calls to gROOT->GetPluginManager()->AddHandler().

Library Autoloading

When using a class in CINT, e.g. in an interpreted source file, ROOT will automatically load the library that

defines this class. On start-up, ROOT parses all files ending on .rootmap that are in one of the

$LD_LIBRARY_PATH (or $DYLD_LIBRARY_PATH for MacOS, or $PATH for Windows). They contain class

names and the library names that the class depends on. After reading them, ROOT knows which classes are
available, and which libraries to load for them.

When TSystem::Load("ALib") is called, ROOT uses this information to determine which libraries

libALib.so depends on. It will load these libraries first. Otherwise, loading the requested library could cause a

system (dynamic loader) error due to unresolved symbols.

$ROOTSYS/tutorials

The tutorials directory contains many example scripts. They assume some basic knowledge of ROOT, and for
the new user we recommend reading the chapters: ―Histograms‖ and ―Input/Output‖ before trying the examples.
The more experienced user can jump to chapter ―The Tutorials and Tests‖ to find more explicit and specific
information about how to build and run the examples.

The $ROOTSYS/tutorials/ directory include the following sub-directories:

fft: Fast Fourier Transform with the fftw package

fit: Several examples illustrating minimization/fitting

foam: Random generator in multidimensional space

geom: Examples of use of the geometry package (TGeo classes)

 Introduction 7

gl: Visualisation with OpenGL

graphics: Basic graphics

graphs: Use of TGraph, TGraphErrors, etc.

gui: Scripts to create Graphical User Interface

hist: Histograming

image: Image Processing

io: Input/Output

math: Maths and Statistics functions

matrix: Matrices (TMatrix) examples

mlp: Neural networks with TMultiLayerPerceptron

net: Network classes (client/server examples)

physics: LorentzVectors, phase space

pyroot: Python tutorials

pythia: Example with pythia6

quadp: Quadratic Programming

ruby: ruby tutorials

smatrix: Matrices with a templated package

spectrum: Peak finder, background, deconvolutions

splot: Example of the TSplot class (signal/background estimator)

sql: Interfaces to SQL (mysql, oracle, etc)

thread: Using Threads

tmva: Examples of the MultiVariate Analysis classes

tree: Creating Trees, Playing with Trees

unuran: Interface with the unuram random generator library

xml: Writing/Reading xml files

You can execute the scripts in $ROOTSYS/tutorials (or sub-directories) by setting your current directory in

the script directory or from any user directory with write access. Several tutorials create new files. If you have
write access to the tutorials directory, the new files will be created in the tutorials directory, otherwise they will
be created in the user directory.

$ROOTSYS/test

The test directory contains a set of examples that represent all areas of the framework. When a new release is
cut, the examples in this directory are compiled and run to test the new release's backward compatibility. The
list of source files is described in chapter ―The Tutorials and Tests‖.

The $ROOTSYS/test directory is a gold mine of ROOT-wisdom nuggets, and we encourage you to explore and

exploit it. We recommend the new users to read the chapter ―Getting Started‖. The chapter ―The Tutorials and

Tests‖ has instructions on how to build all the programs and it goes over the examples Event and stress.

$ROOTSYS/include
The include directory contains all header files. It is especially important because the header files contain the

class definitions.

$ROOTSYS/<library>

The directories we explored above are available when downloading the binaries. When downloading the source

you also get a directory for each library with the corresponding header and source files, located in the inc and

src subdirectories. To see what classes are in a library, you can check the <library>/inc directory for the

list of class definitions. For example, the physics library libPhysics.so contains these class definitions:

> ls -m $ROOTSYS/physics/inc

CVS,LinkDef.h,TLorentzRotation.h,TLorentzVector.h,TRotation.h,TVector2.h,

TVector3.h

How to Find More Information
The ROOT web site has up to date documentation. The ROOT source code automatically generates this
documentation, so each class is explicitly documented on its own web page, which is always up to date with the
latest official release of ROOT.

The ROOT Reference Guide web pages can be found at http://root.cern.ch/root/html/ClassIndex.html. Each
page contains a class description, and an explanation of each method. It shows the class inheritance tree and
lets you jump to the parent class page by clicking on the class name. If you want more details, you can even
see the source. There is a help page available in the little box on the upper right hand side of each class
documentation page. You can see on the next page what a typical class documentation web page looks like.

http://root.cern.ch/root/html/ClassIndex.html

8 Introduction

The ROOT web site also contains in addition to this Reference Guide, "How To's", a list of publications and
example applications.

Class Reference Guide

The top of any class reference page lets you jump to different parts of the documentation. The first line links to
the class index and the index for the current module (a group of classes, often a library). The second line links
to the ROOT homepage and the class overviews. The third line links the source information – a HTML version
of the source and header file as well as the CVS (the source management system used for the ROOT
development) information of the files. The last line links the different parts of the current pages.

This is an example for function documentation, with automatically generated LaTeX-like graphics:

The class diagrams show e. g. the inheritance tree, so you know what the current class derives from, and which
classes inherit from it:

The HTML version of the source file links all types and most functions so you can study what‘s happening inside
ROOT itself:

 Getting Started 9

2 Getting Started

We begin by showing you how to use ROOT interactively. There are two examples to click through and learn
how to use the GUI. We continue by using the command line, and explaining the coding conventions, global
variables and the environment setup. If you have not installed ROOT, you can do so by following the
instructions in the appendix, or on the ROOT web site: http://root.cern.ch/root/Availability.html

Setting the Environment Variables
Before you can run ROOT you need to set the environment variable ROOTSYS and change your path to include

root/bin and library path variables to include root/lib. Please note: the syntax is for bash, if you are

running tcsh you will have to use setenv instead of export.

1. Define the variable $ROOTSYS to the directory where you unpacked the ROOT:

$ export ROOTSYS=$HOME/root

2. Add ROOTSYS/bin to your PATH:

$ export PATH=$PATH:$ROOTSYS/bin

3. Setting the Library Path

On HP-UX, before executing the interactive module, you must set the library path:

$ export SHLIB_PATH=$SHLIB_PATH:$ROOTSYS/lib

On AIX, before executing the interactive module, you must set the library path:

$ [-z "$LIBPATH"] && export LIBPATH=/lib:/usr/lib

$ export LIBPATH=$LIBPATH:$ROOTSYS/lib

On Linux, Solaris, Alpha OSF and SGI, before executing the interactive module, you must set the library path:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib

On Solaris, in case your LD_LIBRARY_PATH is empty, you should set it:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib:/usr/dt/lib

If you use the afs version you should set (vers = version number, arch = architecture):

$ export ROOTSYS=/afs/cern.ch/sw/lcg/external/root/vers/arch/root

If ROOT was installed in $HOME/myroot directory on a local machine, one can do:

cd $HOME/myroot

. bin/thisroot.sh // or source bin/thisroot.sh

The new $ROOTSYS/bin/thisroot.[c]sh scripts will set correctly the ROOTSYS, LD_LIBRARY_PATH or

other paths depending on the platform and the MANPATH. To run the program just type: root.

Start and Quit a ROOT Session
% root

 * *

 * W E L C O M E to R O O T *

 * *

 * Version 5.20/00 24 June 2007 *

 * *

 * You are welcome to visit our Web site *

 * http://root.cern.ch *

 * *

ROOT 5.20/00 (trunk@24525, Jun 25 2008, 12:52:00 on linux)

CINT/ROOT C/C++ Interpreter version 5.16.29, June 08, 2008

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0]

http://root.cern.ch/root/Availability.html

10 Getting Started

To start ROOT you can type root at the system prompt. This starts up CINT, the ROOT command line C/C++

interpreter, and it gives you the ROOT prompt (root[0])

It is possible to launch ROOT with some command line options, as shown below:

% root -/?

Usage: root [-l] [-b] [-n] [-q] [file1.C ... fileN.C]

 Options:

 -b : run in batch mode without graphics

 -n : do not execute logon and logoff macros as

 specified in .rootrc

 -q : exit after processing command line script files

 -l : do not show the image logo (splash screen)

 –b ROOT session runs in batch mode, without graphics display. This mode is useful in
 case one does not want to set the DISPLAY or cannot do it for some reason.

 –n usually, launching a ROOT session will execute a logon script and quitting will
 execute a logoff script. This option prevents the execution of these two scripts.

 it is also possible to execute a script without entering a ROOT session. One simply
 adds the name of the script(s) after the ROOT command. Be warned: after finishing
 the execution of the script, ROOT will normally enter a new session.

 –q process command line script files and exit.

For example if you would like to run a script myMacro.C in the background, redirect the output into a file

myMacro.log, and exit after the script execution, use the following syntax:

root -b -q myMacro.C > myMacro.log

If you need to pass a parameter to the script use:

root -b -q ‟myMacro.C(3)‟ > myMacro.log

Be mindful of the quotes, i.e. if you need to pass a string as a parameter, the syntax is:

root -b -q ‟myMacro.C(\"text\")‟ > myMacro.log

You can build a shared library with ACLiC and then use this shared library on the command line for a quicker
execution (i.e. the compiled speed rather than the interpreted speed). See also ―CINT the C++ Interpreter‖.

root -b -q myMacro.so > myMacro.log

ROOT has a powerful C/C++ interpreter giving you access to all available ROOT classes, global variables, and
functions via the command line. By typing C++ statements at the prompt, you can create objects, call functions,
execute scripts, etc. For example:

root[] 1+sqrt(9)

(const double)4.00000000000000000e+00

root[] for (int i = 0; i<4; i++) cout << "Hello" << i << endl

Hello 0

Hello 1

Hello 2

Hello 3

root[] .q

To exit the ROOT session, type .q.

root[] .q

Using the GUI
The basic whiteboard on which an object is drawn in ROOT is called a canvas (defined by the class TCanvas).

Every object in the canvas is a graphical object in the sense that you can grab it, resize it, and change some
characteristics using the mouse. The canvas area can be divided in several sub areas, so-called pads (the class
TPad). A pad is a canvas sub area that can contain other pads or graphical objects. At any one time, just one

pad is the so-called active pad. Any object at the moment of drawing will be drawn in the active pad. The
obvious question is: what is the relation between a canvas and a pad? In fact, a canvas is a pad that spans
through an entire window. This is nothing else than the notion of inheritance. The TPad class is the parent of the

TCanvas class. In ROOT, most objects derive from a base class TObject. This class has a virtual method

Draw() such as all objects are supposed to be able to be "drawn". If several canvases are defined, there is

only one active at a time. One draws an object in the active canvas by using the statement:

object.Draw()

This instructs the object "object" to draw itself. If no canvas is opened, a default one (named "c1") is created.

In the next example, the first statement defines a function and the second one draws it. A default canvas is
created since there was no opened one. You should see the picture as shown in the next figure.

 Getting Started 11

root[] TF1 f1("func1","sin(x)/x",0,10)

root[] f1.Draw()

<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

Figure 2-1 A canvas with drawing

The following components comprise the canvas window:

 Menu bar – contains main menus for global operations with files, print, clear canvas, inspect, etc.

 Tool bar – has buttons for global and drawing operations; such as arrow, ellipse, latex, pad, etc.

 Canvas – an area to draw objects.

 Status bar – displays descriptive messages about the selected object.

 Editor frame - responds dynamically and presents the user interface according to the selected
object in the canvas.

Main Menus and Toolbar

At the top of the canvas window are File, Edit, View, Options, Inspect, Classes and Help menus.

File Menu

 New Canvas: creates a new canvas window in the current ROOT session.

 Open…: popup a dialog to open a file.

 Close Canvas: close the canvas window.

 Save: save the drawing of the current canvas in a format selectable from
the submenu. The current canvas name is used as a file name for various
formats such as PostScript, GIF, JPEG, C macro file, root file.

 Save As…: popup a dialog for saving the current canvas drawing in a new
filename.

 Print: popup a dialog to print the current canvas drawing

 Quit ROOT: exit the ROOT session

Edit Menu

There is only one active menu entry in the Edit menu. The others menu entries will be implemented and will
become active in the near future.

 Clear: delete all objects in the canvas or in the selected pad according to the selected entry in the
submenu.

View Menu

 Editor: toggles the view of the editor. If it is selected activates and shows up
the editor on the left side of the canvas window. According to the selected
object, the editor loads the corresponding user interface for easy change of
the object‘s attributes.

 Toolbar: toggles the view of the toolbar. If it is selected activates and shows
up the toolbar. It contains buttons for easy and fast access to most frequently

12 Getting Started

used commands and for graphics primitive drawing. Tool tips are provided for helping users.

 Status Bar: toggles the view of the status bar. If it is selected, the status bar below the canvas
window shows up. There the identification of the objects is displayed when moving the mouse
(such as the object‘s name, the object‘s type, its coordinates, etc.).

 Colors: creates a new canvas showing the color palette.

 Markers: creates a new canvas showing the various marker styles.

 Iconify: create the canvas window icon, does not close the canvas

 View With...: If the last selected pad contains a 3-d structure, a new canvas is created with a 3-D
picture according to the selection made from the cascaded menu: X3D or OpenGL. The 3-D
image can be interactively rotated, zoomed in wire-frame, solid, hidden line or stereo mode.

Options Menu

 Auto Resize Canvas: turns auto-resize of the canvas on/off:

 ON – the canvas fits to the window when changing the window size;

 OFF – the canvas stays fixed when changing the window size.

 Resize Canvas: resizes and fits the canvas to the window size.

 Move Opaque: if selected, graphics objects are moved in opaque
mode; otherwise, only the outline of objects is drawn when moving
them. The option opaque produces the best effect but it requires a
reasonably fast workstation or response time.

 Resize Opaque: if selected, graphics objects are resized in opaque
mode; otherwise, only the outline of objects is drawn when resizing
them.

 Interrupt: interrupts the current drawing process.

 Refresh: redraws the canvas contents.

 Pad Auto Exec: executes the list of TExecs in the current pad.

 Statistics: toggles the display of the histogram statistics box.

 Histogram Title: toggles the display of the histogram title.

 Fit Parameters: toggles the display of the histogram or graph fit parameters.

 Can Edit Histogram: enables/disables the possibility to edit histogram bin contents.

Inspect Menu

 ROOT: inspects the top-level gROOT object (in a new canvas).

 Start Browser: starts a new object browser (in a separate window).

 GUI Builder: starts the GUI builder application (in a separate window).

Classes Menu

 Classes: starts the ClassTree viewer that draws inheritance tree for a list of classes.

Help Menu

 Canvas: help on canvas as a whiteboard area for drawing.

 Menus: help on canvas menus.

 Graphics Editor: help on primitives‘ drawing and objects‘ editor.

 Browser: help on the ROOT objects‘ and files‘ browser.

 Objects: help on DrawClass, Inspect and Dump context menu items.

 PostScript: help on how to print a canvas to a PostScript file format.

 About ROOT: pops up the ROOT Logo with the version number.

Toolbar

The following menu shortcuts and utilities are available from the toolbar:

 Create a new canvas window.

 Popup the Open File dialog.

 Popup the Save As… dialog.

 Popup the Print dialog.

 Interrupts the current drawing process.

 Getting Started 13

 Redraw the canvas.

 Inspect the gROOT object.

 Create a new objects‘ browser.

You can create the following graphical objects using the toolbar buttons for primitive drawing. Tool tips are
provided for helping your choice.

 An Arc or circle: Click on the center of the arc, and then move the mouse. A rubber band circle is shown.
Click again with the left button to freeze the arc.

 A Line: Click with the left button at the point where you want to start the line, then move the mouse and
click again with the left button to freeze the line.

 An Arrow: Click with the left button at the point where you want to start the arrow, then move the mouse
and click again with the left button to freeze the arrow.

 A Diamond: Click with the left button and freeze again with the left button. The editor draws a rubber band
box to suggest the outline of the diamond.

 An Ellipse: Proceed like for an arc. You can grow/shrink the ellipse by pointing to the sensitive points. They
are highlighted. You can move the ellipse by clicking on the ellipse, but not on the sensitive points. If, with the
ellipse context menu, you have selected a fill area color, you can move a filled-ellipse by pointing inside the
ellipse and dragging it to its new position.

 A Pad: Click with the left button and freeze again with the left button. The editor draws a rubber band box to
suggest the outline of the pad.

 A PaveLabel: Proceed like for a pad. Type the text of label and finish with a carriage return. The text will
appear in the box.

 A Pave Text: Proceed like for a pad. You can then click on the TPaveText object with the right mouse

button and select the option InsertText.

 Paves Text: Proceed like for a TPaveText.

 A Poly Line: Click with the left button for the first point, move the moose, click again with the left button for
a new point. Close the poly-line with a double click. To edit one vertex point, pick it with the left button and drag
to the new point position.

 A Curly Line: Proceed as for the arrow or line. Once done, click with the third button to change the
characteristics of the curly line, like transform it to wave, change the wavelength, etc.

 A Curly Arc: Proceed like for an ellipse. The first click is located at the position of the center, the second
click at the position of the arc beginning. Once done, one obtains a curly ellipse, for which one can click with the
third button to change the characteristics, like transform it to wavy, change the wavelength, set the minimum
and maximum angle to make an arc that is not closed, etc.

 A Text/Latex string: Click with the left button where you want to draw the text and then type in the text
terminated by carriage return. All TLatex expressions are valid. To move the text or formula, point on it keeping

the left mouse button pressed and drag the text to its new position. You can grow/shrink the text if you position
the mouse to the first top-third part of the string, then move the mouse up or down to grow or shrink the text
respectively. If you position the mouse near the bottom-end of the text, you can rotate it.

 A Marker: Click with the left button where to place the marker. The marker can be modified by using the
method SetMarkerStyle() of TSystem.

 A Graphical Cut: Click with the left button on each point of a polygon delimiting the selected area. Close
the cut by double clicking on the last point. A TCutG object is created. It can be used as a selection for a

TTree::Draw. You can get a pointer to this object with:

TCutG cut = (TCutG*)gPad->GetPrimitive("CUTG")

Once you are happy with your picture, you can select the Save as canvas.C item in the canvas File menu.

This will automatically generate a script with the C++ statements corresponding to the picture. This facility also
works if you have other objects not drawn with the graphics editor (histograms for example).

The Editor Frame

The ROOT graphics editor loads the corresponding object editor objEditor according to the selected object

obj in the canvas respecting the class inheritance. An object in the canvas is selected after the left mouse click

14 Getting Started

on it. For example, if the selected object is TAxis, the TAxisEditor will shows up in the editor frame giving

the possibility for changing different axis attributes. The graphics editor can be:

Embedded – connected only with the canvas in the application window that appears on the left of the canvas
window after been activated via View menu / Editor. It appears on the left side if the canvas window allowing
users to edit the attributes of the selected object via provided user interface. The name of the selected object is
displayed on the top of the editor frame in red color. If the user interface needs more space then the height of
the canvas window, a vertical scroll bar appears for easer navigation.

Global – has own application window and can be connected to any created canvas in a ROOT session. It can
be activated via the context menu entries for setting line, fill, text and marker attributes for backward
compatibility, but there will be a unique entry in the near future.

The user interface for the following classes is available since ROOT v.4.04: TAttLine, TAttFill,

TAttMarker, TAttText, TArrow, TAxis, TCurlyArc, TCurlyLine, TFrame, TH1, TH2, TGraph, TPad,

TCanvas, TPaveStats. For more details, see ―The Graphics Editor‖, ―The User Interface for Histograms‖, ―The

User Interface for Graphs‖.

Classes, Methods and Constructors

Object oriented programming introduces objects, which have data members and methods. The next line
creates an object named f1 of the class TF1 that is a one-dimensional function. The type of an object is called

a class. The object itself is called an instance of a class. When a method builds an object, it is called a
constructor.

TF1 f1("func1","sin(x)/x",0,10)

In our constructor the function sin(x)/x is defined for use, and 0 and 10 are the limits. The first parameter, func1

is the name of the object f1. Most objects in ROOT have a name. ROOT maintains a list of objects that can be

searched to find any object by its given name (in our example func1).

The syntax to call an object's method, or if one prefers, to make an object to do something is:

 Getting Started 15

object.method_name(parameters)

The dot can be replaced by ―->" if object is a pointer. In compiled code, the dot MUST be replaced by a "->"

if object is a pointer.

object_ptr->method_name(parameters)

So now, we understand the two lines of code that allowed us to draw our function. f1.Draw() stands for ―call

the method Draw() associated with the object f1 of the class TF1‖. Other methods can be applied to the object

f1 of the class TF1. For example, the evaluating and calculating the derivative and the integral are what one

would expect from a function.

root[] f1.Eval(3)

(Double_t)4.70400026866224020e-02

root[] f1.Derivative(3)

(Double_t)(-3.45675056671992330e-01)

root[] f1.Integral(0,3)

(Double_t)1.84865252799946810e+00

root[] f1.Draw()

By default the method TF1::Paint(), that draws the function, computes 100 equidistant points to draw it. The

number of points can be set to a higher value with:

root[] f1.SetNpx(2000);

Note that while the ROOT framework is an object-oriented framework, this does not prevent the user from
calling plain functions.

User Interaction

Now we will look at some interactive capabilities. Try to draw the function sin(x)/x again. Every object in a

window (which is called a canvas) is, in fact, a graphical object in the sense that you can grab it, resize it, and
change its characteristics with a mouse click. For example, bring the cursor over the x-axis. The cursor changes
to a hand with a pointing finger when it is over the axis. Now, left click and drag the mouse along the axis to the
right. You have a very simple zoom.

When you move the mouse over any object, you can get access to selected methods by pressing the right
mouse button and obtaining a context menu. If you try this on the function TF1, you will get a menu showing

available methods. The other objects on this canvas are the title, a TPaveText object; the x and y-axis, TAxis

objects, the frame, a TFrame object, and the canvas a TCanvas object. Try clicking on these and observe the

context menu with their methods.

Figure 2-2 A context menu

For example try selecting the SetRange() method and putting -10, 10 in the dialog box fields. This is

equivalent to executing f1.SetRange(-10,10) from the command line, followed by f1.Draw(). Here are

some other options you can try.

Once the picture suits your wishes, you may want to see the code you should put in a script to obtain the same

result. To do that, choose Save / canvas.C entry of the File menu. This will generate a script showing the

options set in the current canvas. Notice that you can also save the picture into various file formats such as

PostScript, GIF, etc. Another interesting possibility is to save your canvas into the native ROOT format (.root

file). This will enable you to open it again and to change whatever you like. All objects associated to the canvas
(histograms, graphs) are saved at the same time.

16 Getting Started

Building a Multi-pad Canvas

Let us now try to build a canvas with several pads.

root[] TCanvas *MyC = new TCanvas("MyC","Test canvas",1)

root[] MyC->Divide(2,2)

Once again, we call the constructor of a class, this time the class TCanvas. The difference between this and

the previous constructor call (TF1) is that here we are creating a pointer to an object. Next, we call the method

Divide() of the TCanvas class (that is TCanvas::Divide()), which divides the canvas into four zones and

sets up a pad in each of them. We set the first pad as the active one and than draw the function f1 there.

root[] MyC->cd(1)

root[] f1->Draw()

All objects will be drawn in that pad because it is the active one. The ways for changing the active pad are:

 Click the middle mouse button on a pad will set this pad as the active one.

 Use the method TCanvas::cd() with the pad number, as was done in the example above:

root[] MyC->cd(3)

Pads are numbered from left to right and from top to bottom. Each new pad created by TCanvas::Divide()

has a name, which is the name of the canvas followed by _1, _2, etc. To apply the method cd() to the third

pad, you would write:

root[] MyC_3->cd()

 Third pad will be selected since you called TPad::cd() for the object MyC_3. ROOT will find the

pad that was named MyC_3 when you typed it on the command line (see ROOT/CINT

Extensions to C++).

Saving the Canvas

Using the File menu / Save cascade menu users can save the canvas as one of the
files from the list. Please note that saving the canvas this way will overwrite the file
with the same name without a warning.

All supported file types can be saved via File menu / SaveAs… This dialog gives a
choice to show or suppress the confirmation message for overwriting an existing file.

Figure 2-3 The SaveAs... dialog

If the Ovewrite check box is not selected, a message dialog appears asking the user to overwrite the file
(Yes/No). The user choice is saved for the next time the Save As… dialog shows up.

Printing the Canvas

The Print command in the canvas File menu pops-up a print dialog where the user can specify a preferred print
command and the printer name.

Both print parameters can be set via the new Print.Command and Print.Printer rootrc resources as follows:

Printer settings.

WinNT.*.Print.Command: AcroRd32.exe

Unix.*.Print.Command: xprint -P%p %f

Print.Printer: 32-rb205-hp

Print.Directory: .

 Getting Started 17

If the %p and %f are specified as a part of the print command, they will be replaced by the specified printer

name and the file name. All other parameters will be kept as they are written. A print button is available in the
canvas toolbar (activated via View menu/Toolbar).

The ROOT Command Line
We have briefly touched on how to use the command line. There are different types of commands.

1. CINT commands start with ―.‖

root[] .? //this command will list all the CINT commands

root[] .L <filename> //load [filename]

root[] .x <filename> //load and execute [filename]

2. SHELL commands start with ―.!‖ for example:

root[] .! ls

3. C++ commands follow C++ syntax (almost)

root[] TBrowser *b = new TBrowser()

Multi-line Commands

You can use the command line to execute multi-line commands. To begin a multi-line command you must type

a single left curly bracket {, and to end it you must type a single right curly bracket }. For example:

root[] {

end with '}'> Int_t j = 0;

end with '}'> for (Int_t i = 0; i < 3; i++)

end with '}'> {

end with '}'> j= j + i;

end with '}'> cout << "i = " << i << ", j = " << j << endl;

end with '}'> }

end with '}'> }

i = 0, j = 0

i = 1, j = 1

i = 2, j = 3

It is more convenient to edit a script than the command line, and if your multi line commands are getting
unmanageable, you may want to start with a script instead.

CINT Extensions

We should say that some things are not standard C++. The CINT interpreter has several extensions. See
―ROOT/CINT Extensions to C++‖.

Helpful Hints for Command Line Typing

The interpreter knows all the classes, functions, variables, and user defined types. This enables ROOT to help
users to complete the command line. For example, if we do not know anything about the TLine class, the Tab

feature helps us to get a list of all classes starting with TL(where <TAB> means type the Tab key).

root[] l = new TLi<TAB>

TList

TListIter

TLink

TLine

TLimitDataSource

TLimit

To list the different constructors and parameters for TLine use the <TAB> key as follows:

root[] l = new TLine(<TAB>

TLine TLine()

TLine TLine(Double_t x1,Double_t y1,Double_t x2,Double_t y2)

TLine TLine(const TLine& line)

Regular Expression

The meta-characters below can be used in a regular expression:

 '^' start-of-line anchor

 '$' end-of-line anchor

18 Getting Started

 '.' matches any character

 '[' start a character class

 ']‘ end a character class

 '^‘ negates character class if first character

 '*‘ Kleene closure (matches 0 or more)

 '+‘ Positive closure (1 or more)

 '?‘ Optional closure (0 or 1)

When using wildcards the regular expression is assumed to be preceded by a '^' (BOL) and terminated by '$'

(EOL). All '*' (closures) are assumed to be preceded by a '.', i.e. any character, except slash _/_. Its special

treatment allows the easy matching of pathnames. For example, _*.root_ will match _aap.root_, but not

pipo/aap.root.

The escape characters are:

 \\ backslash

 \b backspace

 \f form feed

 \n new line

 \r carriage return

 \s space

 \t tab

 \e ASCII ESC character ('\033')

 \DDD number formed of 1-3 octal digits

 \xDD number formed of 1-2 hex digits

 \^C C = any letter. Control code

The class TRegexp can be used to create a regular expression from an input string. If wildcard is true then

the input string contains a wildcard expression.

TRegexp(const char *re, Bool_t wildcard)

Regular expression and wildcards can be easily used in methods like:

Ssiz_t Index(const TString& string,Ssiz_t* len,Ssiz_t i) const

The method finds the first occurrence of the regular expression in the string and returns its position.

Conventions
In this paragraph, we will explain some of the conventions used in ROOT source and examples.

Coding Conventions

From the first days of ROOT development, it was decided to use a set of coding conventions. This allows a
consistency throughout the source code. Learning these will help you identify what type of information you are
dealing with and enable you to understand the code better and quicker. Of course, you can use whatever
convention you want but if you are going to submit some code for inclusion into the ROOT sources, you will
need to use these.

These are the coding conventions:

 Classes begin with T: TLine, TTree

 Non-class types end with _t: Int_t

 Data members begin with f: fTree

 Member functions begin with a capital: Loop()

 Constants begin with k: kInitialSize, kRed

 Global variables begin with g: gEnv

 Static data members begin with fg: fgTokenClient

 Enumeration types begin with E: EColorLevel

 Locals and parameters begin with a lower case: nbytes

 Getters and setters begin with Get and Set: SetLast(), GetFirst()

Machine Independent Types

Different machines may have different lengths for the same type. The most famous example is the int type. It

may be 16 bits on some old machines and 32 bits on some newer ones. To ensure the size of your variables,
use these pre defined types in ROOT:

 Getting Started 19

 Char_t Signed Character 1 byte

 UChar_t Unsigned Character 1 byte

 Short_t Signed Short integer 2 bytes

 UShort_t Unsigned Short integer 2 bytes

 Int_t Signed integer 4 bytes

 UInt_t Unsigned integer 4 bytes

 Long64_t Portable signed long integer 8 bytes

 ULong64_t Portable unsigned long integer 8 bytes

 Float_t Float 4 bytes

 Double_t Float 8 bytes

 Double32_t Double 8 bytes in memory, written as a Float 4 bytes

 Bool_t Boolean (0=false, 1=true)

If you do not want to save a variable on disk, you can use int or Int_t, the result will be the same and the

interpreter or the compiler will treat them in exactly the same way.

TObject

In ROOT, almost all classes inherit from a common base class called TObject. This kind of architecture is also

used in the Java language. The TObject class provides default behavior and protocol for all objects in the

ROOT system. The main advantage of this approach is that it enforces the common behavior of the derived
classes and consequently it ensures the consistency of the whole system. See "The Role of TObject".

TObject provides protocol, i.e. (abstract) member functions, for:

 Object I/O (Read(), Write())

 Error handling (Warning(), Error(), SysError(), Fatal())

 Sorting (IsSortable(), Compare(), IsEqual(), Hash())

 Inspection (Dump(), Inspect())

 Printing (Print())

 Drawing (Draw(), Paint(), ExecuteEvent())

 Bit handling (SetBit(), TestBit())

 Memory allocation (operator new and delete, IsOnHeap())

 Access to meta information (IsA(), InheritsFrom())

 Object browsing (Browse(), IsFolder())

Global Variables
ROOT has a set of global variables that apply to the session. For example, gDirectory always holds the

current directory, and gStyle holds the current style. All global variables begin with ―g‖ followed by a capital

letter.

gROOT

The single instance of TROOT is accessible via the global gROOT and holds information relative to the current

session. By using the gROOT pointer, you get the access to every object created in a ROOT program. The

TROOT object has several lists pointing to the main ROOT objects. During a ROOT session, the gROOT keeps a

series of collections to manage objects. They can be accessed via gROOT::GetListOf… methods.

gROOT->GetListOfClasses()

gROOT->GetListOfColors()

gROOT->GetListOfTypes()

gROOT->GetListOfGlobals()

gROOT->GetListOfGlobalFunctions()

gROOT->GetListOfFiles()

gROOT->GetListOfMappedFiles()

gROOT->GetListOfSockets()

gROOT->GetListOfCanvases()

gROOT->GetListOfStyles()

gROOT->GetListOfFunctions()

gROOT->GetListOfSpecials()

gROOT->GetListOfGeometries()

gROOT->GetListOfBrowsers()

gROOT->GetListOfMessageHandlers()

20 Getting Started

These methods return a TSeqCollection, meaning a collection of objects, and they can be used to do list

operations such as finding an object, or traversing the list and calling a method for each of the members. See
the TCollection class description for the full set of methods supported for a collection. For example, to find a

canvas called c1 you can do:

root[] gROOT->GetListOfCanvases()->FindObject("c1")

This returns a pointer to a TObject, and before you can use it as a canvas you need to cast it to a TCanvas*.

gFile

gFile is the pointer to the current opened file in the ROOT session.

gDirectory

gDirectory is a pointer to the current directory. The concept and role of a directory is explained in the chapter

―Input/Output‖.

gPad

A graphic object is always drawn on the active pad. It is convenient to access the active pad, no matter what it
is. For that, we have gPad that is always pointing to the active pad. For example, if you want to change the fill

color of the active pad to blue, but you do not know its name, you can use gPad.

root[] gPad->SetFillColor(38)

To get the list of colors, if you have an open canvas, click in the "View" menu, selecting the "Colors" entry.

gRandom

gRandom is a pointer to the current random number generator. By default, it points to a TRandom3 object,

based on the "Mersenne-Twister" generator. This generator is very fast and has very good random proprieties
(a very long period of 10600). Setting the seed to 0 implies that the seed will be uniquely generated using the
TUUID. Any other value will be used as a constant. The following basic random distributions are provided:

Rndm() or Uniform(min,max), Gaus(mean,sigma), Exp(tau), BreitWigner(mean,sigma),

Landau(mean,sigma), Poisson(mean), Binomial(ntot,prob). You can customize your ROOT session

by replacing the random number generator. You can delete gRandom and recreate it with your own. For

example:

root[] delete gRandom;

root[] gRandom = new TRandom2(0); //seed=0

TRandom2 is another generator, which is also very fast and uses only three words for its state.

gEnv

gEnv is the global variable (of type TEnv) with all the environment settings for the current session. This variable

is set by reading the contents of a .rootrc file (or $ROOTSYS/etc/system.rootrc) at the beginning of the

root session. See Environment Setup below for more information.

Environment Setup
The behavior of a ROOT session can be tailored with the options in the .rootrc file. At start-up, ROOT looks

for a .rootrc file in the following order:

 ./.rootrc //local directory

 $HOME/.rootrc //user directory

 $ROOTSYS/etc/system.rootrc //global ROOT directory

If more than one .rootrc files are found in the search paths above, the options are merged, with precedence

local, user, global. While in a session, to see current settings, you can do:

root[] gEnv->Print()

The rootrc file typically looks like:

Path used by dynamic loader to find shared libraries

Unix.*.Root.DynamicPath: .:~/rootlibs:$(ROOTSYS)/lib

Unix.*.Root.MacroPath: .:~/rootmacros:$(ROOTSYS)/macros

Path where to look for TrueType fonts

Unix.*.Root.UseTTFonts: true

 Getting Started 21

Unix.*.Root.TTFontPath:

…

Activate memory statistics

Rint.Root.MemStat: 1

Rint.Load: rootalias.C

Rint.Logon: rootlogon.C

Rint.Logoff: rootlogoff.C

…

Rint.Canvas.MoveOpaque: false

Rint.Canvas.HighLightColor: 5

The various options are explained in $ROOTSYS/etc/system.rootrc. The .rootrc file contents are

combined. For example, if the flag to use true type fonts is set to true in the system.rootrc file, you have to

set explicitly it false in your local .rootrc file if you do not want to use true type fonts. Removing the

UseTTFonts statement in the local .rootrc file will not disable true fonts. The value of the environment

variable ROOTDEBUG overrides the value in the .rootrc file at startup. Its value is used to set gDebug and

helps for quick turn on debug mode in TROOT startup.

ROOT looks for scripts in the path specified in the .rootrc file in the Root.Macro.Path variable. You can

expand this path to hold your own directories.

Logon and Logoff Scripts

The rootlogon.C and rootlogoff.C files are scripts loaded and executed at start-up and shutdown. The

rootalias.C file is loaded but not executed. It typically contains small utility functions. For example, the

rootalias.C script that comes with the ROOT distributions (located in $ROOTSYS/tutorials) defines the

function edit(char *file). This allows the user to call the editor from the command line. This particular

function will start the VI editor if the environment variable EDITOR is not set.

root[0] edit("c1.C")

For more details, see $ROOTSYS/tutorials/rootalias.C.

History File

You can use the up and down arrow at the command line, to access the previous and next command. The

commands are recorded in the history file $HOME/.root_hist. It is a text file, and you can edit, cut, and paste

from it. You can specify the history file in the system.rootrc file, by setting the Rint.History option. You

can also turn off the command logging in the system.rootrc file with the option: Rint.History: -

The number of history lines to be kept can be set also in .rootrc by:

Rint.HistSize: 500

Rint.HistSave: 400

The first value defines the maximum of lines kept; once it is reached all, the last HistSave lines will be

removed. One can set HistSize to 0 to disable history line management. There is also implemented an

environment variable called ROOT_HIST. By setting ROOT_HIST=300:200 the above values can be overriden -

the first value corresponds to HistSize, the (optional) second one to HistSave. You can set ROOT_HIST=0

to disable the history.

Tracking Memory Leaks

You can track memory usage and detect leaks by monitoring the number of objects that are created and deleted
(see TObjectTable). To use this facility, edit the file $ROOTSYS/etc/system.rootrc or .rootrc if you

have this file and add the two following lines:

Root.MemStat: 1

Root.ObjectStat: 1

In your code or on the command line you can type the line:

gObjectTable->Print();

This line will print the list of all active classes and the number of instances for each class. By comparing
consecutive print outs, you can see objects that you forgot to delete. Note that this method cannot show leaks
coming from the allocation of non-objects or classes unknown to ROOT.

Memory Checker

A memory checking system was developed by D.Bertini and M.Ivanov and added in ROOT version 3.02.07. To

activate the memory checker you can set the resource Root.MemCheck to 1 (e.g.: Root.MemCheck: 1 in the

.rootrc file). You also have to link with libNew.so (e.g. use root-config --new --libs) or to use

22 Getting Started

rootn.exe. When these settings are in place, you will find a file "memcheck.out" in the directory where you

started your ROOT program after the completion of the program execution. You can also set the resource

Root.MemCheckFile to the name of a file. The memory information will be written to that file. The contents of

this memcheck.out can be analyzed and transformed into printable text via the memprobe program (in

$ROOTSYS/bin).

Converting from PAW to ROOT
The web page at: http://root.cern.ch/root/HowtoConvertFromPAW.html#TABLE gives the "translation" table of
some commonly used PAW commands into ROOT. If you move the mouse cursor over the picture at:
http://root.cern.ch/root/HowtoConvertFromPAW.html#SET, you will get the corresponding ROOT commands as
tooltips.

Converting HBOOK/PAW Files

ROOT has a utility called h2root that you can use to convert your HBOOK/PAW histograms or ntuple files into

ROOT files. To use this program, you type the shell script command:

h2root <hbookfile> <rootfile>

If you do not specify the second parameter, a file name is automatically generated for you. If hbookfile is of

the form file.hbook, then the ROOT file will be called file.root. This utility converts HBOOK histograms

into ROOT histograms of the class TH1F. HBOOK profile histograms are converted into ROOT profile

histograms (see class TProfile). HBOOK row-wise and column-wise ntuples are automatically converted to

ROOT Trees. See ―Trees‖. Some HBOOK column-wise ntuples may not be fully converted if the columns are an

array of fixed dimension (e.g. var[6]) or if they are a multi-dimensional array.

HBOOK integer identifiers are converted into ROOT named objects by prefixing the integer identifier with the

letter "h" if the identifier is a positive integer and by "h_" if it is a negative integer identifier. In case of row-wise

or column-wise ntuples, each column is converted to a branch of a tree. Note that h2root is able to convert

HBOOK files containing several levels of sub-directories. Once you have converted your file, you can look at it
and draw histograms or process ntuples using the ROOT command line. An example of session is shown
below:

// this connects the file hbookconverted.root

root[] TFile f("hbookconverted.root");

//display histogram named h10 (was HBOOK id 10)

root[] h10.Draw();

//display column "var" from ntuple h30

root[] h30.Draw("var");

You can also use the ROOT browser (see TBrowser) to inspect this file.

The chapter on trees explains how to read a tree. ROOT includes a function TTree::MakeClass to generate

automatically the code for a skeleton analysis function. See ―Example Analysis‖.

In case one of the ntuple columns has a variable length (e.g. px(ntrack)), h.Draw("px") will histogram the

px column for all tracks in the same histogram. Use the script quoted above to generate the skeleton function

and create/fill the relevant histogram yourself.

http://root.cern.ch/root/HowtoConvertFromPAW.html#TABLE
http://root.cern.ch/root/HowtoConvertFromPAW.html#SET

 Histograms 23

3 Histograms

This chapter covers the functionality of the histogram classes. We begin with an overview of the histogram
classes and their inheritance relationship. Then we give instructions on the histogram features.

We have put this chapter ahead of the graphics chapter so that you can begin working with histograms as soon
as possible. Some of the examples have graphics commands that may look unfamiliar to you. These are
covered in the chapter ―Input/Output‖.

The Histogram Classes
ROOT supports the following histogram types:

1-D histograms:

 TH1C: are histograms with one byte per channel. Maximum bin content = 255

 TH1S: are histograms with one short per channel. Maximum bin content = 65 535

 TH1I: are histograms with one integer per channel. Maximum bin content = 2147483647

 TH1F: are histograms with one float per channel. Maximum precision 7 digits

 TH1D: are histograms with one double per channel. Maximum precision 14 digits

2-D histograms:

 TH2C: are histograms with one byte per channel. Maximum bin content = 255

 TH2S: are histograms with one short per channel. Maximum bin content = 65 535

 TH2I: are histograms with one integer per channel. Maximum bin content = 2147483647

 TH2F: are histograms with one float per channel. Maximum precision 7 dig

 TH2D: are histograms with one double per channel. Maximum precision 14 digits

3-D histograms:

 TH3C: are histograms with one byte per channel. Maximum bin content = 255

 TH3S: are histograms with one short per channel. Maximum bin content = 65 535

 TH3I: are histograms with one integer per channel. Maximum bin content = 2147483647

 TH3F: are histograms with one float per channel. Maximum precision 7 digits

 TH3D: are histograms with one double per channel. Maximum precision 14 digits

Profile histograms:

 TProfile: one dimensional profiles

 TProfile2D: two dimensional profiles

Profile histograms are used to display the mean value of Y and its RMS for each bin in X. Profile histograms are
in many cases an elegant replacement of two-dimensional histograms. The inter-relation of two measured
quantities X and Y can always be visualized with a two-dimensional histogram or scatter-plot. If Y is an
unknown but single-valued approximate function of X, it will have greater precisions in a profile histogram than
in a scatter plot.

Figure 3-1 The class hierarchy of histogram classes

TH3

TH3C TH3F TH3D TH3S

TH2

TH2C TH2F TH2D TH2S

TH1C TH1F TH1D TH1S

TProfile

TProfile2D

TH1

TH1I

TH2I

TH3I

24 Histograms

All histogram classes are derived from the base class TH1. The figure above shows the class hierarchy.

The TH*C classes also inherit from the array class TArrayC.

The TH*S classes also inherit from the array class TArrayS.

The TH*F classes also inherit from the array class TArrayF.

The TH*D classes also inherit from the array class TArrayD.

Creating Histograms
Histograms are created with constructors:

TH1F *h1 = new TH1F("h1","h1 title",100,0,4.4);

TH2F *h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3);

The parameters of the TH1 constructor are the name of the histogram, the title, the number of bins, the x

minimum, and x maximum. Histograms may also be created by:

 Calling the Clone method of an existing histogram (see below)

 Making a projection from a 2-D or 3-D histogram (see below)

 Reading a histogram from a file

When a histogram is created, a reference to it is automatically added to the list of in-memory objects for the
current file or directory. This default behavior can be disabled for an individual histogram or for all histograms by

setting a global switch. Here is the syntax to set the directory of the histogram h:

// to set the in-memory directory for the current histogram h

h->SetDirectory(0);

// global switch to disable

TH1::AddDirectory(kFALSE);

When the histogram is deleted, the reference to it is removed from the list of objects in memory. In addition,
when a file is closed, all histograms in memory associated with this file are automatically deleted. See the
chapter ―Input/Output‖.

Fixed or Variable Bin Size
All histogram types support fixed or variable bin sizes. 2-D histograms may have fixed size bins along X and
variable size bins along Y or vice-versa. The functions to fill, manipulate, draw, or access histograms are
identical in both cases.

To create a histogram with variable bin size one can use this constructor:

TH1(const char name,const *title,Int_t nbins,*xbins)

The parameters to this constructor are:

 title: histogram title

 nbins: number of bins

 xbins: array of low-edges for each bin. It is an array of size nbins+1

Each histogram always contains three TAxis objects: fXaxis, fYaxis, and fZaxis. To access the axis

parameters first get the axis from the histogram h, and then call the TAxis access methods.

TAxis *xaxis = h->GetXaxis();

Double_t binCenter = xaxis->GetBinCenter(bin);

See the class TAxis for a description of all the access methods. The axis range is always stored internally in

double precision.

Bin Numbering Convention

For all histogram types: nbins, xlow, xup

Bin# 0 contains the underflow.

Bin# 1 contains the first bin with low-edge (xlow INCLUDED).

The second to last bin (bin# nbins) contains the upper-edge (xup EXCLUDED).

The Last bin (bin# nbins+1) contains the overflow.

In case of 2-D or 3-D histograms, a "global bin" number is defined. For example, assuming a 3-D histogram h

with binx, biny, binz, the function returns a global/linear bin number.

Int_t bin = h->GetBin(binx,biny,binz);

This global bin is useful to access the bin information independently of the dimension.

 Histograms 25

Re-binning

At any time, a histogram can be re-binned via the TH1::Rebin() method. It returns a new histogram with the

re-binned contents. If bin errors were stored, they are recomputed during the re-binning.

Filling Histograms
A histogram is typically filled with statements like:

h1->Fill(x);

h1->Fill(x,w); //with weight

h2->Fill(x,y);

h2->Fill(x,y,w);

h3->Fill(x,y,z);

h3->Fill(x,y,z,w);

The Fill method computes the bin number corresponding to the given x, y or z argument and increments this

bin by the given weight. The Fill() method returns the bin number for 1-D histograms or global bin number

for 2-D and 3-D histograms. If TH1::Sumw2() has been called before filling, the sum of squares is also stored.

One can increment a bin number directly by calling TH1::AddBinContent(), replace the existing content via

TH1::SetBinContent(), and access the bin content of a given bin via TH1::GetBinContent().

Double_t binContent = h->GetBinContent(bin);

Automatic Re-binning Option

By default, the number of bins is computed using the range of the axis. You can change this to re-bin
automatically by setting the automatic re-binning option:

h->SetBit(TH1::kCanRebin);

Once this is set, the Fill() method will automatically extend the axis range to accommodate the new value

specified in the Fill() argument. The used method is to double the bin size until the new value fits in the

range, merging bins two by two. The TTree::Draw() method extensively uses this automatic binning option

when drawing histograms of variables in TTree with an unknown range. The automatic binning option is

supported for 1-D, 2-D and 3-D histograms. During filling, some statistics parameters are incremented to
compute the mean value and root mean square with the maximum precision. In case of histograms of type
TH1C, TH1S, TH2C, TH2S, TH3C, TH3S a check is made that the bin contents do not exceed the maximum

positive capacity (127 or 65 535). Histograms of all types may have positive or/and negative bin contents.

Random Numbers and Histograms
TH1::FillRandom() can be used to randomly fill a histogram using the contents of an existing TF1 function

or another TH1 histogram (for all dimensions). For example, the following two statements create and fill a

histogram 10 000 times with a default Gaussian distribution of mean 0 and sigma 1:

root[] TH1F h1("h1","Histo from a Gaussian",100,-3,3);

root[] h1.FillRandom("gaus",10000);

TH1::GetRandom() can be used to get a random number distributed according the contents of a histogram.

To fill a histogram following the distribution in an existing histogram you can use the second signature of
TH1::FillRandom(). Next code snipped assumes that h is an existing histogram (TH1).

root[] TH1F h2("h2","Histo from existing histo",100,-3,3);

root[] h2.FillRandom(&h1,1000);

The distribution contained in the histogram h1 (TH1) is integrated over the channel contents. It is normalized to

one. The second parameter (1000) indicates how many random numbers are generated.

Getting 1 random number implies:

 Generating a random number between 0 and 1 (say r1)

 Find the bin in the normalized integral for r1

 Fill histogram channel

You can see below an example of the TH1::GetRandom() method which can be used to get a random

number distributed according the contents of a histogram.

void getrandomh() {

 TH1F *source = new TH1F("source","source hist",100,-3,3);

 source->FillRandom("gaus",1000);

 TH1F *final = new TH1F("final","final hist",100,-3,3);

 // continued…

26 Histograms

 for (Int_t i=0;i<10000;i++) {

 final->Fill(source->GetRandom());

 }

 TCanvas *c1 = new TCanvas("c1","c1",800,1000);

 c1->Divide(1,2);

 c1->cd(1);

 source->Draw();

 c1->cd(2);

 final->Draw();

 c1->cd();

}

Adding, Dividing, and Multiplying
Many types of operations are supported on histograms or between histograms:

 Addition of a histogram to the current histogram

 Additions of two histograms with coefficients and storage into the current histogram

 Multiplications and divisions are supported in the same way as additions.

 The Add, Divide and Multiply methods also exist to add, divide or multiply a histogram by a

function.

Histograms objects (not pointers) TH1F h1 can be multiplied by a constant using:

h1.Scale(const)

A new histogram can be created without changing the original one by doing:

TH1F h3 = 8*h1;

To multiply two histogram objects and put the result in a 3rd one do:

TH1F h3 = h1*h2;

The same operations can be done with histogram pointers TH1F *h1, *h2 following way:

h1->Scale(const)

TH1F h3 = 8*(*h1);

TH1F h3 = (*h1)*(*h2);

Of course, the TH1 methods Add, Multiply and Divide can be used instead of these operators.

If a histogram has associated error bars (TH1::Sumw2() has been called), the resulting error bars are also

computed assuming independent histograms. In case of divisions, binomial errors are also supported.

Projections
One can make:

 a 1-D projection of a 2-D histogram or profile. See TH2::ProfileX, TH2::ProfileY,

TProfile::ProjectionX, TProfile2D::ProjectionXY, TH2::ProjectionX,

TH2::ProjectionY.

 a 1-D, 2-D or profile out of a 3-D histogram see TH3::ProjectionZ, TH3::Project3D.

These projections can be fit via: TH2::FitSlicesX, TH2::FitSlicesY, TH3::FitSlicesZ.

Drawing Histograms

When you call the Draw method of a histogram (TH1::Draw) for the first time, it creates a THistPainter

object and saves a pointer to painter as a data member of the histogram. The THistPainter class specializes

in the drawing of histograms. It allows logarithmic axes (x, y, z) when the CONT drawing option is using. The
THistPainter class is separated from the histogram so that one can have histograms without the graphics

overhead, for example in a batch program. The choice to give each histogram has its own painter rather than a
central singleton painter, allows two histograms to be drawn in two threads without overwriting the painter's

values. When a displayed histogram is filled again, you do not have to call the Draw method again. The image

is refreshed the next time the pad is updated. A pad is updated after one of these three actions:

 A carriage control on the ROOT command line

 A click inside the pad

 A call to TPad::Update()

By default, the TH1::Draw clears the pad before drawing the new image of the histogram. You can use the

"SAME" option to leave the previous display in tact and superimpose the new histogram. The same histogram

can be drawn with different graphics options in different pads. When a displayed histogram is deleted, its image

 Histograms 27

is automatically removed from the pad. To create a copy of the histogram when drawing it, you can use
TH1::DrawClone(). This will clone the histogram and allow you to change and delete the original one without

affecting the clone. You can use TH1::DrawNormalized() to draw a normalized copy of a histogram.

TH1 *TH1::DrawNormalized(Option_t *option,Double_t norm) const

A clone of this histogram is normalized to norm and drawn with option. A pointer to the normalized histogram is
returned. The contents of the histogram copy are scaled such that the new sum of weights (excluding under and

overflow) is equal to norm.

Note that the returned normalized histogram is not added to the list of histograms in the current directory in

memory. It is the user's responsibility to delete this histogram. The kCanDelete bit is set for the returned

object. If a pad containing this copy is cleared, the histogram will be automatically deleted. See ―Draw Options‖
for the list of options.

Setting the Style

Histograms use the current style gStyle, which is the global object of class TStyle. To change the current

style for histograms, the TStyle class provides a multitude of methods ranging from setting the fill color to the

axis tick marks. Here are a few examples:

void SetHistFillColor(Color_t color = 1)

void SetHistFillStyle(Style_t styl = 0)

void SetHistLineColor(Color_t color = 1)

void SetHistLineStyle(Style_t styl = 0)

void SetHistLineWidth(Width_t width = 1)

When you change the current style and would like to propagate the change to a previously created histogram
you can call TH1::UseCurrentStyle(). You will need to call UseCurrentStyle() on each histogram.

When reading many histograms from a file and you wish to update them to the current style, you can use
gROOT::ForceStyle and all histograms read after this call will be updated to use the current style. See

―Graphics and the Graphical User Interface‖. When a histogram is automatically created as a result of a
TTree::Draw, the style of the histogram is inherited from the tree attributes and the current style is ignored.

The tree attributes are the ones set in the current TStyle at the time the tree was created. You can change the

existing tree to use the current style, by calling TTree::UseCurrentStyle().

Draw Options
 The following draw options are supported on all histogram classes:

 "AXIS": Draw only the axis.

 "HIST": When a histogram has errors, it is visualized by default with error bars. To visualize it

 without errors use HIST together with the required option (e.g. "HIST SAME C").

 "SAME": Superimpose on previous picture in the same pad.

 "CYL": Use cylindrical coordinates.

 "POL": Use polar coordinates.

 "SPH": Use spherical coordinates.

 "PSR": Use pseudo-rapidity/phi coordinates.

 "LEGO": Draw a lego plot with hidden line removal.

 "LEGO1": Draw a lego plot with hidden surface removal.

 "LEGO2": Draw a lego plot using colors to show the cell contents.

 "SURF": Draw a surface plot with hidden line removal.

 "SURF1": Draw a surface plot with hidden surface removal.

 "SURF2": Draw a surface plot using colors to show the cell contents.

 "SURF3": Same as SURF with a contour view on the top.

 "SURF4": Draw a surface plot using Gouraud shading.

 ―SURF5‖: Same as SURF3 but only the colored contour is drawn. Used with option CYL, SPH or

 PSR it allows to draw colored contours on a sphere, a cylinder or in a pseudo rapidly

 space. In Cartesian or polar coordinates, option SURF3 is used.

 The following options are supported for 1-D histogram classes:

 "AH": Draw the histogram, but not the axis labels and tick marks

 "B": Draw a bar chart

 "C": Draw a smooth curve through the histogram bins

 "E": Draw the error bars

 "E0": Draw the error bars including bins with 0 contents

 "E1": Draw the error bars with perpendicular lines at the edges

28 Histograms

 "E2": Draw the error bars with rectangles

 "E3": Draw a fill area through the end points of the vertical error bars

 "E4": Draw a smoothed filled area through the end points of the error bars

 "L": Draw a line through the bin contents

 "P": Draw a (poly)marker at each bin using the histogram's current marker style

 "P0": Draw current marker at each bin including empty bins

 "PIE": Draw a Pie Chart

 "*H": Draw histogram with a * at each bin

 "LF2": Draw histogram as with option "L" but with a fill area. Note that "L‖ also draws a fill

 area if the histogram fill color is set but the fill area corresponds to the histogram
 contour.

 "9‖: Force histogram to be drawn in high resolution mode. By default, the histogram is

 drawn in low resolution in case the number of bins is greater than the number of
 pixels in the current pad

 ―][―: Draw histogram without the vertical lines for the first and the last bin. Use it when

 superposing many histograms on the same picture.

The following options are supported for 2-D histogram classes:

 "ARR": Arrow mode. Shows gradient between adjacent cells

 "BOX": Draw a box for each cell with surface proportional to contents

 "BOX1": A sunken button is drawn for negative values, a raised one for positive values

 "COL": Draw a box for each cell with a color scale varying with contents

 "COLZ": Same as "COL" with a drawn color palette

 "CONT": Draw a contour plot (same as CONT0)

 "CONTZ": Same as "CONT" with a drawn color palette

 "CONT0": Draw a contour plot using surface colors to distinguish contours

 "CONT1": Draw a contour plot using line styles to distinguish contours

 "CONT2": Draw a contour plot using the same line style for all contours

 "CONT3": Draw a contour plot using fill area colors

 "CONT4": Draw a contour plot using surface colors (SURF option at theta = 0)

 "CONT5": Use Delaunay triangles to compute the contours

 "LIST": Generate a list of TGraph objects for each contour

 "FB": To be used with LEGO or SURFACE, suppress the Front-Box

 "BB": To be used with LEGO or SURFACE, suppress the Back-Box

 "A": To be used with LEGO or SURFACE, suppress the axis

 "SCAT": Draw a scatter-plot (default)

 ―SPEC‖ Use TSpectrum2Painter tool for drawing

 "TEXT": Draw bin contents as text (format set via gStyle->SetPaintTextFormat).

 "TEXTnn" : Draw bin contents as text at angle nn (0<nn<90).

 "[cutg]": Draw only the sub-range selected by the TCutG name "cutg".

 "Z": The "Z" option can be specified with the options: BOX, COL, CONT, SURF, and LEGO

 to display the color palette with an axis indicating the value of the corresponding
 color on the right side of the picture.

The following options are supported for 3-D histogram classes:

 " ": Draw a 3D scatter plot.

 "BOX": Draw a box for each cell with volume proportional to contents

 "LEGO": Same as "BOX"

 "ISO": Draw an iso surface

 "FB": Suppress the Front-Box

 "BB": Suppress the Back-Box

 "A": Suppress the axis

Most options can be concatenated without spaces or commas, for example, if h is a histogram pointer:

h->Draw("E1SAME");

h->Draw("e1same");

The options are not case sensitive. The options BOX, COL and COLZ use the color palette defined in the current

style (see TStyle::SetPalette). The options CONT, SURF, and LEGO have by default 20 equidistant contour

levels, you can change the number of levels with TH1::SetContour. You can also set the default drawing

option with TH1::SetOption. To see the current option use TH1::GetOption. For example:

h->SetOption("lego");

 Histograms 29

h->Draw(); // will use the lego option

h->Draw("scat") // will use the scatter plot option

The SCATter Plot Option

By default, 2D histograms are drawn as scatter plots. For each cell (i,j) a number of points proportional to the

cell content are drawn. A maximum of 500 points per cell are drawn. If the maximum is above 500 contents are
normalized to 500.

The ARRow Option

The ARR option shows the gradient between adjacent cells. For each cell (i,j) an arrow is drawn. The

orientation of the arrow follows the cell gradient

The BOX Option

For each cell (i,j) a box is drawn with surface proportional to contents. The size of the box is proportional to

the absolute value of the cell contents. The cells with negative contents are drawn with an X on top of the

boxes. With option BOX1 a button is drawn for each cell with surface proportional to contents‘ absolute value. A

sunken button is drawn for negative values, a raised one for positive values.

The ERRor Bars Options

 ”E” Default. Draw only error bars, without markers

 ”E0” Draw also bins with 0 contents (turn off the symbols clipping).

 ”E1” Draw small lines at the end of error bars

 ”E2” Draw error rectangles

 ”E3” Draw a fill area through the end points of vertical error bars

 ”E4” Draw a smoothed filled area through the end points of error bars

Figure 3-2 The "E1" bars' option

Note that for all options, the line and fill attributes of the histogram are used for the errors or errors contours.

Use gStyle->SetErrorX(dx) to control the size of the error along x. The parameter dx is a percentage of

bin width for errors along X. Set dx=0 to suppress the error along X. Use gStyle->SetEndErrorSize(np)

to control the size of the lines at the end of the error bars (when option 1 is used). By default np=1 (np

represents the number of pixels).

The Color Option

For each cell (i,j) a box is drawn with a color proportional to the cell content. The color table used is defined in

the current style (gStyle). The color palette in TStyle can be modified with TStyle::SetPalette.

30 Histograms

Figure 3-3 Different draw options

The TEXT Option

For each cell (i,j) the cell content is printed. The text attributes are:

 Text font = current font set by TStyle

 Text size = 0.02* pad-height * marker-size

 Text color = marker color

Figure 3-4 The TEXT option

The CONTour Options

The following contour options are supported:

 "CONT": Draw a contour plot (same as CONT0)

 "CONT0": Draw a contour plot using surface colors to distinguish contours

 "CONT1": Draw a contour plot using line styles to distinguish contours

 "CONT2": Draw a contour plot using the same line style for all contours

 "CONT3": Draw a contour plot using fill area colors

 "CONT4": Draw a contour plot using surface colors (SURF option at theta = 0); see also

 options "AITOFF", "MERCATOR", etc. below

 "CONT5": Use Delaunay triangles to compute the contours

 Histograms 31

Figure 3-5 Different contour options

The default number of contour levels is 20 equidistant levels. It can be changed with TH1::SetContour.

When option "LIST" is specified together with option "CONT", all points used for contour drawing, are saved in

the TGraph object and are accessible in the following way:

TObjArray *contours = gROOT->GetListOfSpecials()->FindObject("contours");

Int_t ncontours = contours->GetSize();

TList *list = (TList*)contours->At(i);

Where "i" is a contour number and list contains a list of TGraph objects. For one given contour, more than one

disjoint poly-line may be generated. The TGraph numbers per contour are given by list->GetSize(). Here

we show how to access the first graph in the list.

TGraph *gr1 = (TGraph*)list->First();

 "AITOFF": Draw a contour via an AITOFF projection

 "MERCATOR": Draw a contour via a Mercator projection

 ―SINUSOIDAL": Draw a contour via a Sinusoidal projection

 "PARABOLIC": Draw a contour via a Parabolic projection

The tutorial macro earth.C uses these four options and produces the following picture:

Figure 3-6 The earth.C macro output

The LEGO Options

In a lego plot, the cell contents are drawn as 3D boxes, with the height of the box proportional to the cell
content.

32 Histograms

Figure 3-7 "LEGO" and "SURF" options

 "LEGO": Draw a lego plot with hidden line removal

 "LEGO1": Draw a lego plot with hidden surface removal

 "LEGO2": Draw a lego plot using colors to show the cell contents

A lego plot can be represented in several coordinate systems; the default system is Cartesian coordinates.

Other possible coordinate systems are CYL, POL, SPH, and PSR.

 "CYL": Cylindrical coordinates: x-coordinate is mapped on the angle; y-coordinate - on the

 cylinder length.

 "POL": Polar coordinates: x-coordinate is mapped on the angle; y-coordinate - on the radius.

 "SPH": Spherical coordinates: x-coordinate is mapped on the latitude; y-coordinate - on the

 longitude.

 "PSR": PseudoRapidity/Phi coordinates: x-coordinate is mapped on Phi.

With TStyle::SetPalette the color palette can be changed. We suggest you use palette 1 with the call:

gStyle->SetPalette(1);

The SURFace Options

In a surface plot, cell contents are represented as a mesh. The height of the mesh is proportional to the cell
content. A surface plot can be represented in several coordinate systems. The default is Cartesian coordinates,

and the other possible systems are CYL, POL, SPH, and PSR. The following picture uses SURF1. With

TStyle::SetPalette the color palette can be changed. We suggest you use palette 1 with the call:

gStyle->SetPalette(1);

Figure 3-8 Different surface options

 "SURF": Draw a surface plot with hidden line removal

 "SURF1": Draw a surface plot with hidden surface removal

 "SURF2": Draw a surface plot using colors to show the cell contents

 "SURF3": Same as SURF with a contour view on the top

 "SURF4": Draw a surface plot using Gouraud shading

 Histograms 33

 "SURF5": Same as SURF3 but only the colored contour is drawn. Used with options CYL, SPH

 or PSR it allows to draw colored contours on a sphere, a cylinder or in a pseudo

 rapidly space. In Cartesian or polar coordinates, option SURF3 is used.

The BAR Options

When the option "bar" or "hbar" is specified, a bar chart is drawn.

The options for vertical bar chart are "bar", "bar0", "bar1", "bar2", "bar3", "bar4".

Figure 3-9 Vertical bar charts

 The bar is filled with the histogram fill color.

 The left side of the bar is drawn with a light fill color.

 The right side of the bar is drawn with a dark fill color.

 The percentage of the bar drawn with either the light or dark color is:

 0 per cent for option "bar" or "bar0"

 10 per cent for option "bar1"

 20 per cent for option "bar2"

 30 per cent for option "bar3"

 40 per cent for option "bar4"

Use TH1::SetBarWidth() to control the bar width (default is the bin width). Use TH1::SetBarOffset to

control the bar offset (default is 0). See the example $ROOTSYS/tutorials/hist/hbars.C

The options for the horizontal bar chart are "hbar", "hbar0", "hbar1", "hbar2", "hbar3", and " hbar4".

 A horizontal bar is drawn for each bin.

 The bar is filled with the histogram fill color.

 The bottom side of the bar is drawn with a light fill color.

 The top side of the bar is drawn with a dark fill color.

 The percentage of the bar drawn with either the light or dark color is:

 0 per cent for option "hbar" or "hbar0"

 10 per cent for option "hbar1"

 20 per cent for option "hbar2"

 30 per cent for option "hbar3"

 40 per cent for option "hbar4"

Use TH1::SetBarWidth to control the bar width (default is the bin width). Use TH1::SetBarOffset to

control the bar offset (default is 0). See the example $ROOTSYS/tutorials/hist/hbars.C

Figure 3-10 Horizontal bar charts

The Z Option: Display the Color Palette on the Pad

The "Z" option can be specified with the options: COL, CONT, SURF, and LEGO to display the color palette with

an axis indicating the value of the corresponding color on the right side of the picture. If there is not enough

34 Histograms

space on the right side, you can increase the size of the right margin by calling TPad::SetRightMargin().

The attributes used to display the palette axis values are taken from the Z axis of the object. For example, you
can set the labels size on the palette axis with:

hist->GetZaxis()->SetLabelSize();

Setting the Color Palette

You can set the color palette with TStyle::SetPalette, e.g.

gStyle->SetPalette(ncolors,colors);

For example, the option COL draws a 2-D histogram with cells represented by a box filled with a color index,

which is a function of the cell content. If the cell content is N, the color index used will be the color number in

colors[N]. If the maximum cell content is greater than ncolors, all cell contents are scaled to ncolors.

If ncolors<=0, a default palette of 50 colors is defined. This palette is recommended for pads, labels. It

defines:

 Index 0 to 9: shades of gray

 Index 10 to 19: shades of brown

 Index 20 to 29: shades of blue

 Index 30 to 39: shades of red

 Index 40 to 49: basic colors

The color numbers specified in this palette can be viewed by selecting the menu entry Colors in the View menu
of the canvas menu bar. The color's red, green, and blue values can be changed via TColor::SetRGB. If

ncolors == 1 && colors == 0, a pretty palette with a violet to red spectrum is created. We recommend

you use this palette when drawing lego plots, surfaces, or contours. If ncolors > 0 and colors == 0, the

default palette is used with a maximum of ncolors.

TPaletteAxis

A TPaletteAxis object is used to display the color palette when drawing 2D histograms. The object is

automatically created when drawing a 2D histogram when the option "z" is specified. It is added to the

histogram list of functions. It can be retrieved and its attributes can be changed with:

TPaletteAxis *palette=(TPaletteAxis*)h->FindObject("palette");

The palette can be interactively moved and resized. The context menu can be used to set the axis attributes. It
is possible to select a range on the axis, to set the min/max in z.

The SPEC Option

The ―SPEC‖ option offers a large set of options/attributes to visualize 2D histograms thanks to "operators"

following the "SPEC" keyword. For example, to draw the 2-D histogram h2 using all default attributes except the

viewing angles, one can do:

h2->Draw("SPEC a(30,30,0)");

The operators' names are case unsensitive (i.e. one can use "a" or "A") and their parameters are seperated by
coma ",". Operators can be put in any order in the option and must be separated by a space " ". No space
characters should be put in an operator. All the available operators are described below.

The way how a 2D histogram will be painted is controled by 2 parameters: the "Display modes groups" and the
"Display Modes". "Display modes groups" can take the following values:

 0 = Simple - simple display modes using one color only

 1 = Light - the shading is carried out according to the position of the fictive light source

 2 = Height - the shading is carried out according to the channel contents

 3 = LightHeight - combination of two previous shading algorithms (one can control the weight
between both algorithms).

"Display modes" can take the following values:

1 = Points 2 = Grid 3 = Contours 4 = Bars 5 = LinesX 6 = LinesY

7 = BarsX 8 = BarsY 9 = Needles 10 = Surface 11 = Triangles

These parameters can be set by using the "dm" operator in the option.

h2->Draw("SPEC dm(1,2)");

The above example draws the histogram using the "Light Display mode group" and the "Grid Display mode".
The following table summarizes all the possible combinations of both groups:

 Points Grid
Cont-
ours

Bars LinesX LinesY BarsX BarsY Needles Surface
Trian-
gles

 Histograms 35

Simple x x x x x x x x x - x

Light x x - - x x - - - x x

Height x x x x x x x x - x x

LightHeight x x - - x x - - - x x

The "Pen Attributes" can be changed using pa(color,style,width). Next example sets line color to 2, line

type to 1 and line width to 2. Note that if pa() is not specified, the histogram line attributes are used:

h2->Draw("SPEC dm(1,2) pa(2,1,2)");

The number of "Nodes" can be changed with n(nodesx,nodesy). Example:

h2->Draw("SPEC n(40,40)");

Sometimes the displayed region is rather large. When displaying all channels the pictures become very dense

and complicated. It is very difficult to understand the overall shape of data. "n(nx,ny)" allows to change the

density of displayed channels. Only the channels coinciding with given nodes are displayed.

The visualization "Angles" can be changed with "a(alpha,beta,view)": "alpha" is the angle between the

bottom horizontal screen line and the displayed space on the right side of the picture and "beta" on the left

side, respectively. One can rotate the 3-d space around the vertical axis using the "view" parameter. Allowed

values are 0, 90, 180 and 270 degrees.

h2->Draw("SPEC n(40,40) dm(0,1) a(30,30,0)");

The operator "zs(scale)" changes the scale of the Z-axis. The possible values are: 0 = Linear (default), 1 =

Log, 2 = Sqrt. If gPad->SetLogz() has been set, the log scale on Z-axis is set automatically, i.e. there is no

need for using the zs() operator. Note that the X and Y axis are always linear.

The operator "ci(r,g,b)" defines the colors increments (r, g and b are floats). For sophisticated shading

(Light, Height and LightHeight Display Modes Groups) the color palette starts from the basic pen color (see

pa() function). There is a predefined number of color levels (256). Color in every level is calculated by adding

the increments of the r, g, b components to the previous level. Using this function one can change the color

increments between two neighboring color levels. The function does not apply on the Simple Display Modes
Group. The default values are: (1,1,1).

The operator ―ca(color_algorithm)" allows to choose the Color Algorithm. To define the colors one can

use one of the following color algorithms (RGB, CMY, CIE, YIQ, HVS models). When the level of a component
reaches the limit value one can choose either smooth transition (by decreasing the limit value) or a sharp
modulo transition (continuing with 0 value). This allows various visual effects. One can choose from the
following set of the algorithms:

0 = RGB Smooth, 1 = RGB Modulo, 2 = CMY Smooth, 3 = CMY Modulo, 4 = CIE Smooth

5 = CIE Modulo, 6 = YIQ Smooth, 7 = YIQ Modulo, 8 = HVS Smooth, 9 = HVS Modulo

This function does not apply on Simple display modes group. Default value is 0. Example choosing CMY
Modulo to paint the 2D histogram:

h2->Draw("SPEC c1(3) dm(0,1) a(30,30,0)");

The operator "lp(x,y,z)" sets the light position. In Light and LightHeight display modes groups the color

palette is calculated according to the fictive light source position in 3-d space. Using this function one can
change the source's position and thus achieve various graphical effects. This function does not apply for

Simple and Height display modes groups. Default is: lp(1000,1000,100).

The operator "s(shading,shadow)" allows to set the shading. The surface picture is composed of triangles.

The edges of the neighboring triangles can be smoothed (shaded). The shadow can be painted as well. The
function does not apply on Simple display modes group. The possible values for shading are: 0 = Not Shaded,
1 = Shaded. The possible values for shadow are: 0 = Shadows are not painted, 1 = Shadows are painted.

Default values: s(1,0).

The operator "b(bezier)" sets the Bezier smoothing. For Simple display modes group and for Grid, LinesX

and LinesY display modes one can smooth data using Bezier smoothing algorithm. The function does not apply
on other display modes groups and display modes. Possible values are: 0 = No bezier smoothing, 1 = Bezier

smoothing. Default value is: b(0).

The operator "cw(width)" sets the contour width. This function applies only on for the Contours display mode.

One can change the width between horizontal slices and thus their density. Default value: cw(50).

The operator "lhw(weight)" sets the light height weight. For LightHeight display modes group one can

change the weight between both shading algorithms. The function does not apply on other display modes

groups. Default value is lhw(0.5).

The operator "cm(enable,color,width,height,style)" allows to draw a marker on each node. In

addition to the surface drawn using any above given algorithm one can display channel marks. One can control

36 Histograms

the color as well as the width, height (in pixels) and the style of the marks. The parameter enable can be set to

0 = Channel marks are not drawn or 1 = Channel marks drawn. The possible styles are:

1 = Dot, 2 = Cross, 3 = Star, 4 = Rectangle, 5 = X, 6 = Diamond, 7 = Triangle.

The operator "cg(enable,color)" channel grid. In addition to the surface drawn using any above given

algorithm one can display grid using the color parameter. The parameter enable can be set to: 0 = Grid not
drawn, 1 = Grid drawn.

See the example in $ROOTSYS/tutorials/spectrum/spectrumpainter.C.

Figure 3-11 The picture produced by spectrumpainter.C macro

3-D Histograms

By default a 3D scatter plot is drawn. If the "BOX" option is specified, a 3D box with a volume proportional to the
cell content is drawn.

Drawing a Sub-range of a 2-D Histogram
Figure 3-12 The picture produced by fit2a.C macro

Using a TCutG object, it is possible to draw a 2D histogram sub-range. One must create a graphical cut (mouse

or C++) and specify the name of the cut between ‗[‗ and ‗]‘ in the Draw option.

For example, with a TCutG named "cutg", one can call:

myhist->Draw("surf1 [cutg]");

Or, assuming two graphical cuts with name "cut1" and "cut2", one can do:

 Histograms 37

h1.Draw("lego");

h2.Draw("[cut1,-cut2],surf,same");

The second Draw will superimpose on top of the first lego plot a subset of h2 using the "surf" option with:

 all the bins inside cut1

 all the bins outside cut2

Up to 16 cuts may be specified in the cut string delimited by "[..]". Currently only the following drawing

options are sensitive to the cuts option: col, box, scat, hist, lego, surf and cartesian coordinates only.

See a complete example in the tutorial $ROOTSYS/tutorials/fit/fit2a.C.

Superimposing Histograms with Different Scales
The following script creates two histograms; the second histogram is the bins integral of the first one. It shows a
procedure to draw the two histograms in the same pad and it draws the scale of the second histogram using a
new vertical axis on the right side.

Figure 3-13 Superimposed histograms with different scales

void twoscales() {

 TCanvas *c1 = new TCanvas("c1","different scales hists",600,400);

 //create, fill and draw h1

 gStyle->SetOptStat(kFALSE);

 TH1F *h1 = new TH1F("h1","my histogram",100,-3,3);

 for (Int_t i=0;i<10000;i++) h1->Fill(gRandom->Gaus(0,1));

 h1->Draw();

 c1->Update();

 //create hint1 filled with the bins integral of h1

 TH1F *hint1 = new TH1F("hint1","h1 bins integral",100,-3,3);

 Float_t sum = 0;

 for (Int_t i=1;i<=100;i++) {

 sum += h1->GetBinContent(i);

 hint1->SetBinContent(i,sum);

 }

 //scale hint1 to the pad coordinates

 Float_t rightmax = 1.1*hint1->GetMaximum();

 Float_t scale = gPad->GetUymax()/rightmax;

 hint1->SetLineColor(kRed);

 hint1->Scale(scale);

 hint1->Draw("same");

 //draw an axis on the right side

 TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),gPad->GetUxmax(),

 gPad->GetUymax(),0,rightmax,510,"+L");

 axis->SetLineColor(kRed);

 axis->SetLabelColor(kRed);

 axis->Draw();

}

Statistics Display
By default, a histogram drawing includes the statistics box. Use TH1::SetStats(kFALSE) to eliminate the

statistics box. If the statistics box is drawn, gStyle->SetOptStat(mode) allow you to select the type of

displayed information. The parameter mode has up to nine digits that can be set OFF (0) or ON as follows:

mode = ksiourmen (default = 000001111)

38 Histograms

 n = 1 the name of histogram is printed

 e = 1 the number of entries

 m = 1 the mean value

 m = 2 the mean and mean error values

 r = 1 the root mean square (RMS)

 r = 2 the RMS and RMS error

 u = 1 the number of underflows

 o = 1 the number of overflows

 i = 1 the integral of bins

 s = 1 the skewness

 s = 2 the skewness and the skewness error

 k = 1 the kurtosis

 k = 2 the kurtosis and the kurtosis error

Never call SetOptStat(0001111), but SetOptStat(1111), because 0001111 will be taken as an octal

number.

The method TStyle::SetOptStat(Option_t *option) can also be called with a character string as a

parameter. The parameter option can contain:

 n for printing the name of histogram

 e the number of entries

 m the mean value

 M the mean and mean error values

 r the root mean square (RMS)

 R the RMS and RMS error

 u the number of underflows

 o the number of overflows

 i the integral of bins

 s the skewness

 S the skewness and the skewness error

 k the kurtosis

 K the kurtosis and the kurtosis error

gStyle->SetOptStat("ne"); // prints the histogram name and number of entries

gStyle->SetOptStat("n"); // prints the histogram name

gStyle->SetOptStat("nemr"); // the default value

With the option "same", the statistic box is not redrawn. With the option "sames", it is re-drawn. If it hides the

previous statistics box, you can change its position with the next lines (where h is the histogram pointer):

root[] TPaveStats *s = (TPaveStats*)h->GetListOfFunctions()->FindObject("stats");

root[] s->SetX1NDC (newx1); //new x start position

root[] s->SetX2NDC (newx2); //new x end position

Setting Line, Fill, Marker, and Text Attributes
The histogram classes inherit from the attribute classes: TAttLine, TAttFill, TAttMarker and TAttText.

See the description of these classes for the list of options.

Setting Tick Marks on the Axis
The TPad::SetTicks() method specifies the type of tick marks on the axis. Let tx=gPad->GetTickx()

and ty=gPad->GetTicky().

 tx = 1; tick marks on top side are drawn (inside)

 tx = 2; tick marks and labels on top side are drawn

 ty = 1; tick marks on right side are drawn (inside)

 ty = 2; tick marks and labels on right side are drawn

 tx=ty=0 by default only the left Y axis and X bottom axis are drawn

Use TPad::SetTicks(tx,ty) to set these options. See also the methods of TAxis that set specific axis

attributes. If multiple color-filled histograms are drawn on the same pad, the fill area may hide the axis tick
marks. One can force the axis redrawing over all the histograms by calling:

gPad->RedrawAxis();

 Histograms 39

Giving Titles to the X, Y and Z Axis
Because the axis title is an attribute of the axis, you have to get the axis first and then call TAxis::SetTitle.

h->GetXaxis()->SetTitle("X axis title");

h->GetYaxis()->SetTitle("Y axis title");

The histogram title and the axis titles can be any TLatex string. The titles are part of the persistent histogram.

For example if you wanted to write E with a subscript (T) you could use this:

h->GetXaxis()->SetTitle("E_{T}");

For a complete explanation of the Latex mathematical expressions, see "Graphics and the Graphical User
Interface". It is also possible to specify the histogram title and the axis titles at creation time. These titles can be
given in the "title" parameter. They must be separated by ";":

TH1F* h=new TH1F("h","Histogram title;X Axis;Y Axis;Z Axis",100,0,1);

Any title can be omitted:

TH1F* h=new TH1F("h","Histogram title;;Y Axis",100,0,1);

TH1F* h=new TH1F("h",";;Y Axis",100,0,1);

The method SetTitle has the same syntax:

h->SetTitle("Histogram title;An other X title Axis");

Making a Copy of an Histogram
Like for any other ROOT object derived from TObject, the Clone method can be used. This makes an

identical copy of the original histogram including all associated errors and functions:

TH1F *hnew = (TH1F*)h->Clone(); // renaming is recommended, because otherwise you

hnew->SetName("hnew"); // will have two histograms with the same name

Normalizing Histograms
You can scale a histogram (TH1 *h) such that the bins integral is equal to the normalization parameter norm:

Double_t scale = norm/h->Integral();

h->Scale(scale);

Saving/Reading Histograms to/from a File
The following statements create a ROOT file and store a histogram on the file. Because TH1 derives from

TNamed, the key identifier on the file is the histogram name:

TFile f("histos.root","new");

TH1F h1("hgaus","histo from a gaussian",100,-3,3);

h1.FillRandom("gaus",10000);

h1->Write();

To read this histogram in another ROOT session, do:

TFile f("histos.root");

TH1F *h = (TH1F*)f.Get("hgaus");

One can save all histograms in memory to the file by:

file->Write();

For a more detailed explanation, see ―Input/Output‖.

Miscellaneous Operations
 TH1::KolmogorovTest(TH1* h2,Option_t *option) is statistical test of compatibility in

shape between two histograms. The parameter option is a character string that specifies:

 "U" include Underflows in test (also for 2-dim)

 "O" include Overflows (also valid for 2-dim)

 "N" include comparison of normalizations

 "D" put out a line of "Debug" printout

 "M" return the maximum Kolmogorov distance instead of prob

40 Histograms

 "X" run the pseudo experiments post-processor with the following procedure: it makes pseudo

experiments based on random values from the parent distribution and compare the KS distance
of the pseudo experiment to the parent distribution. Bin the KS distances in a histogram, and then
take the integral of all the KS values above the value obtained from the original data to Monte
Carlo distribution. The number of pseudo-experiments NEXPT is currently fixed at 1000. The

function returns the integral. Note that this option "X" is much slower.

 TH1::Smooth - smoothes the bin contents of a 1D histogram.

 TH1::Integral(Option_t *opt)- returns the integral of bin contents in a given bin range. If

the option "width" is specified, the integral is the sum of the bin contents multiplied by the bin

width in x.

 TH1::GetMean(int axis) - returns the mean value along axis.

 TH1::GetRMS(int axis) - returns the Root Mean Square along axis.

 TH1::GetEntries() - returns the number of entries.

 TH1::GetAsymmetry(TH1* h2,Double_t c2,Double_t dc2) - returns an histogram

containing the asymmetry of this histogram with h2, where the asymmetry is defined as:

Asymmetry = (h1 - h2)/(h1 + h2) //where h1 = this

 It works for 1D, 2D, etc. histograms. The parameter c2 is an optional argument that gives a

relative weight between the two histograms, and dc2 is the error on this weight. This is useful,

for example, when forming an asymmetry between two histograms from two different data sets
that need to be normalized to each other in some way. The function calculates the errors

assuming Poisson statistics on h1 and h2 (that is, dh=sqrt(h)). In the next example we

assume that h1 and h2 are already filled:

h3 = h1->GetAsymmetry(h2)

 Then h3 is created and filled with the asymmetry between h1 and h2; h1 and h2 are left Intact.

 Note that the user‘s responsibility is to ménage the created histograms.

 TH1::Reset() - resets the bin contents and errors of a histogram

Alphanumeric Bin Labels
By default, a histogram axis is drawn with its numeric bin labels. One can specify alphanumeric labels instead.

Option 1: SetBinLabel

To set an alphanumeric bin label call:

TAxis::SetBinLabel(bin,label);

This can always be done before or after filling. Bin labels will be automatically drawn with the histogram.

Figure 3-14 Histograms with alphanumeric bin labels

See example in $ROOTSYS/tutorials/hist/hlabels1.C, hlabels2.C

Option 2: Fill

You can also call a Fill() function with one of the arguments being a string:

hist1->Fill(somename,weigth);

hist2->Fill(x,somename,weight);

hist2->Fill(somename,y,weight);

hist2->Fill(somenamex,somenamey,weight);

 Histograms 41

Option 3: TTree::Draw

You can use a char* variable type to histogram strings with TTree::Draw().

// here "Nation" and "Division" are two char* branches of a Tree

tree.Draw("Nation::Division");

Figure 3-15 Using a *char variable type in TTree::Draw

There is an example in $ROOTSYS/tutorials/tree/cernstaff.C.

If a variable is defined as char* it is drawn as a string by default. You change that and draw the value of

char[0] as an integer by adding an arithmetic operation to the expression as shown below.

tree.Draw("MyChar + 0");

//this will draw the integer value of MyChar[0] where "MyChar" is char[5]

Sort Options

When using the options 2 or 3 above, the labels are automatically added to the list (THashList) of labels for a

given axis. By default, an axis is drawn with the order of bins corresponding to the filling sequence. It is possible
to reorder the axis alphabetically or by increasing or decreasing values. The reordering can be triggered via the
TAxis context menu by selecting the menu item "LabelsOption" or by calling directly.

TH1::LabelsOption(option,axis)

Here axis may be X, Y, or Z. The parameter option may be:

 "a" sort by alphabetic order

 ">" sort by decreasing values

 "<" sort by increasing values

 "h" draw labels horizontal

 "v" draw labels vertical

 "u" draw labels up (end of label right adjusted)

 "d" draw labels down (start of label left adjusted)

When using the option second above, new labels are added by doubling the current number of bins in case one
label does not exist yet. When the filling is terminated, it is possible to trim the number of bins to match the
number of active labels by calling:

TH1::LabelsDeflate(axis)

Here axis may be X, Y, or Z. This operation is automatic when using TTree::Draw. Once bin labels have

been created, they become persistent if the histogram is written to a file or when generating the C++ code via

SavePrimitive.

Histogram Stacks
A THStack is a collection of TH1 (or derived) objects. Use THStack::Add(TH1 *h) to add a histogram to the

stack. The THStack does not own the objects in the list.

42 Histograms

Figure 3-16 Stacked histograms

By default, THStack::Draw draws the histograms stacked as shown in the left pad in the picture above. If the

option "nostack” is used, the histograms are superimposed as if they were drawn one at a time using the

"same" draw option. The right pad in this picture illustrates the THStack drawn with the "nostack" option.

hs->Draw("nostack");

Next is a simple example, for a more complex one see $ROOTSYS/tutorials/hist/hstack.C.

{ THStack hs("hs","test stacked histograms");

 TH1F *h1 = new TH1F("h1","test hstack",100,-4,4);

 h1->FillRandom("gaus",20000);

 h1->SetFillColor(kRed);

 hs.Add(h1);

 TH1F *h2 = new TH1F("h2","test hstack",100,-4,4);

 h2->FillRandom("gaus",15000);

 h2->SetFillColor(kBlue);

 hs.Add(h2);

 TH1F *h3 = new TH1F("h3","test hstack",100,-4,4);

 h3->FillRandom("gaus",10000);

 h3->SetFillColor(kGreen);

 hs.Add(h3);

 TCanvas c1("c1","stacked hists",10,10,700,900);

 c1.Divide (1,2);

 c1.cd(1);

 hs.Draw();

 c1.cd(2);

 hs->Draw("nostack");

}

Profile Histograms
Profile histograms are in many cases an elegant replacement of two-dimensional histograms. The relationship
of two quantities X and Y can be visualized by a two-dimensional histogram or a scatter-plot; its representation
is not particularly satisfactory, except for sparse data. If Y is an unknown [but single-valued] function of X, it can
be displayed by a profile histogram with much better precision than by a scatter-plot. Profile histograms display
the mean value of Y and its RMS for each bin in X. The following shows the contents [capital letters] and the
values shown in the graphics [small letters] of the elements for bin j. When you fill a profile histogram with
TProfile.Fill[x,y]:

 H[j] will contain for each bin j the sum of the y values for this bin

 L[j] contains the number of entries in the bin j

 e[j] or s[j] will be the resulting error depending on the selected option. See ―Build Options―.

E[j] = sum Y**2

L[j] = number of entries in bin J

H[j] = sum Y

h[j] = H[j] / L[j]

s[j] = sqrt[E[j] / L[j] - h[j]**2]

e[j] = s[j] / sqrt[L[j]]

In the special case where s[j] is zero, when there is only one entry per bin, e[j] is computed from the

average of the s[j] for all bins. This approximation is used to keep the bin during a fit operation. The

TProfile constructor takes up to eight arguments. The first five parameters are similar to TH1D constructor.

TProfile(const char *name, const char *title, Int_t nbinsx,

 Double_t xlow, Double_t xup, Double_t ylow, Double_t yup,

 Option_t *option)

 Histograms 43

All values of y are accepted at filling time. To fill a profile histogram, you must use TProfile::Fill function.

Note that when filling the profile histogram the method TProfile::Fill checks if the variable y is between

fYmin and fYmax. If a minimum or maximum value is set for the Y scale before filling, then all values below

ylow or above yup will be discarded. Setting the minimum or maximum value for the Y scale before filling has

the same effect as calling the special TProfile constructor above where ylow and yup are specified.

Build Options

The last parameter is the build option. If a bin has N data points all with the same value Y, which is the case
when dealing with integers, the spread in Y for that bin is zero, and the uncertainty assigned is also zero, and

the bin is ignored in making subsequent fits. If SQRT(Y) was the correct error in the case above, then

SQRT(Y)/SQRT(N) would be the correct error here. In fact, any bin with non-zero number of entries N but with

zero spread (spread = s[j]) should have an uncertainty SQRT(Y)/SQRT(N). Now, is SQRT(Y)/SQRT(N)

really the correct uncertainty? That it is only in the case where the Y variable is some sort of counting statistics,
following a Poisson distribution. This is the default case. However, Y can be any variable from an original

NTUPLE, and does not necessarily follow a Poisson distribution. The computation of errors is based on Y =

values of data points; N = number of data points.

 ' ' - the default is blank, the errors are:

 spread/SQRT(N) for a non-zero spread

 SQRT(Y)/SQRT(N) for a spread of zero and some data points

 0 for no data points

 ‗s‘ - errors are:

 spread for a non-zero spread

 SQRT(Y) for a Spread of zero and some data points

 0 for no data points

 ‗i‘ - errors are:

 spread/SQRT(N) for a non-zero spread

 1/SQRT(12*N) for a Spread of zero and some data points

 0 for no data points

 ‗G‘ - errors are:

 spread/SQRT(N) for a non-zero spread

 sigma/SQRT(N) for a spread of zero and some data points

 0 for no data points

The option 'i' is used for integer Y values with the uncertainty of ±0.5, assuming the probability that Y takes any

value between Y-0.5 and Y+0.5 is uniform (the same argument for Y uniformly distributed between Y and Y+1).

An example is an ADC measurement. The 'G ' option is useful, if all Y variables are distributed according to

some known Gaussian of standard deviation Sigma. For example when all Y's are experimental quantities
measured with the same instrument with precision Sigma. The next figure shows the graphic output of this
simple example of a profile histogram.

{

 // Create a canvas giving the coordinates and the size

 TCanvas *c1 = new TCanvas("c1","Profile example",200,10,700,500);

 // Create a profile with the name, title, the number of bins, the

 // low and high limit of the x-axis and the low and high limit

 // of the y-axis. No option is given so the default is used.

 hprof = new TProfile("hprof","Profile of pz versus px",100,-4,4,0,20);

 // Fill the profile 25000 times with random numbers

 Float_t px, py, pz;

 for (Int_t i=0; i<25000; i++) {

 // Use the random number generator to get two numbers following a

 //gaussian distribution with mean=0 and sigma=1

 gRandom->Rannor(px,py);

 pz = px*px + py*py;

 hprof->Fill(px,pz,1);

 }

 hprof->Draw();

}

44 Histograms

Figure 3-17 A profile histogram example

Drawing a Profile without Error Bars

To draw a profile histogram and not show the error bars use the "HIST" option in the TProfile::Draw

method. This will draw the outline of the TProfile.

Create a Profile from a 2D Histogram

You can make a profile from a histogram using the methods TH2::ProfileX and TH2::ProfileY.

Create a Histogram from a Profile

To create a regular histogram from a profile histogram, use the method TProfile::ProjectionX.This

example instantiates a TH1D object by copying the TH1D piece of TProfile.

TH1D *sum = myProfile.ProjectionX()

You can do the same with a 2D profile using the method TProfile2D::ProjectionXY.

Generating a Profile from a TTree

The 'prof' and 'profs' options in the TTree::Draw method generate a profile histogram (TProfile),

given a two dimensional expression in the tree, or a TProfile2D given a three dimensional expression. See

―Trees‖. Note that you can specify 'prof'or 'profs': 'prof'generates a TProfile with error on the mean,

'profs' generates a TProfile with error on the spread.

2D Profiles

The class for a 2D Profile is called TProfile2D. It is in many cases an elegant replacement of a three-

dimensional histogram. The relationship of three measured quantities X, Y and Z can be visualized by a three-
dimensional histogram or scatter-plot; its representation is not particularly satisfactory, except for sparse data. If
Z is an unknown (but single-valued) function of (X,Y), it can be displayed with a TProfile2D with better

precision than by a scatter-plot. A TProfile2D displays the mean value of Z and its RMS for each cell in X, Y.

The following shows the cumulated contents (capital letters) and the values displayed (small letters) of the

elements for cell i,j.

When you fill a profile histogram with TProfile2D.Fill[x,y,z]:

 E[i,j] contains for each bin i,j the sum of the z values for this bin

 L[i,j] contains the number of entries in the bin j

 e[j] or s[j] will be the resulting error depending on the selected option. See ―Build Options―.

E[i,j] = sum z

L[i,j] = sum l

h[i,j] = H[i,j] / L[i,j]

s[i,j] = sqrt[E[i,j] / L[i,j]- h[i,j]**2]

e[i,j] = s[i,j] / sqrt[L[i,j]]

In the special case where s[i,j] is zero, when there is only one entry per cell, e[i,j] is computed from the

average of the s[i,j] for all cells. This approximation is used to keep the cell during a fit operation.

{

 // Creating a Canvas and a TProfile2D

 Histograms 45

 TCanvas *c1 = new TCanvas("c1","Profile histogram example",200,10,700,500);

 hprof2d = new TProfile2D("hprof2d","Profile of pz versus px and py",

 40,-4,4,40,-4,4,0,20);

 // Filling the TProfile2D with 25000 points

 Float_t px, py, pz;

 for (Int_t i=0; i<25000; i++) {

 gRandom->Rannor(px,py);

 pz = px*px + py*py;

 hprof2d->Fill(px,py,pz,1);

 }

 hprof2d->Draw();

}

Figure 3-18 A TProfile2D histogram example

 Iso Surfaces
Paint one Gouraud shaded 3d iso surface though a 3d histogram at the value computed as follow:

SumOfWeights/(NbinsX*NbinsY*NbinsZ).

Figure 3-19 Iso surfaces

void hist3d() {

 TH3D *h3=new TH3D(« h3 », »h3 »,20,-2,2,20,-2,2,20,0,4);

 Double_t x,y,z;

 for (Int_t i=0; i<10000; i++) {

 gRandom->Rannor(x,y);

 z=x*x+y*y;

 h3->Fill(x,y,z);

 }

 h3->Draw(“iso”);

46 Histograms

}

3D Implicit Functions
TF3 *fun3 = new TF3(“fun3”, “sin(x*x+y*y+z*z-36”,-2,2,-2,2,-2,2);

Fun3->Draw();

Figure 3-20 3D implicit function

TPie
The TPie class allows to create a Pie Chart representation of a one dimensional data set. The data can come

from an array of Double_t (or Float_t) or from a 1D-histogram. The possible options to draw a TPie are:

 "R" Paint the labels along the central "R"adius of slices.

 "T" Paint the labels in a direction "T"angent to circle that describes the TPie.

 "3D" Draw the pie-chart with a pseudo 3D effect.

 "NOL" No OutLine: do not draw the slices' outlines; any property over the slices' line is

ignored.

The method SetLabelFormat() is used to customize the label format. The format string must contain one of

these modifiers:

 - %txt: to print the text label associated with the slice

 - %val : to print the numeric value of the slice

 - %frac : to print the relative fraction of this slice

 - %perc : to print the % of this slice

mypie->SetLabelFormat("%txt (%frac)");

See the macro $ROOTSYS/tutorials/graphics/piechart.C.

 Histograms 47

Figure 3-21 The picture generated by tutorial macro piechart.C

The User Interface for Histograms
The classes TH1Editor and TH2Editor provides the user interface for setting histogram‘s attributes and

rebinning interactively.

TH1Editor

Style Tab:

Title sets the title of the histogram.

Plot draw a 2D or 3D plot; according to the dimension, different drawing possibilities can be set.

Error add different error bars to the histogram (no errors, simple, etc.).

Add further things which can be added to the histogram (None, simple/smooth line, fill area, etc.)

2-D Plot:

Simple Drawing draw a simple histogram without errors (= "HIST" draw option). In combination with some
 other draw options an outer line is drawn on top of the histogram

Show markers draw a marker on to of each bin (="P" draw option).

Draw bar chart draw a bar chart (="B" draw option).

Bar option draw a bar chart (="BAR" draw option); if selected, it will show an additional interface
 elements for bars: width, offset, percentage and the possibility to draw horizontal bars.

48 Histograms

3-D Plot:

Add set histogram type Lego-Plot or Surface draw (Lego, Lego1.2, Surf, Surf1…5).

Coords set the coordinate system (Cartesian, Spheric, etc.).

Error same as for 2D plot.

Bar set the bar attributes: width and offset.

Horizontal Bar draw a horizontal bar chart.

The Binning tab has two different layouts. One is for a histogram, which is not drawn from an ntuple. The other
one is available for a histogram, which is drawn from an ntuple. In this case, the rebin algorithm can create a
rebinned histogram from the original data i.e. the ntuple.

To see the differences do:

TFile f("hsimple.root");

hpx->Draw("BAR1"); // non ntuple histogram

ntuple->Draw("px"); // ntuple histogram

Non ntuple histogram:

Rebin with a slider and the number of bins (shown in the field below the slider). The number of bins can be
changed to any number, which divides the number of bins of the original histogram. A click on the Apply button
will delete the origin histogram and will replace it by the rebinned one on the screen. A click on the Ignore button
will restore the origin histogram.

Histogram drawn from an ntuple:

Rebin - With the slider, the number of bins can be enlarged by a factor of 2,3,4,5 (moving to the right) or
reduced by a factor of 1/2, 1/3, 1/4, 1/5.

BinOffset with a BinOffset slider - the origin of the histogram can be changed within one binwidth. Using this
slider the effect of binning the data into bins can be made visible (statistical fluctuations).

Axis Range - with a double slider it is possible to zoom into the specified axis range. It is also possible to set the
upper and lower limit in fields below the slider.

Delayed drawing - all the Binning sliders can set to delay draw mode. Then the changes on the histogram are
only updated, when the Slider is released. This should be activated if the redrawing of the histogram is time
consuming.

TH2Editor

 Histograms 49

Style Tab:

Title set the title of the histogram

Histogram change the draw options of the histogram.

Plot draw a 2D or 3D plot of the histogram; according to the dimension, the drawing possibilities
 are different.

2-D Plot:

Contour draw a contour plot (None, Cont0...5)

Cont # set the number of Contours;

Arrow set the arrow mode and shows the gradient between adjacent cells;

Col a box is drawn for each cell with a color scale varying with contents;

Text draw bin contents as text;

Box a box is drawn for each cell with surface proportional to contents;

Scat draw a scatter-plot (default);

Palette the color palette is drawn.

3-D Plot:

Type set histogram type to Lego or surface plot; draw (Lego, Lego1.2, Surf, Surf1…5)

Coords set the coordinate system (Cartesian, Spheric, etc.);

Cont # set the number of Contours (for e.g. Lego2 draw option);

Errors draw errors in a Cartesian lego plot;

Palette draw the color palette;

Front draw the front box of a Cartesian lego plot;

Back draw the back box of a Cartesian lego plot;

Bar change the bar attributes: the width and offset.

Rebinning Tab:

The Rebinning tab has two different layouts. One is for a histogram that is not drawn from an ntuple; the other
one is available for a histogram, which is drawn from an ntuple. In this case, the rebin algorithm can create a
rebinned histogram from the original data i.e. the ntuple. To see the differences do for example:

TFile f("hsimple.root");

hpxpy->Draw("Lego2"); // non ntuple histogram

ntuple->Draw("px:py","","Lego2"); // ntuple histogram

Non-ntuple histogram:

Rebin with sliders (one for the x, one for the y-axis) and the number of bins (shown in the field below them can
be changed to any number, which divides the number of bins of the original histogram. Selecting the Apply
button will delete the origin histogram and will replace it by the rebinned one on the screen. Selecting the Ignore
the origin histogram will be restored.

50 Histograms

Histogram drawn from an ntuple:

Rebin with the sliders the number of bins can be enlarged by a factor of 2,3,4,5 (moving to the right) or reduced
by a factor of 1/2, 1/3, 1/4, 1/5. BinOffset with the BinOffset slider the origin of the histogram can be changed
within one binwidth. Using this slider the effect of binning the data into bins can be made visible (=> statistical
fluctuations).

Axis Range - with a double slider that gives the possibility for zooming. It is also possible to set the upper and
lower limit in fields below the slider.

Delayed drawing - all the binning sliders can be set to delay draw mode. Then the changes on the histogram
are only updated, when the Slider is released. This should be activated if the redrawing of the histogram is too
time consuming.

 Graphs 51

4 Graphs

A graph is a graphics object made of two arrays X and Y, holding the x, y coordinates of n points. There are

several graph classes; they are TGraph, TGraphErrors, TGraphAsymmErrors, and TMultiGraph.

TGraph
The TGraph class supports the general case with non-equidistant points, and the special case with equidistant

points. Graphs are created with the TGraph constructor. First, we define the arrays of coordinates and then

create the graph. The coordinates can be arrays of doubles or floats.

Int_t n = 20;

Double_t x[n], y[n];

for (Int_t i=0; i<n; i++) {

 x[i] = i*0.1;

 y[i] = 10*sin(x[i]+0.2);

}

TGraph *gr1 = new TGraph (n, x, y);

An alternative constructor takes only the number of points n. It is expected that the coordinates will be set later.

TGraph *gr2 = new TGraph(n);

The default constructor can also be used. Further calls to SetPoint() will extend the internal vectors.

TGraph *gr3 = new TGraph();

Graph Draw Options

The various draw options for a graph are explained in TGraph::PaintGraph. They are:

 "L" A simple poly-line between every points is drawn

 "F" A fill area is drawn

 ―F1‖ Idem as "F" but fill area is no more repartee around X=0 or Y=0

 "F2" draw a fill area poly line connecting the center of bins

 "A" Axis are drawn around the graph

 "C" A smooth curve is drawn

 "*" A star is plotted at each point

 "P" The current marker of the graph is plotted at each point

 "B" A bar chart is drawn at each point

 "[]" Only the end vertical/horizontal lines of the error bars are drawn. This option only

 applies to the TGraphAsymmErrors.

 "1" ylow = rwymin

The options are not case sensitive and they can be concatenated in most cases. Let us look at some examples.

52 Graphs

Continuous Line, Axis and Stars (AC*)

Figure 4-1 A graph drawn with axis, * markers and continuous line (option AC*)

{

 Int_t n = 20;

 Double_t x[n], y[n];

 for (Int_t i=0;i<n;i++) {

 x[i] = i*0.1;

 y[i] = 10*sin(x[i]+0.2);

 }

 // create graph

 TGraph *gr = new TGraph(n,x,y);

 TCanvas *c1 = new TCanvas("c1","Graph Draw Options",200,10,600,400);

 // draw the graph with axis, contineous line, and put a * at each point

 gr->Draw("AC*");

}

Bar Graphs (AB)

Figure 4-2 A graph drawn with axis and bar (option AB)

root[] TGraph *gr1 = new TGraph(n,x,y);

root[] gr1->SetFillColor(40);

root[] gr1->Draw("AB");

This code will only work if n, x, and y is defined. The previous example defines these. You need to set the fill
color, because by default the fill color is white and will not be visible on a white canvas. You also need to give it
an axis, or the bar chart will not be displayed properly.

 Graphs 53

Filled Graphs (AF)

Figure 4-3 A graph drawn with axis and fill (option AF)

root[] TGraph *gr3 = new TGraph(n,x,y);

root[] gr3->SetFillColor(45);

root[] gr3->Draw("AF")

This code will only work if n, x, y are defined. The first example defines them. You need to set the fill color,

because by default the fill color is white and will not be visible on a white canvas. You also need to give it an

axis, or the bar chart will not be displayed properly. Currently one cannot specify the "CF" option.

Marker Options

Figure 4-4 Graph markers created in different ways

{

 Int_t n = 20;

 Double_t x[n], y[n];

 // build the arrays with the coordinate of points

 for (Int_t i=0; i<n; i++) {

 x[i] = i*0.1;

 y[i] = 10*sin(x[i]+0.2);

 }

 // create graphs

 TGraph *gr3 = new TGraph(n,x,y);

 TCanvas *c1 = new TCanvas ("c1","Graph Draw Options",200,10,600,400);

 // draw the graph with the axis,contineous line, and put

 // a marker using the graph's marker style at each point

 gr3->SetMarkerStyle(21);

54 Graphs

 c1->cd(4);

 gr3->Draw("APL");

 // get the points in the graph and put them into an array

 Double_t *nx = gr3->GetX();

 Double_t *ny = gr3->GetY();

 // create markers of different colors

 for (Int_t j=2; j<n-1; j++) {

 TMarker *m = new TMarker(nx[j], 0.5*ny[j], 22);

 m->SetMarkerSize(2);

 m->SetMarkerColor(31+j);

 m->Draw();

 }

}

Superimposing Two Graphs
To super impose two graphs you need to draw the axis only once, and leave out the "A" in the draw options for
the second graph. Next is an example:

Figure 4-5 Superimposing two graphs

{

 Int_t n = 20;

 Double_t x[n], y[n], x1[n], y1[n];

 // create a blue graph with a cos function and red one with sin function

 for (Int_t i=0; i<n; i++) {

 x[i] = i*0.5;

 y[i] = 5*cos(x[i]+0.2);

 x1[i] = i*0.5;

 y1[i] = 5*sin(x[i]+0.2);

 }

 TGraph *gr1 = new TGraph(n,x,y);

 TGraph *gr2 = new TGraph(n,x1,y1);

 TCanvas *c1 = new TCanvas("c1","Two Graphs",200,10,600,400);

 // draw the graph with axis, contineous line, and put a * at each point

 gr1->SetLineColor(4);

 gr1->Draw("AC*");

 // superimpose the second graph by leaving out the axis option "A"

 gr2->SetLineWidth(3);

 gr2->SetMarkerStyle(21);

 gr2->SetLineColor(2);

 gr2->Draw("CP");

}

 Graphs 55

Graphs with Error Bars
A TGraphErrors is a TGraph with error bars. The various draw format options of TGraphErrors::Paint()

are derived from TGraph.

void TGraphErrors::Paint(Option_t *option)

Figure 4-6 Graphs with different draw options of error bars

In addition, it can be drawn with the "Z" option to leave off the small lines at the end of the error bars. If option

contains ">", an arrow is drawn at the end of the error bars. If option contains "|>", a full arrow is drawn at the

end of the error bars. The size of the arrow is set to 2/3 of the marker size.

The option ―[]‖ is interesting to superimpose systematic errors on top of the graph with the statistical errors.

When it is specified, only the end vertical/horizontal lines of the error bars are drawn.

To control the size of the lines at the end of the error bars (when option 1 is chosen) use

SetEndErrorSize(np). By default np=1; np represents the number of pixels.

gStyle->SetEndErrorSize(np);

The four parameters of TGraphErrors are: X, Y (as in TGraph), X-errors, and Y-errors - the size of the

errors in the x and y direction. Next example is $ROOTSYS/tutorials/graphs/gerrors.C.

{

 c1 = new TCanvas("c1","A Simple Graph with error bars",200,10,700,500);

 c1->SetFillColor(42);

 c1->SetGrid();

 c1->GetFrame()->SetFillColor(21);

 c1->GetFrame()->SetBorderSize(12);

 // create the coordinate arrays

 Int_t n = 10;

 Float_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};

 Float_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 // create the error arrays

 Float_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};

 Float_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

 // create the TGraphErrors and draw it

 gr = new TGraphErrors(n,x,y,ex,ey);

 gr->SetTitle("TGraphErrors Example");

 gr->SetMarkerColor(4);

 gr->SetMarkerStyle(21);

 gr->Draw("ALP");

 c1->Update();

}

Graphs with Asymmetric Error Bars
A TGraphAsymmErrors is a TGraph with asymmetric error bars. It inherits the various draw format options

from TGraph. Its method Paint(Option_t *option) paints the TGraphAsymmErrors with the current

attributes. You can set the following additional options for drawing:

 "z" or ―Z‖ the horizontal and vertical small lines are not drawn at the end of error bars

 ―>‖ an arrow is drawn at the end of the error bars

 ―|>‖ a full arrow is drawn at the end of the error bar; its size is 2/3 of the marker size

 ―[]‖ only the end vertical/horizontal lines of the error bars are drawn; this option is

 interesting to superimpose systematic errors on top of a graph with statistical errors.

56 Graphs

The constructor has six arrays as parameters: X and Y as TGraph and low X-errors and high X-errors, low Y-
errors and high Y-errors. The low value is the length of the error bar to the left and down, the high value is the
length of the error bar to the right and up.

Figure 4-7 A graph with asymmetric error bars

{

 c1 = new TCanvas("c1","A Simple Graph with error bars",200,10,700,500);

 c1->SetFillColor(42);

 c1->SetGrid();

 c1->GetFrame()->SetFillColor(21);

 c1->GetFrame()->SetBorderSize(12);

 // create the arrays for the points

 Int_t n = 10;

 Double_t x[n] = {-.22,.05,.25,.35,.5, .61,.7,.85,.89,.95};

 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 // create the arrays with high and low errors

 Double_t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};

 Double_t eyl[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

 Double_t exh[n] = {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};

 Double_t eyh[n] = {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

 // create TGraphAsymmErrors with the arrays

 gr = new TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh);

 gr->SetTitle("TGraphAsymmErrors Example");

 gr->SetMarkerColor(4);

 gr->SetMarkerStyle(21);

 gr->Draw("ALP");

}

Graphs with Asymmetric Bent Errors
A TGraphBentErrors is a TGraph with bent, asymmetric error bars. The various format options to draw a

TGraphBentErrors are explained in TGraphBentErrors::Paint method. The TGraphBentErrors is

drawn by default with error bars and small horizontal and vertical lines at the end of the error bars. If option "z"

or "Z" is specified, these small lines are not drawn. If the option "X" is specified, the errors are not drawn (the

TGraph::Paint method equivalent).

 if option contains ">", an arrow is drawn at the end of the error bars

 if option contains "|>", a full arrow is drawn at the end of the error bars

 the size of the arrow is set to 2/3 of the marker size

 if option "[]" is specified, only the end vertical/horizontal lines of the error bars are drawn. This

option is interesting to superimpose systematic errors on top of a graph with statistical errors.

 Graphs 57

Figure 4-8 A graph with asymmetric bent error bars

This figure has been generated by the following macro:

{

 Int_t n = 10;

 Double_t x[n] = {-0.22,0.05,0.25,0.35,0.5,0.61,0.7,0.85,0.89,0.95};

 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 Double_t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};

 Double_t eyl[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

 Double_t exh[n] = {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};

 Double_t eyh[n] = {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

 Double_t exld[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};

 Double_t eyld[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};

 Double_t exhd[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};

 Double_t eyhd[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.05,.0};

 gr = new TGraphBentErrors(n,x,y,exl,exh,eyl,eyh,exld,exhd,eyld,eyhd);

 gr->SetTitle("TGraphBentErrors Example");

 gr->SetMarkerColor(4);

 gr->SetMarkerStyle(21);

 gr->Draw("ALP");

}

TGraphPolar
The TGraphPolar class creates a polar graph (including error bars). A TGraphPolar is a TGraphErrors

represented in polar coordinates. It uses the class TGraphPolargram to draw the polar axis.

Figure 4-9 A polar graph

{

 TCanvas *CPol = new TCanvas("CPol","TGraphPolar Examples",600,600);

 Double_t rmin=0;

 Double_t rmax=TMath::Pi()*2;

58 Graphs

 Double_t r[1000];

 Double_t theta[1000];

 TF1 * fp1 = new TF1("fplot","cos(x)",rmin,rmax);

 for (Int_t ipt = 0; ipt < 1000; ipt++) {

 r[ipt] = ipt*(rmax-rmin)/1000+rmin;

 theta[ipt] = fp1->Eval(r[ipt]);

 }

 TGraphPolar * grP1 = new TGraphPolar(1000,r,theta);

 grP1->SetLineColor(2);

 grP1->Draw("AOL");

 }

The TGraphPolar drawing options are:

 "O" Polar labels are paint orthogonally to the polargram radius.

 "P" Polymarker are paint at each point position.

"E" Paint error bars.

 "F" Paint fill area (closed polygon).

"A" Force axis redrawing even if a polagram already exists.

TGraph Exclusion Zone
When a graph is painted with the option "C" or "L", it is possible to draw a filled area on one side of the line. This

is useful to show exclusion zones. This drawing mode is activated when the absolute value of the graph line

width (set thanks to SetLineWidth) is greater than 99. In that case the line width number is interpreted as

100*ff+ll = ffll. The two-digit numbers "ll" represent the normal line width whereas "ff" is the filled

area width. The sign of "ffll" allows flipping the filled area from one side of the line to the other. The current fill

area attributes are used to draw the hatched zone.

Figure 4-10 Graphs with exclusion zones

{

 c1 = new TCanvas("c1","Exclusion graphs examples",200,10,700,500);

 c1->SetGrid();

 TMultiGraph *mg = new TMultiGraph();

 mg->SetTitle("Exclusion graphs");

 const Int_t n = 35;

 Double_t x1[n], x2[n], x3[n], y1[n], y2[n], y3[n];

 for (Int_t i=0;i<n;i++) {

 x1[i] = i*0.1; y1[i] = 10*sin(x1[i]);

 x2[i] = x1[i]; y2[i] = 10*cos(x1[i]);

 x3[i] = x1[i]+.5; y3[i] = 10*sin(x1[i])-2;

 }

 gr1 = new TGraph(n,x1,y1);

 gr1->SetLineColor(2);

 gr1->SetLineWidth(1504);

 gr1->SetFillStyle(3005);

 gr2 = new TGraph(n,x2,y2);

 gr2->SetLineColor(4);

 gr2->SetLineWidth(-2002);

 Graphs 59

 gr2->SetFillStyle(3004);

 gr2->SetFillColor(9);

 gr3 = new TGraph(n,x3,y3);

 gr3->SetLineColor(5);

 gr3->SetLineWidth(-802);

 gr3->SetFillStyle(3002);

 gr3->SetFillColor(2);

 mg->Add(gr1);

 mg->Add(gr2);

 mg->Add(gr3);

 mg->Draw("AC");

}

TGraphQQ
A TGraphQQ allows drawing quantile-quantile plots. Such plots can be drawn for two datasets, or for one

dataset and a theoretical distribution function.

Two Datasets

Quantile-quantile plots are used to determine whether two samples come from the same distribution. A qq-plot
draws the quantiles of one dataset against the quantile of the other. The quantiles of the dataset with fewer
entries are on Y-axis, with more entries - on X-axis. A straight line, going through 0.25 and 0.75 quantiles is also
plotted for reference. It represents a robust linear fit, not sensitive to the extremes of the datasets. If the
datasets come from the same distribution, points of the plot should fall approximately on the 45 degrees line. If
they have the same distribution function, but different parameters of location or scale, they should still fall on the
straight line, but not the 45 degrees one.

Figure 4-11 Examples of qq-plots of 2 datasets

The greater their departure from the straight line, the more evidence there is that the datasets come from
different distributions. The advantage of qq-plot is that it not only shows that the underlying distributions are
different, but, unlike the analytical methods, it also gives information on the nature of this difference: heavier
tails, different location/scale, different shape, etc.

One Dataset

Quantile-quantile plots are used to determine if the dataset comes from the specified theoretical distribution,
such as normal. A qq-plot draws quantiles of the dataset against quantiles of the specified theoretical
distribution. Note, that density, not CDF should be specified a straight line, going through 0.25 and 0.75
quantiles could also be plotted for reference. It represents a robust linear fit, not sensitive to the extremes of the
dataset. As in the two datasets case, departures from straight line indicate departures from the specified
distribution. Next picture shows an example of a qq-plot of a dataset from N(3, 2) distribution and
TMath::Gaus(0, 1) theoretical function. Fitting parameters are estimates of the distribution mean and sigma.

60 Graphs

Figure 4-12 Examples of qq-plots of 1 dataset

TMultiGraph
A TMultiGraph is a collection of TGraph (or derived) objects. Use TMultiGraph::Add to add a new

graph to the list. The TMultiGraph owns the objects in the list. The drawing and fitting options are the same

as for TGraph.

{

 // create the points

 Int_t n = 10;

 Double_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};

 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 Double_t x2[n] = {-.12,.15,.35,.45,.6,.71,.8,.95,.99,1.05};

 Double_t y2[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 // create the width of errors in x and y direction

 Double_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};

 Double_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

 // create two graphs

 TGraph *gr1 = new TGraph(n,x2,y2);

 TGraphErrors *gr2 = new TGraphErrors(n,x,y,ex,ey);

 // create a multigraph and draw it

 TMultiGraph *mg = new TMultiGraph();

 mg->Add(gr1);

 mg->Add(gr2);

 mg->Draw("ALP");

}

Figure 4-13 A multigraph example

 Graphs 61

TGraph2D
This class is a set of N points x[i], y[i], z[i] in a non-uniform grid. Several visualization techniques are

implemented, including Delaunay triangulation. Delaunay triangulation is defined as follow: ‗for a set S of points

in the Euclidean plane, the unique triangulation DT(S) of S such that no point in S is inside the circum-circle of

any triangle in DT(S). DT(S) is the dual of the Voronoi diagram of S. If n is the number of points in S, the

Voronoi diagram of S is the partitioning of the plane containing S points into n convex polygons such that each

polygon contains exactly one point and every point in a given polygon is closer to its central point than to any
other. A Voronoi diagram is sometimes also known as a Dirichlet tessellation.

Figure 4-14 Delaunay triangles and Voronoi diagram

The TGraph2D class has the following constructors:

 With an arrays‘ dimension n and three arrays x, y, and z (can be arrays of doubles, floats, or

integers):

TGraph2D *g = new TGraph2D(n,x,y,z);

 With an array dimension only:

TGraph2D *g = new TGraph2D(n);

 Internal arrays are filled with the method SetPoint at the position "i" with the values x, y, z:

g->SetPoint(i,x,y,z);

 Without parameters; the method SetPoint must be used to fill the internal arrays.

TGraph2D *g = new TGraph2D();

 From a file:

TGraph2D *g = new TGraph2D("graph.dat");

The arrays are read from the ASCII file "graph.dat" according to a specified format. The format's default value

is "%lg %lg %lg". Note that in any of last three cases, the SetPoint method can be used to change a data

point or to add a new one. If the data point index (i) is greater than the size of the internal arrays, they are

automatically extended.

Specific drawing options can be used to paint a TGraph2D:

 "TRI" the Delaunay triangles are drawn using filled area. A hidden surface drawing

 technique is used. The surface is painted with the current fill area color. The edges
 of the triangles are painted with the current line color;

 "TRIW" the Delaunay triangles are drawn as wire frame;

 "TRI1" the Delaunay triangles are painted with color levels. The edges of the triangles are

 painted with the current line color;

 "TRI2" the Delaunay triangles are painted with color levels;

 "P" draws a marker at each vertex;

 "P0" draws a circle at each vertex. Each circle background is white.

A TGraph2D can be also drawn with ANY options valid for 2D histogram drawing. In this case, an intermediate

2D histogram is filled using the Delaunay triangles technique to interpolate the data set. TGraph2D linearly

interpolate a Z value for any (X,Y) point given some existing (X,Y,Z) points. The existing (X,Y,Z) points

can be randomly scattered. The algorithm works by joining the existing points to make Delaunay triangles in

(X,Y). These are then used to define flat planes in (X,Y,Z) over which to interpolate. The interpolated

surface thus takes the form of tessellating triangles at various angles. Output can take the form of a 2D
histogram or a vector. The triangles found can be drawn in 3D. This software cannot be guaranteed to work

under all circumstances. It was originally written to work with a few hundred points in an XY space with similar X

and Y ranges.

62 Graphs

Figure 4-15 Graph2D drawn with option "surfl" and "tril p0"

{

 TCanvas *c = new TCanvas("c","Graph2D example",0,0,700,600);

 Double_t x, y, z, P = 6.;

 Int_t np = 200;

 TGraph2D *dt = new TGraph2D();

 TRandom *r = new TRandom();

 for (Int_t N=0; N<np; N++) {

 x = 2*P*(r->Rndm(N))-P;

 y = 2*P*(r->Rndm(N))-P;

 z = (sin(x)/x)*(sin(y)/y)+0.2;

 dt->SetPoint(N,x,y,z);

 }

 gStyle->SetPalette(1);

 dt->Draw("surf1"); // use “surf1” to generate the left picture

} // use “tri1 p0” to generate the right one

A more complete example is $ROOTSYS/tutorials/fit/graph2dfit.C that produces the next figure.

Figure 4-16 Output of macro graph2dfit.C

 Graphs 63

TGraph2DErrors
A TGraph2DErrors is a TGraph2D with errors. It is useful to perform fits with errors on a 2D graph. An

example is the macro $ROOTSYS/tutorials/graphs/graph2derrorsfit.C.

Fitting a Graph
The graph Fit method in general works the same way as the TH1::Fit. See ―Fitting Histograms‖.

Setting the Graph's Axis Title
To give the axis of a graph a title you need to draw the graph first, only then does it actually have an axis object.
Once drawn, you set the title by getting the axis and calling the TAxis::SetTitle method, and if you want to

center it, you can call the TAxis::CenterTitle method.

Assuming that n, x, and y are defined. Next code sets the titles of the x and y axes.

root[] gr5 = new TGraph(n,x,y)

root[] gr5->Draw()

<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

root[] gr5->Draw("ALP")

root[] gr5->GetXaxis()->SetTitle("X-Axis")

root[] gr5->GetYaxis()->SetTitle("Y-Axis")

root[] gr5->GetXaxis()->CenterTitle()

root[] gr5->GetYaxis()->CenterTitle()

root[] gr5->Draw(“ALP”)

For more graph examples see the scripts: $ROOTSYS/tutorials directory graph.C, gerrors.C, zdemo.C,

and gerrors2.C.

Figure 4-17 A graph with axis titles

Zooming a Graph
To zoom a graph you can create a histogram with the desired axis range first. Draw the empty histogram and
then draw the graph using the existing axis from the histogram.

{ gROOT->Reset();

 c1 = new TCanvas("c1","A Zoomed Graph",200,10,700,500);

 hpx = new TH2F("hpx","Zoomed Graph Example",10,0,0.5,10,1.0,8.0); // axis range

 hpx->SetStats(kFALSE); // no statistics

 hpx->Draw();

 Int_t n = 10;

 Double_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};

 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 gr = new TGraph(n,x,y);

 gr->SetMarkerColor(4);

 gr->SetMarkerStyle(20);

 gr->Draw("LP"); // and draw it without an axis

}

64 Graphs

The next example is the same graph as above with a zoom in the x and y directions.

Figure 4-18 A zoomed graph

The User Interface for Graphs

The class TGraphEditor provides the user interface for setting the following graph attributes interactively:

 Title text entry field – sets the title of the graph.

 Shape radio button group – sets the graph shapes:

 No Line: draw unconnected points;

 Smooth Line: a smooth curve;

 Simple Line: a simple poly-line;

 Bart Chart: a bar chart at each point.

 Fill Area: a fill area is drawn.

 Show Marker - sets markers as visible or invisible.

 Exclusion Zone – specifies the exclusion zone parameters :

 ‟+-„ check button: sets on which side of the line the exclusion zone will be drawn;

 Width combo box: defines the width of the zone.

 Fitting Histograms 65

5 Fitting Histograms

To fit a histogram you can use the Fit Panel on a visible histogram via the context menu, or you can use the
TH1::Fit method. The Fit Panel, which is limited, is best for prototyping. The histogram needs to be drawn in

a pad before the Fit Panel is invoked. The method TH1::Fit is more powerful and is used in scripts and

programs.

The Fit Method
To fit a histogram programmatically, you can use the TH1::Fit method. Here is the signature of TH1::Fit

and an explanation of the parameters:

void Fit(const char *fname, Option_t *option, Option_t *goption,

 Axis_t xxmin, Axis_t xxmax)

 *fname - the name of the fitted function (the model) is passed as the first parameter. This

 name may be one of ROOT pre-defined function names or a user-defined function.
 The functions below are predefined, and can be used with the TH1::Fit method:

 gaus: Gaussian function with 3 parameters:
 f(x) = p0*exp(-0.5*((x-p1)/p2)^2))

 expo: an Exponential with 2 parameters: f(x) = exp(p0+p1*x)

 polN: a polynomial of degree N: f(x) = p0 + p1*x + p2*x2 +...

 landau: Landau function with mean and sigma. This function has been adapted

from the CERNLIB routine G110 denlan.

 *option - the second parameter is the fitting option. Here is the list of fitting options:

 "W" Set all weights to 1 for non empty bins; ignore error bars

 "WW" Set all weights to 1 including empty bins; ignore error bars

 "I" Use integral of function in bin instead of value at bin center

 "L" Use log likelihood method (default is chi-square method)

 "U" Use a user specified fitting algorithm

 "Q" Quiet mode (minimum printing)

 "V" Verbose mode (default is between Q and V)

 "E" Perform better errors estimation using the Minos technique

 "M" Improve fit results

 "R" Use the range specified in the function range

 "N" Do not store the graphics function, do not draw

 "0" Do not plot the result of the fit. By default the fitted function is drawn unless the option

"N" above is specified.

 "+" Add this new fitted function to the list of fitted functions (by default, the previous function is

deleted and only the last one is kept)

 "B" Use this option when you want to fix one or more parameters and the fitting function is

like polN, expo, landau, gaus.

 ―LL‖ An improved Log Likelihood fit in case of very low statistics and when bin

 contents are not integers. Do not use this option if bin contents are large (greater
than 100).

 ―C‖ In case of linear fitting, don't calculate the chisquare (saves time).

 ―F‖ If fitting a polN, switch to Minuit fitter (by default, polN functions are fitted by the linear

fitter).

 *goption - the third parameter is the graphics option tha is the same as in the TH1::Draw

 (see the chapter Draw Options).

 xxmin, xxmax - the fourth and fifth parameters specify the range over which to apply the fit.

 By default, the fitting function object is added to the histogram and is drawn in the
 current pad.

Fit with a Predefined Function
To fit a histogram with a predefined function, simply pass the name of the function in the first parameter of
TH1::Fit. For example, this line fits histogram object hist with a Gaussian.

66 Fitting Histograms

root[] hist.Fit("gaus");

The initial parameter values for pre-defined functions are set automatically.

Fit with a User-Defined Function
You can create a TF1 object and use it in the call the TH1::Fit. The parameter in to the Fit method is the

NAME of the TF1 object. There are three ways to create a TF1.

 Using C++ expression using x with a fixed set of operators and functions defined in TFormula.

 Same as first one, with parameters

 Using a function that you have defined

Creating a TF1 with a Formula

Let's look at the first case. Here we call the TF1 constructor by giving it the formula: sin(x)/x.

root[] TF1 *f1 = new TF1("f1","sin(x)/x",0,10)

You can also use a TF1 object in the constructor of another TF1.

root[] TF1 *f2 = new TF1("f2","f1*2",0,10)

Creating a TF1 with Parameters

The second way to construct a TF1 is to add parameters to the expression. Here we use two parameters:

root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);

Figure 5-1 The function x*sin(x)

The parameter index is enclosed in square brackets. To set the initial parameters explicitly you can use:

root[] f1->SetParameter(0,10);

This sets parameter 0 to 10. You can also use SetParameters to set multiple parameters at once.

root[] f1->SetParameters(10,5);

This sets parameter 0 to 10 and parameter 1 to 5. We can now draw the TF1:

root[] f1->Draw()

Creating a TF1 with a User Function

The third way to build a TF1 is to define a function yourself and then give its name to the constructor. A function

for a TF1 constructor needs to have this exact signature:

Double_t fitf(Double_t *x,Double_t *par)

The two parameters are:

 x a pointer to the dimension array. Each element contains a dimension. For a 1D

 histogram only x[0] is used, for a 2D histogram x[0] and x[1] is used, and for a

 3D histogram x[0], x[1], and x[2] are used. For histograms, only 3 dimensions

 apply, but this method is also used to fit other objects, for example an ntuple could
 have 10 dimensions.

 par a pointer to the parameters array. This array contains the current values of

 parameters when it is called by the fitting function.

 Fitting Histograms 67

The following script $ROOTSYS/tutorials/fit/myfit.C illustrates how to fit a 1D histogram with a user-

defined function. First we declare the function.

// define a function with 3 parameters

Double_t fitf(Double_t *x,Double_t *par)

{

 Double_t arg = 0;

 if (par[2] != 0) arg = (x[0] - par[1])/par[2];

 Double_t fitval = par[0]*TMath::Exp(-0.5*arg*arg);

 return fitval;

}

Now we use the function:

// this function used fitf to fit a histogram

void fitexample() {

 // open a file and get a histogram

 TFile *f = new TFile("hsimple.root");

 TH1F *hpx = (TH1F*)f->Get(*hpx);

 // Create a TF1 object using the function defined above. The last three

 // parameters specify the number of parameters for the function.

 TF1 *func = new TF1("fit",fitf,-3,3,3);

 // set the parameters to the mean and RMS of the histogram

 func->SetParameters(500,hpx->GetMean(),hpx->GetRMS());

 // give the parameters meaningful names

 func->SetParNames ("Constant","Mean_value","Sigma");

 // call TH1::Fit with the name of the TF1 object

 hpx->Fit("fit");

}

Fixing and Setting Parameters’ Bounds
Parameters must be initialized before invoking the Fit method. The setting of the parameter initial values is

automatic for the predefined functions: poln, exp, gaus, and landau. You can fix one or more parameters by

specifying the "B" option when calling the Fit method. When a function is not predefined, the fit parameters

must be initialized to some value as close as possible to the expected values before calling the fit function.

To set bounds for one parameter, use TF1::SetParLimits:

func->SetParLimits(0,-1,1);

When the lower and upper limits are equal, the parameter is fixed. Next two statements fix parameter 4 at 10.

func->SetParameter(4,10);

func->SetParLimits(4,10,10);

However, to fix a parameter to 0, one must call the FixParameter function:

func->SetParameter(4,0);

func->FixParameter(4,0);

Note that you are not forced to set the limits for all parameters. For example, if you fit a function with 6
parameters, you can:

func->SetParameters(0,3.1,1.e-6,-1.5,0,100);

func->SetParLimits(3,-10,4);

func->FixParameter(4,0);

With this setup, parameters 0->2 can vary freely, parameter 3 has boundaries [-10, 4] with initial value –1.5,

and parameter 4 is fixed to 0.

Fitting Sub Ranges
By default, TH1::Fit will fit the function on the defined histogram range. You can specify the option "R" in the

second parameter of TH1::Fit to restrict the fit to the range specified in the TF1 constructor. In this example,

the fit will be limited to –3 to 3, the range specified in the TF1 constructor.

root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);

root[] hist->Fit("f1","R");

You can also specify a range in the call to TH1::Fit:

68 Fitting Histograms

root[] hist->Fit("f1","","",-2,2)

See macros $ROOTSYS/tutorials/fit/myfit.C and multifit.C as more completed examples.

The Fit Panel
To display the Fit Panel right click on a histogram to pop
up the context menu, and then select the menu entry Fit
Panel.

The new Fit Panel GUI is available in ROOT v5.14. Its
goal is to replace the old Fit Panel and to provide more
user friendly way for performing, exploring and
comparing fits.

By design, this user interface is planned to contain two
tabs: ―General‖ and ―Minimization‖. Currently, the
―General‖ tab provides user interface elements for setting
the fit function, fit method and different fit, draw, print
options.

The new fit panel is a modeless dialog, i.e. when opened,
it does not prevent users from interacting with other
windows. Its first prototype is a singleton application.
When the Fit Panel is activated, users can select an
object for fitting in the usual way, i.e. by left-mouse click
on it. If the selected object is suitable for fitting, the fit
panel is connected with this object and users can
perform fits by setting different parameters and options.

Function Choice and Settings

„Predefined‟ combo box - contains a list of predefined
functions in ROOT. You have a choice of several
polynomials, a Gaussian, a Landau, and an Exponential
function. The default one is Gaussian.

„Operation‟ radio button group defines the selected
operational mode between functions:

Nop - no operation (default);

Add – addition;

Conv - convolution (will be implemented in the future).

Users can enter the function expression into the text
entry field below the ‗Predefined‘ combo box. The

entered string is checked after the Enter key was pressed and an error message shows up, if the function string
is not accepted.

‗Set Parameters‘ button opens a dialog for parameters settings, which will be explaned later.

Fitter Settings

„Method‟ combo box currently provides only two fit model choices: Chi-square and Binned Likelihood. The
default one is Chi-square. The Binned Likelihood is recomended for bins with low statistics.

„Linear Fit‟ check button sets the use of Linear fitter when is selected. Otherwise the minimization is done by

Minuit, i.e. fit option "F" is applied. The Linear fitter can be selected only for functions linears in parameters (for

example - polN).

„Robust‟ number entry sets the robust value when fitting graphs.

„No Chi-square‟ check button switch On/Off the fit option ―C‖ - do not calculate Chi-square (for Linear fitter).

„Integral‟ check button switch On/Off the option ―I‖ - use integral of function instead of value in bin center.

„Best Errors‟ sets On/Off the option ―E‖ - better errors estimation by using Minos technique.

„All weights = 1‟ sets On/Off the option ―W‖- all weights set to 1 excluding empty bins; error bars ignored.

„Empty bins, weights=1‟ sets On/Off the option "WW" - all weights equal to 1 including empty bins; error bars

ignored.

„Use range‟ sets On/Off the option ―R‖ - fit only data within the specified function range. Sliders settings are used

if this option is set to On. Users can change the function range values by pressing the left mouse button near to
the left/right slider edges. It is possible to change both values simultaneously by pressing the left mouse button
near to the slider center and moving it to a new position.

„Improve fit results‟ sets On/Off the option ―M‖- after minimum is found, search for a new one.

 Fitting Histograms 69

„Add to list‟ sets On/Off the option ―+‖- add function to the list without deleting the previous one. When fitting a

histogram, the function is attached to the histogram's list of functions. By default, the previously fitted function is
deleted and replaced with the most recent one, so the list only contains one function. Setting this option to On
will add the newly fitted function to the existing list of functions for the histogram. Note that the fitted functions
are saved with the histogram when it is written to a ROOT file. By default, the function is drawn on the pad
displaying the histogram.

Draw Options

„SAME‟ sets On/Off function drawing on the same pad. When a fit is executed, the image of the function is
drawn on the current pad.

„No drawing‟ sets On/Off the option ―0‖- do not draw the fit results.

„Do not store/draw‟ sets On/Off option ―N‖- do not store the function and do not draw it.

Print Options

This set of options specifies the amount of feedback printed on the root command line after performed fits.

„Verbose‟ - prints fit results after each iteration.

„Quiet‟ - no fit information is printed.

„Default‟ - between Verbose and Quiet.

Command Buttons

Fit button - performs a fit taking different option settings via the Fit Panel interface.

Reset - sets the GUI elements and related fit settings to the default ones.

Close - closes the Fit panel window.

Fitting Multiple Sub Ranges
The script for this example is $ROOTSYS/tutorials/fit/multifit.C. It shows how to use several

Gaussian functions with different parameters on separate sub ranges of the same histogram. To use a
Gaussian, or any other ROOT built in function, on a sub range you need to define a new TF1. Each is 'derived'

from the canned function gaus.

Figure 5-2 Fitting a histogram with several Gaussian functions

First, four TF1 objects are created – one for each sub-range:

g1 = new TF1("m1","gaus",85,95);

g2 = new TF1("m2","gaus",98,108);

g3 = new TF1("m3","gaus",110,121);

// The total is the sum of the three, each has 3 parameters

total = new TF1("mstotal","gaus(0)+gaus(3)+gaus(6)",85,125);

Next, we fill a histogram with bins defined in the array x.

// Create a histogram and set it's contents

h = new TH1F("g1","Example of several fits in subranges",np,85,134);

h->SetMaximum(7);

for (int i=0; i<np; i++) {

 h->SetBinContent(i+1,x[i]);

}

// Define the parameter array for the total function

Double_t par[9];

70 Fitting Histograms

When fitting simple functions, such as a Gaussian, the initial values of the parameters are automatically
computed by ROOT. In the more complicated case of the sum of 3 Gaussian functions, the initial values of
parameters must be set. In this particular case, the initial values are taken from the result of the individual fits.
The use of the "+" sign is explained below:

// Fit each function and add it to the list of functions

h->Fit(g1,"R");

h->Fit(g2,"R+");

h->Fit(g3,"R+");

// Get the parameters from the fit

g1->GetParameters(&par[0]);

g2->GetParameters(&par[3]);

g3->GetParameters(&par[6]);

// Use the parameters on the sum

total->SetParameters(par);

h->Fit(total,"R+");

Adding Functions to the List
The example $ROOTSYS/tutorials/fit/multifit.C also illustrates how to fit several functions on the

same histogram. By default a Fit command deletes the previously fitted function in the histogram object. You
can specify the option "+" in the second parameter to add the newly fitted function to the existing list of functions
for the histogram.

root[] hist->Fit("f1","+","",-2,2)

Note that the fitted function(s) are saved with the histogram when it is written to a ROOT file.

Combining Functions
You can combine functions to fit a histogram with their sum as it is illustrated in the macro FitDemo.C

($ROOTSYS/tutorials/fit/FittingDemo.C). We have a function that is the combination of a background

and Lorentzian peak. Each function contributes 3 parameters:

2

2

2

321

2

2

G
mE

p

G
A

EaEaaEy

P

Background Lorentzian Peak

par[0] = 1a par[0] = PA

par[1] = 2a par[1] = G

par[2] = 3a par[2] = m

The combination function (fitFunction) has six parameters:

fitFunction = background(x,par) + LorentzianPeak(x,&par[3])

par[0]= 1a par[1]= 2a par[2]= 3a par[3]= PA par[4]=G par[5]=m

This script creates a histogram and fits it with the combination of two functions. First we define the two functions
and the combination function:

// Quadratic background function

Double_t background(Double_t *x, Double_t *par) {

 return par[0] + par[1]*x[0] + par[2]*x[0]*x[0];

}

// Lorentzian Peak function

Double_t lorentzianPeak(Double_t *x, Double_t *par) {

 return (0.5*par[0]*par[1]/TMath::Pi()) / TMath::Max(1.e-10,

 (x[0]-par[2])*(x[0]-par[2])+ .25*par[1]*par[1]);

}

// Sum of background and peak function

Double_t fitFunction(Double_t *x, Double_t *par) {

 return background(x,par) + lorentzianPeak(x,&par[3]);

}

 Fitting Histograms 71

void FittingDemo() {

 // bevington exercise by P. Malzacher, modified by R. Brun

 const int nBins = 60;

 Stat_t data[nBins] = { 6, 1,10,12, 6,13,23,22,15,21,

 23,26,36,25,27,35,40,44,66,81,

 75,57,48,45,46,41,35,36,53,32,

 40,37,38,31,36,44,42,37,32,32,

 43,44,35,33,33,39,29,41,32,44,

 26,39,29,35,32,21,21,15,25,15};

 TH1F *histo = new TH1F("example_9_1",

 "Lorentzian Peak on Quadratic Background",60,0,3);

 for(int i=0; i < nBins; i++) {

 // we use these methods to explicitly set the content

 // and error instead of using the fill method.

 histo->SetBinContent(i+1,data[i]);

 histo->SetBinError(i+1,TMath::Sqrt(data[i]));

 }

 // create a TF1 with the range from 0 to 3 and 6 parameters

 TF1 *fitFcn = new TF1("fitFcn",fitFunction,0,3,6);

 // first try without starting values for the parameters

 // this defaults to 1 for each param.

 histo->Fit("fitFcn");

 // this results in an ok fit for the polynomial function however

 // the non-linear part (Lorentzian) does not respond well

 // second try: set start values for some parameters

 fitFcn->SetParameter(4,0.2); // width

 fitFcn->SetParameter(5,1); // peak

 histo->Fit("fitFcn","V+");

 // improve the picture:

 TF1 *backFcn = new TF1("backFcn",background,0,3,3);

 backFcn->SetLineColor(3);

 TF1 *signalFcn = new TF1("signalFcn",lorentzianPeak,0,3,3);

 signalFcn->SetLineColor(4);

 Double_t par[6];

 // writes the fit results into the par array

 fitFcn->GetParameters(par);

 backFcn->SetParameters(par);

 backFcn->Draw("same");

 signalFcn->SetParameters(&par[3]);

 signalFcn->Draw("same");

}

For another example see: http://root.cern.ch/root/html/examples/backsig.C.html

Figure 5-3 The output of the FittingDemo() example

http://root.cern.ch/root/html/examples/backsig.C.html

72 Fitting Histograms

Associated Function
One or more objects (typically a TF1*) can be added to the list of functions (fFunctions) associated to each

histogram. A call to TH1::Fit adds the fitted function to this list. Given a histogram h, one can retrieve the

associated function with:

TF1 *myfunc = h->GetFunction("myfunc");

Access to the Fit Parameters and Results
If the histogram (or graph) is made persistent, the list of associated functions is also persistent. Retrieve a
pointer to the function with the TH1::GetFunction() method. Then you can retrieve the fit parameters from

the function (TF1) with calls such as:

root[] TF1 *fit = hist->GetFunction(function_name);

root[] Double_t chi2 = fit->GetChisquare();

// value of the first parameter

root[] Double_t p1 = fit->GetParameter(0);

// error of the first parameter

root[] Double_t e1 = fit->GetParError(0);

Associated Errors
By default, for each bin, the sum of weights is computed at fill time. One can also call TH1::Sumw2 to force the

storage and computation of the sum of the square of weights per bin. If Sumw2 has been called, the error per bin

is computed as the sqrt (sum of squares of weights); otherwise, the error is set equal to the sqrt (bin

content). To return the error for a given bin number, do:

Double_t error = h->GetBinError(bin);

Empty bins are excluded in the fit when using the Chi-square fit method. When fitting the histogram with the low

statistics, it is recommended to use the Log-Likelihood method (option ‗L‘ or ―LL‖).

Fit Statistics
You can change the statistics box to display the fit parameters with the TStyle::SetOptFit(mode) method.

This parameter has four digits: mode = pcev (default = 0111)

 p = 1 print probability

 c = 1 print Chi-square/number of degrees of freedom

 e = 1 print errors (if e=1, v must be 1)

 v = 1 print name/values of parameters

For example, to print the fit probability, parameter names/values, and errors, use:

gStyle->SetOptFit(1011);

The Minimization Package
This package was originally written in FORTRAN by Fred James and part of PACKLIB (patch D506). It has

been converted to a C++ class by Rene Brun. The current implementation in C++ is a straightforward
conversion of the original FORTRAN version. The main changes are:

 The variables in the various Minuit labeled common blocks have been changed to the

TMinuit class data members

 The internal arrays with a maximum dimension depending on the maximum number of
parameters are now data members‘ arrays with a dynamic dimension such that one can fit very
large problems by simply initializing the TMinuit constructor with the maximum number of

parameters

 The include file Minuit.h has been commented as much as possible using existing comments

in the code or the printed documentation

 The original Minuit subroutines are now member functions

 Constructors and destructor have been added

 Instead of passing the FCN function in the argument list, the addresses of this function is stored

as pointer in the data members of the class. This is by far more elegant and flexible in an

interactive environment. The member function SetFCN can be used to define this pointer

 Fitting Histograms 73

 The ROOT static function Printf is provided to replace all format statements and to print on

currently defined output file

 The derived class TMinuitOld contains obsolete routines from the FORTRAN based version

 The functions SetObjectFit/GetObjectFit can be used inside the FCN function to set/get a

referenced object instead of using global variables

 By default fGraphicsMode is true. When calling the Minuit functions such as mncont,

mnscan, or any Minuit command invoking mnplot, TMinuit::mnplot() produces a

TGraph object pointed by fPlot. One can retrieve this object with TMinuit::GetPlot(). For

example:

h->Fit("gaus");

gMinuit->Command("SCAn 1");

TGraph *gr = (TGraph*)gMinuit->GetPlot();

gr->SetMarkerStyle(21);

gr->Draw("alp");

 To set Minuit in no graphics mode, call

gMinuit->SetGraphicsMode(kFALSE);

Basic Concepts of Minuit

The Minuit package acts on a multi parameter FORTRAN function to which one must give the generic name

FCN. In the ROOT implementation, the function FCN is defined via the Minuit SetFCN member function when

a HistogramFit command is invoked. The value of FCN will in general depend on one or more variable

parameters.

To take a simple example, in case of ROOT histograms (classes TH1C, TH1S, TH1F, TH1D) the Fit function

defines the Minuit fitting function as being H1FitChisquare or H1FitLikelihood depending on the

options selected. H1FitChisquare calculates the chi-square between the user fitting function (Gaussian,

polynomial, user defined, etc) and the data for given values of the parameters. It is the task of Minuit to find

those values of the parameters which give the lowest value of chi-square.

The Transformation of Limited Parameters

For variable parameters with limits, Minuit uses the following transformation:

Pint = arcsin(2((Pext-a)/(b-a))-1)

Pext = a+((b-a)/(2))(sinPint+1)

so that the internal value Pint can take on any value, while the external value Pext can take on values only

between the lower limit a and the ext upper limit b. Since the transformation is necessarily non-linear, it would
transform a nice linear problem into a nasty non-linear one, which is the reason why limits should be avoided if
not necessary. In addition, the transformation does require some computer time, so it slows down the
computation a little bit, and more importantly, it introduces additional numerical inaccuracy into the problem in
addition to what is introduced in the numerical calculation of the FCN value. The effects of non-linearity and
numerical round off both become more important as the external value gets closer to one of the limits
(expressed as the distance to nearest limit divided by distance between limits). The user must therefore be
aware of the fact that, for example, if he puts limits of (0, 1010) on a parameter, then the values 0.0 and 1. 0 will
be indistinguishable to the accuracy of most machines.

The transformation also affects the parameter error matrix, of course, so Minuit does a transformation of the
error matrix (and the ''parabolic'' parameter errors) when there are parameter limits. Users should however
realize that the transformation is only a linear approximation, and that it cannot give a meaningful result if one or

more parameters is very close to a limit, where partial Pext/partial Pint≠0. Therefore, it is recommended

that:

 Limits on variable parameters should be used only when needed in order to prevent the
parameter from taking on unphysical values

 When a satisfactory minimum has been found using limits, the limits should then be removed if
possible, in order to perform or re-perform the error analysis without limits

How to Get the Right Answer from Minuit

Minuit offers the user a choice of several minimization algorithms. The MIGRAD algorithm is in general the

best minimized for nearly all functions. It is a variable-metric method with inexact line search, a stable metric
updating scheme, and checks for positive-definiteness. Its main weakness is that it depends heavily on
knowledge of the first derivatives, and fails miserably if they are very inaccurate.

If parameter limits are needed, in spite of the side effects, then the user should be aware of the following
techniques to alleviate problems caused by limits:

74 Fitting Histograms

Getting the Right Minimum with Limits

If MIGRAD converges normally to a point where no parameter is near one of its limits, then the existence of

limits has probably not prevented Minuit from finding the right minimum. On the other hand, if one or more

parameters is near its limit at the minimum, this may be because the true minimum is indeed at a limit, or it may
be because the minimized has become ''blocked'' at a limit. This may normally happen only if the parameter is

so close to a limit (internal value at an odd multiple of #((pi)/(2)) that Minuit prints a warning to this effect

when it prints the parameter values. The minimized can become blocked at a limit, because at a limit the

derivative seen by the minimized partial F/partial Pint is zero no matter what the real derivative

partial F/partial Pext is.

((partial F)/(partial Pint)) =

((partial F)/(partial Pext))((partial Pext)/(partial Pint)) =

 ((partial F)/(partial Pext)) = 0

Getting the Right Parameter Errors with Limits

In the best case, where the minimum is far from any limits, Minuit will correctly transform the error matrix, and

the parameter errors it reports should be accurate and very close to those you would have got without limits. In
other cases (which should be more common, since otherwise you would not need limits), the very meaning of
parameter errors becomes problematic. Mathematically, since the limit is an absolute constraint on the
parameter, a parameter at its limit has no error, at least in one direction. The error matrix, which can assign only
symmetric errors, then becomes essentially meaningless.

Interpretation of Parameter Errors

There are two kinds of problems that can arise: the reliability of Minuit‘s error estimates, and their statistical

interpretation, assuming they are accurate.

Statistical Interpretation

For discussion of basic concepts, such as the meaning of the elements of the error matrix, or setting of exact
confidence levels see the articles:

 F.James. Determining the statistical Significance of experimental Results. Technical Report
DD/81/02 and CERN Report 81-03, CERN, 1981

 W.T.Eadie, D.Drijard, F.James, M.Roos, and B.Sadoulet. Statistical Methods in Experimental
Physics. North-Holland, 1971

Reliability of Minuit Error Estimates

Minuit always carries around its own current estimates of the parameter errors, which it will print out on

request, no matter how accurate they are at any given point in the execution. For example, at initialization,

these estimates are just the starting step sizes as specified by the user. After a HESSE step, the errors are

usually quite accurate, unless there has been a problem. Minuit, when it prints out error values, also gives

some indication of how reliable it thinks they are. For example, those marked CURRENT GUESS ERROR are only

working values not to be believed, and APPROXIMATE ERROR means that they have been calculated but there

is reason to believe that they may not be accurate.

If no mitigating adjective is given, then at least Minuit believes the errors are accurate, although there is

always a small chance that Minuit has been fooled. Some visible signs that Minuit may have been fooled:

 Warning messages produced during the minimization or error analysis

 Failure to find new minimum

 Value of EDM too big (estimated Distance to Minimum)

 Correlation coefficients exactly equal to zero, unless some parameters are known to be
uncorrelated with the others

 Correlation coefficients very close to one (greater than 0.99). This indicates both an exceptionally
difficult problem, and one which has been badly parameterized so that individual errors are not
very meaningful because they are so highly correlated

 Parameter at limit. This condition, signaled by a Minuit warning message, may make both the

function minimum and parameter errors unreliable. See the discussion above ‗Getting the right
parameter errors with limits'

The best way to be absolutely sure of the errors is to use ''independent'' calculations and compare them, or
compare the calculated errors with a picture of the function. Theoretically, the covariance matrix for a ''physical''
function must be positive-definite at the minimum, although it may not be so for all points far away from the

minimum, even for a well-determined physical problem. Therefore, if MIGRAD reports that it has found a non-

positive-definite covariance matrix, this may be a sign of one or more of the following:

 Fitting Histograms 75

A Non-physical Region

On its way to the minimum, MIGRAD may have traversed a region that has unphysical behavior, which is of

course not a serious problem as long as it recovers and leaves such a region.

An Underdetermined Problem

If the matrix is not positive-definite even at the minimum, this may mean that the solution is not well defined, for
example that there are more unknowns than there are data points, or that the parameterization of the fit

contains a linear dependence. If this is the case, then Minuit (or any other program) cannot solve your

problem uniquely. The error matrix will necessarily be largely meaningless, so the user must remove the under

determinedness by reformulating the parameterization. Minuit cannot do this itself.

Numerical Inaccuracies

It is possible that the apparent lack of positive-definiteness is due to excessive round off errors in numerical
calculations (in the user function), or not enough precision. This is unlikely in general, but becomes more likely if
the number of free parameters is very large, or if the parameters are badly scaled (not all of the same order of
magnitude), and correlations are large. In any case, whether the non-positive-definiteness is real or only
numerical is largely irrelevant, since in both cases the error matrix will be unreliable and the minimum
suspicious.

An Ill-posed Problem

For questions of parameter dependence, see the discussion above on positive-definiteness. Possible other
mathematical problems are the following:

 Excessive numerical round off - be especially careful of exponential and factorial functions which
get big very quickly and lose accuracy.

 Starting too far from the solution - the function may have unphysical local minima, especially at
infinity in some variables.

FUMILI Minimization Package
FUMILI is used to minimize Chi-square function or to search maximum of likelihood function. Experimentally

measured values
iF are fitted with theoretical functions),(

ii xf , where

ix

 are coordinates, and

 - vector

of parameters. For better convergence Chi-square function has to be the following form

n

i i

iii Fxf

1

2
2),(

2

1

2

where
i
 are errors of the measured function. The minimum condition is:

miFxf
f

jjj

i

j
n

j ji

...1 ,0),(
1

1
2

2

where m is the quantity of parameters. Expanding left part of this equation over parameter increments and

retaining only linear terms one gets

00
222

00

kk

k kii

here
0

 is some initial value of parameters. In general case:

ki

j
n

j j

jj

ki

jj
n

j jki

fFfff 2

1
2

1
2

22)(1

In FUMILI algorithm for second derivatives of Chi-square approximate expression is used when last term in
previous equation is discarded. It is often done, not always wittingly, and sometimes causes troubles, for

example, if user wants to limit parameters with positive values by writing down 2

i
 instead of

i
. FUMILI will

fail if one tries minimize)(22

g where g an arbitrary function is. Approximate value is:

k

j

i

j
n

j j

ik

ki

ff
z

1
2

22 1

76 Fitting Histograms

Then the equations for parameter increments are:

1...mi ,00
2

0 k

kkik

i

z

Remarkable feature of algorithm is the technique for step restriction. For an initial value of parameter 0

 a

parallelepiped
0P is built with the center at 0

 and axes parallel to coordinate axes

i
. The lengths of

parallelepiped sides along i -axis is
ib2 , where

ib is such a value that the functions)(

jf are quasi-linear

all over the parallelepiped. FUMILI takes into account simple linear inequalities in the form:
maxmin

iii

They form parallelepiped P (
0P may be deformed by P). Very similar step formulae are used in FUMILI for

negative logarithm of the likelihood function with the same idea - linearization of functional argument.

Neural Networks

Introduction

Neural Networks are used in various fields for data analysis and classification, both for research and
commercial institutions. Some randomly chosen examples are image analysis, financial movements‘ predictions
and analysis, or sales forecast and product shipping optimization. In particles physics neural networks are
mainly used for classification tasks (signal over background discrimination). A vast majority of commonly used
neural networks are multilayer perceptrons. This implementation of multilayer perceptrons is inspired from the

MLPfit package, which remains one of the fastest tools for neural networks studies.

The MLP

The multilayer perceptron is a simple feed-forward network with the following
structure showed on the left.

It is made of neurons characterized by a bias and weighted links in between - let's
call those links synapses. The input neurons receive the inputs, normalize them
and forward them to the first hidden layer. Each neuron in any subsequent layer
first computes a linear combination of the outputs of the previous layer. The output
of the neuron is then function of that combination with f being linear for output
neurons or a sigmoid for hidden layers.

Such a structure is very useful because of two theorems:

1. A linear combination of sigmoids can approximate any continuous function.

2. Trained with output=1 for the signal and 0 for the background, the approximated function of inputs X is the

probability of signal, knowing X.

Learning Methods

The aim of all learning methods is to minimize the total error on a set of weighted examples. The error is defined
as the sum in quadrate, divided by two, of the error on each individual output neuron. In all methods
implemented in this library, one needs to compute the first derivative of that error with respect to the weights.
Exploiting the well-known properties of the derivative, one can express this derivative as the product of the local
partial derivative by the weighted sum of the outputs derivatives (for a neuron) or as the product of the input
value with the local partial derivative of the output neuron (for a synapse). This computation is called "back-
propagation of the errors". Six learning methods are implemented.

Stochastic Minimization

This is the most trivial learning method. The Robbins-Monro stochastic approximation is applied to multilayer
perceptrons. The weights are updated after each example according to the formula:

The parameters for this method are Eta, EtaDecay, Delta and Epsilon.

Steepest Descent With Fixed Step Size (Batch Learning)

It is the same as the stochastic minimization, but the weights are updated after considering all the examples,

with the total derivative dEdw. The parameters for this method are Eta, EtaDecay, Delta and Epsilon.

 Fitting Histograms 77

Steepest Descent Algorithm

Weights are set to the minimum along the line defined by the gradient. The only parameter for this method is

Tau. Lower Tau = higher precision = slower search. A value Tau=3 seems reasonable.

Conjugate Gradients With the Polak-Ribiere Updating Formula

Weights are set to the minimum along the line defined by the conjugate gradient. Parameters are Tau and

Reset, which defines the epochs where the direction is reset to the steepest descent (estimated by using the

Polak-Ribiere formula).

Conjugate Gradients With the Fletcher-Reeves Updating Formula

Weights are set to the minimum along the line defined by the conjugate gradient. Parameters are Tau and

Reset, which defines the epochs where the direction is reset to the steepest descent (estimated by using the

Fletcher-Reeves formula).

The Broyden, Fletcher, Goldfarb, Shanno (BFGS) Method

It implies the computation of a NxN matrix, but seems more powerful at least for less than 300 weights.

Parameters are Tau and Reset, which defines the epochs where the direction is reset to the steepest descent.

Using the Network

Neural network are build from a set of "samples". A sample is a set of values defining the inputs and the
corresponding output that the network should ideally provide. In ROOT this is a TTree entry. The first thing to

be decided is the network layout. This layout is described in a string where the layers are separated by
semicolons. The input/output layers are defined by giving the expression for each neuron, separated by comas.
Hidden layers are just described by the number of neurons.

In addition, input and output layer formulas can be preceded by '@' (e.g. "@out") if one wants to normalize the

corresponding value. Also, if the string ends with '!', output neurons are set up for classification, i.e. with a

sigmoid (1 neuron) or softmax (more neurons) activation function.

Many questions on the good usage of neural network, including rules of dumb to determine the best network
topology are addressed at ftp://ftp.sas.com/pub/neural/FAQ.html

// a simple network: 2 inputs, 10 hidden and 1 normalized output neuron

TMultiLayerPerceptron network("r,z:10:@Br",tree);

Expressions are evaluated as for TTree::Draw(). Input and outputs are taken from the TTree associated

with the network. This TTree can be given as argument of the constructor or defined later with

TMultiLayerPerceptron::SetData(). Events can also be weighted. The weight expression can be given

in the constructor or set later with the method SetWeight() of the class TMultiLayerPerceptron. Two

datasets must be defined before learning the network: a training dataset that is used when minimizing the error,
and a test dataset that will avoid bias. Those two datasets can be build aside and then given to the network, or
can be build from a standard expression. By default, half of the events are put in both datasets.

// a more complex 4:8:1 network

// the ptsumf branch is used as weigh; default event lists are explicit

TMultiLayerPerceptron network("m,pt,acol,acopl:8:type","pt",tree,

 "Entry$%2","Entry$/2");

The method TMultiLayerPerceptron::SetLearningMethod() defines the learning method. Learning

methods are:

TMultiLayerPerceptron::kStochastic,

TMultiLayerPerceptron::kBatch,

TMultiLayerPerceptron::kSteepestDescent,

TMultiLayerPerceptron::kRibierePolak,

TMultiLayerPerceptron::kFletcherReeves,

TMultiLayerPerceptron::kBFGS // default

The training can start with TMultiLayerPerceptron::Train(Int_t nepoch,Option_t* options).

The first argument is the number of epochs while option is a string that can contain "text" (simple text output),

"graph" (evaluating graphical training curves), "update = X" (step for the text/graph output update) or "+" (will

skip the randomization and start from the previous values). All combinations are available.

network.Train(1000,"text,graph,update=10"); //full output every 10 epochs

network.Train(100,"text,+"); //100 more epochs

 //starts with existing weights

The weights can be saved to a file (DumpWeights) and then reloaded (LoadWeights) to a new compatible

network. The output can also be evaluated (Evaluate) for a given output neuron and an array of double input

ftp://ftp.sas.com/pub/neural/FAQ.html

78 Fitting Histograms

parameters or the network can be exported (Export) as a standalone code. Up to now, this is only as a C++ or

PYTHON class, but other languages could be implemented.

Examples

An example of how to use TMultiLayerPerceptron is the macro mlpHiggs.C in $ROOTSYS/tutorials.

Using some standard simulated information that could have been obtained at LEP, a neural network is build,

which can make the difference between WW events and events containing a Higgs boson. Starting with a TFile

containing two TTrees: one for the signal, the other for the background, a simple script is used:

void mlpHiggs(Int_t ntrain=100)

{ if (!gROOT->GetClass("TMultiLayerPerceptron"))

 gSystem->Load("libMLP");

 // prepare inputs - the 2 trees are merged into one, and a "type"

 // branch, equal to 1 for the signal and 0 for the background is added

 TFile input("mlpHiggs.root");

 TTree *signal = (TTree *)input.Get("sig_filtered");

 TTree *background = (TTree *)input.Get("bg_filtered");

 TTree *simu = new TTree("MonteCarlo","Filtered Monte Carlo Events");

 ...

Since the input is a TTree and we are starting from two different TTrees (with different names), they are first

merged into one, and a "type" branch is added, that says whether there is a signal or a background event.

Those irrelevant details are skipped here.

...

TMultiLayerPerceptron *mlp = new TMultiLayerPerceptron("msumf,ptsumf, acolin,

 acopl:8:type","ptsumf",simu,"Entry$%2","Entry$/2");

mlp->Train(ntrain, "text,graph,update=10");

The neural network is instantiated and trained. "ptsumf" is used as a weight, and the standard event lists are

explicit. The network that is then build has four input neurons, eight additional ones in the only hidden layer and
one single output neuron.

 // Use the NN to plot the results for each sample

 TH1F *bg = new TH1F("bgh","NN output",50,-.5,1.5);

 TH1F *sig = new TH1F("sigh","NN output",50,-.5,1.5);

 bg->SetDirectory(0);

 sig->SetDirectory(0);

 Double_t params[4];

 for (i = 0; i < background->GetEntries(); i++) {

 background->GetEntry(i);

 params[0] = msumf; params[1] = ptsumf;

 params[2] = acolin; params[3] = acopl;

 bg->Fill(mlp->Evaluate(0,params));

 }

 for (i = 0; i < signal->GetEntries(); i++) {

 signal->GetEntry(i);

 params[0] = msumf;

 params[1] = ptsumf;

 params[2] = acolin;

 params[3] = acopl;

 sig->Fill(mlp->Evaluate(0,params));

 }

 TCanvas *cv = new TCanvas("NNout_cv","Neural net output");

 bg->SetFillStyle(3008);

 bg->SetFillColor(kBlue);

 sig->SetFillStyle(3003);

 sig->SetFillColor(kRed);

 bg->SetStats(0);

 sig->SetStats(0);

 bg->Draw();

 sig->Draw("same");

 TLegend *legend = new TLegend(.75,.80,.95,.95);

 legend->AddEntry(bg,"Background(WW)");

 legend->AddEntry(sig,"Signal(Higgs)");

 legend->Draw();

The neural net output is then used to display the final difference between background and signal events. The
next figure shows this plot.

 Fitting Histograms 79

Figure 5-4 The neural net output

As it can be seen, this is a quite efficient technique. As mentioned earlier, neural networks are also used for
fitting function. For some application with a cylindrical symmetry, a magnetic field simulation gives as output the

angular component of the potential vector A, as well as the radial and z components of the B field.

One wants to fit those distributions with a function in order to plug them into the Geant simulation code.

Polynomial fits could be tried, but it seems difficult to reach the desired precision over the full range. One could

also use a spline interpolation between known points. In all cases, the resulting field would not be C-infinite.

An example of output (for Br) is shown. First the initial function can be seen as the target. Then, the resulting
(normalized) neural net output. In order to ease the learning, the "normalize output" was used here. The initial
amplitude can be recovered by multiplying by the original RMS and then shifting by the original mean.

Figure 5-5 The original and the neural net for Br

 A Little C++ 81

6 A Little C++

This chapter introduces you to some useful insights into C++, to allow you to use of the most advanced features
in ROOT. It is in no case a full course in C++.

Classes, Methods and Constructors
C++ extends C with the notion of class. If you‘re used to structures in C, a class is a struct that is a group of

related variables, which is extended with functions and routines specific to this structure (class). What is the

interest? Consider a struct that is defined this way:

struct Line {

 float x1;

 float y1;

 float x2;

 float y2; }

This structure represents a line to be drawn in a graphical window. (x1,y1) are the coordinates of the first

point, (x2,y2) the coordinates of the second point. In the standard C, if you want to draw effectively such a

line, you first have to define a structure and initialize the points (you can try this):

Line firstline;

firstline.x1 = 0.2;

firstline.y1 = 0.2;

firstline.x2 = 0.8;

firstline.y2 = 0.9;

This defines a line going from the point (0.2,0.2) to the point (0.8,0.9). To draw this line, you will have to

write a function, say LineDraw(Line l) and call it with your object as argument:

LineDraw(firstline);

In C++, we would not do that. We would instead define a class like this:

class TLine {

 Double_t x1;

 Double_t y1;

 Double_t x2;

 Double_t y2;

 TLine(int x1, int y1, int x2, int y2);

 void Draw();

}

Here we added two functions, that we will call methods or member functions, to the TLine class. The first

method is used for initializing the line objects we would build. It is called a constructor. The second one is the

Draw method itself. Therefore, to build and draw a line, we have to do:

TLine l(0.2,0.2,0.8,0.9);

l.Draw();

The first line builds the object l by calling its constructor. The second line calls the TLine::Draw() method of

this object. You don‘t need to pass any parameters to this method since it applies to the object l, which knows

the coordinates of the line. These are internal variables x1, y1, x2, y2 that were initialized by the constructor.

Inheritance and Data Encapsulation
We have defined a TLine class that contains everything necessary to draw a line. If we want to draw an arrow,

is it so different from drawing a line? We just have to draw a triangle at one end. It would be very inefficient to
define the class TArrow from scratch. Fortunately, inheritance allows a class to be defined from an existing

class. We would write something like:

class TArrow : public TLine {

 int ArrowHeadSize;

 void Draw();

 void SetArrowSize(int arrowsize); }

The keyword "public" will be explained later. The class TArrow now contains everything that the class TLine

does, and a couple of things more, the size of the arrowhead and a function that can change it. The Draw

82 A Little C++

method of TArrow will draw the head and call the draw method of TLine. We just have to write the code for

drawing the head!

Method Overriding

Giving the same name to a method (remember: method = member function of a class) in the child class
(TArrow) as in the parent (TLine) does not give any problem. This is called overriding a method. Draw in

TArrow overrides Draw in TLine. There is no possible ambiguity since, when one calls the Draw() method;

this applies to an object which type is known. Suppose we have an object l of type TLine and an object a of

type TArrow. When you want to draw the line, you do:

l.Draw()

Draw() from TLine is called. If you do:

a.Draw()

Draw() from TArrow is called and the arrow a is drawn.

Data Encapsulation

We have seen previously the keyword "public". This keyword means that every name declared public is seen

by the outside world. This is opposed to "private" that means only the class where the name was declared

private could see this name. For example, suppose we declare in TArrow the variable ArrowHeadSize

private.

private:

 int ArrowHeadSize;

Then, only the methods (i.e. member functions) of TArrow will be able to access this variable. Nobody else will

see it. Even the classes that we could derive from TArrow will not see it. On the other hand, if we declare the

method Draw() as public, everybody will be able to see it and use it. You see that the character public or

private does not depend of the type of argument. It can be a data member, a member function, or even a class.
For example, in the case of TArrow, the base class TLine is declared as public:

class TArrow : public TLine { ...

This means that all methods of TArrow will be able to access all methods of TLine, but this will be also true for

anybody in the outside world. Of course, this is true if TLine accepts the outside world to see its methods/data

members. If something is declared private in TLine, nobody will see it, not even TArrow members, even if

TLine is declared as a public base class.

What if TLine is declared "private" instead of "public"? Well, it will behave as any other name declared

private in TArrow: only the data members and methods of TArrow will be able to access TLine, its methods

and data members, nobody else. This may seem a little bit confusing and readers should read a good C++ book
if they want more details. Especially since, besides public and private, a member can be protected. Usually, one
puts private the methods that the class uses internally, like some utilities classes, and that the programmer does
not want to be seen in the outside world.

With "good" C++ practice (which we have tried to use in ROOT), all data members of a class are private. This is
called data encapsulation and is one of the strongest advantages of Object Oriented Programming (OOP).
Private data members of a class are not visible, except to the class itself. So, from the outside world, if one
wants to access those data members, one should use so called "getters" and "setters" methods, which are
special methods used only to get or set the data members. The advantage is that if the programmers want to
modify the inner workings of their classes, they can do so without changing what the user sees. The user does
not even have to know that something has changed (for the better, hopefully). For example, in our TArrow

class, we would have set the data member ArrowHeadSize private. The setter method is SetArrowSize(),

we do not need a getter method:

class TArrow : public TLine {

private:

 int ArrowHeadSize;

public:

 void Draw();

 void SetArrowSize(int arrowsize);

}

To define an arrow object you call the constructor. This will also call the constructor of TLine, which is the

parent class of TArrow, automatically. Then we can call any of the line or arrow public methods:

root[] TArrow *myarrow = new TArrow(1,5,89,124);

root[] myarrow->SetArrowSize(10);

root[] myarrow->Draw();

 A Little C++ 83

Creating Objects on the Stack and Heap
To explain how objects are created on the stack and on the heap we will use the Quad class. You can find the

definition in $ROOTSYS/tutorials/quadp/Quad.h and Quad.cxx. The Quad class has four methods. The

constructor and destructor, Evaluate that evaluates ax**2 + bx +c, and Solve which solves the quadratic

equation ax**2 + bx +c = 0.

Quad.h:

class Quad {

 public:

 Quad(Float_t a, Float_t b, Float_t c);

 ~Quad();

 Float_t Evaluate(Float_t x) const;

 void Solve() const;

 private:

 Float_t fA;

 Float_t fB;

 Float_t fC;

};

Quad.cxx:

#include <iostream.h>

#include <math.h>

#include "Quad.h"

Quad::Quad(Float_t a, Float_t b, Float_t c) {

 fA = a;

 fB = b;

 fC = c;

}

Quad::~Quad() {

 Cout <<"deleting object with coeffts: "<< fA << "," << fB << "," << fC << endl;

}

Float_t Quad::Evaluate(Float_t x) const {

 return fA*x*x + fB*x + fC;

}

void Quad::Solve() const {

 Float_t temp = fB*fB - 4.*fA*fC;

 if (temp > 0.) {

 temp = sqrt(temp);

 cout << "There are two roots: " << (-fB - temp) / (2.*fA)

 << " and " << (-fB + temp) / (2.*fA) << endl;

 } else {

 if (temp == 0.) {

 cout << "There are two equal roots: " << -fB / (2.*fA) << endl;

 } else {

 cout << "There are no roots" << endl;

 }

 }

}

Let us first look how we create an object. When we create an object by:

root[] Quad my_object(1.,2.,-3.);

We are creating an object on the stack. A FORTRAN programmer may be familiar with the idea; it is not unlike a
local variable in a function or subroutine. Although there are still a few old timers who do not know it, FORTRAN
is under no obligation to save local variables once the function or subroutine returns unless the SAVE statement
is used. If not then it is likely that FORTRAN will place them on the stack and they will "pop off" when the
RETURN statement is reached. To give an object more permanence it has to be placed on the heap.

root[] .L Quad.cxx

root[] Quad *my_objptr = new Quad(1.,2.,-3.);

The second line declares a pointer to Quad called my_objptr. From the syntax point of view, this is just like all

the other declarations we have seen so far, i.e. this is a stack variable. The value of the pointer is set equal to

new Quad(1.,2.,-3.);

new, despite its looks, is an operator and creates an object or variable of the type that comes next, Quad in this

case, on the heap. Just as with stack objects it has to be initialized by calling its constructor. The syntax
requires that the argument list follow the type. This one statement has brought two items into existence, one on
the heap and one on the stack. The heap object will live until the delete operator is applied to it.

84 A Little C++

There is no FORTRAN parallel to a heap object; variables either come or go as control passes in and out of a
function or subroutine, or, like a COMMON block variables, live for the lifetime of the program. However, most
people in HEP who use FORTRAN will have experience of a memory manager and the act of creating a bank is
a good equivalent of a heap object. For those who know systems like ZEBRA, it will come as a relief to learn
that objects do not move, C++ does not garbage collect, so there is never a danger that a pointer to an object
becomes invalid for that reason. However, having created an object, it is the user's responsibility to ensure that
it is deleted when no longer needed, or to pass that responsibility onto to some other object. Failing to do that
will result in a memory leak, one of the most common and most hard-to-find C++ bugs.

To send a message to an object via a pointer to it, you need to use the "->" operator e.g.:

root[] my_objptr->Solve();

Although we chose to call our pointer my_objptr, to emphasize that it is a pointer, heap objects are so

common in an object-oriented program that pointer names rarely reflect the fact - you have to be careful that
you know if you are dealing with an object or its pointer! Fortunately, the compiler won't tolerate an attempt to
do something like:

root[] my_objptr.Solve();

Although this is a permitted by the CINT shortcuts, it is one that you are strongly advised not to follow! As we
have seen, heap objects have to be accessed via pointers, whereas stack objects can be accessed directly.
They can also be accessed via pointers:

root[] Quad stack_quad(1.,2.,-3.);

root[] Quad *stack_ptr = &stack_quad;

root[] stack_ptr->Solve();

Here we have a Quad pointer that has been initialized with the address of a stack object. Be very careful if you

take the address of stack objects. As we shall see soon, they are deleted automatically, which could leave you
with an illegal pointer. Using it will corrupt and may well crash the program!

It is time to look at the destruction of objects. A destructor is a special C++ function that releases resources for
(or destroy) an object of a class. It is opposite of a constructor that create the object of a class when is called.
The compiler will provide a destructor that does nothing if none is provided. We will add one to our Quad class
so that we can see when it is called. The class names the destructor but with a prefix ~ which is the C++ one's
complement i.e. bit wise complement, and hence has destruction overtones! We declare it in the .h file and

define it in the .cxx file. It does not do much except print out that it has been called (still a useful debug

technique despite today's powerful debuggers!).

Now run root, load the Quad class and create a heap object:

root[] .L Quad.cxx

root[] Quad *my_objptr = new Quad(1.,2.,-3.);

To delete the object:

root[] delete my_objptr;

root[] my_objptr = 0;

You should see the print out from its destructor. Setting the pointer to zero afterwards is not strictly necessary
(and CINT does it automatically), but the object is no more accessible, and any attempt to use the pointer again
will, as has already been stated, cause grief. So much for heap objects, but how are stack objects deleted? In
C++, a stack object is deleted as soon as control leaves the innermost compound statement that encloses it.
Therefore, it is singularly futile to do something like:

root[] { Quad my_object(1.,2.,-3.); }

CINT does not follow this rule; if you type in the above line, you will not see the destructor message. As
explained in the Script lesson, you can load in compound statements, which would be a bit pointless if
everything disappeared as soon as it was loaded! Instead, to reset the stack you have to type:

root[] gROOT->Reset();

This sends the Reset message via the global pointer to the ROOT object, which, amongst its many roles, acts
as a resource manager. Start ROOT again and type in the following:

root[] .L Quad.cxx

root[] Quad my_object(1.,2.,-3.);

root[] Quad *my_objptr = new Quad(4.,5.,-6.);

root[] gROOT->Reset();

You will see that this deletes the first object but not the second. We have also painted ourselves into a corner,

as my_objptr was also on the stack. This command will fail.

root[] my_objptr->Solve();

CINT no longer knows what my_objptr is. This is a great example of a memory leak; the heap object exists

but we have lost our way to access it. In general, this is not a problem. If any object will outlive the compound
statement in which it was created then a more permanent pointer will point to it, which frequently is part of
another heap object. See Resetting the Interpreter Environment in the chapter ―CINT the C++ Interpreter‖.

 CINT the C++ Interpreter 85

7 CINT the C++ Interpreter

The subject of this chapter is CINT, ROOT command line interpreter and script processor. First, we explain
what CINT is and why ROOT uses it. Then we discuss CINT as the command line interpreter, the CINT
commands, and CINT extensions to C++ are discussed. CINT as the script interpreter is explained and
illustrated with several examples.

What is CINT?
CINT, which is pronounced ['sint], is a C++ interpreter. An interpreter takes a program, in this case a C++

program, and carries it out by examining each instruction and in turn executing the equivalent sequence of
machine language. For example, an interpreter translates and executes each statement in the body of a loop
"n" times. It does not generate a machine language program. This may not be a good example, because most
interpreters have become 'smart' about loop processing.

A compiler on the other hand, takes a program and makes a machine language executable. Once compiled the
execution is very fast, which makes a compiler best suited for the case of "built once, run many times". For
example, the ROOT executable is compiled occasionally and executed many times. It takes anywhere from 1 to
45 minutes to compile ROOT for the first time (depending on the CPU). Once compiled it runs very fast. On the
average, a compiled program runs roughly ten times faster than an interpreted one. Because compiling is slow,
using a compiler is cumbersome for rapid prototyping when one changes and rebuilds as often as once per
minute. An interpreter, on the other hand, is the perfect tool for code that changes often and runs a few times.
Most of the time, interpreters are built for scripting languages, such as JavaScript, IDL, or Python. These
languages are specifically designed to be interpreted rather than compiled. The advantage of using a normally
compiled language is that code can be compiled once the prototype is debugged and refined. CINT is a C++
interpreter, making it a tool for rapid prototyping and scripting in C++. It is a stand-alone product developed by

Masaharu Goto. Its executable comes with the standard distribution of ROOT ($ROOTSYS/bin/cint), and it

can be installed separately from http://root.cern.ch/twiki/bin/view/ROOT/CINT. This page also has links to all the
CINT documentation. The downloadable tar file contains documentation, the CINT executable, and many demo
scripts that are not included in the regular ROOT distribution. Here is the list of CINT main features:

 Supports K&R-C, ANSI-C, and ANSI-C++

 CINT covers 85-95% of the C++, ANSI-C and K&R-C language constructs. It supports multiple
inheritance, virtual function, function overloading, operator overloading, default parameters,
templates, and much more. CINT is robust enough to interpret its own source code. CINT is not
designed to be a 100% ANSI/ISO compliant C++ language processor. It is a portable scripting
language environment, which is close enough to the standard C++.

 Interprets Large C/C++ source code

 CINT can handle huge C/C++ source code, and loads source files quickly. It can interpret its own,
over 70,000 lines source code – more than 150,000 lines.

 Enables mixing Interpretation & Native Code

 Depending on the need for execution speed or the need for interaction, one can mix native code

execution and interpretation. "makecint" encapsulates arbitrary C/C++ objects as precompiled

libraries. A precompiled library can be configured as a dynamically linked library. Accessing
interpreted code and precompiled code can be done seamlessly in both directions.

 Provides a Single-Language solution

 CINT/makecint is a single-language environment. It works with any ANSI-C/C++ compiler to

provide the interpreter environment on top of it.

 Simplifies C++

 CINT is meant to bring C++ to the non-software professional. C++ is simpler to use in the
interpreter environment. It helps the non-software professional (the domain expert) to talk the
same language as the software counterpart.

 Provides RTTI and a Command Line

 CINT can process C++ statements from command line, dynamically define/erase class definition
and functions; load/unload source files and libraries. Extended Run Time Type Identification is
provided, allowing you to explore imaginative new ways of using C++.

 CINT has a built-in debugger for complex C++ code and a text based class browser is part of it.

 It is portable.

 CINT works on number of operating systems: HP-UX, Linux, SunOS, Solaris, AIX, Alpha-

OSF, IRIX, FreeBSD, NetBSD, NEC EWS4800, NewsOS, BeBox, WindowsNT, Windows9x, MS-

DOS, MacOS, VMS, NextStep, Convex.

http://root.cern.ch/twiki/bin/view/ROOT/CINT

86 CINT the C++ Interpreter

The ROOT Command Line Interface
Start up a ROOT session by typing root at the system prompt.

> root

 * *

 * W E L C O M E to R O O T *

 * *

 * Version 5.16/00 27 June 2007 *

 * *

 * You are welcome to visit our Web site *

 * http://root.cern.ch *

 * *

FreeType Engine v2.1.9 used to render TrueType fonts.

Compiled on 28 June 2007 for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.16.21, June 22, 2007

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root[0]

Now we create a TLine object:

root[] TLine l

root[] l.Print()

TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

root[] l.SetX1(10)

root[] l.SetY1(11)

root[] l.Print()

TLine X1=10.000000 Y1=11.000000 X2=0.000000 Y2=0.000000

root[] .g

...

0x4038f080 class TLine l , size=40

 0x0 protected: Double_t fX1 //X of 1st point

 0x0 protected: Double_t fY1 //Y of 1st point

 0x0 protected: Double_t fX2 //X of 2nd point

 0x0 protected: Double_t fY2 //Y of 2nd point

 0x0 private: static class TClass* fgIsA

Here we note:

 Terminating with ‗;‗ is not required, see ―ROOT/CINT Extensions to C++‖.

 Emacs style command line editing.

 Raw interpreter commands start with a dot (.).

root[] .class TLine

===

class TLine //A line segment

 size=0x38

(tagnum=289,voffset=-1,isabstract=0,parent=-1,gcomp=0:-1,d21=~cd=f7)

List of base class-------------------------------

0x0 public: TObject //Basic ROOT object

0xc public: TAttLine //Line attributes

List of member variable--------------------------

Defined in TLine

(compiled) 0x0 protected: Double_t fX1 //X of 1st point

(compiled) 0x0 protected: Double_t fY1 //Y of 1st point

(compiled) 0x0 protected: Double_t fX2 //X of 2nd point

(compiled) 0x0 protected: Double_t fY2 //Y of 2nd point

(compiled) 0x8a3a718 static const enum TLine:: kLineNDC

(compiled) 0x0 private: static TClass* fgIsA

List of member function--------------------------

filename line:size busy function type and name (in TLine)

(compiled) 0:0 0 public: virtual void ~TLine(void);

(compiled) 0:0 0 public: TLine TLine(void);

(compiled) 0:0 0 public: TLine TLine(Double_t x1,Double_t y1,Double_t x2,

 Double_t y2);

(compiled) 0:0 0 public: TLine TLine(const TLine& line);

(compiled) 0:0 0 public: virtual void Copy(TObject& line) const;

(compiled) 0:0 0 public: virtual Int_t DistancetoPrimitive(Int_t px,Int_t py);

...

 CINT the C++ Interpreter 87

(compiled) 0:0 0 public: static int ImplFileLine(void);

(compiled) 0:0 0 public: static const char* ImplFileName(void);

(compiled) 0:0 0 public: static int DeclFileLine(void);

(compiled) 0:0 0 public:TLine& operator=(const TLine&);

root[] l.Print(); > test.log

root[] l.Dump(); >> test.log

root[] ?

Here we see:

 Use .class as quick help and reference

 Unix like I/O redirection (; is required before >)

 Use ? to get help on all ‗‗raw'' interpreter commands

 Use @ to abort a multi-line command

Now let us execute a multi-line command:

root[] {

end with '}', '@':abort > TLine l;

end with '}', '@':abort > for (int i = 0; i < 5; i++) {

end with '}', '@':abort > l.SetX1(i);

end with '}', '@':abort > l.SetY1(i+1);

end with '}', '@':abort > l.Print();

end with '}', '@':abort > }

end with '}', '@':abort > }

TLine X1=0.000000 Y1=1.000000 X2=0.000000 Y2=0.000000

TLine X1=1.000000 Y1=2.000000 X2=0.000000 Y2=0.000000

TLine X1=2.000000 Y1=3.000000 X2=0.000000 Y2=0.000000

TLine X1=3.000000 Y1=4.000000 X2=0.000000 Y2=0.000000

TLine X1=4.000000 Y1=5.000000 X2=0.000000 Y2=0.000000

root[] .q

Here we note:

 A multi-line command starts with a { and ends with a }.

 Every line has to be correctly terminated with a ; (like in "real'' C++).

 All objects are created in global scope.

 There is no way to back up; you are better off writing a script.

 Use .q to exit root.

The ROOT Script Processor
ROOT script files contain pure C++ code. They can contain a simple sequence of statements like in the multi
command line example given above, but also arbitrarily complex class and function definitions.

Un-named Scripts

Let us start with a script containing a simple list of statements (like the multi-command line example given in the
previous section). This type of script must start with a { and end with a } and is called an un-named script.

Assume the file is called script1.C

{

#include <iostream.h>

 cout << " Hello" << endl;

 float x = 3.;

 float y = 5.;

 int i = 101;

 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;

}

To execute the stream of statements in script1.C do:

root[] .x script1.C

This loads the contents of file script1.C and executes all statements in the interpreter's global scope. One

can re-execute the statements by re-issuing ".x script1.C" (since there is no function entry point). Scripts

are searched for in the Root.MacroPath as defined in your .rootrc file. To check which script is being

executed use:

root[] .which script1.C

/home/rdm/root/./script1.C

88 CINT the C++ Interpreter

Named Scripts

Let us change the un-named script to a named script. Copy the file script1.C to script2.C and add a

function statement:

#include <iostream.h>

int run()

{

 cout << " Hello" << endl;

 float x = 3.;

 float y = 5.;

 int i= 101;

 cout <<" x = "<< x <<" y = "<< y <<" i = "<< i << endl;

 return 0;

}

Notice that no surrounding {} are required in this case. To execute function run() in script2.C do:

root[] .L script2.C // load script in memory

root[] run() // execute entry point run

 Hello

 x = 3 y = 5 i = 101

(int)0

root[] run() // execute run() again

 Hello

 x = 3 y = 5 i = 101

(int)0

root[] .func // list all functions known by CINT

filename line:size busy function type and name

...

script2.C 4:9 0 public: int run();

The last command shows that run() has been loaded from file script2.C, that the function run() starts on

line 4 and is 9 lines long. Notice that once a function has been loaded it becomes part of the system just like a

compiled function. Now we copy the file script2.C to the script3.C and change the function name from

run() to script3(int j = 10):

#include <iostream.h>

int script3(int j = 10) {

 cout << " Hello" << endl;

 float x = 3.;

 float y = 5.;

 int i = j;

 cout <<" x = "<< x <<", y = "<< y <<", i = "<< i << endl;

 return 0;

}

To execute script3() in script3.C type:

root[] .x script3.C(8)

This loads the contents of file script3.C and executes entry point script3(8). Note that the above only

works when the filename (minus extension) and function entry point are both the same.

The function script3() can still be executed multiple times:

root[] script3()

 Hello

 x = 3, y = 5, i = 10

(int)0

root[] script3(33)

 Hello

 x = 3, y = 5, i = 33

(int)0

In a named script, the objects created on the stack are deleted when the function exits. For example, this
scenario is very common. You create a histogram in a named script on the stack. You draw the histogram, but
when the function exits the canvas is empty and the histogram disappeared. To avoid histogram from
disappearing you can create it on the heap (by using new). This will leave the histogram object intact, but the
pointer in the named script scope will be deleted. Since histograms (and trees) are added to the list of objects in
the current directory, you can always retrieve them to delete them if needed.

root[] TH1F *h = (TH1F*)gDirectory->Get("myHist"); // or

root[] TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

 CINT the C++ Interpreter 89

In addition, histograms and trees are automatically deleted when the current directory is closed. This will
automatically take care of the clean up. See ―Input/Output‖.

Executing a Script from a Script

You may want to execute a script conditionally inside another script. To do it you need to call the interpreter and
you can do that with TROOT::ProcessLine(). The example $ROOTSYS/tutorials/tree/cernstaff.C

calls a script to build the root file if it does not exist:

void cernstaff() {

 if (gSystem->AccessPathName("cernstaff.root")) {

 gROOT->ProcessLine(".x cernbuild.C");

 }

ProcessLine takes a parameter, which is a pointer to an int or to a TInterpreter::EErrorCode to let

you access the CINT error code after an attempt to interpret. This will contain the CINT error as defined in enum

TInterpreter::EErrorCode.

Resetting the Interpreter Environment
Variables created on the command line and in un-named scripts are in the interpreter's global scope, which
makes the variables created in un-named scripts available on the command line event after the script is done
executing. This is the opposite of a named script where the stack variables are deleted when the function in
which they are defined has finished execution.

When running an un-named script over again and this is frequently the case since un-named scripts are used to
prototype, one should reset the global environment to clear the variables. This is done by calling

gROOT->Reset(). It is good practice, and you will see this in the examples, to begin an un-named script with

gROOT->Reset(). It clears the global scope to the state just before executing the previous script (not including

any logon scripts). The gROOT->Reset() calls the destructor of the objects if the object was created on the

stack. If the object was created on the heap (via new) it is not deleted, but the variable is no longer associated

with it. Creating variables on the heap in un-named scripts and calling gROOT->Reset() without you calling

the destructor explicitly will cause a memory leak. This may be surprising, but it follows the scope rules. For
example, creating an object on the heap in a function (in a named script) without explicitly deleting it will also
cause a memory leak. Since when exiting the function only the stack variables are deleted. The code below

shows gROOT->Reset() calling the destructor for the stack variable, but not for the heap variable. In the end,

neither variable is available, but the memory for the heap variable is not released. Here is an example:

root[] gDebug = 1

(const int)1

root[] TFile stackVar("stack.root","RECREATE")

TKey Writing 86 bytes at address 64 for ID= stack.root Title=

root[] TFile *heapVar = new TFile("heap.root","RECREATE")

TKey Writing 84 bytes at address 64 for ID= heap.root Title=

We turn on Debug to see what the subsequent calls are doing. Then we create two variables, one on the stack

and one on the heap.

root[] gROOT->Reset()

TKey Writing 48 bytes at address 150 for ID= stack.root Title=

TKey Writing 54 bytes at address 198 for ID= stack.root Title=

TFile dtor called for stack.root

TDirectory dtor called for stack.root

When we call gROOT->Reset(), CINT tells us that the destructor is called for the stack variable, but it does not

mention the heap variable.

root[] stackVar

Error: No symbol stackVar in current scope FILE:/var/tmp/faaa01jWe_cint LINE:1

*** Interpreter error recovered ***

root[] heapVar

Error: No symbol heapVar in current scope FILE:/var/tmp/gaaa01jWe_cint LINE:1

*** Interpreter error recovered ***

Neither variable is available in after the call to reset.

root[] gROOT->FindObject("stack.root")

(class TObject*)0x0

root[] gROOT->FindObject("heap.root")

(class TObject*)0x106bfb30

The object on the stack is deleted and shows a null pointer when we do a FindObject. However, the heap

object is still around and taking up memory.

Note gROOT->Reset() should be never called in a named script or a compiled program.

90 CINT the C++ Interpreter

A Script Containing a Class Definition
Lets create a small class TMyClass and a derived class TChild. The virtual method TMyClass::Print() is

overridden in TChild. Save this in file called script4.C.

#include <iostream.h>

class TMyClass {

private:

 float fX; //x position in centimeters

 float fY; //y position in centimeters

public:

 TMyClass() { fX = fY = -1; }

 virtual void Print() const;

 void SetX(float x) { fX = x; }

 void SetY(float y) { fY = y; }

};

void TMyClass::Print() const // parent print method

{

 cout << "fX = " << fX << ", fY = " << fY << endl;

}

class TChild : public TMyClass {

public:

 void Print() const;

};

void TChild::Print() const // child print metod

{

 cout << "This is TChild::Print()" << endl;

 TMyClass::Print();

}

To execute script4.C do:

root[] .L script4.C

root[] TMyClass *a = new TChild

root[] a->Print()

This is TChild::Print()

fX = -1, fY = -1

root[] a->SetX(10)

root[] a->SetY(12)

root[] a->Print()

This is TChild::Print()

fX = 10, fY = 12

root[] .class TMyClass

===

class TMyClass

 size=0x8 FILE:script4.C LINE:3

List of base class-----------------------------------

List of member variable------------------------------

Defined in TMyClass

0x0 private: float fX

0x4 private: float fY

List of member function------------------------------

Defined in TMyClass

filename line:size busy function type and name

script4.C 16:5 0 public: class TMyClass TMyClass(void);

script4.C 22:4 0 public: void Print(void);

script4.C 12:1 0 public: void SetX(float x);

script4.C 13:1 0 public: void SetY(float y);

root[] .q

As you can see, an interpreted class behaves just like a compiled class.

There are some limitations for a class created in a script:

 They cannot inherit from TObject. Currently the interpreter cannot patch the virtual table of

compiled objects to reference interpreted objects.

 Because the I/O is encapsulated in TObject and a class defined in a script cannot inherit from

TObject, it cannot be written to a ROOT file.

See ―Adding a Class‖ for ways how to add a class with a shared library and with ACLiC.

 CINT the C++ Interpreter 91

Debugging Scripts
A powerful feature of CINT is the ability to debug interpreted functions by means of setting breakpoints and

being able to single step through the code and print variable values on the way. Assume we have script4.C

still loaded, we can then do:

root[] .b TChild::Print

Break point set to line 26 script4.C

root[] a.Print()

26 TChild::Print() const

27 {

28 cout << "This is TChild::Print()" << endl;

FILE:script4.C LINE:28 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i) {return(endl(ostr));

FILE:iostream.h LINE:311 cint> .s

}

This is TChild::Print()

29 MyClass::Print();

FILE:script4.C LINE:29 cint> .s

16 MyClass::Print() const

17 {

18 cout << "fX = " << fX << ", fY = " << fY << endl;

FILE:script4.C LINE:18 cint> .p fX

(float)1.000000000000e+01

FILE:script4.C LINE:18 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i) {return(endl(ostr));

FILE:iostream.h LINE:311 cint> .s

}

fX = 10, fY = 12

19 }

30 }

2 }

root[] .q

Inspecting Objects
An object of a class inheriting from TObject can be inspected, with the Inspect() method. The

TObject::Inspect method creates a window listing the current values of the objects members. For example,

the next picture is of TFile.

root[] TFile f("staff.root")

root[] f.Inspect()

You can see the pointers are in red and can be clicked on to follow the pointer to the object. If you clicked on

fList, the list of objects in memory and there were none, no new canvas would be shown. On top of the page

are the navigation buttons to see the previous and next screen.

92 CINT the C++ Interpreter

Figure 7-1 ROOT object inspector of TFile

Figure 7-2 The object inspector of fKeys, the list of keys in the memory

ROOT/CINT Extensions to C++
In the next example, we demonstrate three of the most important extensions ROOT/CINT makes to C++. Start

ROOT in the directory $ROOTSYS/tutorials (make sure to have first run ".x hsimple.C"):

root[] f = new TFile("hsimple.root")

(class TFile*)0x4045e690

root[] f.ls()

TFile** hsimple.root

 TFile* hsimple.root

 KEY: TH1F hpx;1 This is the px distribution

 KEY: TH2F hpxpy;1 py ps px

 KEY: THProfile hprof;1 Profile of pz versus px

KEY: TNtuple ntuple;1 Demo ntuple

root[] hpx.Draw()

NULL

Warning in <MakeDefCanvas>: creating a default canvas with name c1

root[] .q

 CINT the C++ Interpreter 93

The first command shows the first extension; the declaration of f may be omitted when "new" is used. CINT will

correctly create f as pointer to object of class TFile.

The second extension is shown in the second command. Although f is a pointer to TFile we don't have to use

the pointer de-referencing syntax "->" but can use the simple "." notation.

The third extension is more important. In case CINT cannot find an object being referenced, it will ask ROOT to
search for an object with an identical name in the search path defined by TROOT::FindObject(). If ROOT

finds the object, it returns CINT a pointer to this object and a pointer to its class definition and CINT will execute
the requested member function. This shortcut is quite natural for an interactive system and saves much typing.

In this example, ROOT searches for hpx and finds it in simple.root.

The fourth is shown below. There is no need to put a semicolon at the end of a line. The difference between
having it and leaving it off is that when you leave it off the return value of the command will be printed on the
next line. For example:

root[] 23+5 // no semicolon prints the return value

(int)28

root[] 23+5; // semicolon no return value is printed

root[]

Be aware that these extensions do not work when a compiler replaces the interpreter. Your code will not
compile, hence when writing large scripts, it is best to stay away from these shortcuts. It will save you from
having problems compiling your scripts using a real C++ compiler.

ACLiC - The Automatic Compiler of Libraries for CINT

Instead of having CINT interpret your script there is a way to have your scripts compiled, linked and dynamically
loaded using the C++ compiler and linker. The advantage of this is that your scripts will run with the speed of
compiled C++ and that you can use language constructs that are not fully supported by CINT. On the other
hand, you cannot use any CINT shortcuts (see ROOT/CINT Extensions to C++) and for small scripts, the
overhead of the compile/link cycle might be larger than just executing the script in the interpreter.

ACLiC will build a CINT dictionary and a shared library from your C++ script, using the compiler and the

compiler options that were used to compile the ROOT executable. You do not have to write a makefile

remembering the correct compiler options, and you do not have to exit ROOT.

Usage

Before you can compile your interpreted script you need to add include statements for the classes used in the
script. Once you did that, you can build and load a shared library containing your script. To load it use the
command .L and append the file name with a "+".

root[] .L MyScript.C+

root[] .files

…

*file="/home/./MyScript_C.so"

The + option generates the shared library and names it by taking the name of the file "filename" but replacing
the dot before the extension by an underscore and by adding the shared library extension for the current

platform. For example on most platforms, hsimple.cxx will generate hsimple_cxx.so. If we execute a

.files command we can see the newly created shared library is in the list of loaded files.

The + command rebuild the library only if the script or any of the files it includes are newer than the library.
When checking the timestamp, ACLiC generates a dependency file which name is the same as the library

name, just replacing the 'so' extension by the extension ‘d‘. For example on most platforms, hsimple.cxx will

generate hsimple_cxx.d.

To ensure that the shared library is rebuilt you can use the ++ syntax:

root[] .L MyScript.C++

To build, load, and execute the function with the same name as the file you can use the .x command. This is

the same as executing a named script. You can have parameters and use .x or .X. The only difference is you

need to append a + or a ++.

root[] .x MyScript.C+ (4000)

Creating shared library /home/./MyScript_C.so

You can select whether the script in compiled with debug symbol or with optimization by appending the letter 'g'
or 'O' after the '+' or '++'. Without the specification, the script is compiled with the same level of debugging
symbol and optimization as the currently running ROOT executable. For example:

root[] .L MyScript.C++g

will compile MyScript.C with debug symbols; usually this means giving the -g option to compiler.

94 CINT the C++ Interpreter

root[] .L MyScript.C++O

will compile MyScript.C with optimizations; usually this means giving the -O option to compiler. The syntax:

root[] .L MyScript.C++

is using the default optimization level. The initial default is to compile with the same level of optimization as the
root executable itself. The default can be changed by:

root[] gSystem->SetAclicMode(TSystem::kDebug);

root[] gSystem->SetAclicMode(TSystem::kOpt);

Note that the commands:

root[] .L MyScript.C+g

root[] .L MyScript.C+O

respectively compile MyScript.C with debug and optimization if the library does not exist yet; they will not

change the debug and the optimization level if the library already exist and it is up to date. To use ACLiC from
compiled code or from inside another macro, we recommend using the ProcessLine() method of TROOT.

For example, in one script you can use ACLiC to compile and load another script.

gROOT->ProcessLine(".L MyScript.C+")

gROOT->ProcessLine(".L MyScript.C++")

Setting the Include Path

You can get the include path by typing:

root[] .include

You can append to the include path by typing:

root[] .include $HOME/mypackage/include

In a script you can append to the include path:

gSystem->AddIncludePath(" -I$HOME/mypackage/include ")

You can also overwrite the existing include path:

gSystem->SetIncludePath(" -I$HOME/mypackage/include ")

The $ROOTSYS/include directory is automatically appended to the include path, so you do not have to worry

about including it. To add library that should be used during linking of the shared library use something like:

gSystem->AddtLinkedLibs("-L/my/path -lanylib");

This is especially useful for static libraries. For shared ones you can also simply load them before trying to
compile the script:

gSystem->Load("mydir/mylib");

ACLiC uses the directive fMakeSharedLibs to create the shared library. If loading the shared library fails, it

tries to output a list of missing symbols by creating an executable (on some platforms like OSF, this does not

HAVE to be an executable) containing the script. It uses the directive fMakeExe to do so. For both directives,

before passing them to TSystem::Exec(), it expands the variables $SourceFiles, $SharedLib,

$LibName, $IncludePath, $LinkedLibs, $ExeName and $ObjectFiles. See SetMakeSharedLib()

for more information on those variables. When the file being passed to ACLiC is on a read only file system,
ACLiC warns the user and creates the library in a temporary directory:

root[] .L readonly/t.C++

Warning in <ACLiC>: /scratch/aclic/subs/./readonly is not writeable!

Warning in <ACLiC>: Output will be written to /tmp

Info in <TUnixSystem::ACLiC>: creating shared library

/tmp//scratch/aclic/subs/./readonly/t_C.so

To select the temporary directory ACLiC looks at $TEMP, $TEMP_DIR, $TEMPDIR, $TMP, $TMPDIR, $TMP_DIR

or uses /tmp (or C:/). Also, a new interface TSystem::Get/SetBuildDir is introduced to let users

select an alternative 'root' for building of the ACLiC libraries. For filename/full/path/name/macro.C, the

library is created as fBuildDir/full/path/name/macro_C.so.

Dictionary Generation

You can direct what is added to the dictionary generated by ACLiC in two ways. The simplest way is to add at
the end of script (i.e. after the symbols have been defined) something like:

#if defined(__MAKECINT__)

#pragma link C++ class MyOtherClass;

#endif

 CINT the C++ Interpreter 95

You can also write this portion of code in a file name MyScript_linkdef.h where the suffix '_linkdef' is

the prefix defined by the key „ACLiC.Linkdef‗ in the currently used resource file (usually .rootrc or

$ROOTSYS/etc/system.rootrc) and the prefix is the name of your script.

In ROOT 3.05/03 and above, the default behavior of rootcint is to not link in (i.e. generate the dictionary for)

any of the symbols. In particular, this means that the following lines are now, in the general case, unnecessary.

#pragma link off all globals;

#pragma link off all classes;

#pragma link off all functions;

This also means that linking the instantiation of a class template:

#pragma link C++ class mytemplate<int>;

ONLY links this specific class. In previous versions of ROOT, depending on many factors, this might also have

included the linking of many other instantiation of class template used directly or indirectly by 'mytemplate'.

A typical case would have been to rely on:

#pragma link C++ class vector<MyClass>;

to also induce the generation of the iterators. You now need to request them explicitly. Another advantage of

the change is that now, if you omit the 'pragma link off' line from your linkdef file, you can actually sprinkle the

'pragma link C++ class' across as many of you header as file as you need.

See the documentation of rootcint for details how pragma can be used.

NOTE: You should not call ACLiC with a script that has a function called main(). When ACLiC calls rootcint

with a function called main it tries to add every symbol it finds while parsing the script and the header files to

the dictionary. This includes the system header files and the ROOT header files. It will result in duplicate entries
at best and crashes at worst, because some classes in ROOT need special attention before they can be added
to the dictionary.

Intermediate Steps and Files

ACLiC executes two steps and a third one if needed. These are:

 Calling rootcint to create a CINT dictionary. rootcint is a ROOT specific version of

makecint, CINT generic dictionary generator.

 Calling the compiler to build the shared library from the script

 If there are errors, it calls the compiler to build a dummy executable to report clearly unresolved
symbols.

ACLiC makes a shared library with a CINT dictionary containing the classes and functions declared in the script.
It also adds the classes and functions declared in included files with the same name as the script file and any of

the following extensions: .h, .hh, .hpp, .hxx, .hPP, .hXX. This means that, by default, you cannot combine

scripts from different files into one library by using #include statements; you will need to compile each script

separately. In a future release, we plan to add the global variables declared in the script to the dictionary also. If

you are curious about the specific calls, you can raise the ROOT debug level: gDebug=3 and ACLiC will print

these steps. If you need to keep the intermediate files around, for example when debugging the script using

gdb, use gDebug=7.

Moving between Interpreter and Compiler

The best way to develop portable scripts is to make sure you can always run them with both, the interpreter and
with ACLiC. To do so, do not use the CINT extensions and program around the CINT limitations. When it is not
possible or desirable to program around the CINT limitations, you can use the C preprocessor symbols defined

for CINT and rootcint.

The preprocessor symbol __CINT__ is defined for both CINT and rootcint. The symbol __MAKECINT__ is

only defined in rootcint.

Use !defined(__CINT__) || defined(__MAKECINT__) to bracket code that needs to be seen by the

compiler and rootcint, but will be invisible to the interpreter.

Use !defined(__CINT__) to bracket code that should be seen only by the compiler and not by CINT or

rootcint. For example, the following will hide the declaration and initialization of the array gArray from both

CINT and rootcint.

#if !defined(__CINT__)

int gArray[] = { 2, 3, 4};

#endif

Because ACLiC calls rootcint to build a dictionary, the declaration of gArray will not be included in the

dictionary, and consequently, gArray will not be available at the command line even if ACLiC is used. CINT

and rootcint will ignore all statements between the "#if !defined (__CINT__)" and "#endif". If you

96 CINT the C++ Interpreter

want to use gArray in the same script as its declaration, you can do so. However, if you want use the script in

the interpreter you have to bracket the usage of gArray between #if's, since the definition is not visible. If

you add the following preprocessor statements:

#if !defined(__CINT__)

int gArray[] = { 2, 3, 4};

#elif defined(__MAKECINT__)

int gArray[];

#endif

gArray will be visible to rootcint but still not visible to CINT. If you use ACLiC, gArray will be available at

the command line and be initialized properly by the compiled code.

We recommend you always write scripts with the needed include statements. In most cases, the script will still
run with the interpreter. However, a few header files are not handled very well by CINT.

These types of headers can be included in interpreted and compiled mode:

 The subset of standard C/C++ headers defined in $ROOTSYS/cint/include.

 Headers of classes defined in a previously loaded library (including ROOT own). The defined

class must have a name known to ROOT (i.e. a class with a ClassDef).

A few headers will cause problems when they are included in interpreter mode, because the interpreter itself
already includes them. In general, the interpreter needs to know whether to use the interpreted or compiled
version. The mode of the definition needs to match the mode of the reference.

Here are the cases that need to be excluded in interpreted mode, but included for rootcint. Bracket these

with: !defined(__CINT__) || defined(__MAKECINT__)

 All CINT headers, see $ROOTSYS/cint/inc

 Headers with classes named other than the file name. For example Rtypes.h and

GuiTypes.h.

 Headers with a class defined in libraries before the library is loaded. For example: having

#include "TLorentzVector.h before gSystem->Load("libPhysics"). This will also

cause problems when compiling the script, but a clear error message will be given. With the

interpreter, it may core dump. Bracket these type of include statements with #if !defined

(__CINT__), this will print an error in both modes.

Hiding header files from rootcint that are necessary for the compiler but optional for the interpreter can lead

to a subtle but fatal error. For example:

#ifndef __CINT__

#include "TTree.h"

#else

class TTree;

#endif

class subTree : public TTree {

};

In this case, rootcint does not have enough information about the TTree class to produce the correct

dictionary file. If you try this, rootcint and compiling will be error free, however, instantiating a subTree

object from the CINT command line will cause a fatal error. In general, it is recommended to let rootcint see

as many header files as possible.

Reflex
Reflection is the ability of a programming language to introspect its data structures and interact with them at
runtime without prior knowledge. Reflex provides reflection capabilities for C++. With the ROOT v5.08, Reflex is
an optional package. It will become a mandatory package (loaded by default) with the next ROOT versions. In

order to build it you have to ./configure --enable-reflex

Overview

Inside ROOT Reflex is thought to replace the current reflection system, which is inherent to CINT. This is an
ongoing work and not part of this release. Nevertheless, Reflex dictionaries can be used inside ROOT while
populating the current CINT data structures via a special gateway called Cintex (see ―Cintex‖).

In order to use reflection a dictionary of the data structures involved has to be generated. Before generating the
dictionaries, the source code has to be parsed and the information extracted. In the ROOT environment, there
are two ways to generate dictionaries for the Reflex library.

 Using CINT as a source code parser - the command to issue when using CINT for parsing C++
constructs is:

rootcint -reflex -f module/src/G__Module.cxx -c module/inc/TMod1.h

 CINT the C++ Interpreter 97

 module/inc/TMod2.h module/inc/Linkdef.h

 Using the gcc compiler as a source code parser: With this option a special program called

"gccxml" has to be installed. This program is an extension to gcc and produces xml code out of

parsed C++ definitions which will be further used to generate the proper dictionary source code

via a python script. For parsing C++ constructs using the gcc compiler the command will be:

rootcint -gccxml -f module/src/G__Module.cxx -c module/inc/TMod1.h

 module/inc/TMod2.h module/inc/Linkdef.h

Note: an installation of Python and gccxml is required for using this option.

GCCXML Installation

Gccxml is a front-end to the gcc compiler suite, which generates xml code out of parsed C++ definitions.
Gccxml needs to be installed in order to use this option. Now we are using a patched version of gccxml release
0.6.0 called (0.6.0_patch3). This installation can be downloaded from http://spi.cern.ch/lcgsoft/.

Once the dictionary sources have been generated, they can be compiled into a library and loaded via the Reflex
builder system. The dictionary information can be used via the Reflex API. For this purpose, Reflex provides
eight classes, which exploit the whole functionality of the system.

Reflex API

Reflex offers a simple yet powerful API to access Reflex reflection database. The following classes are defined
in the namespace ROOT::Reflex and documented at http://root.cern.ch/root/html/REFLEX_Index.html.

An object is an abstraction of a user object. It contains the information about its type and it is location in
memory.

Type is an abstraction of a C++ type. Types in Reflex are:

 Array

 Class/struct

 Templated class/struct

 Enum

 Function

 Fundamental

 Pointer

 Pointer to member

 Typedef

 Union

A scope is an abstraction of a C++ type. It holds information such as its declaring scope, it is underlying scope

and it is data/function members. Scopes are:

 Namespace

 Class/Struct

 Templated class/struct

 Union

 Enum

A member lives inside a scope and is of a given Type. Members can be distinguished as:

 DataMember

 FunctionMember

 Templated member

Base holds the information about the inheritance structure of classes. It contains information such as the offset
to the base class and the type of the base class.

Properties are key/value pairs where the key is a string and the value an Any object (Boost::Any). Any objects
can hold any type of information be it a string, int or any arbitrary object. Properties can be attached to Types,
Scopes and Members and hold any kind of information that is not specific to C++. Examples for Properties
would be the class author, a description of a member or the class id.

A MemberTemplate is an abstraction of a templated member. It holds the information about its template
parameters and a list of its instantiations.

A TypeTemplate is an abstraction of a templated type (e.g. class). It holds the same information as the
MemberTemplate (e.g. template parameters, list of instantiations)

The Reflex package lives in the namespace ROOT::Reflex. Below some examples of usage of the package

are given. For further information please see the documentation of the different API classes.

http://spi.cern.ch/lcgsoft/
http://root.cern.ch/root/html/REFLEX_Index.html

98 CINT the C++ Interpreter

The next examples will refer to the example class MyClass:

class MyClass {

public:

 MyClass() : fMem1(47), fMem2("foo") { }

 int GetMem1() { return fMem1; }

 int GetMem1(int i) { return fMem1*i; }

 void SetMem1(int i) { fMem1 = i; }

 std::string GetMem2() { return fMem2; }

 void SetMem2(const std::string & str) { fMem2 = str; }

private:

 int fMem1;

 std::string fMem2;

};

The first thing after loading a dictionary (which is done at the moment at the same time as the implemenation
library), will be to look up a certain Type or Scope.

Type t1 = Type::ByName("MyClass");

Every API class provides the operator bool, which will return true if the information retrieved for this

instance is valid and further actions on this instance can be taken.

if (t1) {

 if (t1.IsClass()) std::cout << "Class ";

 std::cout << t1.Name();

}

As a class is also a scope (as enum and union) we can now also iterate over its members. This can be done
either with stl like iterators or with an iteration by number:

For (Member_Iterator mi = t1.DataMember_Begin(); mi != DataMember_End(); ++mi) {

 std::cout << (*mi).Name(SCOPED) << " " << (*mi).TypeOf().Name(QUALIFIED);

}

Member m;

for (size_t i = 0; i < t1.FunctionMemberSize(); ++i) {

 m = t1.FunctionMemberAt(i);

 std::cout << m.Name() << " " << m.TypeOf().Name();

 for (Type_Iterator ti = m.FunctionParaeter_Begin(); ti !=

 m.FunctionParameter_End(); ++ti) {

 std::cout << (*ti).Name() << std::endl;

 }

}

It is not only possible to introspect information through Reflex but also take actions. E.g. instantiate
classes/structs, invoke functions, set data members, etc. The instantiation of a type which represents a class
struct can be done with:

Object o1 = t1.Construct();

which will call the default constructor for this type and allocate the memory for this type inside the Object. The
Object will also contain the type information constructed.

Now the object of a certain type has been constructed one may interact with it. E.g. getting the value of a data
member can be done via which will return an Object of the data member in question.

Object mem_obj = o1.Get("fMem1");

int real_value = 0;

if (mem_obj.TypeOf().Name() == "int)

 int real_value = Object_Cast<int>(mem_obj);

It is also possible to invoke function members via the Object class. A function member can be looked up by
name, if the member is overloaded an additional parameter which is the string representation of the type can be
passed. Currently parameters for the function to invoke shall be passed as a vector of memory addresses of the
parameters. This may change in the future to pass a vector of Objects.

int par1 = 2;

std::vector<void*> parVec;

parVec.push_back(&par1);

int ret_val = Object_Cast<int>(o1.Invoke("GetMem1","int (int)",parVec));

Calling the destructor of an Object can be done via, this will call both the destructor and of the object type and
deallocate the memory.

o1.Destruct();

 CINT the C++ Interpreter 99

Cintex

Cintex is an optional package inside ROOT. In order to build it you have to

./configure --enable-cintex at the ROOT configuration step.

The purpose of the Cintex package is to bridge uni-directional information from the Reflex to the CINT dictionary
system. This package will be needed as long as the unification of the Reflex and CINT dictionaries has not been
completed. This unification is work ongoing. In order to use Cintex functionality it will be needed to load the
Cintex library (e.g. libCintex.so on linux systems) and enable the Cintex gateway with

Cintex::Enable();

After these two steps have been taken, any Reflex dictionary information should be propagated to the CINT
dictionaries and subsequently usable inside the CINT environment (e.g. from the root prompt). If wanted
debugging information while loading Reflex dictionaries can be turned on with (any number greater than 0 can
be used as argument but will not make any difference in the amount of debugging output for the time being).

Cintex::SetDebug(1);

 Object Ownership 101

8 Object Ownership

An object has ownership of another object if it has permission to delete it. Usually a collection or a parent object
such as a pad holds ownership. To prevent memory leaks and multiple attempts to delete an object, you need
to know which objects ROOT owns and which are owned by you.

The following rules apply to the ROOT classes.

 Histograms, trees, and event lists created by the user are owned by current directory
(gDirectory). When the current directory is closed or deleted the objects it owns are deleted.

 The TROOT master object (gROOT) has several collections of objects. Objects that are members

of these collections are owned by gROOT see "Ownership by the Master TROOT Object

(gROOT)‖.

 Objects created by another object, for example the function object (e.g.TF1) created by the

TH1::Fit method is owned by the histogram.

 An object created by DrawCopy methods, is owned by the pad it is drawn in.

If an object fits none of these cases, the user has ownership. The next paragraphs describe each rule and user
ownership in more detail.

Ownership by Current Directory (gDirectory)
When a histogram, tree, or event list (TEventList) is created, it is added to the list of objects in the current

directory by default. You can get the list of objects in a directory and retrieve a pointer to a specific object with

the GetList method. This example retrieves a histogram.

TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

The method TDirectory::GetList() returns a TList of objects in the directory. It looks in memory, and is

implemented in all ROOT collections. You can change the directory of a histogram, tree, or event list with the

SetDirectory method. Here we use a histogram for an example, but the same applies to trees and event

lists.

h->SetDirectory(newDir)

You can also remove a histogram from a directory by using SetDirectory(0). Once a histogram is removed

from the directory, it will not be deleted when the directory is closed. It is now your responsibility to delete this
histogram once you have finished with it. To change the default that automatically adds the histogram to the
current directory, you can call the static function:

TH1::AddDirectory(kFALSE);

Not all histograms created here after will be added to the current directory. In this case, you own all histogram
objects and you will need to delete them and clean up the references. You can still set the directory of a

histogram by calling SetDirectory once it has been created as described above.

Note that, when a file goes out of scope or is closed all objects on its object list are deleted.

Ownership by the Master TROOT Object (gROOT)
The master object gROOT, maintains several collections of objects. For example, a canvas is added to the

collection of canvases and it is owned by the canvas collection.

TSeqCollection* fFiles List of files (TFile)

TSeqCollection* fMappedFiles List of memory mapped files (TMappedFile)

TSeqCollection* fSockets List of network sockets (TSocket and TServerSocket)

TSeqCollection* fCanvases List of canvases (TCanvas)

TSeqCollection* fStyles List of styles (TStyle)

TSeqCollection* fFunctions List of analytic functions(TF1, TF2, TF3)

TSeqCollection* fTasks List of tasks (TTask)

TSeqCollection* fColors List of colors (TColor)

TSeqCollection* fGeometries List of geometries (?)

TSeqCollection* fBrowsers List of browsers (TBrowser)

TSeqCollection* fSpecials List of special objects

TSeqCollection* fCleanups List of recursiveRemove collections

These collections are also displayed in the root folder of the Object Browser. Most of these collections are

self explanatory. The special cases are the collections of specials and cleanups.

102 Object Ownership

The Collection of Specials

This collection contains objects of the following classes: TCutG, TMultiDimFit, TPrincipal, TChains. In

addition it contains the gHtml object, gMinuit objects, and the array of contours graphs (TGraph) created

when calling the Draw method of a histogram with the "CONT, LIST" option.

Access to the Collection Contents

The current content for a collection listed above can be accessed with the corresponding gROOT->GetListOf

method (for example gROOT->GetListOfCanvases). In addition, gROOT->GetListOfBrowsables returns

a collection of all objects visible on the left side panel in the browser. See the image of the Object Browser in
the next figure.

Figure 8-1 The ROOT Object Browser

Ownership by Other Objects
When an object creates another, the creating object is the owner of the created one. For example:

myHisto->Fit("gaus")

The call to Fit copies the global TF1 Gaussian function and attaches the copy to the histogram. When the

histogram is deleted, the copy is deleted also.

When a pad is deleted or cleared, all objects in the pad with the kCanDelete bit set are deleted automatically.

Currently the objects created by the DrawCopy methods, have the kCanDelete bit set and are therefore

owned by the pad.

Ownership by the User
The user owns all objects not described in one of the above cases. TObject has two bits, kCanDelete and

kMustCleanup, that influence how an object is managed (in TObject::fBits). These are in an

enumeration in TObject.h. To set these bits do:

MyObject->SetBit(kCanDelete)

MyObject->SetBit(kMustCleanup)

The bits can be reset and tested with the TObject::ResetBit and TObject::TestBit methods.

The kCanDelete Bit

The gROOT collections (see above) own their members and will delete them regardless of the kCanDelete bit.

In all other collections, when the collection Clear method is called (i.e. TList::Clear()), members with the

kCanDelete bit set, are deleted and removed from the collection. If the kCanDelete bit is not set, the object

is only removed from the collection but not deleted.

If a collection Delete (TList::Delete()) method is called, all objects in the collection are deleted without

considering the kCanDelete bit. It is important to realize that deleting the collection (i.e. delete

MyCollection), DOES NOT delete the members of the collection.

 Object Ownership 103

If the user specified MyCollection->SetOwner() the collection owns the objects and delete

MyCollection will delete all its members. Otherwise, you need to:

// delete all member objects in the collection

MyCollection->Delete();

// and delete the collection object

delete MyCollection;

Note that kCanDelete is automatically set by the DrawCopy method and the user can set it for any object. For

example, the user must manage all graphics primitives. If you want TCanvas to delete the primitive you

created you have to set the kCanDelete bit.

The kCanDelete bit setting is displayed with TObject::ls(). The last number is either 1 or 0 and is the

kCanDelete bit.

root[] TCanvas MyCanvas("MyCanvas")

root[] MyCanvas.Divide(2,1)

root[] MyCanvas->cd(MyCanvas_1)

root[] hstat.Draw() // hstat is an existing TH1F

root[] MyCanvas->cd(MyCanvas_2)

root[] hstat.DrawCopy() // DrawCopy sets the kCanDelete bit

(class TH1*)0x88e73f8

root[] MyCanvas.ls()

Canvas Name=MyCanvas …

 TCanvas … Name= MyCanvas …

 TPad … Name= MyCanvas_1 …

 TFrame …

 OBJ: TH1F hstat Event Histogram : 0

 TPaveText … title

 TPaveStats … stats

 TPad … Name= MyCanvas_2 …

 TFrame …

 OBJ: TH1F hstat Event Histogram : 1

 TPaveText … title

 TPaveStats … stats

The kMustCleanup Bit

When the kMustCleanup bit is set, the object destructor will remove the object and its references from all

collections in the clean up collection (gROOT::fCleanups). An object can be in several collections, for

example if an object is in a browser and on two canvases. If the kMustCleanup bit is set, it will be removed

automatically from the browser and both canvases when the destructor of the object is called.

The kMustCleanup bit is set:

 When an object is added to a pad (or canvas) in TObject::AppendPad.

 When an object is added to a TBrowser with TBrowser::Add.

 When an object is added to a TFolder with TFolder::Add.

 When creating an inspector canvas with TInspectCanvas::Inspector.

 When creating a TCanvas.

 When painting a frame for a pad, the frame's kMustCleanup is set in TPad::PaintPadFrame

The user can add his own collection to the collection of clean ups, to take advantage of the automatic garbage
collection. For example:

// create two list

TList *myList1, *myList2;

// add both to of clean ups

gROOT->GetListOfCleanUps()->Add(myList1);

gROOT->GetListOfCleanUps()->Add(myList2);

// assuming myObject is in myList1 and myList2, when calling:

delete myObject;

// the object is deleted from both lists

 Graphics and the Graphical User Interface 105

9 Graphics and the Graphical
User Interface

Graphical capabilities of ROOT range from 2D objects (lines, polygons, arrows) to various plots, histograms,
and 3D graphical objects. In this chapter, we are going to focus on principals of graphics and 2D objects. Plots
and histograms are discussed in a chapter of their own.

Drawing Objects
In ROOT, most objects derive from a base class TObject. This class has a virtual method Draw() so all

objects are supposed to be able to be "drawn". The basic whiteboard on which an object is drawn is called a
canvas (defined by the class TCanvas). If several canvases are defined, there is only one active at a time. One

draws an object in the active canvas by using the statement:

object.Draw()

This instructs the object "object" to draw itself. If no canvas is opened, a default one (named "c1") is

instantiated and is drawn.

root[] TLine a(0.1,0.1,0.6,0.6)

root[] a.Draw()

<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

The first statement defines a line and the second one draws it. A default canvas is drawn since there was no
opened one.

Interacting with Graphical Objects
When an object is drawn, one can interact with it. For example, the line drawn in the previous paragraph may be
moved or transformed. One very important characteristic of ROOT is that transforming an object on the screen
will also transform it in memory. One actually interacts with the real object, not with a copy of it on the screen.
You can try for instance to look at the starting X coordinate of the line:

root[] a.GetX1()

(double)1.000000000e-1

X1 is the x value of the starting coordinate given in the definition above. Now move it interactively by clicking

with the left mouse button in the line's middle and try to do again:

root[] a.GetX1()

(Double_t)1.31175468483816005e-01

You do not obtain the same result as before, the coordinates of 'a' have changed. As said, interacting with an

object on the screen changes the object in memory.

Moving, Resizing and Modifying Objects

Changing the graphic objects attributes can be done with the GUI or programmatically. First, let's see how it is
done in the GUI.

The Left Mouse Button

As was just seen moving or resizing an object is done with the left mouse button. The cursor changes its shape
to indicate what may be done:

Point the object or one part of it:

Rotate:

Resize (exists also for the other directions):

Enlarge (used for text):

Move:

106 Graphics and the Graphical User Interface

Here are some examples of:

 Moving: Resizing: Rotating:

With C++ Statements (Programmatically)

How would one move an object in a script? Since there is a tight correspondence between what is seen on the
screen and the object in memory, changing the object changes it on the screen. For example, try to do:

root[] a.SetX1(0.9)

This should change one of the coordinates of our line, but nothing happens on the screen. Why is that? In short,
the canvas is not updated with each change for performance reasons. See "Updating the Pad".

Selecting Objects

The Middle Mouse Button

Objects in a canvas, as well as in a pad, are stacked on top of each other in the order they were drawn. Some
objects may become ―active‖ objects, which mean they are reordered to be on top of the others. To interactively
make an object "active", you can use the middle mouse button. In case of canvases or pads, the border
becomes highlighted when it is active.

With C++ Statements (Programmatically)

Frequently we want to draw in different canvases or pads. By default, the objects are drawn in the active
canvas. To activate a canvas you can use the TPad::cd() method.

root[] c1->cd()

Context Menus: the Right Mouse Button

The context menus are a way to interactively call certain methods of an object. When designing a class, the
programmer can add methods to the context menu of the object by making minor changes to the header file.

Using Context Menus

On a ROOT canvas, you can right-click on any object and see the context menu for it. The script hsimple.C

draws a histogram. The image below shows the context menus for some of the objects on the canvas. Next
picture shows that drawing a simple histogram involves as many as seven objects. When selecting a method
from the context menu and that method has options, the user will be asked for numerical values or strings to fill
in the option. For example, TAxis::SetTitle will prompt you for a string to use for the axis title.

Figure 9-1 Context menus of different objects in a canvas

 Graphics and the Graphical User Interface 107

Structure of the Context Menus

The curious reader will have noticed that each entry in the context menu corresponds to a method of the class.
Look for example to the menu named TAxis::xaxis. xaxis is the name of the object and TAxis the name

of its class. If we look at the list of TAxis methods, for example in http://root.cern.ch/root/htmldoc/TAxis.html,

we see the methods SetTimeDisplay() and UnZoom(), which appear also in the context menu.

There are several divisions in the context menu, separated by lines. The top division is a list of the class
methods; the second division is a list of the parent class methods. The subsequent divisions are the methods
other parent classes in case of multiple inheritance. For example, see the TPaveText::title context

menu. A TPaveText inherits from TAttLine, which has the method SetLineAttributes().

Adding Context Menus for a Class

For a method to appear in the context menu of the object it has to be marked by // *MENU* in the header file.

Below is the line from TAttLine.h that adds the SetLineAttribute method to the context menu.

virtual void SetLineAttributes(); // *MENU*

Nothing else is needed, since CINT knows the classes and their methods. It takes advantage of that to create
the context menu on the fly when the object is clicking on. If you click on an axis, ROOT will ask the interpreter
what are the methods of the TAxis and which ones are set for being displayed in a context menu.

Now, how does the interpreter know this? Remember, when you build a class that you want to use in the ROOT

environment, you use rootcint that builds the so-called stub functions and the dictionary. These functions

and the dictionary contain the knowledge of the used classes. To do this, rootcint parses all the header files.

ROOT has defined some special syntax to inform CINT of certain things, this is done in the comments so that
the code still compiles with a C++ compiler.

For example, you have a class with a Draw() method, which will display itself. You would like a context menu

to appear when on clicks on the image of an object of this class. The recipe is the following:

 The class has to contain the ClassDef/ClassImp macros

 For each method you want to appear in the context menu, put a comment after the declaration

containing *MENU* or *TOGGLE* depending on the behavior you expect. One usually uses Set

methods (setters). The *TOGGLE* comment is used to toggle a boolean data field. In that case,

it is safe to call the data field fMyBool where MyBool is the name of the setter SetMyBool.

Replace MyBool with your own boolean variable.

 You can specify arguments and the data members in which to store the arguments.

For example:

class MyClass : public TObject {

private:

 int fV1; // first variable

 double fV2; // second variable

public:

 int GetV1() {return fV1;}

 double GetV2() {return fV2;}

 void SetV1(int x1) { fV1 = x1;} // *MENU*

 void SetV2(double d2) { fV2 = d2;} // *MENU*

 void SetBoth(int x1, double d2) {fV1 = x1; fV2 = d2;}

 ClassDef (MyClass,1)

}

To specify arguments:

void SetXXX(Int_t x1, Float_t y2); //*MENU* *ARGS={x1=>fV1}

This statement is in the comment field, after the *MENU*. If there is more than one argument, these arguments
are separated by commas, where fX1 and fY2 are data fields in the same class.

void SetXXX(Int_t x1, Float_t y2); //*MENU* *ARGS={x1=>fX1,y2=>fY2}

If the arguments statement is present, the option dialog displayed when selecting SetXXX field will show the

values of variables. We indicate to the system which argument corresponds to which data member of the class.

Executing Events when a Cursor Passes on Top of an Object

This paragraph is for class designers. When a class is designed, it is often desirable to include drawing
methods for it. We will have a more extensive discussion about this, but drawing an object in a canvas or a pad

consists in "attaching" the object to that pad. When one uses object.Draw(), the object is NOT painted at

this moment. It is only attached to the active pad or canvas.

Another method should be provided for the object to be painted, the Paint() method. This is all explained in

the next paragraph. As well as Draw() and Paint(), other methods may be provided by the designer of the

http://root.cern.ch/root/htmldoc/TAxis.html

108 Graphics and the Graphical User Interface

class. When the mouse is moved or a button pressed/released, the TCanvas function named

HandleInput() scans the list of objects in all it's pads and for each object calls some standard methods to

make the object react to the event (mouse movement, click or whatever).

The second one is DistanceToPrimitive(px,py). This function computes a "distance" to an object from

the mouse position at the pixel position (px, py, see definition at the end of this paragraph) and returns this

distance in pixel units. The selected object will be the one with the shortest computed distance. To see how this

works, select the "Event Status" item in the canvas "Options" menu. ROOT will display one status line

showing the picked object. If the picked object is, for example, a histogram, the status line indicates the name of

the histogram, the position x,y in histogram coordinates, the channel number and the channel content.

It is nice for the canvas to know what the closest object from the mouse is, but it's even nicer to be able to make

this object react. The third standard method to be provided is ExecuteEvent(). This method actually does the

event reaction. Its prototype is where px and py are the coordinates at which the event occurred, except if the

event is a key press, in which case px contains the key code.

void ExecuteEvent(Int_t event, Int_t px, Int_t py);

Where event is the event that occurs and is one of the following (defined in Buttons.h):

kNoEvent, kButton1Down, kButton2Down, kButton3Down,

kKeyDown, kButton1Up, kButton2Up, kButton3Up,

kButton1Motion, kButton2Motion, kButton3Motion, kKeyPress,

kButton1Locate, kButton2Locate, kButton3Locate, kKeyUp,

kButton1Double, kButton2Double, kButton3Double, kMouseMotion,

kMouseEnter, kMouseLeave

We hope the names are self-explanatory.

Designing an ExecuteEvent method is not very easy, except if one wants very basic treatment. We will not go

into that and let the reader refer to the sources of classes like TLine or TBox. Go and look at their

ExecuteEvent method! We can nevertheless give some reference to the various actions that may be

performed. For example, one often wants to change the shape of the cursor when passing on top of an object.

This is done with the SetCursor method:

gPad->SetCursor(cursor)

The argument cursor is the type of cursor. It may be:

kBottomLeft, kBottomRight, kTopLeft, kTopRight, kBottomSide, kLeftSide,

kTopSide, kRightSide, kMove, kCross, kArrowHor, kArrowVer,

kHand, kRotate, kPointer, kArrowRight, kCaret, kWatch

They are defined in TVirtualX.h and again we hope the names are self-explanatory. If not, try them by

designing a small class. It may derive from something already known like TLine.

Note that the ExecuteEvent() functions may in turn; invoke such functions for other objects, in case an object

is drawn using other objects. You can also exploit at best the virtues of inheritance. See for example how the
class TArrow (derived from TLine) use or redefine the picking functions in its base class.

The last comment is that mouse position is always given in pixel units in all these standard functions. px=0 and

py=0 corresponds to the top-left corner of the canvas. Here, we have followed the standard convention in

windowing systems. Note that user coordinates in a canvas (pad) have the origin at the bottom-left corner of the
canvas (pad). This is all explained in the paragraph "The Coordinate Systems of a Pad".

Graphical Containers: Canvas and Pad
We have talked a lot about canvases, which may be seen as windows. More generally, a graphical entity that
contains graphical objects is called a Pad. A Canvas is a special kind of Pad. From now on, when we say
something about pads, this also applies to canvases. A pad (class TPad) is a graphical container in the sense it

contains other graphical objects like histograms and arrows. It may contain other pads (sub-pads) as well. More
technically, each pad has a linked list of pointers to the objects it holds.

Drawing an object is nothing more than adding its pointer to this list. Look for example at the code of
TH1::Draw(). It is merely ten lines of code. The last statement is AppendPad(). This statement calls method

of TObject that just adds the pointer of the object, here a histogram, to the list of objects attached to the

current pad. Since this is a TObject‘s method, every object may be "drawn", which means attached to a pad.

We can illustrate this by the Figure 9-2. This image corresponds to the following structure:

Pad1
Arrow

Text

Subpad
Histogram

Label

Polyline

 Graphics and the Graphical User Interface 109

Figure 9-2 A histogram drawn in a pad

When is the painting done then? The answer is: when needed. Every object that derives from TObject has a

Paint() method. It may be empty, but for graphical objects, this routine contains all the instructions to paint

effectively it in the active pad. Since a Pad has the list of objects it owns, it will call successively the Paint()

method of each object, thus re-painting the whole pad on the screen. If the object is a sub-pad, its Paint()

method will call the Paint() method of the objects attached, recursively calling Paint() for all the objects.

The Global Pad: gPad

When an object is drawn, it is always in the so-called active pad. For every day use, it is comfortable to be able
to access the active pad, whatever it is. For that purpose, there is a global pointer, called gPad. It is always

pointing to the active pad. If you want to change the fill color of the active pad to blue but you do not know its
name, do this.

root[] gPad->SetFillColor(38)

To get the list of colors, go to the paragraph "Color and color palettes" or if you have an opened canvas, click on

the View menu, selecting the Colors item.

Finding an Object in a Pad

Now that we have a pointer to the active pad, gPad and that we know this pad contains some objects, it is

sometimes interesting to access one of those objects. The method GetPrimitive() of TPad, i.e.

TPad::GetPrimitive(const char* name) does exactly this. Since most of the objects that a pad

contains derive from TObject, they have a name. The following statement will return a pointer to the object

myobjectname and put that pointer into the variable obj. As you can see, the type of returned pointer is

TObject*.

root[] obj = gPad->GetPrimitive("myobjectname")

(class TObject*)0x1063cba8

Even if your object is something more complicated, like a histogram TH1F, this is normal. A function cannot

return more than one type. So the one chosen was the lowest common denominator to all possible classes, the
class from which everything derives, TObject. How do we get the right pointer then? Simply do a cast of the

function output that will transform the output (pointer) into the right type. For example if the object is a
TPaveLabel:

root[] obj = (TPaveLabel*)(gPad->GetPrimitive("myobjectname"))

(class TPaveLabel*)0x1063cba8

This works for all objects deriving from TObject. However, a question remains. An object has a name if it

derives from TNamed, not from TObject. For example, an arrow (TArrow) doesn't have a name. In that case,

the "name" is the name of the class. To know the name of an object, just click with the right button on it. The
name appears at the top of the context menu. In case of multiple unnamed objects, a call to

GetPrimitve("className") returns the instance of the class that was first created. To retrieve a later

instance you can use GetListOfPrimitives(), which returns a list of all the objects on the pad. From the

list you can select the object you need.

Hiding an Object

Hiding an object in a pad can be made by removing it from the list of objects owned by that pad. This list is
accessible by the GetListOfPrimitives() method of TPad. This method returns a pointer to a TList.

Suppose we get the pointer to the object, we want to hide, call it obj (see paragraph above). We get the pointer

to the list:

110 Graphics and the Graphical User Interface

root[] li = gPad->GetListOfPrimitives()

Then remove the object from this list:

root[] li->Remove(obj)

The object will disappear from the pad as soon as the pad is updated (try to resize it for example). If one wants
to make the object reappear:

root[] obj->Draw()

Caution, this will not work with composed objects, for example many histograms drawn on the same plot (with

the option "same"). There are other ways! Try to use the method described here for simple objects.

The Coordinate Systems of a Pad

There are coordinate systems in a TPad: user coordinates, normalized coordinates (NDC), and pixel

coordinates.

Figure 9-3 Pad coordinate systems

NDC coordinates

(0,0)

(0,1)

(1,0)

User coordinates

(0,0)

Pixel coordinates

(0,0)

The User Coordinate System

The most common is the user coordinate system. Most methods of TPad use the user coordinates, and all

graphic primitives have their parameters defined in terms of user coordinates. By default, when an empty pad is
drawn, the user coordinates are set to a range from 0 to 1 starting at the lower left corner. At this point they are
equivalent of the NDC coordinates (see below). If you draw a high level graphical object, such as a histogram
or a function, the user coordinates are set to the coordinates of the histogram. Therefore, when you set a point it
will be in the histogram coordinates.

For a newly created blank pad, one may use TPad::Range to set the user coordinate system. This function is

defined as:

void Range(float x1,float y1,float x2,float y2)

The arguments x1, x2 defines the new range in the x direction, and the y1, y2 define the new range in the y-

direction.

root[] TCanvas MyCanvas ("MyCanvas")

root[] gPad->Range(-100,-100,100,100)

This will set the active pad to have both coordinates to go from -100 to 100, with the center of the pad at (0,0).
You can visually check the coordinates by viewing the status bar in the canvas. To display the status bar select
Event Status entry in the View canvas menu.

Figure 9-4 The status bar

The Normalized Coordinate System (NDC)

Normalized coordinates are independent of the window size and of the user system. The coordinates range
from 0 to 1 and (0, 0) corresponds to the bottom-left corner of the pad. Several internal ROOT functions use the
NDC system (3D primitives, PostScript, log scale mapping to linear scale). You may want to use this system if
the user coordinates are not known ahead of time.

The Pixel Coordinate System

The least common is the pixel coordinate system, used by functions such as DistanceToPrimitive() and

ExecuteEvent(). Its primary use is for cursor position, which is always given in pixel coordinates. If (px,py)

is the cursor position, px=0 and py=0 corresponds to the top-left corner of the pad, which is the standard

convention in windowing systems.

Using NDC for a particular Object

Most of the time, you will be using the user coordinate system. But sometimes, you will want to use NDC. For
example, if you want to draw text always at the same place over a histogram, no matter what the histogram

 Graphics and the Graphical User Interface 111

coordinates are. There are two ways to do this. You can set the NDC for one object or may convert NDC to user
coordinates. Most graphical objects offer an option to be drawn in NDC. For instance, a line (TLine) may be

drawn in NDC by using DrawLineNDC(). A latex formula or a text may use TText::SetNDC() to be drawn in

NDC coordinates.

Converting between Coordinate Systems

There are a few utility functions in TPad to convert from one system of coordinates to another. In the following

table, a point is defined by (px,py) in pixel coordinates, (ux,uy) in user coordinates, (ndcx,ndcy) in

normalized coordinates, (apx, apy) are in absolute pixel coordinates.

Conversion TPad‘s Methods Returns

NDC to Pixel UtoPixel(ndcx)

VtoPixel(ndcy)

Int_t

Int_t

Pixel to User PixeltoX(px)

PixeltoY(py)

PixeltoXY(px,py,&ux,&uy)

Double_t

Double_t

Double_t ux,uy

User to Pixel XtoPixel(ux)

YtoPixel(uy)

XYtoPixel(ux,uy,&px,&py)

Int_t

Int_t

Int_t px,py

User to absolute pixel XtoAbsPixel(ux)

YtoAbsPixel(uy)

XYtoAbsPixel(ux,uy,&apx,&apy)

Int_t

Int_t

Int_t apx,apy

Absolute pixel to user AbsPixeltoX(apx)

AbsPixeltoY(apy)

AbsPixeltoXY(apx,apy,&ux,&uy)

Double_t

Double_t

Double_t ux,uy

Note: all the pixel conversion functions along the Y axis consider that py=0 is at the top of the pad except

PixeltoY() which assume that the position py=0 is at the bottom of the pad. To make PixeltoY()

converting the same way as the other conversion functions, it should be used the following way (p is a pointer

to a TPad):

p->PixeltoY(py – p->GetWh());

Dividing a Pad into Sub-pads

Dividing a pad into sub pads in order for instance to draw a few histograms, may be done in two ways. The first
is to build pad objects and to draw them into a parent pad, which may be a canvas. The second is to
automatically divide a pad into horizontal and vertical sub pads.

Creating a Single Sub-pad

The simplest way to divide a pad is to build sub-pads in it. However, this forces the user to explicitly indicate the
size and position of those sub-pads. Suppose we want to build a sub-pad in the active pad (pointed by gPad).

First, we build it, using a TPad constructor:

root[] spad1 = new TPad("spad1","The first subpad",.1,.1,.5,.5)

One gives the coordinates of the lower left point (0.1, 0.1) and of the upper right one (0.5, 0.5). These
coordinates are in NDC. This means that they are independent of the user coordinates system, in particular if
you have already drawn for example a histogram in the mother pad. The only thing left is to draw the pad:

root[] spad1->Draw()

If you want more sub-pads, you have to repeat this procedure as many times as necessary.

Dividing a Canvas into Sub-Pads

The manual way of dividing a pad into sub-pads is sometimes very tedious. There is a way to automatically
generate horizontal and vertical sub-pads inside a given pad.

root[] pad1->Divide(3,2)

112 Graphics and the Graphical User Interface

Figure 9-5 Dividing a pad into 6 sub-pads

:

If pad1 is a pad then, it will divide the pad into 3 columns of 2 sub-pads. The generated sub-pads get names

pad1_i where the index i=1 to nxm (in our case pad1_1, pad1_2...pad1_6). The names pad1_1 etc…

correspond to new variables in CINT, so you may use them as soon as the executed method was pad-

>Divide(). However, in a compiled program, one has to access these objects. Remember that a pad contains

other objects and that these objects may themselves be pads. So we can use the GetPrimitive() method:

TPad* pad1_1 = (TPad*)(pad1->GetPrimitive("pad1_1"))

One question remains. In case one does an automatic divide, how one can set the default margins between

pads? This is done by adding two parameters to Divide(), which are the margins in x and y:

root[] pad1->Divide(3,2,0.1,0.1)

The margins are here set to 10% of the parent pad width.

Updating the Pad

For performance reasons, a pad is not updated with every change. For example, changing the coordinates of
the pad does not automatically redraw it. Instead, the pad has a "bit-modified" that triggers a redraw. This bit is
automatically set by:

 Touching the pad with the mouse - for example resizing it with the mouse.

 Finishing the execution of a script.

 Adding a new primitive or modifying some primitives for example the name and title of an object.

 You can also set the "bit-modified" explicitly with the Modified method:

// the pad has changed

root[] pad1->Modified()

// recursively update all modified pads:

root[] c1->Update()

A subsequent call to TCanvas::Update() scans the list of sub-pads and repaints the pads declared modified.

In compiled code or in a long macro, you may want to access an object created during the paint process. To do
so, you can force the painting with a TCanvas::Update(). For example, a TGraph creates a histogram (TH1)

to paint itself. In this case the internal histogram obtained with TGraph::GetHistogram() is created only

after the pad is painted. The pad is painted automatically after the script is finished executing or if you force the
painting with TPad::Modified() followed by a TCanvas::Update(). Note that it is not necessary to call

TPad::Modified() after a call to Draw(). The "bit-modified" is set automatically by Draw(). A note about

the "bit-modified" in sub pads: when you want to update a sub pad in your canvas, you need to call pad-

>Modified() rather than canvas->Modified(), and follow it with a canvas->Update(). If you use

canvas->Modified(), followed by a call to canvas->Update(), the sub pad has not been declared

modified and it will not be updated. Also note that a call to pad->Update() where pad is a sub pad of canvas,

calls canvas->Update() and recursively updates all the pads on the canvas.

Making a Pad Transparent

As we will see in the paragraph "Fill Attributes", a fill style (type of hatching) may be set for a pad.

root[] pad1->SetFillStyle(istyle)

This is done with the SetFillStyle method where istyle is a style number, defined in "Fill Attributes". A

special set of styles allows handling of various levels of transparency. These are styles number 4000 to 4100,
4000 being fully transparent and 4100 fully opaque. So, suppose you have an existing canvas with several
pads. You create a new pad (transparent) covering for example the entire canvas. Then you draw your
primitives in this pad. The same can be achieved with the graphics editor. For example:

root[] .x tutorials/hist/h1draw.C

root[] TPad *newpad=new TPad("newpad","Transparent pad",0,0,1,1);

root[] newpad->SetFillStyle(4000);

root[] newpad->Draw();

root[] newpad->cd();

root[] // create some primitives, etc

 Graphics and the Graphical User Interface 113

Setting the Log Scale

Setting the scale to logarithmic or linear is an attribute of the pad, not the axis or the histogram. The scale is an
attribute of the pad because you may want to draw the same histogram in linear scale in one pad and in log
scale in another pad. Frequently, we see several histograms on top of each other in the same pad. It would be
very inconvenient to set the scale attribute for each histogram in a pad.

Furthermore, if the logic was set in the histogram class (or each object) the scale setting in each Paint method

of all objects should be tested.

If you have a pad with a histogram, a right-click on the pad, outside of the histograms frame will convince you.
The SetLogx(), SetLogy() and SetLogz() methods are there. As you see, TPad defines log scale for the

two directions x and y plus z if you want to draw a 3D representation of some function or histogram.

The way to set log scale in the x direction for the active pad is:

root[] gPad->SetLogx(1)

To reset log in the z direction:

root[] gPad->SetLogz(0)

If you have a divided pad, you need to set the scale on each of the sub-pads. Setting it on the containing pad
does not automatically propagate to the sub-pads. Here is an example of how to set the log scale for the x-axis
on a canvas with four sub-pads:

root[] TCanvas MyCanvas("MyCanvas","My Canvas")

root[] MyCanvas->Divide(2,2)

root[] MyCanvas->cd(1)

root[] gPad->SetLogx()

root[] MyCanvas->cd(2)

root[] gPad->SetLogx()

root[] MyCanvas->cd(3)

root[] gPad->SetLogx()

WaitPrimitive method

When the TPad::WaitPrimitive() is called with no arguments, it will wait until a double click or any key

pressed is executed in the canvas. A call to gSystem->Sleep(10) has been added in the loop to avoid

consuming at all the CPU. This new option is convenient when executing a macro. By adding statements like:

canvas->WaitPrimitive();

You can monitor the progress of a running macro, stop it at convenient places with the possibility to interact with
the canvas and resume the execution with a double click or a key press.

Locking the Pad

You can make the TPad non-editable. Then no new objects can be added, and the existing objects and the pad

can not be changed with the mouse or programmatically. By default the TPad is editable.

TPad::SetEditable(kFALSE)

Graphical Objects
In this paragraph, we describe the various simple 2D graphical objects defined in ROOT. Usually, one defines

these objects with their constructor and draws them with their Draw() method. Therefore, the examples will be

very brief. Most graphical objects have line and fill attributes (color, width) that will be described in ―Graphical
objects attributes‖. If the user wants more information, the class names are given and he may refer to the online
developer documentation. This is especially true for functions and methods that set and get internal values of
the objects described here. By default 2D graphical objects are created in User Coordinates with (0, 0) in the
lower left corner.

Lines, Arrows and Polylines

The simplest graphical object is a line. It is implemented in the TLine class. The line constructor is:

TLine(Double_t x1,Double_t y1,Double_t x2,Double_t y2)

The arguments x1, y1, x2, y2 are the coordinates of the first and second point. It can be used:

root[] l = new TLine(0.2,0.2,0.8,0.3)

root[] l->Draw()

The arrow constructor is:

114 Graphics and the Graphical User Interface

TArrow(Double_t x1,Double_t y1,Double_t x2,Double_t y2,Float_t arrowsize,

 Option_t *option)

It defines an arrow between points x1,y1 and x2,y2. The arrow size is in percentage of the pad height. The

option parameter has the following meanings:

">"

"<|"

"<"

"|>"

"<>"

"<|>"

Once an arrow is drawn on the screen, one can:

 click on one of the edges and move this edge.

 click on any other arrow part to move the entire arrow.

Figure 9-6 Different arrow formats

If FillColor is 0, an open triangle is drawn; else a full triangle is filled with the set fill color. If ar is an arrow

object, fill color is set with:

ar.SetFillColor(icolor);

Where icolor is the color defined in ―Color and Color Palettes‖.

The default-opening angle between the two sides of the arrow is 60 degrees. It can be changed with the method

ar–>SetAngle(angle), where angle is expressed in degrees.

A poly-line is a set of joint segments. It is defined by a set of N points in a 2D space. Its constructor is:

TPolyLine(Int_t n,Double_t* x,Double_t* y,Option_t* option)

Where n is the number of points, and x and y are arrays of n elements with the coordinates of the points.

TPolyLine can be used by it self, but is also a base class for other objects, such as curly arcs.

Circles and Ellipses

An ellipse can be truncated and rotated. It is defined by its center (x1,y1) and two radii r1 and r2. A

minimum and maximum angle may be specified (phimin,phimax). The ellipse may be rotated with an angle

theta. All these angles are in degrees. The attributes of the outline line are set via TAttLine, of the fill area –

via TAttFill class. They are described in ―Graphical Objects Attributes‖.

Figure 9-7 Different types of ellipses

When an ellipse sector is drawn only, the lines between the center and the end points of the sector are drawn

by default. By specifying the drawn option ―only‖, these lines can be avoided. Alternatively, the method

SetNoEdges() can be called. To remove completely the ellipse outline, specify zero (0) as a line style.

The TEllipse constructor is:

TEllipse(Double_t x1,Double_t y1,Double_t r1,Double_t r2,Double_t phimin,

 Double_t phimax,Double_t theta)

 Graphics and the Graphical User Interface 115

An ellipse may be created with:

root[] e = new TEllipse(0.2,0.2,0.8,0.3)

root[] e->Draw()

Rectangles

The class TBox defines a rectangle. It is a base class for many different higher-level graphical primitives. Its

bottom left coordinates x1, y1 and its top right coordinates x2, y2, defines a box. The constructor is:

TBox(Double_t x1,Double_t y1,Double_t x2,Double_t y2)

It may be used as in:

root[] b = new TBox(0.2,0.2,0.8,0.3)

root[] b->SetFillColor(5)

root[] b->Draw()

Figure 9-8 A rectangle with a border

A TWbox is a rectangle (TBox) with a border size and a border mode. The attributes of the outline line and of

the fill area are described in ―Graphical Objects Attributes‖

Markers

A marker is a point with a fancy shape! The possible markers are shown in the next figure.

Figure 9-9 Markers

The marker constructor is:

TMarker(Double_t x,Double_t y,Int_t marker)

The parameters x and y are the marker coordinates and marker is the marker type, shown in the previous

figure. Suppose the pointer ma is a valid marker. The marker size is set via ma->SetMarkerSize(size),

where size is the desired size. Note, that the marker types 1, 6 and 7 (the dots) cannot be scaled. They are

always drawn with the same number of pixels. SetMarkerSize does not apply on them. To have a "scalable

dot" a circle shape should be used instead, for example, the marker type 20. The default marker type is 1, if

SetMarkerStyle is not specified. It is the most common one to draw scatter plots.

Figure 9-10 Different marker sizes

The user interface for changing the marker color, style and size looks like shown in
this picture. It takes place in the editor frame anytime the selected object inherits the
class TAttMarker.

Non-symmetric symbols should be used carefully in plotting. The next two graphs show how the misleading a
careless use of symbols can be. The two plots represent the same data sets but because of a bad symbol
choice, the two on the top appear further apart from the next example.

116 Graphics and the Graphical User Interface

Figure 9-11 The use of non-symmetric markers

A TPolyMaker is defined by an array on N points in a 2D space. At each point x[i], y[i] a marker is drawn.

The list of marker types is shown in the previous paragraph. The marker attributes are managed by the class
TAttMarker and are described in ―Graphical Objects Attributes‖. The TPolyMarker constructor is:

TPolyMarker(Int_t n,Double_t *x,Double_t *y,Option_t *option)

Where x and y are arrays of coordinates for the n points that form the poly-marker.

Curly and Wavy Lines for Feynman Diagrams

This is a peculiarity of particle physics, but we do need sometimes to draw Feynman diagrams. Our friends
working in banking can skip this part. A set of classes implements curly or wavy poly-lines typically used to draw
Feynman diagrams. Amplitudes and wavelengths may be specified in the constructors, via commands or
interactively from context menus. These classes are TCurlyLine and TCurlyArc. These classes make use

of TPolyLine by inheritance; ExecuteEvent methods are highly inspired from the methods used in

TPolyLine and TArc.

Figure 9-12 The picture generated by the tutorial macro feynman.C

The TCurlyLine constructor is:

TCurlyLine(Double_t x1,Double_t y1,Double_t x2,Double_t y2,Double_t wavelength,

 Double_t amplitude)

The coordinates (x1, y1) define the starting point, (x2, y2) – the end-point. The wavelength and the

amplitude are given in percent of the pad height.

The TCurlyArc constructor is:

TCurlyArc(Double_t x1,Double_t y1,Double_t rad,Double_t phimin,Double_t phimax,

 Double_t wavelength,Double_t amplitude)

The curly arc center is (x1, y1) and the radius is rad. The wavelength and the amplitude are given in percent

of the line length. The parameters phimin and phimax are the starting and ending angle of the arc (given in

degrees). Refer to $ROOTSYS/tutorials/graphics/feynman.C for the script that built the figure above.

Text and Latex Mathematical Expressions

Text displayed in a pad may be embedded into boxes, called paves (TPaveLabel), or titles of graphs or many

other objects but it can live a life of its own. All text displayed in ROOT graphics is an object of class TText. For

a physicist, it will be most of the time a TLatex expression (which derives from TText). TLatex has been

conceived to draw mathematical formulas or equations. Its syntax is very similar to the Latex in mathematical
mode.

 Graphics and the Graphical User Interface 117

Subscripts and Superscripts

Subscripts and superscripts are made with the _ and ^ commands. These commands can be combined to

make complex subscript and superscript expressions. You may choose how to display subscripts and

superscripts using the 2 functions SetIndiceSize(Double_t) and SetLimitIndiceSize(Int_t).

Examples of what can be obtained using subscripts and superscripts:

The expression Gives The expression Gives The expression Gives

x^{2y} yx2

x^{y^{2}}
2yx x_{1}^{y_{1}} 1

1

y
x

x_{2y}
yx2 x^{y_{1}} 1y

x x_{1}^{y}
yx1

Fractions

Fractions denoted by the / symbol are made in the obvious way. The #frac command is used for large fractions
in displayed formula; it has two arguments: the numerator and the denominator. For example, the

equation 1

2/
2y

zy
x

 is obtained by following expression x=#frac{y+z/2}{y^{2}+1}.

Roots

The #sqrt command produces the square ROOT of its argument; it has an optional first argument for other

roots.

Example: #sqrt{10} #sqrt[3]{10}

Delimiters

You can produce three kinds of proportional delimiters.

#[]{....} or "a la" Latex

#left[.....#right] big square brackets

#{}{....} or #left{.....#right} big curly brackets

#||{....} or #left|.....#right| big absolute value symbol

#(){....} or #left(.....#right) big parenthesis

Changing Style in Math Mode

You can change the font and the text color at any moment using:

#font[font-number]{...} and #color[color-number]{...}

Line Splitting

A TLatex string may be split in two with the following command: #splitline{top}{bottom}. TAxis and

TGaxis objects can take advantage of this feature. For example, the date and time could be shown in the time

axis over two lines with: #splitline{21 April 2003}{14:23:56}

Greek Letters

The command to produce a lowercase Greek letter is obtained by adding # to the name of the letter. For an
uppercase Greek letter, just capitalize the first letter of the command name.

#alpha #beta #chi #delta #varepsilon #phi

#gamma #eta #iota #varphi #kappa #lambda

#mu #nu #omicron #pi #theta #rho

#sigma #tau #upsilon #varomega #omega #xi

#psi #zeta #Alpha #Beta #Chi #Delta

#Epsilon #Phi #Gamma #Eta #Iota #Kappa

#vartheta #Lambda #Mu #Nu #Omicron #Pi

#Theta #Rho #Sigma #Tau #Upsilon #Omega

#varsigma #Xi #Psi #epsilon #varUpsilon #Zeta

118 Graphics and the Graphical User Interface

Mathematical Symbols

TLatex can make mathematical and other symbols. A few of them, such as + and >, are produced by typing

the corresponding keyboard character. Others are obtained with the commands as shown in the table above.

Accents, Arrows and Bars

Symbols in a formula are sometimes placed one above another. TLatex provides special commands for that.

#hat{a} = hat

#check = inverted hat

#acute = acute

#grave = accent grave

#dot = derivative

#ddot = double derivative

#tilde = tilde

#slash = special sign. Draw a slash on top of the text between brackets for example

#slash{E}_{T} generates "Missing ET"

a is obtained with #bar{a}

a

 is obtained with #vec{a}

 Graphics and the Graphical User Interface 119

Example 1

The script $ROOTSYS/tutorials/graphics/latex.C:

{

 gROOT->Reset();

 TCanvas c1("c1","Latex",600,700);

 TLatex l;

 l.SetTextAlign(12);

 l.SetTextSize(0.04);

 l.DrawLatex(0.1,0.8,"1) C(x) = d #sqrt{#frac{2}{#lambdaD}}

 #int^{x}_{0}cos(#frac{#pi}{2}t^{2})dt");

 l.DrawLatex(0.1,0.6,"2) C(x) = d #sqrt{#frac{2}{#lambdaD}}

 #int^{x}cos(#frac{#pi}{2}t^{2})dt");

 l.DrawLatex(0.1,0.4,"3) R = |A|^{2} =

 #frac{1}{2}(#[]{#frac{1}{2}+C(V)}^{2}+

 #[]{#frac{1}{2}+S(V)}^{2})");

 l.DrawLatex(0.1,0.2,"4) F(t) = #sum_{i=

 -#infty}^{#infty}A(i)cos#[]{#frac{i}{t+i}}");

}

Figure 9-13 The picture generated by the tutorial macro latex.C

Example 2

The script $ROOTSYS/tutorials/graphics/latex2.C:

{

 gROOT->Reset();

 TCanvas c1("c1","Latex",600,700);

 TLatex l;

 l.SetTextAlign(23);

 l.SetTextSize(0.1);

 l.DrawLatex(0.5,0.95,"e^{+}e^{-}#rightarrowZ^{0}

 #rightarrowI#bar{I}, q#bar{q}");

 l.DrawLatex(0.5,0.75,"|#vec{a}#bullet#vec{b}|=

 #Sigmaa^{i}_{jk}+b^{bj}_{i}");

 l.DrawLatex(0.5,0.5,"i(#partial_{#mu}#bar{#psi}#gamma^{#mu}

 +m#bar{#psi}=0

 #Leftrightarrow(#Box+m^{2})#psi=0");

 l.DrawLatex(0.5,0.3,"L_{em}=eJ^{#mu}_{em}A_{#mu} ,

 J^{#mu}_{em}=#bar{I}#gamma_{#mu}I

 M^{j}_{i}=#SigmaA_{#alpha}#tau^{#alphaj}_{i}");

}

120 Graphics and the Graphical User Interface

Figure 9-14 The picture generated by the tutorial macro latex2.C

Example 3

The script $ROOTSYS/tutorials/graphics/latex3.C:

{

 gROOT->Reset();

 TCanvas c1("c1");

 TPaveText pt(.1,.5,.9,.9);

 pt.AddText("#frac{2s}{#pi#alpha^{2}}

 #frac{d#sigma}{dcos#theta} (e^{+}e^{-}

 #rightarrow f#bar{f}) = ");

 pt.AddText("#left| #frac{1}{1 - #Delta#alpha} #right|^{2}

 (1+cos^{2}#theta");

 pt.AddText("+ 4 Re #left{ #frac{2}{1 - #Delta#alpha} #chi(s)

 #[]{#hat{g}_{#nu}^{e}#hat{g}_{#nu}^{f}

 (1 + cos^{2}#theta) + 2 #hat{g}_{a}^{e}

 #hat{g}_{a}^{f} cos#theta) } #right}");

 pt.SetLabel("Born equation");

 pt.Draw();

}

Figure 9-15 The picture generated by the tutorial macro latex3.C

Text in a Pad

Text displayed in a pad may be embedded into boxes, called paves, or may be drawn alone. In any case, it is
recommended to use a Latex expression, which is covered in the previous paragraph. Using TLatex is valid

whether the text is embedded or not. In fact, you will use Latex expressions without knowing it since it is the
standard for all the embedded text. A pave is just a box with a border size and a shadow option. The options
common to all types of paves and used when building those objects are the following:

option = ―T" top frame

option = ―B" bottom frame

option = ―R" right frame

option = ―L" left frame

option = ―NDC" x1,y1,x2,y2 are given in NDC

option = ―ARC" corners are rounded

We will see the practical use of these options in the description of the more functional objects like
TPaveLabels. There are several categories of paves containing text: TPaveLabel, TPaveText and

TPavesText. TPaveLabels are panels containing one line of text. They are used for labeling.

TPaveLabel(Double_t x1,Double_t y1,Double_t x2,Double_t y2, const char *label,

 Option_t *option)

 Graphics and the Graphical User Interface 121

Where (x1, y1) are the coordinates of the bottom left corner, (x2,y2) - coordinates of the upper right corner.

―label‖ is the text to be displayed and ―option‖ is the drawing option, described above. By default, the border

size is 5 and the option is ―br‖. If one wants to set the border size to some other value, one may use the

method SetBorderSize(). For example, suppose we have a histogram, which limits are (-100,100) in the x

direction and (0, 1000) in the y direction. The following lines will draw a label in the center of the histogram, with
no border. If one wants the label position to be independent of the histogram coordinates, or user coordinates,

one can use the option ―NDC‖. See ―The Coordinate Systems of a Pad‖.

root[] pl = new TPaveLabel(-50,0,50,200,”Some text”)

root[] pl->SetBorderSize(0)

root[] pl->Draw()

Figure 9-16 PaveLabels drawn with different options

A TPaveLabel can contain only one line of text. A TPaveText may contain several lines. This is the only

difference. This picture illustrates and explains some of the points of TPaveText. Once a TPaveText is drawn,

a line can be added or removed by brining up the context menu with the mouse.

Figure 9-17 PaveText examples

A TPavesText is a stack of text panels (see TPaveText). One can set the number of stacked panels at

building time. It has the following constructor: By default, the number of stacked panels is 5, option=‖br‖.

TPavesText(Double_t x1,Double_t y1,Double_t x2,Double_t y2,Int_t npaves,

 Option_t* option)

Figure 9-18 A PaveText example

Axis
The axis objects are automatically built by various high level objects such as histograms or graphs. Once build,
one may access them and change their characteristics. It is also possible, for some particular purposes to build
axis on their own. This may be useful for example in the case one wants to draw two axis for the same plot, one
on the left and one on the right.

122 Graphics and the Graphical User Interface

For historical reasons, there are two classes representing axis. TAxis * axis is the axis object, which will be

returned when calling the TH1::GetAxis() method.

TAxis *axis = histo->GetXaxis()

Of course, you may do the same for Y and Z-axis. The graphical representation of an axis is done with the

TGaxis class. The histogram classes and TGraph generate instances of this class. This is internal and the

user should not have to see it.

Axis Title

The axis title is set, as with all named objects, by

axis->SetTitle("Whatever title you want");

When the axis is embedded into a histogram or a graph, one has to first extract the axis object:

h->GetXaxis()->SetTitle("Whatever title you want")

Axis Options and Characteristics

The axis options are most simply set with the styles. The available style options controlling specific axis options
are the following:

TAxis *axis = histo->GetXaxis();

axis->SetAxisColor(Color_t color = 1);

axis->SetLabelColor(Color_t color = 1);

axis->SetLabelFont(Style_t font = 62);

axis->SetLabelOffset(Float_t offset = 0.005);

axis->SetLabelSize(Float_t size = 0.04);

axis->SetNdivisions(Int_t n = 510, Bool_t optim = kTRUE);

axis->SetNoExponent(Bool_t noExponent = kTRUE);

axis->SetTickLength(Float_t length = 0.03);

axis->SetTitleOffset(Float_t offset = 1);

axis->SetTitleSize(Float_t size = 0.02);

The getters corresponding to the described setters are also available. The general options, not specific to axis,

as for instance SetTitleTextColor() are valid and do have an effect on axis characteristics.

Setting the Number of Divisions

Use TAxis::SetNdivisions(ndiv,optim) to set the number of divisions for an axis. The ndiv and

optim are as follows:

 ndiv = N1 + 100*N2 + 10000*N3

 N1 = number of first divisions.

 N2 = number of secondary divisions.

 N3 = number of tertiary divisions.

 optim = kTRUE (default), the divisions‘ number will be optimized around the specified value.

 optim = kFALSE, or n < 0, the axis will be forced to use exactly n divisions.

For example:

 ndiv = 0 : no tick marks.

 ndiv = 2 : 2 divisions, one tick mark in the middle of the axis.

 ndiv = 510 : 10 primary divisions, 5 secondary divisions

 ndiv = -10 : exactly 10 primary divisions

Zooming the Axis

You can use TAxis::SetRange or TAxis::SetRangeUser to zoom the axis.

TAxis::SetRange(Int_t binfirst,Int_t binlast)

The SetRange method parameters are bin numbers. They are not axis. For example if a histogram plots the

values from 0 to 500 and has 100 bins, SetRange(0,10) will cover the values 0 to 50. The parameters for

SetRangeUser are user coordinates. If the start or end is in the middle of a bin the resulting range is

approximation. It finds the low edge bin for the start and the high edge bin for the high.

TAxis::SetRangeUser(Axis_t ufirst,Axis_t ulast)

Both methods, SetRange and SetRangeUser, are in the context menu of any axis and can be used

interactively. In addition, you can zoom an axis interactively: click on the axis on the start, drag the cursor to the
end, and release the mouse button.

 Graphics and the Graphical User Interface 123

Drawing Axis Independently of Graphs or Histograms

An axis may be drawn independently of a histogram or a graph. This may be useful to draw for example a
supplementary axis for a graph. In this case, one has to use the TGaxis class, the graphical representation of

an axis. One may use the standard constructor for this kind of objects:

TGaxis(Double_t xmin,Double_t ymin,Double_t xmax,Double_t ymax,Double_t wmin,

 Double_t wmax,Int_t ndiv = 510,Option_t* chopt,Double_t gridlength = 0)

The arguments xmin, ymin are the coordinates of the axis' start in the user coordinates system, and xmax,

ymax are the end coordinates. The arguments wmin and wmax are the minimum (at the start) and maximum (at

the end) values to be represented on the axis; ndiv is the number of divisions. The options, given by the

―chopt‖ string are the following:

 chopt = 'G': logarithmic scale, default is linear.

 chopt = 'B': Blank axis (it is useful to superpose the axis).

Instead of the wmin,wmax arguments of the normal constructor, i.e. the limits of the axis, the name of a TF1

function can be specified. This function will be used to map the user coordinates to the axis values and ticks.

The constructor is the following:

TGaxis(Double_t xmin,Double_t ymin,Double_t xmax,Double_t ymax,

 const char* funcname,Int_t ndiv=510,Option_t* chopt,Double_t gridlength=0)

In such a way, it is possible to obtain exponential evolution of the tick marks position, or even decreasing. In
fact, anything you like.

Orientation of Tick Marks on Axis

Tick marks are normally drawn on the positive side of the axis, however, if xmin = xmax, then negative.

 chopt = '+‘: tick marks are drawn on Positive side. (Default)

 chopt = '-‘: tick marks are drawn on the negative side.

 chopt = '+-‘: tick marks are drawn on both sides of the axis.

 chopt = ‗U‘: unlabeled axis, default is labeled.

Labels

Position

Labels are normally drawn on side opposite to tick marks. However, chopt = '=': on Equal side. The function

TAxis::CenterLabels() sets the bit kCenterLabels and it is visible from TAxis context menu. It centers

the bin labels and it makes sense only when the number of bins is equal to the number of tick marks. The class
responsible for drawing the axis TGaxis inherits this property.

Orientation

Labels are normally drawn parallel to the axis. However, if xmin = xmax, then they are drawn orthogonal, and

if ymin=ymax they are drawn parallel.

Labels for Exponents

By default, an exponent of the form 10^N is used when the label values are either all very small or very large.
One can disable the exponent by calling:

TAxis::SetNoExponent(kTRUE)

Note that this option is implicitly selected if the number of digits to draw a label is less than the fgMaxDigits

global member. If the property SetNoExponent was set in TAxis (via TAxis::SetNoExponent), the

TGaxis will inherit this property. TGaxis is the class responsible for drawing the axis. The method

SetNoExponent is also available from the axis context menu.

124 Graphics and the Graphical User Interface

Figure 9-19 Y-axis with and without exponent labels

Number of Digits in Labels

TGaxis::fgMaxDigits is the maximum number of digits permitted for the axis labels above which the

notation with 10^N is used. It must be greater than 0. By default fgMaxDigits is 5 and to change it use the

TGaxis::SetMaxDigits method. For example to set fgMaxDigits to accept 6 digits and accept numbers

like 900000 on an axis call:

TGaxis::SetMaxDigits(6)

Tick Mark Positions

Labels are centered on tick marks. However, if xmin = xmax, then they are right adjusted.

 chopt = 'R': labels are right adjusted on tick mark (default is centered)

 chopt = 'L': labels are left adjusted on tick mark.

 chopt = 'C': labels are centered on tick mark.

 chopt = 'M': In the Middle of the divisions.

Label Formatting

Blank characters are stripped, and then the label is correctly aligned. The dot, if last character of the string, is
also stripped. In the following, we have some parameters, like tick marks length and characters height (in
percentage of the length of the axis, in user coordinates). The default values are as follows:

 Primary tick marks: 3.0 %

 Secondary tick marks: 1.5 %

 Third order tick marks: .75 %

 Characters height for labels: 4%

 Labels offset: 1.0 %

Stripping Decimals

Use the TStyle::SetStripDecimals to strip decimals when drawing axis labels. By default, the option is

set to true, and TGaxis::PaintAxis removes trailing zeros after the dot in the axis labels, e.g. {0, 0.5, 1, 1.5,

2, 2.5, etc.}

TStyle::SetStripDecimals (Bool_t strip=kTRUE)

If this function is called with strip=kFALSE, TGaxis::PaintAxis() will draw labels with the same number

of digits after the dot, e.g. {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, etc.}

Optional Grid

chopt = 'W': cross-Wire

 Graphics and the Graphical User Interface 125

Axis Binning Optimization

By default, the axis binning is optimized.

 chopt = 'N': No binning optimization

 chopt = 'I': Integer labeling

Axis with Time Units

Histograms' axis can be defined as "time axis". To do that it is enough to activate the SetTimeDisplay

attribute on a given axis. If h is a histogram, it is done the following way:

h->GetXaxis()->SetTimeDisplay(1); // X axis is a time axis

Two parameters can be adjusted in order to define time axis: the time format and the time offset.

Time Format

It defines the format of the labels along the time axis. It can be changed using the TAxis method

SetTimeFormat. The time format is the one used by the C function strftime(). It is a string containing the

following formatting characters:

For
the
date:

%a abbreviated weekday name

%b abbreviated month name

%d day of the month (01-31)

%m month (01-12)

%y year without century

%Y year with century

For
the
time:

%H hour (24-hour clock)

%I hour (12-hour clock)

%p local equivalent of AM or PM

%M minute (00-59)

%S seconds (00-61)

%% %

The other characters are output as is. For example to have a format like dd/mm/yyyy one should do:

h->GetXaxis()->SetTimeFormat("%d\/%m\/%Y");

If the time format is not defined, a default one will be computed automatically.

Time Offset

This is a time in seconds in the UNIX standard UTC format (the universal time, not the local one), defining the
starting date of a histogram axis. This date should be greater than 01/01/95 and is given in seconds. There are
three ways to define the time offset:

1. By setting the global default time offset:

TDatime da(2003,02,28,12,00,00);

gStyle->SetTimeOffset(da.Convert());

If no time offset is defined for a particular axis, the default time offset will be used. In the example above, notice
the usage of TDatime to translate an explicit date into the time in seconds required by SetTimeFormat.

2. By setting a time offset to a particular axis:

TDatime dh(2001,09,23,15,00,00);

h->GetXaxis()->SetTimeOffset(dh.Convert());

3. Together with the time format using SetTimeFormat. The time offset can be specified using the control

character %F after the normal time format. %F is followed by the date in the format: yyyy-mm-dd hh:mm:ss.

h->GetXaxis()->SetTimeFormat("%d\/%m\/%y%F2000-02-28 13:00:01");

Notice that this date format is the same used by the TDatime function AsSQLString. If needed, this function

can be used to translate a time in seconds into a character string which can be appended after %F. If the time

format is not specified (before %F) the automatic one will be used. The following example illustrates the various

possibilities.

126 Graphics and the Graphical User Interface

{

 gStyle->SetTitleH(0.08);

 TDatime da(2003,02,28,12,00,00);

 gStyle->SetTimeOffset(da.Convert());

 ct = new TCanvas("ct","Time on axis",0,0,600,600);

 ct->Divide(1,3);

 ht1 = new TH1F("ht1","ht1",30000,0.,200000.);

 ht2 = new TH1F("ht2","ht2",30000,0.,200000.);

 ht3 = new TH1F("ht3","ht3",30000,0.,200000.);

 for (Int_t i=1;i<30000;i++) {

 Float_t noise = gRandom->Gaus(0,120);

 ht1->SetBinContent(i,noise);

 ht2->SetBinContent(i,noise*noise);

 ht3->SetBinContent(i,noise*noise*noise);

 }

 ct->cd(1);

 ht1->GetXaxis()->SetLabelSize(0.06);

 ht1->GetXaxis()->SetTimeDisplay(1);

 ht1->GetXaxis()->SetTimeFormat("%d\/%m\/%y%F2000-02-2813:00:01");

 ht1->Draw();

 ct->cd(2);

 ht2->GetXaxis()->SetLabelSize(0.06);

 ht2->GetXaxis()->SetTimeDisplay(1);

 ht2->GetXaxis()->SetTimeFormat("%d\/%m\/%y");

 ht2->Draw();

 ct->cd(3);

 ht3->GetXaxis()->SetLabelSize(0.06);

 TDatime dh(2001,09,23,15,00,00);

 ht3->GetXaxis()->SetTimeDisplay(1);

 ht3->GetXaxis()->SetTimeOffset(dh.Convert());

 ht3->Draw();

}

The output is shown in the figure below. If a time axis has no specified time offset, the global time offset will be

stored in the axis data structure. The histogram limits are in seconds. If wmin and wmax are the histogram limits,

the time axis will spread around the time offset value from TimeOffset+wmin to TimeOffset+wmax. Until

now all examples had a lowest value equal to 0. The following example demonstrates how to define the
histogram limits relatively to the time offset value.

Figure 9-20 Time axis examples

{

 // Define the time offset as 2003, January 1st

 TDatime T0(2003,01,01,00,00,00);

 int X0 = T0.Convert();

 gStyle->SetTimeOffset(X0);

 // Define the lowest histogram limit as 2002,September 23rd

 TDatime T1(2002,09,23,00,00,00);

 int X1 = T1.Convert()-X0;

 // Define the highest histogram limit as 2003, March 7th

 Graphics and the Graphical User Interface 127

 TDatime T2(2003,03,07,00,00,00);

 int X2 = T2.Convert(1)-X0;

 TH1F * h1 = new TH1F("h1","test",100,X1,X2);

 TRandom r;

 for (Int_t i=0;i<30000;i++) {

 Double_t noise = r.Gaus(0.5*(X1+X2),0.1*(X2-X1));

 h1->Fill(noise);

 }

 h1->GetXaxis()->SetTimeDisplay(1);

 h1->GetXaxis()->SetLabelSize(0.03);

 h1->GetXaxis()->SetTimeFormat("%Y\/%m\/%d");

 h1->Draw();

}

The output is shown in the next figure. Usually time axes are created automatically via histograms, but one may
also want to draw a time axis outside a "histogram context". Therefore, it is useful to understand how TGaxis

works for such axis. The time offset can be defined using one of the three methods described before. The time

axis will spread around the time offset value. Actually, it will go from TimeOffset+wmin to TimeOffset+wmax

where wmin and wmax are the minimum and maximum values (in seconds) of the axis. Let us take again an

example. Having defined "2003, February 28 at 12h‖, we would like to see the axis a day before and a day after.

Figure 9-21 A histogram with time axis X

A TGaxis can be created the following way (a day has 86400 seconds):

TGaxis *axis = new TGaxis(x1,y1,x2,y2,-100000,150000,2405,"t");

the "t" option (in lower case) means it is a "time axis". The axis goes form 100000 seconds before

TimeOffset and 150000 seconds after. So the complete macro is:

{

 c1 = new TCanvas("c1","Examples of TGaxis",10,10,700,500);

 c1->Range(-10,-1,10,1);

 TGaxis *axis = new TGaxis(-8,-0.6,8,-0.6,-100000,150000,2405,"t");

 axis->SetLabelSize(0.03);

 TDatime da(2003,02,28,12,00,00);

 axis->SetTimeOffset(da.Convert());

 axis->SetTimeFormat("%d\/%m\/%Y");

 axis->Draw();

}

The time format is specified with:

axis->SetTimeFormat("%d\/%m\/%Y");

The macro gives the following output:

Thanks to the TLatex directive #splitline it is possible to write the time labels on two lines. In the previous

example changing the SetTimeFormat line by:

128 Graphics and the Graphical User Interface

axis->SetLabelOffset(0.02);

axis->SetTimeFormat("#splitline{%Y}{%d\/%m}");

will produce the following axis:

Axis Examples

To illustrate what was said, we provide two scripts. The first one creates the picture shown in the next figure.

Figure 9-22 The first axis example

The first script is:

{

 gROOT->Reset();

 c1 = new TCanvas("c1","Examples of Gaxis",10,10,700,500);

 c1->Range(-10,-1,10,1);

 TGaxis *axis1 = new TGaxis(-4.5,-0.2,5.5,-0.2,-6,8,510,"");

 axis1->SetName("axis1");

 axis1->Draw();

 TGaxis *axis2 = new TGaxis(4.5,0.2,5.5,0.2,0.001,10000,510,"G");

 axis2->SetName("axis2");

 axis2->Draw();

 TGaxis *axis3 = new TGaxis(-9,-0.8,-9,0.8,-8,8,50510,"");

 axis3->SetName("axis3");

 axis3->Draw();

 TGaxis *axis4 = new TGaxis(-7,-0.8,7,0.8,1,10000,50510,"G");

 axis4->SetName("axis4");

 axis4->Draw();

 TGaxis *axis5 = new TGaxis(-4.5,-6,5.5,-6,1.2,1.32,80506,"-+");

 axis5->SetName("axis5");

 axis5->SetLabelSize(0.03);

 axis5->SetTextFont(72);

 axis5->SetLabelOffset(0.025);

 axis5->Draw();

 TGaxis *axis6 = new TGaxis(-4.5,0.6,5.5,0.6,100,900,50510,"-");

 axis6->SetName("axis6");

 axis6->Draw();

 TGaxis *axis7 = new TGaxis(8,-0.8,8,0.8,0,9000,50510,"+L");

 axis7->SetName("axis7");

 axis7->SetLabelOffset(0.01);

 axis7->Draw();

// one can make axis top->bottom. However because of a problem,

// the two x values should not be equal

 TGaxis *axis8 = new TGaxis(6.5,0.8,6.499,-0.8,0,90,50510,"-");

 axis8->SetName("axis8");

 axis8->Draw();

}

 Graphics and the Graphical User Interface 129

Figure 9-23 The second axis example

The second example shows the use of the second form of the constructor, with axis ticks position determined by
a function TF1:

void gaxis3a()

{

 gStyle->SetOptStat(0);

 TH2F *h2 = new TH2F("h","Axes",2,0,10,2,-2,2);

 h2->Draw();

 TF1 *f1=new TF1("f1","-x",-10,10);

 TGaxis *A1 = new TGaxis(0,2,10,2,"f1",510,"-");

 A1->SetTitle("axis with decreasing values");

 A1->Draw();

 TF1 *f2=new TF1("f2","exp(x)",0,2);

 TGaxis *A2 = new TGaxis(1,1,9,1,"f2");

 A2->SetTitle("exponential axis");

 A2->SetLabelSize(0.03);

 A2->SetTitleSize(0.03);

 A2->SetTitleOffset(1.2);

 A2->Draw();

 TF1 *f3=new TF1("f3","log10(x)",0,800);

 TGaxis *A3 = new TGaxis(2,-2,2,0,"f3",505);

 A3->SetTitle("logarithmic axis");

 A3->SetLabelSize(0.03);

 A3->SetTitleSize(0.03);

 A3->SetTitleOffset(1.2);

 A3->Draw();

}

Figure 9-24 An axis example with time display

130 Graphics and the Graphical User Interface

// strip chart example

void seism() {

 TStopwatch sw; sw.Start();

 //set time offset

 TDatime dtime;

 gStyle->SetTimeOffset(dtime.Convert());

 TCanvas *c1 = new TCanvas("c1","Time on axis",10,10,1000,500);

 c1->SetFillColor(42);

 c1->SetFrameFillColor(33);

 c1->SetGrid();

 Float_t bintime = 1;

 //one bin = 1 second. change it to set the time scale

 TH1F *ht = new TH1F("ht","The ROOT seism",10,0,10*bintime);

 Float_t signal = 1000;

 ht->SetMaximum(signal);

 ht->SetMinimum(-signal);

 ht->SetStats(0);

 ht->SetLineColor(2);

 ht->GetXaxis()->SetTimeDisplay(1);

 ht->GetYaxis()->SetNdivisions(520);

 ht->Draw();

 for (Int_t i=1;i<2300;i++) {

 //======= Build a signal : noisy damped sine ======

 Float_t noise = gRandom->Gaus(0,120);

 if (i > 700)

 noise += signal*sin((i-700.)*6.28/30)*exp((700.-i)/300.);

 ht->SetBinContent(i,noise);

 c1->Modified();

 c1->Update();

 gSystem->ProcessEvents();

 //canvas can be edited during the loop

 }

 printf("Real Time = %8.3fs,Cpu Time = %8.3fs\n",sw.RealTime(),sw.CpuTime());

}

Graphical Objects Attributes

Text Attributes

When a class contains text or derives from a text class, it needs to be able to set text attributes like font type,
size, and color. To do so, the class inherits from the TAttText class (a secondary inheritance), which defines

text attributes. TLatex and TText inherit from TAttText.

Setting Text Alignment

Text alignment may be set by a method call. What is said here applies to all objects deriving from TAttText,

and there are many. We will take an example that may be transposed to other types. Suppose "la" is a TLatex

object. The alignment is set with:

root[] la->SetTextAlign(align)

The parameter align is a short describing the alignment:

align = 10*HorizontalAlign + VerticalAlign

For horizontal alignment, the following convention applies:

 1 = left

 2 = centered

 3 = right

For vertical alignment, the following convention applies:

 1 = bottom

 2 = centered

 3 = top

For example, align: 11 = left adjusted and bottom adjusted; 32 = right adjusted and vertically centered.

 Graphics and the Graphical User Interface 131

Setting Text Angle

Use TAttText::SetTextAngle to set the text angle. The angle is the degrees of the horizontal.

root[] la->SetTextAngle(angle)

Setting Text Color

Use TAttText::SetTextColor to set the text color. The color is the color index. The colors are described

in "Color and Color Palettes".

root[] la->SetTextColor(color)

Setting Text Font

Use TAttText::SetTextFont to set the font. The parameter font is the font code, combining the font and

precision: font = 10 * fontID + precision

root[] la->SetTextFont(font)

The table below lists the available fonts. The font IDs must be between 1 and 14. The precision can be:

 Precision = 0 fast hardware fonts (steps in the size)

 Precision = 1 scalable and rotate-able hardware fonts (see below)

 Precision = 2 scalable and rotate-able hardware fonts

When precision 0 is used, only the original non-scaled system fonts are used. The fonts have a minimum (4)
and maximum (37) size in pixels. These fonts are fast and are of good quality. Their size varies with large steps
and they cannot be rotated. Precision 1 and 2 fonts have a different behavior depending if True Type Fonts
(TTF) are used or not. If TTF are used, you always get very good quality scalable and rotate-able fonts.
However, TTF are slow. Precision 1 and 2 fonts have a different behavior for PostScript in case of TLatex

objects:

 With precision 1, the PostScript text uses the old convention (see TPostScript) for some

special characters to draw sub and superscripts or Greek text.

 With precision 2, the "PostScript" special characters are drawn as such. To draw sub and
superscripts it is highly recommended to use TLatex objects instead.

For example: font = 62 is the font with ID 6 and precision 2.

Figure 9-25 Font‟s examples

132 Graphics and the Graphical User Interface

The available fonts are:

Font ID X11 True Type name
Is

italic
"boldness"

1 times-medium-i-normal "Times New Roman" Yes 4

2 times-bold-r-normal "Times New Roman" No 7

3 times-bold-i-normal "Times New Roman" Yes 7

4 helvetica-medium-r-normal "Arial" No 4

5 helvetica-medium-o-normal "Arial" Yes 4

6 helvetica-bold-r-normal "Arial" No 7

7 helvetica-bold-o-normal "Arial" Yes 7

8 courier-medium-r-normal "Courier New" No 4

9 courier-medium-o-normal "Courier New" Yes 4

10 courier-bold-r-normal "Courier New" No 7

11 courier-bold-o-normal "Courier New" Yes 7

12 symbol-medium-r-normal "Symbol" No 6

13 times-medium-r-normal "Times New Roman" No 4

14 "Wingdings" No 4

This script makes the image of the different fonts:

{

 textc = new TCanvas("textc","Example of text",1);

 for (int i=1;i<15;i++) {

 cid = new char[8];

 sprintf(cid,"ID %d :",i);

 cid[7] = 0;

 lid = new TLatex(0.1,1-(double)i/15,cid);

 lid->SetTextFont(62);

 lid->Draw();

 l = new TLatex(.2,1-(double)i/15,"The quick brown fox is not here anymore")

 l->SetTextFont(i*10+2);

 l->Draw();

 }

}

How to use True Type Fonts

You can activate the True Type Fonts by adding the following line in your .rootrc file.

Unix.*.Root.UseTTFonts: true

You can check that you indeed use the TTF in your Root session. When the TTF is active, you get the following

message at the start of a session: "Free Type Engine v1.x used to render TrueType fonts." You can also check
with the command:

gEnv->Print()

Setting Text Size

Use TAttText::SetTextSize to set the text size.

root[] la->SetTextSize(size)

The size is the text size expressed in percentage of the current pad size.

The text size in pixels will be:

 If current pad is horizontal, the size in pixels = textsize * canvas_height

 If current pad is vertical, the size in pixels = textsize * canvas_width

The user interface for changing the text color, size, font and allignment looks like shown in
this picture. It takes place in the editor frame anytime the selected object inherits the class
TAttText.

 Graphics and the Graphical User Interface 133

Line Attributes

All classes manipulating lines have to deal with line attributes: color, style and width. This is done by using
secondary inheritance of the class TAttLine. The line color may be set by a method call. What is said here

applies to all objects deriving from TAttLine, and there are many (histograms, plots). We will take an example

that may be transposed to other types. Suppose "li" is a TLine object. The line color is set with:

root[] li->SetLineColor(color)

The argument color is a color number. The colors are described in "Color and Color Palettes"

The line style may be set by a method call. What is said here applies to all objects deriving from TAttLine, and

there are many (histograms, plots). We will take an example that may be transposed to other types. Suppose
"li" is a TLine object. The line style is set with:

root[] li->SetLineStyle(style)

The argument style is one of: 1=solid, 2=dash, 3=dash-dot, 4=dot-dot.

The line width may be set by a method call. What is said here applies to all objects deriving from TAttLine,

and there are many (histograms, plots). We will take an example that may be transposed to other types.
Suppose "li" is a TLine object. The line width is set with:

root[] li->SetLineWidth(width)

The width is the width expressed in pixel units.

The user interface for changing the line color, line width and style looks like shown in this
picture. It takes place in the editor frame anytime the selected object inherits the class
TAttLine.

Fill Attributes

Almost all graphics classes have a fill area somewhere. These classes have to deal with fill attributes. This is
done by using secondary inheritance of the class TAttFill. Fill color may be set by a method call. What is

said here applies to all objects deriving from TAttFill, and there are many (histograms, plots). We will take an

example that may be transposed to other types. Suppose "h" is a TH1F (1 dim histogram) object. The histogram

fill color is set with:

root[] h->SetFillColor(color)

The color is a color number. The colors are described in "Color and color palettes"

Fill style may be set by a method call. What is said here applies to all objects deriving from TAttFill, and

there are many (histograms, plots). We will take an example that may be transposed to other types. Suppose
"h" is a TH1F (1 dim histogram) object. The histogram fill style is set with:

root[] h->SetFillStyle(style)

The convention for style is: 0:hollow, 1001:solid, 2001:hatch style, 3000+pattern number:patterns, 4000

to 4100:transparency, 4000:fully transparent, 4100: fully opaque.

Fill styles >3100 and <3999 are hatches. They are defined according to the FillStyle=3ijk value as follows:

 i(1-9) specifies the space between each hatch (1=minimum space, 9=maximum). The

 final spacing is set by SetHatchesSpacing() method and it is

 *GetHatchesSpacing().

 j(0-9) specifies the angle between 0 and 90 degres as follows: 0=0, 1=10, 2=20, 3=30,

 4=45, 5=not drawn, 6=60, 7=70, 8=80 and 9=90.

 k(0-9) specifies the angle between 0 and 90 degres as follows: 0=180, 1=170, 2=160,

 3=150, 4=135, 5=not drawn, 6=120, 7=110, 8=100 and 9=90.

Figure 9-26 The various patterns

134 Graphics and the Graphical User Interface

Color and Color Palettes

At initialization time, a table of basic colors is generated when the first Canvas constructor is called. This table is
a linked list, which can be accessed from the gROOT object (see TROOT::GetListOfColors()). Each color

has an index and when a basic color is defined, two "companion" colors are defined:

 the dark version (color index + 100)

 the bright version (color index + 150)

The dark and bright colors are used to give 3-D effects when drawing various boxes (see TWbox, TPave,

TPaveText, TPaveLabel, etc). If you have a black and white copy of the manual, here are the basic colors

and their indices.

Figure 9-27 The basic ROOT colors

The list of currently supported basic colors (here dark and bright colors are not shown) are shown. The color
numbers specified in the basic palette, and the picture above, can be viewed by selecting the menu entry Colors
in the View canvas menu. The user may define other colors. To do this, one has to build a new TColor:

TColor(Int_t color,Float_t r,Float_t g,Float_t b,const char* name)

One has to give the color number and the three Red, Green, Blue values, each being defined from 0 (min) to
1(max). An optional name may be given. When built, this color is automatically added to the existing list of
colors. If the color number already exists, one has to extract it from the list and redefine the RGB values. This
may be done for example with:

root[] color=(TColor*)(gROOT->GetListOfColors()->At(index_color))

root[] color->SetRGB(r,g,b)

Where r, g and b go from 0 to 1 and index_color is the color number you wish to change.

The user interface for changing the fill color and style looks like shown in this picture. It takes
place in the editor frame anytime the selected object inherits the class TAttFill.

Color Palette (for Histograms)

Defining one color at a time may be tedious. The histogram classes (see Draw Options) use the color palette.
For example, TH1::Draw("col") draws a 2-D histogram with cells represented by a box filled with a color CI

function of the cell content. If the cell content is N, the color CI used will be the color number in colors[N]. If

the maximum cell content is >ncolors, all cell contents are scaled to ncolors. The current color palette does

not have a class or global object of its own. It is defined in the current style as an array of color numbers. The
current palette can be changed with:

TStyle::SetPalette(Int_t ncolors,Int_t*color_indexes).

By default, or if ncolors <= 0, a default palette (see above) of 50 colors is defined. The colors defined in this

palette are good for coloring pads, labels, and other graphic objects. If ncolors > 0 and colors = 0, the

default palette is used with a maximum of ncolors. If ncolors == 1 && colors == 0, then a pretty

palette with a spectrum Violet->Red is created. It is recommended to use this pretty palette when drawing

lego(s), surfaces or contours. For example, to set the current palette to the ―pretty‖ one, do:

root[] gStyle->SetPalette(1)

A more complete example is shown below. It illustrates the definition of a custom palette. You can adapt it to
suit your needs. In case you use it for contour coloring, with the current color/contour algorithm, always define
two more colors than the number of contours.

1 =black
2 = red
3 = bright green
4 = bright blue
5 = yellow
6 = hot pink
7 = aqua
8 = green
9 = blue

 0->9: basic colors

10->19: gray shades

20->29: brown shades

30->39: blue shades

40->49: red shade

 Graphics and the Graphical User Interface 135

void palette() { // Example of creating new colors (purples)

 const Int_t colNum = 10; // and defining of a new palette

 Int_t palette[colNum];

 for (Int_t i=0; i<colNum; i++) {

 // get the color and if it does not exist create it

 if (! gROOT->GetColor(230+i)){

 TColor *color = new TColor(230+i,1-(i/((colNum)*1.0)),0.3,0.5,"");

 } else {

 TColor *color = gROOT->GetColor(230+i);

 color->SetRGB(1-(i/((colNum)*1.0)),0.3,0.5);

 }

 palette[i] = 230+i;

 }

 gStyle->SetPalette(colNum,palette);

 TF2 *f2 = new TF2("f2","exp(-(x^2)-(y^2))",-3,3,-3,3);

 // two contours less than the number of colors in palette

 f2->SetContour(colNum-2);

 f2->Draw("cont");

}

The Graphics Editor
A new graphics editor took place in ROOT v4.0. The editor can be activated by selecting the Editor menu entry
in the canvas View menu or one of the context menu entries for setting line, fill, marker or text attributes. The
following object editors are available for the current ROOT version.

TAxisEditor

 This user interface gives the possibility for changing the following axis attributes:

 color of the selected axis, the axis‘ title and labels;

 the length of thick parameters and the possibility to set them on both axis sides

 (if +- is selected);

 to set logarithmic or linear scale along the selected axis with a choice for optimized

 or more logarithmic labels;

 primary, secondary and tertiary axis divisions can be set via the three number fields.

 the axis title can be added or edited and the title‘s color, position, offset, size and

 font can be set interactively;

 the color, size, and offset of axis labels can be set similarly. In addition, there is a

 check box for no exponent choice, and another one for setting the same decimal

 part for all labels.

TPadEditor

 It provides the following user interface:

 Fixed aspect ratio – can be set for pad resizing.

 Edit – sets pad or canvas as editable.

 Crosshair – sets a cross hair on the pad.

 TickX – set ticks along the X axis.

 TickY – set ticks along the Y axis.

 GridX – set a grid along the X axis.

 GridY – set a grid along the Y axis.

 The pad or canvas border size can be set if a sinken or a raised border mode is

 selected; no border mode can be set too.

Copy and Paste
You can make a copy of a canvas using TCanvas::DrawClonePad. This method is unique to TCanvas. It

clones the entire canvas to the active pad. There is a more general method TObject::DrawClone, which all

objects descendents of TObject, specifically all graphic objects inherit. Below are two examples, one to show

the use of DrawClonePad and the other to show the use of DrawClone.

136 Graphics and the Graphical User Interface

Using the GUI

In this example we will copy an entire canvas to a new one with DrawClonePad. Run the script draw2dopt.C.

root[] .x tutorials/hist/draw2dopt.C

This creates a canvas with 2D histograms. To make a copy of the canvas follow the steps:

 Right-click on it to bring up the context menu

 Select DrawClonePad

This copies the entire canvas and all its sub-pads to a new canvas. The copied canvas is a deep clone, and all
the objects on it are copies and independent of the original objects. For instance, change the fill on one of the

original histograms, and the cloned histogram retains its attributes. DrawClonePad will copy the canvas to the

active pad; the target does not have to be a canvas. It can also be a pad on a canvas.

Figure 9-28 Diferent draw options

If you want to copy and paste a graphic object from one canvas or pad to another canvas or pad, you can do so
with DrawClone method inherited from TObject. All graphics objects inherit the TObject::DrawClone

method. In this example, we create a new canvas with one histogram from each of the canvases from the script

draw2dopt.C.

 Start a new ROOT session and execute the script draw2dopt.C

 Select a canvas displayed by the script, and create a new canvas c1 from the File menu.

 Make sure that the target canvas (c1) is the active one by middle clicking on it. If you do this step

right after step 2, c1 will be active.

 Select the pad with the first histogram you want to copy and paste.

 Right click on it to show the context menu, and select DrawClone.

 Leave the option blank and hit OK.

Repeat these steps for one histogram on each of the canvases created by the script, until you have one pad
from each type. If you wanted to put the same annotation on each of the sub pads in the new canvas, you could

use DrawClone to do so. Here we added the date to each pad. The steps to this are:

 Create the label in on of the pads with the graphics editor.

 Middle-click on the target pad to make it the active pad

 Use DrawClone method of the label to draw it in each of the other panels.

The option in the DrawClone method argument is the Draw option for a histogram or graph. A call to

TH1::DrawClone can clone the histogram with a different draw option.

Programmatically

To copy and paste the four pads from the command line or in a script you would execute the following
statements:

root[] .x tutorials/hist/draw2dopt.C

root[] TCanvas c1("c1","Copy Paste",200,200,800,600);

root[] surfaces->cd(1); // get the first pad

root[] TPad *p1 = gPad;

root[] lego->cd(2); // get the next pad

root[] TPad *p2 = gPad;

root[] cont->cd(3); // get the next pad

root[] TPad *p3 = gPad;

 Graphics and the Graphical User Interface 137

root[] c2h->cd(4); // get the next pad

root[] TPad *p4 = gPad;

root[] // to draw the four clones

root[] c1->cd();

root[] p1->DrawClone();

root[] p2->DrawClone();

root[] p3->DrawClone();

root[] p4->DrawClone();

Note that the pad is copied to the new canvas in the same location as in the old canvas. For example if you

were to copy the third pad of surf to the top left corner of the target canvas you would have to reset the

coordinates of the cloned pad.

Legends
Legends for a graph are obtained with a TLegend object. This object points to markers, lines, boxes,

histograms, graphs and represent their marker, line, fill attributes. Any object that has a marker or line or fill
attribute may have an associated legend. A TLegend is a panel with several entries (class TLegendEntry)

and is created by the constructor

TLegend(Double_t x1,Double_t y1,Double_t x2,Double_t y2,const char *header,

 Option_t *option)

The legend is defined with default coordinates, border size and option. The legend coordinates (NDC) in the

current pad are x1, y1, x2, y2. The default text attributes for the legend are:

 Alignment = 12 left adjusted and vertically centered

 Angle = 0 (degrees)

 Color = 1 (black)

 Size = calculate when number of entries is known

 Font = helvetica-medium-r-normal scalable font = 42, and bold = 62 for title

The title is a regular entry and supports TLatex. The default is no title (header = 0). The options are the

same as for TPave; by default, they are "brNDC". Once the legend box is created, one has to add the text with

the AddEntry() method:

TLegendEntry* TLegend::AddEntry(TObject *obj, const char *label,Option_t *option)

The parameters are:

 *obj is a pointer to an object having marker, line, or fill attributes (a histogram, or a graph)

 label is the label to be associated to the object

 option:

 ‖L‖ draw line associated with line attributes of obj, if obj inherits from TAttLine.

 ‖P‖ draw poly-marker associated with marker attributes of obj, if obj inherits TAttMarker.

 ‖F‖ draw a box with fill associated with fill attributes of obj, if obj inherits TAttFill.

One may also use the other form of the method AddEntry:

TLegendEntry* TLegend::AddEntry(const char *name,const char *label,

 Option_t *option)

Here name is the name of the object in the pad. Other parameters are as in the previous case. Next example

shows how to create a legend:

leg = new TLegend(0.4,0.6,0.89,0.89);

leg->AddEntry(fun1,"One Theory","l");

leg->AddEntry(fun3,"Another Theory","f");

leg->AddEntry(gr,"The Data","p");

leg->Draw();

// oops we forgot the blue line... add it after

leg->AddEntry(fun2,"#sqrt{2#pi} P_{T} (#gamma) latex formula","f");

// and add a header (or "title") for the legend

leg->SetHeader("The Legend Title");

leg->Draw();

Here fun1, fun2, fun3 and gr are pre-existing functions and graphs. You can edit the TLegend by right

clicking on it.

138 Graphics and the Graphical User Interface

Figure 9-29 A legend example

The PostScript Interface
To generate a PostScript (or encapsulated PostScript) file for a single image in a canvas, you can:

 Select to print the canvas in the PostScript file format from the File menu / Save or Save As menu
entries. By default, a PostScript file is generated, if you do not specify the file format.

 Click in the canvas area, near the edges, with the right mouse button and select the Print context
menu entry. This will generate a file of canvas pointed to by c1. You can select the name of the

PostScript file. If the file name is xxx.ps, you will generate a PostScript file named xxx.ps. If

the file name is xxx.eps, you generate an encapsulated Postscript file instead. In your program

(or script), you can type:

c1->Print("xxx.ps") // or

c1->Print("xxx.eps")

Next example prints the picture in the pad pointed by pad1.

pad1->Print("xxx.ps")

 The TPad::Print method has a second parameter called option. Its value can be:

 0 which is the default and is the same as "ps"

 "ps" a Postscript file is produced

 "Portrait" a Postscript file is produced with Portrait orientation

 "Landscape" a Postscript file is produced with Landscape orientation

 "eps" an Encapsulated Postscript file

 "Preview" an Encapsulated Postscript file with preview is produced

 "gif" a Graphics Interchange Format file

 "cxx" a C++ macro file is generated

 "pdf" a Portable Document Format file

 "xml" a eXtensible Mark-up Language file

 "jpg" a Joint Photographic Experts Group file

 "png" a Portable Network Graphics Format (PNG file)

 "xpm" a X11 Pixel Map Format

 "svg" a Scalable Vector Graphics file

 "tiff" a Tagged-Image File Format

 ―root‖ a ROOT binary file is produced

You do not need to specify this second parameter; you can indicate by the filename extension what format you

want to save a canvas in (i.e. canvas.ps, canvas.gif, canvas.C, etc).

The size of the PostScript picture, by default, is computed to keep the aspect ratio of the picture on the screen,

where the size along x is always 20 cm. You can set the size of the PostScript picture before generating the

picture with a command such as:

TPostScript myps("myfile.ps",111)

myps.Range(xsize,ysize);

 Graphics and the Graphical User Interface 139

object->Draw();

myps.Close();

The first parameter in the TPostScript constructor is the name of the file; the second one is the format option:

 111 - ps portrait

 112 - ps landscape

 113 - eps

You can set the default paper size with:

gStyle->SetPaperSize(xsize,ysize);

You can resume writing again in this file with myps.Open(). Note that you may have several Post Script files

opened simultaneously. Use TPostScript::Text(x,y,"string") to add text to a postscript file. This

method writes the string in quotes into a PostScript file at position x, y in world coordinates.

Special Characters

The following characters have a special action on the PostScript file:

 ` - go to Greek

 ' - go to special

 ~ - go to Zapf Dingbats

 ? - go to subscript

 ^ - go to superscript

 ! - go to normal level of script

 & - backspace one character

 # - end of Greek or of ZapfDingbats

These special characters are printed as such on the screen. To generate one of these characters on the
PostScript file, you must escape it with the escape character "@". The use of these special characters is
illustrated in several scripts referenced by the TPostScript constructor.

Writing Several Canvases to the Same PostScript File

The following sequence writes the canvas to "c1.ps" and closes the postscript file:

TCanvas c1("c1");

h1.Draw();

c1.Print("c1.ps");

If the Postscript file name finishes with "(", the file remains opened (it is not closed). If the Postscript file name

finishes with ")" and the file has been opened with "(", the file is closed.

{

 TCanvas c1("c1");

 h1.Draw();

 c1.Print("c1.ps("); // write canvas and keep the ps file open

 h2.Draw();

 c1.Print("c1.ps"); // canvas is added to "c1.ps"

 h3.Draw();

 c1.Print("c1.ps)"); //canvas is added to "c1.ps"; ps file is closed

}

The TCanvas::Print("file.ps(") mechanism is very useful, but it can be a little inconvenient to have the

action of opening/closing a file being atomic with printing a page. Particularly if pages are being generated in

some loop, one needs to detect the special cases of first and last page. The "[" and "]" can be used instead of

"(" and ")" as shown in the next example.

c1.Print("file.ps["); // no actual ptint; just open file.ps

for (i=0; i<10; ++i) {

 // fill canvas for context i

 ...

 c1.Print("file.ps"); // actualy print canvas to file.ps

} // end loop

c1.Print("file.ps]"); // no actual ptint; just close file.ps

The following script illustrates how to open a postscript file and draw several pictures. The generation of a new
postscript page is automatic when TCanvas::Clear is called by object->Draw().

{

140 Graphics and the Graphical User Interface

 TFile f("hsimple.root");

 TCanvas c1("c1","canvas",800,600);

 //select PostScript output type

 Int_t type = 111; //portrait ps

 // Int_t type = 112; //landscape ps

 // Int_t type = 113; //eps

 //create a PostScript file and set the paper size

 TPostScript ps("test.ps",type);

 ps.Range(16,24); //set x,y of printed page

 //draw 3 histograms from file hsimple.root on separate pages

 hpx->Draw();

 c1.Update(); //force drawing in a script

 hprof->Draw();

 c1.Update();

 hpx->Draw("lego1");

 c1.Update();

 ps.Close();

}

The next example does the same:

{

 TFile f("hsimple.root");

 TCanvas c1("c1","canvas",800,600);

 //set x,y of printed page

 gStyle->SetPaperSize(16,24);

 //draw 3 histograms from file hsimple.root on separate pages

 hpx->Draw();

 c1->Print(“test1.ps(“, “Portrait”);

 hprof->Draw();

 c1->Print(“test1.ps”);

 hpx->Draw(“lego1”);

 c1->Print(“test1.ps)“);

}

This following example shows two pages. The canvas is divided. TPostScript::NewPage must be called

before starting a new picture. object->Draw does not clear the canvas in this case because we clear only the

pads and not the main canvas. Note that c1->Update must be called at the end of the first picture.

{

 TFile *f1 = new TFile("hsimple.root");

 TCanvas *c1 = new TCanvas("c1");

 TPostScript *ps = new TPostScript("file.ps",112);

 // picture 1

 c1->Divide(2,1);

 ps->NewPage();

 c1->cd(1);

 hpx->Draw();

 c1->cd(2);

 hprof->Draw();

 // picture 2

 c1->Update();

 ps->NewPage();

 c1->cd(1);

 hpxpy->Draw();

 c1->cd(2);

 ntuple->Draw("px");

 c1->Update();

 ps->Close();

 // invoke PostScript viewer

 gSystem->Exec("gs file.ps");

}

The next one does the same:

{

 TFile *f1 = new TFile("hsimple.root");

 TCanvas *c1 = new TCanvas("c1");

 c1->Divide(2,1);

 // picture 1

 c1->cd(1);

 hpx->Draw();

 c1->cd(2);

 Graphics and the Graphical User Interface 141

 hprof->Draw();

 c1->Print(“test2.ps(”, “Landscape”);

 // picture 2

 c1->cd(1);

 hpxpy->Draw();

 c1->cd(2);

 ntuple->Draw(“px”);

 c1->Print(“test2.ps)”);

 gSystem->Exec("gs file.ps"); // invoke PostScript viewer

}

Create or Modify a Style
All objects that can be drawn in a pad inherit from one or more attribute classes like TAttLine, TAttFill,

TAttText, TAttMarker. When objects are created, their default attributes are taken from the current style.

The current style is an object of the class TStyle and can be referenced via the global variable gStyle (in

TStyle.h). See the class TStyle for a complete list of the attributes that can be set in one style.

ROOT provides several styles called:

 "Default" - the default style

 "Plain" - the simple style (black and white)

 "Bold" - bolder lines

 "Video" - suitable for html output or screen viewing

The "Default" style is created by:

TStyle *default = new TStyle("Default","Default Style");

The "Plain" style can be used if you want to get a "conventional" PostScript output or if you are working on a

monochrome display. The following example shows how to create it.

TStyle *plain = new TStyle("Plain","Plain Style(no colors/fill areas)");

plain->SetCanvasBorderMode(0);

plain->SetPadBorderMode(0);

plain->SetPadColor(0);

plain->SetCanvasColor(0);

plain->SetTitleColor(0);

plain->SetStatColor(0);

You can set the current style by:

gROOT->SetStyle(style_name);

You can get a pointer to an existing style by:

TStyle *style = gROOT->GetStyle(style_name);

You can create additional styles by:

TStyle *st1 = new TStyle("st1","my style");

st1->Set...

st1->cd(); // this becomes now the current style gStyle

In your rootlogon.C file, you can redefine the default parameters via statements like:

gStyle->SetStatX(0.7);

gStyle->SetStatW(0.2);

gStyle->SetLabelOffset(1.2);

gStyle->SetLabelFont(72);

Note that when an object is created, its attributes are taken from the current style. For example, you may have
created a histogram in a previous session and saved it in a file. Meanwhile, if you have changed the style, the
histogram will be drawn with the old attributes. You can force the current style attributes to be set when you

read an object from a file by calling ForceStyle before reading the objects from the file.

gROOT->ForceStyle();

When you call gROOT->ForceStyle() and read an object from a ROOT file, the object‘s method

UseCurrentStyle is called. The attributes saved with the object are replaced by the current style attributes.

You call also call myObject->UseCurrentStyle() directly. For example if you have a canvas or pad with

your histogram or any other object, you can force these objects to get the attributes of the current style by:

canvas->UseCurrentStyle();

The description of the style functions should be clear from the name of the TStyle setters or getters. Some

functions have an extended description, in particular:

 TStyle::SetLabelFont

142 Graphics and the Graphical User Interface

 TStyle::SetLineStyleString: set the format of dashed lines.

 TStyle::SetOptStat

 TStyle::SetPalette to change the colors palette

 TStyle::SetTitleOffset

 TSTyle::SetOptDate(Int_t optdate) to support several date formats. If optdate is non-

null, the current date/time will be printed in the canvas. The position of the date string can be

controlled by: optdate = 10*format + mode

 mode = 1 the date is printed in the bottom/left corner

 mode = 2 date is printed in the bottom/right corner

 mode = 3 date is printed in the top/right corner

 format = 0 (default) date format is like: "Wed Sep 25 17:10:35 2002"

 format = 1 date format is: "2002-09-25"

 format = 2 date format is: "2002-09-25 17:10:35"

 Graphics and the Graphical User Interface 143

3D Viewers
ROOT provides several viewers capable of displaying 3D content:

 the Pad – simple line drawing using TPad and associated projection class TView;

 GL Viewer – high quality and performance viewer(See ―The GL Viewer‖);

 X3D viewer – simple legacy viewer (See ―The X3D Viewer‖);

 GL-in-pad – combination of basic GL viewer in TPad, with no hardware acceleration.

The X3D and GL viewers are created as external windows, associated with a pad, and displaying the same
content as it. Only these external viewers are detailed here – for Pad (TPad, TView classes) you should refer to

―Graphical Containers: Canvas and Pad‖ and the class definitions.

All viewers use a common architecture to publish 3D objects to the viewer - described in ―Common 3D Viewer
Architecture‖ below. In most cases, you will not need to use this, working instead with a package, such as the
―The Geometry Package‖, which provides comprehensive, high level functionality to create and place objects
into complex 3D scenes, and uses the viewer architecture internally to show the result in your chosen viewer.

Invoking a 3D viewer

A 3D viewer can be created in a script by passing the appropriate option to Draw() when attaching the drawn

object(s) to a pad. For a fuller explanation of pads, attaching objects with Draw() etc. refer to ―Graphical

Containers: Canvas and Pad‖.

root[] myShapes->Draw(“ogl”);

Valid option strings are:

 ―ogl‖ : external GL viewer

 ―x3d‖ : external X3D viewer

 ―pad‖ : pad viewer

If no option is passed to Draw() then the ―pad‖ is used by default. If you already have content in a pad, which

you would like to display in one of the external viewers you can select from the canvas View menu / View With,
and pick the viewer type.

Figure 9-30 Invoking external 3D viewers from canvas menus

Note: A current limitation means that when an external viewer is created the pad is no longer redrawn. When
the external viewer is closed, clicking in the pad will refresh.

The GL Viewer

The GL Viewer uses OpenGL
®
 (or compliant libraries such as Mesa3D) to generate high quality, high-

performance 3D renderings, with sophisticated lighting, materials and rendering styles for 3D scenes. Many
users will be able to take advantage of hardware acceleration of the underlying OpenGL commands by their
computer‘s video card, resulting is considerable performance gains – up to interactive manipulation of 1000‘s of
complex shapes in real-time.

The GL Viewer is supported on all official ROOT platforms (assuming you have suitable OpenGL
®
 libraries),

and is the main 3D viewer, which development effort is concentrated upon. As OpenGL
®
 is a trademark we refer

to our viewer built on this technology as the ‗GL Viewer‘. The code for it can be found under $ROOTSYS/gl.

http://www.opengl.org/
http://www.mesa3d.org/
http://www.opengl.org/

144 Graphics and the Graphical User Interface

Figure 9-31 The GL 3D Viewer

You can manipulate the viewer via the GUI or via the base TGLViewer object behind the interface. These are

detailed below - see also $ROOTSYS/tutorials/gl/glViewerExercise.C.

Projections Modes (Cameras)

The GL Viewer supports two basic types of camera, which affect how the 3D world is projected onto the 2D
render area:

 Perspective: Objects are drawn with characteristic ‗foreshortening‘ effect, where distant
 objects appear smaller than near ones. This is useful for obtaining a ‗real
 world‘ views. The degree of foreshortening is affected by the current
 camera field of view (focal length of its ‗lens‘) – see ―Adjusting Cameras‖.

 Orthographic: Distance from camera does not affect object size. These projections are
 useful for measurement or checking alignments, as the sizes and angles
 between objects are preserved.

You can select the active camera from the viewer‘s Camera menu on the top menu bar. There are three
perspective camera choices:

 Perspective (Floor XOZ) Default

 Perspective (Floor YOZ)

 Perspective (Floor XOY)

In each case the perspective camera is constrained to keep the chosen floor plane, defined by a pair of world
axes, appearing level at all times – i.e. there is no banking of the ‗horizon‘ that you experience when a plane
rolls. There are also three orthographic camera choices:

 Orthographic (XOY)

 Orthographic (XOZ)

 Orthographic (ZOY)

Orthographic projections are generally constrained to look down one of the global axes of the world, with the
other two axes lying horizontal/vertical on the viewer window. Therefore, XOY has the X-axis horizontal, the Y-
axis vertical. You can always confirm the orientation and constraints of the camera in the world by enabling axis
drawing in the ―Guides‖ tab – see sections ―Guides‖ and ―Clipping‖ below. For orthographic camera a ruler-
depicting current scene units is also available.

You can also pick the current camera by obtaining a handle to the GL Viewer object behind the interface:

TGLViewer * v = (TGLViewer *)gPad->GetViewer3D();

calling the method TGLViewer::SetCurrentCamera with one of the TGLViewer::ECameraType types:

v->SetCurrentCamera(TGLViewer::kCameraPerspXOZ);

See also $ROOTSYS/tutorials/gl/glViewerExercise.C.

Adjusting Cameras

The interactions with the camera are summarized above. In each case the interaction is listed, along with
description and user actions required to achieve it. For all cameras you can reset the original default view,
framing the entire scene, by double clicking any mouse button.

 Graphics and the Graphical User Interface 145

Figure 9-32 GL Viewer camera interactions

For the Zoom interaction you can use the following modifiers combinations to adjust the sensitivity:

 Shift x 10

 Ctrl x 0.1

 Shift + Ctrl x 0.01

The modifiers must be applied after the zoom action has started (right mouse button is down).

Note for orthographic cameras:

 There is no field of view of view/focal length – dollying and zooming producing an identical
scaling action.

 There is a fixed eye direction – so the ‗Orbit‘ action is disabled.

Note for perspective cameras:

 Dollying (moving the camera backwards/forwards) and zooming are often confused, and may
appear very similar.

 When you dolly the camera the lens focal length does not change, hence the distortions
associated with the projections are unaffected. However the movement can result in objects
coming ‗through the front‘ of the camera and disappearing.

 When you zoom, the camera does not move – hence clipping of near objects is unaffected.
However with extremely small zooms (FOV large/focal length short) noticeable distortions,
causing straight lines to become curved, can be seen with objects near the camera – the ‗fisheye‘
lens effect.

 Generally dollying is more ‗natural‘, but you may need to use both to achieve the desired
perspective and eye position – particularly when you are working inside or very close to 3D
objects.

Configure the camera by calling the methods SetPerspectiveCamera() or SetOrthographicCamera() of

TGLViewer:

TGLViewer * v = (TGLViewer *)gPad->GetViewer3D();

v->SetOrthoCamera(TGLViewer::kCameraOrthoXOY,left,right,top,bottom);

...

v->SetPerspectiveCamera (camera,fov,dolly,center,hRotate,vRotate);

Note – you can configure any of the six cameras in the viewer at any time, but you will not see the result until
the camera is made current.

Draw Styles

The GL Viewer supports three different rendering modes, which are applied to all the objects in your scene, but
not Clip Shapes and Guides (See ―Clipping‖ and ―Manipulators‖). These are shown below, along with the key
used to activate the style.

146 Graphics and the Graphical User Interface

Figure 9-33 GL Viewer draw styles

Filled Polygons Wireframe Outline
Enable with ‗r‘ key Enable with ‗w‘ key Enable with ‗t‘ key
Solid polygons, with hidden surface Object edges in color, with Combination of Filled Polygons
removal, color surface materials, no surface filling/hiding. and Outline styles. Solid
opacity, specular reflection etc. shapes with edges.
Black background. Black background. White background.

Call method TGLViewer::SetStyle with one of TGLRnrCtx::EDrawStyle flags kFill, kOutline,

kWireFrame:

v->SetStyle(TGLRnrCtx::kFill);

Lighting / Style

The GL viewer creates five diffuse lights (left, right, top, bottom, and front) arranged around the 3D scene.
These lights are carried with the camera – that is they are always in same position relative to your eye – the left
light always shines from the left.

Light controls are located: Viewer Controls Pane ‗Style‘.

Each light has a checkbox to enable/disable it. Set lights on/off with TGLLightSet::SetLight e.g.

v->GetLightSet()->SetLight(TGLLightSet::kLightBottom, kFALSE);

Clipping

The GL viewer supports interactive clipping, enabling you to remove sections of your 3D scene and the shapes,
revealing internal details.

Figure 9-34 GL Viewer interactive box clipping

The controls for clipping can be found under: Viewer Controls Pane ‗Clipping‘ tab.

Two clipping ‗shapes‘ are currently supported:

 Single plane

 Box

 Graphics and the Graphical User Interface 147

Pick the type from the radio buttons – only one (or none) may be active at one time.

The clip object can be adjusted by:

 Adjusting the values in the properties panel GUI

 Directly manipulating the clip object in the viewer

To show and/or directly manipulate the object check the ‗Show / Edit in Viewer‘ checkbox. The clip object is
drawn in semi-transparent light brown. The current manipulator is attached to it, allowing you direct control over
its position, scale and rotation. See ―Manipulators‖ section below for details on using viewer manipulators.

The clip plane is described by the standard plane equation: ax+by+cz+d=0, where the factors a, b, c, d are

entered into the edit boxes, and applied using the ‗Apply‘ button.

The clip box is described by its center position, entered in the ‗Center X‘, ‗Center Y‘ and ‗Center Z‘ edit boxes,
and its lengths (extents) entered in the ‗Length X‘, ‗Length Y‘ and ‗Length Z‘ edit boxes.

This clipping is achieved using OpenGL clip plane support; as such, there are certain limitations:

 Solid shapes are not capped – they appear hollow.

 Only shapes, which can be described with combination of planes, can be rendered in this fashion
– e.g. a clipping tube is not possible.

 Each additional clipping plane requires an additional render pass – so the more active planes the
more time the render will take.

Set the current clip object with TGLClipSet::SetClipType

v->GetClipSet()->SetClipType(TGLClipSet::kClipPlane);

Configure the clip object with TGLClipSet::SetClipState

Double_t planeEq[4] = {0.5,1.0,-1.0, 2.0};

v->GetClipSet()->SetClipState(TGLClipSet::kClipPlane, planeEq);

As with cameras, any clip can be configured at any time, but you must set the clip current to see the effect.

Manipulators

Manipulators are GUI ‗widgets‘ or controls attached to a 3D object in the viewer, allowing a direct manipulation
of the object‘s geometry. There are three manipulators for the three basic geometries transformations. In each
case, the manipulator consists of three components, one for each local axis of the object, shown in standard
colors: red (X), green (Y) and blue (Z).

Figure 9-35 GL Viewer object manipulators

Activate the manipulator by moving the mouse over one of these components (which turns yellow to indicate
active state). Click with left mouse and drag this active component to perform the manipulation. Toggle between
the manipulator types using the ‗x‘, ‗c‘, ‗v‘ keys while the mouse cursoris above the manipulator. Note:
Manipulators cannot be controlled via the API at present.

148 Graphics and the Graphical User Interface

Guides

Guides are visual aids drawn into the viewer world. Controls for these are under the ―Guides‖ tab:

Viewer Controls Pane Guides Tab

Axes show the world (global) frame coordinate directions: X (red), Y (green) and Z (blue). The negative portion
of the axis line is shown in dark color, the positive in bright. The axis name and minimum / maximum values are
labeled in the same color. There are three options for axes drawing – selected by radio buttons:

 None – not drawn (default).

 Edge – draw axes on the (minimum) edge of the scene extents box.

 Origin – drawn axes through the origin.

For edge axes, the zero value for each axis is marked on the axis line with a colored sphere. For origin axes, a
single white sphere is shown at the origin.

Edge axes are depth clipped – i.e. are obscured by 3D objects in front of them. Origin axes (which generally
pass through the middle of the 3D scene) are not depth clipped – so always visible.

A single orange sphere of fixed view port (window) size can be shown at any arbitrary position. Enable / disable
the drawing with ‗Show‟ checkbox. Enter X/Y/Z position in the edit boxes to set position. Initial position is at the
center of the scene.

Set the guides using TGLViewer::SetGuideState e.g. to enable edge axes, and enable a reference marker

at world position 50, 60, 100:

Double_t refPos[3] = {50.0,60.0,100.0};

v->SetGuideState(TGLUtil::kAxesEdge, kTRUE, refPos);

Selecting Scene Shapes

You can select a single shape from your scene by pressing ‗Shift‘ key, pointing and left clicking anywhere on the
shape in the viewer. Selection is currently shown by drawing the shape-bounding box (not depth clipped) in
white (polygon or wire frame render styles) or red (outline render style). Manipulators supported by the shape
are drawn in red, green and blue while the non-supported ones are drawn in grey. To deselect a shape, either
select another, or shift/click anywhere on the background (empty space) in the viewer. You cannot select
Manipulators or Guides (Axes / Reference Marker).

Editing Shapes

When a shape is selected, the viewer‘s control pane shows the user interface that allows you to review and
adjust the color and geometry properties of the shape.

Note: At present modifications to the shapes are local to the viewer – they are not propagated back to external
objects/client that published to the viewer. The changes are preserved only until the viewer is closed. In some
cases, this will never be feasible as there is not a one-to-one correspondence between a shape in the viewer
and a single external object in which the modification could be stored.

Colors / Style

Viewer Controls Pane ‗Style‘ tab.

A full description of OpenGL materials, colors and lighting is beyond the scope of this document. You should
refer to the OpenGL programming manual (Red Book) for a full discussion. In most cases adjustment of the
Diffuse color material + Opacity/Shine properties is sufficient to achieve desired results.

A shape has four-color materials (components):

 Diffuse

 Ambient

 Specular

 Emissive

For each of these you can select the component via the radio buttons. Each component can have the red, green
and blue values for the component adjusted via the sliders. You can apply this adjustment to the shape itself, or
to all shapes sharing a common ‗family‘. Shapes of the same family have external objects with the same
TObject name string. You can also adjust the ‗Opacity‘ and ‗Shine‘ for the shapes materials via the sliders.

Geometry

Viewer Controls Pane ‗Geometry‘ tab.

Review and modify the shapes X/Y/Z center and scaling factors via the edit boxes. Selection and editing of
shapes is not available via the API at present.

 Graphics and the Graphical User Interface 149

Outputting Viewer Contents

The current viewer rendering can be output to an external EPS or PDF, using the options under the ‗File‘ menu

on the top menu bar. The file is named ‗viewer.eps‘ or ‗viewer.pdf‘ and written to the current ROOT

directory.

The X3D Viewer

The X3D viewer is a fairly simple and limited viewer, capable of showing basic lines and polygons. It lacks the
quality, performance and more advanced features of the GL Viewer, and additionally is not supported on
Windows. It is not actively developed and you are encouraged to use the GL Viewer out of preference. The
below table presents the main interactions – these are repeated in the Help dialog of the viewer.

Action Key Action Key

Wireframe Mode w Rotate about x x a

Hidden Line Mode e Rotate about y y b

Hidden Surface Mode r Rotate about z z c

Move object down u Auto-rotate about x 1 2 3

Move object up i Auto-rotate about y 4 5 6

Move object left l Auto-rotate about z 7 8 9

Move object right h Toggle controls style o

Move object forward j Toggle stereo display s

Move object backward k Toggle blue stereo view d

Adjust focus (stereo mode) [] { } Toggle double buffer f

Rotate object Left mouse button down + move.

Common 3D Viewer Architecture

The 3D Viewer Architecture provides a common mechanism for viewer clients to publish 3D objects to it. It
enables:

 Decoupling of producers (geometry packages etc) who model collection of 3D objects from
consumers (viewers) which display them.

 Producer code free of explicit drawing commands & viewer specific branching.

 Support differing viewers and clients capabilities, e.g.

 Mix of native (in viewer) shapes and generic client side tessellation.

 Local/global frame object description

 Bounding boxes

 Placing copies sharing common geometry (logical/physical shapes).

The architecture consists of:

 TVirtualViewer3D interface: An abstract handle to the viewer, allowing client to add objects,

test preferences etc.

 TBuffer3D class hierarchy: Used to describe 3D objects ("shapes") - filled /added by negotiation

with viewer via TVirtualViewer3D.

A typical interaction between viewer and client using these, taken from TGeoPainter is:

TVirtualViewer3D * viewer = gPad->GetViewer3D();

// Does viewer prefer local frame positions?

Bool_t localFrame = viewer->PreferLocalFrame();

//Perform first fetch of buffer from the shape and try adding it to the viewer

const TBuffer3D &buffer = shape.GetBuffer3D(TBuffer3D::kCore |

 TBuffer3D::kBoundingBox |

 TBuffer3D::kShapeSpecific,

 localFrame);

Int_t reqSections = viewer->AddObject(buffer, &addDaughters);

// If the viewer requires additional sections fetch from the shape

// (if possible) and add again

if (reqSections != TBuffer3D::kNone)

 shape.GetBuffer3D(reqSections, localFrame);

Together these allow clients to publish objects to any one of the 3D viewers free of viewer specific drawing
code. They allow our simple x3d viewer, and considerably more sophisticated OpenGL one to both work with

both geometry libraries (g3d and geom) efficiently.

In addition to external viewers, created in separate windows, this architecture is also used by internal TPad

drawing when it requires 3D projections. Publishing to a viewer consists of the following steps:

150 Graphics and the Graphical User Interface

 1. Create / obtain viewer handle.

 2. Begin scene on viewer.

 3. Fill mandatory parts of TBuffer3D describing object.

 4. Add to viewer.

 5. Fill optional parts of TBuffer3D as requested by viewer.

 [.... repeat 3/4/5 as required for other/child objects]

 6. End scene on viewer.

You should attach the top-level node of your external geometry (or the manager) to a TPad object using

TObject::Draw(), and perform the publishing to the viewer in your object‘s TObject::Paint() overloaded

method. See ―Scene Rebuilds‖, and example scripts, for more details.

Creating / Obtaining Viewer Handle

External viewers are bound to a TPad object (this may be removed as a requirement in the future). You can

create or obtain the current viewer handle via the method:

TVirtualViewer3D * v = gPad->GetViewer3D("type");

Here the ―type‖ string defines the viewer type – currently one of:

 ―ogl‖ : External GL viewer

 ―x3d‖ : External X3D viewer

 ―pad‖ : Pad viewer

If no type is passed (null string), and there is no current viewer, then the type is defaulted to ―pad‖. If no type is

passed and there is a current viewer, then this is returned – hence once a viewer is created it can be obtained
elsewhere by:

TVirtualViewer3D * v = gPad->GetViewer3D();

Opening / Closing Scenes

Objects must be added to viewer between BeginScene() and EndScene() calls e.g.

viewer -> BeginScene();

// Add objects

viewer -> EndScene();

These calls enable the viewer to suspend redraws, and perform internal caching/setup. If the object you attach
to the pad derives from TAtt3D, then the pad will take responsibility for calling BeginScene() and

EndScene() for you. You can always test if the scene is already open for object addition with:

viewer->BuildingScene();

Figure 9-36 Overview of 3D viewer architecture

Note: the x3d viewer does not support rebuilding of scenes - objects added after the first Open/Close Scene
pair will be ignored.

 Graphics and the Graphical User Interface 151

Describing Objects - Filling TBuffer3D

The viewers behind the TVirtualViewer3D interface differ greatly in their capabilities e.g.

 Some support native shape (e.g. spheres/tubes in OpenGL) and can draw these based on an
abstract description. Others always require a tessellation description based on TBuffer3D‘s

kRaw / kRawSizes points/lines/segments sections.

 Some need the 3D object positions in the master (world) frame, others can cope with local frames
and a translation matrix to place the object.

 Some require bounding boxes for objects – others do not.

Similarly some viewer clients are only capable of providing positions in master frame, cannot provide bounding
boxes etc. Additionally we do not want to incur the cost of expensive tessellation operations if the viewer does
not require them. To cope with these variations the TBuffer3D objects are filled by negotiation with the viewer.

Figure 9-37 TBuffer3D class hierarchy

TBuffer3D classes are conceptually divided into enumerated sections: kCore, kBoundingBox, kRaw – see

the class diagram and the file TBuffer3D.h for more details. The TBuffer3D methods SectionsValid(),

SetSectionsValid(), ClearSectionsValid() are used to test, set, clear these section validity flags e.g.

buffer.SetSectionsValid(TBuffer3D::kShapeSpecific);

…

if (buffer.SectionsValid(TBuffer3D:: kShapeSpecific)) {

…

}

The sections found in the base TBuffer3D (kCore/kBoundingBox/kRawSizes/kRaw) are sufficient to

describe any tessellated shape in a generic fashion. An additional kShapeSpecific section is added in

TBuffer3D derived classes, allowing a more abstract shape description ("a sphere of inner radius x, outer

radius y"). This enables a viewer, which knows how to draw (tessellate) the shape itself to do so, while providing
a generic fallback suitable for all viewers. The rules for client negotiation with the viewer are:

 If suitable specialized TBuffer3D class exists, use it, otherwise use TBuffer3D.

 Complete the mandatory kCore section.

 Complete the kShapeSpecific section if applicable.

 Complete the kBoundingBox if you can.

 Pass this buffer to the viewer using one of the TBuffer3D::AddObject() methods.

152 Graphics and the Graphical User Interface

If the viewer requires more sections to be completed (kRaw/kRawSizes) TBuffer3D::AddObject() will

return flags indicating which ones, otherwise it returns kNone. If requested, you must fill the buffer, mark these

sections valid, and call TBuffer3D::AddObject again, to complete adding the object. For example, in out

TGeo geometry package, in TGeoPainter::PaintShape, we perform the negotiation with viewer:

TVirtualViewer3D * viewer = gPad->GetViewer3D();

if (shape.IsA() != TGeoCompositeShape::Class()) {

 // Does viewer prefer local frame positions?

 Bool_t localFrame = viewer->PreferLocalFrame();

 // Perform first fetch of buffer from the shape and adding it to the viewer

 const TBuffer3D &buffer = shape.GetBuffer3D(TBuffer3D::kCore |

 TBuffer3D::kBoundingBox |

 TBuffer3D::kShapeSpecific

 ,localFrame);

 Int_t reqSections = viewer->AddObject(buffer, &addDaughters);

 // If the viewer requires additional sections fetch from the shape

 // (if possible) and add again

 if (reqSections != TBuffer3D::kNone) {

 shape.GetBuffer3D(reqSections, localFrame);

 viewer->AddObject(buffer, &addDaughters);

 }

}

The buffer is supplied/filled by the appropriate TShape::GetBuffer3D() and TShape::FillBuffer3D

overloads e.g. for a sphere in TGeoSphere.

const TBuffer3D &TGeoSphere::GetBuffer3D(Int_t reqSections,

 Bool_t localFrame) const {

 // Fills a static 3D buffer and returns a reference.

 static TBuffer3DSphere buffer;

 // Filling of kBoundingBox is defered to TGeoBBox, and

 // kCore on up to TGeoShape

 TGeoBBox::FillBuffer3D(buffer, reqSections, localFrame);

 // Complete kShapeSpecific section for sphere

 if (reqSections & TBuffer3D::kShapeSpecific) {

 buffer.fRadiusInner = fRmin;

 buffer.fRadiusOuter = fRmax;

 …

 buffer.SetSectionsValid(TBuffer3D::kShapeSpecific);

 }

 // Complete kRawSizes section

 if (reqSections & TBuffer3D::kRawSizes) {

 …

 buffer.SetSectionsValid(TBuffer3D::kRawSizes);

 }

 }

 // Complete kRaw tesselation section

 if ((reqSections & TBuffer3D::kRaw) &&

 buffer.SectionsValid(TBuffer3D::kRawSizes)) {

 SetPoints(buffer.fPnts);

 // Transform points to master frame if viewer requires it

 // The fLocalFrame flag and translation matrix will have already

 // been set in TGeoShape::FillBuffer3D() as requried

 if (!buffer.fLocalFrame)

 TransformPoints(buffer.fPnts, buffer.NbPnts());

 SetSegsAndPols(buffer);

 buffer.SetSectionsValid(TBuffer3D::kRaw);

 }

 return buffer;

}

Note:

 we use a static TBuffer3D derived object for efficiency – once the object is added the buffer can

be reused.

 kRawSize (the calculation of tessellation sizing required in buffer) and kRaw (the actual filling of

tessellation) is split, as the X3D viewer requires two publication passes – one to establish the full
tessellation capacity for all shapes, and another to actually add them. Splitting avoids having to
do the expensive tessellation on the first pass.

 Graphics and the Graphical User Interface 153

Shape Specific TBuffer3D Derived Classes

Currently we provide the following shape specific classes, which the GL Viewer can take advantage of (see

TBuffer3D.h and TBuffer3DTypes.h)

 TBuffer3DSphere - solid, hollow and cut spheres (GL Viewer only supports solid spheres at

present – cut / hollow ones will be requested as tessellated objects by client.)

 TBuffer3DTube – basic tube with inner/outer radius and length.

 TBuffer3DTubeSeg - angle tube segment.

 TBuffer3DCutTube - angle tube segment with plane cut ends.

See the above example from TGeoSphere::GetBuffer3D and also equivalent functions in TGeoTube,

TGeoTubeSeg and TGeoCtub. Anyone is free to add new TBuffer3D classes, but it should be clear that one

or more viewers will require updating to be able to take advantage of them. Hence we only provide classes
which existing viewers can benefit from. The number of native shapes in GL Viewer will be expanded in the
future.

Master / Local Reference Frames

The Core section of TBuffer3D contains two members relating to reference frames:

 fLocalFrame: indicates if any positions in the buffer (bounding box and tessellation vertexes)

are in local or master (world frame).

 fLocalMaster: is a standard 4x4 translation matrix (OpenGL column major ordering) for placing

the object into the 3D master frame.

If fLocalFrame is false, fLocalMaster should contain an identity matrix. This is set by default, and can be

reset using the TBuffer3D::SetLocalMasterIdentity() method.

Bounding Boxes

You are not obliged to complete the kBoundingBox section, as any viewer requiring one internally (GL Viewer)

will build it if you do not provide. However to do this the viewer will force you to provide the (expensive) raw
tessellation, and the resulting box will be axis aligned with the overall scene, which is non-ideal for rotated
shapes. As we need to support orientated (rotated) bounding boxes, TBuffer3D requires the 6 vertices of the

box. We also provide a convenience function, TBuffer::SetAABoundingBox(), for simpler case of setting

an axis aligned bounding box. The bounding box should be filled in same frame (local / master) as the rest of
the TBuffer3D, and inaccordance with fLocalFrame flag.

A typical example from TGeoBBox::FillBuffer3D:

if (reqSections & TBuffer3D::kBoundingBox) {

 Double_t halfLengths[3] = { fDX, fDY, fDZ };

 buffer.SetAABoundingBox(fOrigin, halfLengths);

 if (!buffer.fLocalFrame) {

 TransformPoints(buffer.fBBVertex[0], 8);

 }

 buffer.SetSectionsValid(TBuffer3D::kBoundingBox);

}

Logical and Physical Objects

Some viewers can support two types of object placement:

 Add object as a single independent entity in the world reference frame – e.g. a sphere, radius r,

at x, y, z.

 Repeated placement (copying) in world frame of this locally unique piece of geometry (described

in local reference frame) e.g. define a sphere S (radius r), place copy at x1, y1, z1, another copy

at x2, y2, z2 etc.

The second case is very typical in geometry packages, e.g. ROOT‘s TGeo package, GEANT4 etc, where we

have very large number repeated placements of relatively few unique ―shapes‖.

Some viewers (GL Viewer only at present) are able to take advantage of this by identifying unique logical
shapes from the fID logical ID member of TBuffer3D. If repeated addition of the same fID is found, the

shape is cached already - and the costly tessellation does not need to be sent again. The viewer can also
perform internal GL specific caching (display lists) with considerable performance gains in these cases. For this
to work correctly the logical object in must be described in TBuffer3D in the local reference frame, complete

with the local/master translation. In some cases you will not have a real object you can reasonably set

TBuffer3D::fID to, or the object is recycled or temporary. To suppress internal caching in the GL Viewer in

these cases, set TBuffer3D::fID to 0 (null).

154 Graphics and the Graphical User Interface

The viewer indicates it can support local frame objects through the TVirtualViewer3D interface method:

PreferLocalFrame(). If this returns kTRUE you can make repeated calls to AddObject(), with TBuffer3D

containing the same fID, and different fLocalMaster placements.

For viewers supporting logical/physical objects, the TBuffer3D content refers to the properties of the logical
object, with the exception of:

 fLocalMaster transform

 fColor

 fTransparency

 attributes, which can be varied for each physical object.

As a minimum requirement all clients must be capable of filling the raw tessellation of the object buffer, in the
master reference frame. Conversely viewers must always be capable of displaying the object described by this
buffer. If either does not meet this requirement the object may not be displayed.

Scene Rebuilds

TBuffer3D::AddObject is not an explicit command to the viewer - it may for various reasons decide to

ignore it:

 It already has the object internally cached.

 The object falls outside some 'interest' limits of the viewer camera.

 The object is too small to be worth drawing.

In all these cases TBuffer3D::AddObject() returns kNone, as it does for successful addition, indicating it

does not require further information about this object. Hence you should not try to make any assumptions about
what the viewer did with the object. The viewer may decide to force the client to rebuild (republish) the scene,
obtaining a different collection of objects, if the internal viewer state changes .e.g. significant camera move. It
does this presently by forcing a repaint on the attached TPad object – hence you should attach you master

geometry object to the pad (via TObject::Draw()), and perform the publishing to the viewer in response to

TObject::Paint().

Physical IDs

TVirtualViewer3D provides for two methods of object addition:

virtual Int_t AddObject(const TBuffer3D &buffer, Bool_t * addChildren = 0)

virtual Int_t AddObject(UInt_t physicalID, const TBuffer3D & buffer,

 Bool_t *addChildren = 0)

If you use the first (simple) case a viewer using logical/physical pairs will generate sequential IDs for each
physical object internally. Scene rebuilds will require destruction and recreation of all physical objects. For the
second you can specify an identifier from the client side, which must be unique and stable – i.e. the IDs of a
published object is consistent, regardless of changes in termination of contained child geometry branches. In
this case the viewer can safely cache the physical objects across scene rebuilds, discarding those no longer of
interest.

Child Objects

In many geometries there is a rigid containment hierarchy, and so if the viewer is not interested in a certain
object due to limits/size then it will also not be interest in any of the contained branch of siblings. Both
TBuffer3D::AddObject() methods have an addChildren return parameter. The viewer will complete this

(if passed) indicating if children of the object just sent are worth sending.

Recycling TBuffer3D

Once add TBuffer3D::AddObject() has been called, the contents are copied to the viewer‘s internal data

structures. You are free to destroy this TBuffer3D, or recycle it for the next object if suitable.

Examples

For an example of a simple geometry, working in master reference frame examine the code under

$ROOTSYS/g3d. For a more complex example, which works in both master and local frames, and uses

logical/physical division of shape geometry and placement, examine the code under $ROOTSYS/geom – in

particular TGeoShape hierarchy, and the painter object TGeoPainter (under geopainter) where the

negotiation with the viewer is performed.

 Folders and Tasks 155

10 Folders and Tasks

Folders
A TFolder is a collection of objects visible and

expandable in the ROOT object browser. Folders have
a name and a title and are identified in the folder
hierarchy by an "UNIX-like" naming convention. The

base of all folders is //root. It is visible at the top of

the left panel in the browser. The browser shows

several folders under //root.

New folders can be added and removed to/from a
folder.

Why Use Folders?
One reason to use folders is to reduce class
dependencies and improve modularity. Each set of
data has a producer class and one or many consumer
classes. When using folders, the producer class places
a pointer to the data into a folder, and the consumer
class retrieves a reference to the folder.

The consumer can access the objects in a folder by
specifying the path name of the folder.

Here is an example of a folder's path name:

 //root/Event/Hits/TCP

One does not have to specify the full path name. If the
partial path name is unique, it will find it; otherwise it
will return the first occurrence of the path.

The first diagram shows a system without folders. The
objects have pointers to each other to access each
other's data. Pointers are an efficient way to share
data between classes. However, a direct pointer
creates a direct coupling between classes. This design
can become a very tangled web of dependencies in a
system with a large number of classes.

In the second diagram, a reference to the data is in the folder and the consumers refer to the folder rather than
each other to access the data. The naming and search service provided by the ROOT folders hierarchy
provides an alternative. It loosely couples the classes and greatly enhances I/O operations. In this way, folders
separate the data from the algorithms and greatly improve the modularity of an application by minimizing the
class dependencies.

In addition, the folder hierarchy creates a picture of the data organization.
This is useful when discussing data design issues or when learning the
data organization. The example below illustrates this point.

156 Folders and Tasks

How to Use Folders
Using folders means to build a hierarchy of folders, posting the reference to the data in the folder by the
producer, and creating a reference to the folder by the user.

Creating a Folder Hierarchy

To create a folder hierarchy you add the top folder of your hierarchy to //root. Then you add a folder to an

existing folder with the TFolder::AddFolder method. This method takes two parameters: the name and title

of the folder to be added. It returns a pointer of the newly created folder.

The code below creates the folder hierarchy shown in the browser. In this macro, the folder is also added to the
list of browsable. This way, it is visible in the browser on the top level.

{

// Add the top folder of my hierary to //root

TFolder *aliroot=gROOT->GetRootFolder()->AddFolder("aliroot",

 "aliroot top level folders");

// Add the hierarchy to the list of browsables

gROOT->GetListOfBrowsables()->Add(aliroot,"aliroot");

// Create and add the constants folder

TFolder *constants=aliroot->AddFolder("Constants","Detector constants");

// Create and add the pdg folder to pdg

TFolder *pdg = constants->AddFolder("DatabasePDG","PDG database");

// Create and add the run folder

TFolder *run = aliroot->AddFolder("Run","Run dependent folders");

// Create and add the configuration folder to run

TFolder *configuration = run->AddFolder("Configuration","Run configuration");

// Create and add the run_mc folder

TFolder *run_mc = aliroot->AddFolder("RunMC","MonteCarlo run dependent folders");

// Create and add the configuration_mc folder to run_mc

TFolder *configuration_mc = run_mc->AddFolder("Configuration",

 "MonteCarlo run configuration");

}

Posting Data to a Folder (Producer)

A TFolder can contain other folders as shown above or any

TObject descendents. In general, users will not post a single

object to a folder; they will store a collection or multiple
collections in a folder. For example, to add an array to a
folder:

TObjArray *array;

run_mc->Add(array);

Reading Data from a Folder
(Consumer)

One can search for a folder or an object in a folder using the
TROOT::FindObjectAny method. It analyzes the string

passed as its argument and searches in the hierarchy until it
finds an object or folder matching the name. With

FindObjectAny, you can give the full path name, or the

name of the folder. If only the name of the folder is given, it
will return the first instance of that name. A string-based
search is time consuming. If the retrieved object is used
frequently or inside a loop, you should save a pointer to the
object as a class data member. Use the naming service only
in the initialization of the consumer class. When a folder is
deleted, any reference to it in the parent or other folder is
deleted also.

 Folders and Tasks 157

conf=(TFolder*)gROOT->FindObjectAny("/aliroot/Run/Configuration"); // or

conf=(TFolder*)gROOT->FindObjectAny("Configuration");

By default, a folder does not own the object it contains. You can overwrite that with TFolder::SetOwner.

Once the folder is the owner of its contents, the contents are deleted when the folder is deleted. Some ROOT
objects are automatically added to the folder hierarchy. For example, the following folders exist on start up:

//root/ROOT Files with the list of open Root files

//root/Classes with the list of active classes

//root/Geometries with active geometries

//root/Canvases with the list of active canvases

//root/Styles with the list of graphics styles

//root/Colors with the list of active colors

For example, if a file myFile.root is added to the list of files, one can retrieve a pointer to the corresponding

TFile object with a statement like:

TFile *myFile = (TFile*)gROOT->FindObjectAny("/ROOTFiles/myFile.root"); //or

TFile *myFile = (TFile*)gROOT->FindObjectAny("myFile.root");

Tasks
Tasks can be organized into a hierarchy and displayed in the browser. The TTask class is the base class from

which the tasks are derived. To give task functionality, you need to subclass the TTask class and override the

Exec method. An example of TTask subclasses is $ROOTSYS/tutorials/MyTasks.cxx. The script that

creates a task hierarchy and adds it to the browser is $ROOTSYS/tutorials/tasks.C. Here is a part of

MyTasks.cxx that shows how to subclass from TTask.

// A set of classes deriving from TTask see macro tasks.C. The Exec

// function of each class prints one line when it is called.

#include "TTask.h"

class MyRun : public TTask {

public:

 MyRun() { ; }

 MyRun(const char *name,const char *title);

 virtual ~MyRun() { ; }

 void Exec(Option_t *option="");

 ClassDef(MyRun,1) // Run Reconstruction task

};

class MyEvent : public TTask {

public:

 MyEvent() { ; }

 MyEvent(const char *name,const char *title);

 virtual ~MyEvent() { ; }

 void Exec(Option_t *option="");

 ClassDef(MyEvent,1) // Event Reconstruction task

};

Later in MyTasks.cxx, we can see examples of the constructor and overridden Exec() method:

ClassImp(MyRun)

MyRun::MyRun(const char *name,const char *title):TTask(name,title)

{

...

}

void MyRun::Exec(Option_t *option)

{

 printf("MyRun executing\n");

}

Each TTask derived class may contain other TTasks that can be executed recursively. In this way, a complex

program can be dynamically built and executed by invoking the services of the top level task or one of its
subtasks. The constructor of TTask has two arguments: the name and the title. This script creates the task

defined above, and creates a hierarchy of tasks.

// Show the tasks in a browser. To execute a Task, select

// “ExecuteTask” in the context menu see also other functions in the

// TTask context menu, such as:

// -setting a breakpoint in one or more tasks

// -enabling/disabling one task, etc

void tasks()

158 Folders and Tasks

{

 gROOT->ProcessLine(".L MyTasks.cxx+");

 TTask *run = new MyRun("run","Process one run");

 TTask *event = new MyEvent("event","Process one event");

 TTask *geomInit = new MyGeomInit("geomInit", "Geometry Initialisation");

 TTask *matInit = new MyMaterialInit("matInit","MaterialsInitialisation");

 TTask *tracker = new MyTracker("tracker","Tracker manager");

 TTask *tpc = new MyRecTPC("tpc","TPC Reconstruction");

 TTask *its = new MyRecITS("its","ITS Reconstruction");

 TTask *muon = new MyRecMUON("muon","MUON Reconstruction");

 TTask *phos = new MyRecPHOS("phos","PHOS Reconstruction");

 TTask *rich = new MyRecRICH("rich","RICH Reconstruction");

 TTask *trd = new MyRecTRD("trd","TRD Reconstruction");

 TTask *global = new MyRecGlobal("global","Global Reconstruction");

 // Create a hierarchy by adding sub tasks

 run->Add(geomInit);

 run->Add(matInit);

 run->Add(event);

 event->Add(tracker);

 event->Add(global);

 tracker->Add(tpc);

 tracker->Add(its);

 tracker->Add(muon);

 tracker->Add(phos);

 tracker->Add(rich);

 tracker->Add(trd);

 // Add the top level task

 gROOT->GetListOfTasks()->Add(run);

 // Add the task to the browser

 gROOT->GetListOfBrowsables()->Add(run);

 new TBrowser;

}

Figure 10-1 Tasks in the ROOT browser

Note that the first line loads the class definitions in

MyTasks.cxx with ACLiC. ACLiC builds a shared library and

adds the classes to the CINT dictionary. See "Adding a Class
with ACLiC".

To execute a TTask, you call the ExecuteTask method.

ExecuteTask will recursively call:

- the TTask::Exec method of the derived class;

- the TTask::ExecuteTasks to execute for each task the

list of its subtasks;

If the top level task is added to the list of ROOT browseable
objects, the tree of tasks can be seen in the ROOT browser.
To add it to the browser, get the list of browseable objects first
and add it to the collection.

gROOT->GetListOfBrowsables()->Add(run);

The first parameter of the Add method is a pointer to a TTask,

the second parameter is the string to show in the browser. If
the string is left out, the name of the task is used.

After executing, the script above the browser will look like in
this figure.

Execute and Debug Tasks
The browser can be used to start a task, set break points at the beginning of a task or when the task has
completed. At a breakpoint, data structures generated by the execution up this point may be inspected

asynchronously and then the execution can be resumed by selecting the "Continue" function of a task.

 A task may be active or inactive (controlled by TTask::SetActive). When a task is inactive, its sub tasks are

not executed. A task tree may be made persistent, saving the status of all the tasks.

 Input/Output 159

11 Input/Output

This chapter covers the saving and reading of objects to and from ROOT files. It begins with an explanation of
the physical layout of a ROOT file. It includes a discussion on compression, and file recovery. Then we explain
the logical file, the class TFile and its methods. We show how to navigate in a file, how to save objects and

read them back. We also include a discussion on Streamers. Streamers are the methods responsible to

capture an objects current state to save it to disk or send it over the network. At the end of the chapter is a
discussion on the two specialized ROOT files: TNetFile and TWebFile.

The Physical Layout of ROOT Files
A ROOT file is like a UNIX file directory. It can contain directories and objects organized in unlimited number of
levels. It also is stored in machine independent format (ASCII, IEEE floating point, Big Endian byte ordering). To
look at the physical layout of a ROOT file, we first create one. This example creates a ROOT file and 15
histograms, fills each histogram with 1000 entries from a Gaussian distribution, and writes them to the file.

{

 char name[10], title[20];

 TObjArray Hlist(0); // create an array of Histograms

 TH1F* h; // create a pointer to a histogram

 // make and fill 15 histograms and add them to the object array

 for (Int_t i = 0; i < 15; i++) {

 sprintf(name,"h%d",i);

 sprintf(title,"histo nr:%d",i);

 h = new TH1F(name,title,100,-4,4);

 Hlist.Add(h);

 h->FillRandom("gaus",1000);

 }

 // open a file and write the array to the file

 TFile f("demo.root","recreate");

 Hlist->Write();

 f.Close();

}

The example begins with a call to the TFile constructor. This class is describing the ROOT file (that has the

extension ".root‖). In the next section, we will cover TFile in details. The last line of the example closes the

file. To view its contents we need to open it again, and to create a TBrowser object by:

root[] TFile f("demo.root")

root[] TBrowser browser;

Figure 11-1 The browser with 15 created histograms

You can check if the file is correctly opened by:

 TFile f(“demo.root”);

 if (f.IsZombie()) {

 cout << “Error opening file” << endl;

 exit(-1);

 } else {

 …

 }

160 Input/Output

Once we have the TFile object, we can call the TFile::Map() method to view the physical layout. The

output prints the date/time, the start record address, the number of bytes in the record, the class name of the
record and the compression factor.

root[] f.Map()

20051208/124502 At:100 N=114 TFile

20051208/124502 At:214 N=413 TH1F CX = 2.35

20051208/124502 At:627 N=410 TH1F CX = 2.36

20051208/124502 At:1037 N=396 TH1F CX = 2.45

20051208/124502 At:1433 N=400 TH1F CX = 2.42

20051208/124502 At:1833 N=402 TH1F CX = 2.41

20051208/124502 At:2235 N=416 TH1F CX = 2.33

20051208/124502 At:2651 N=406 TH1F CX = 2.39

20051208/124502 At:3057 N=403 TH1F CX = 2.40

20051208/124502 At:3460 N=411 TH1F CX = 2.36

20051208/124502 At:3871 N=400 TH1F CX = 2.42

20051208/124502 At:4271 N=409 TH1F CX = 2.38

20051208/124502 At:4680 N=409 TH1F CX = 2.38

20051208/124502 At:5089 N=420 TH1F CX = 2.32

20051208/124502 At:5509 N=406 TH1F CX = 2.40

20051208/124502 At:5915 N=405 TH1F CX = 2.40

20051208/124503 At:6320 N=3052 StreamerInfo CX = 3.16

20051208/124503 At:9372 N=732 KeysList

20051208/124503 At:10104 N=53 FreeSegments

20051208/124503 At:10157 N=1 END

Here we see the fifteen histograms (TH1F's) with the first one starting at byte 148. We also see an entry TFile.

You may notice that the first entry starts at byte 100. The first 100 bytes are taken by the file header.

The File Header

This table shows the file header information. When fVersion is greater than 1000000, the file is a large file
(> 2 GB) and the offsets will be 8 bytes long. The location in brackets are the location in the case of a large file.

Byte Value Name Description

1 -> 4 "root" Root file identifier

5 -> 8 fVersion File format version

9 -> 12 fBEGIN Pointer to first data record

13 -> 16 [13->20] fEND Pointer to first free word at the EOF

17 -> 20 [21->28] fSeekFree Pointer to FREE data record

21 -> 24 [29->32] fNbytesFree Number of bytes in FREE data record

25 -> 28 [33->36] nfree Number of free data records

29 -> 32 [37->40] fNbytesName Number of bytes in TNamed at creation time

33 -> 33 [41->41] fUnits Number of bytes for file pointers

34 -> 37 [42->45] fCompress Zip compression level

34 -> 37 [46->53] fSeekInfo Pointer to TStreamerInfo record

34 -> 37 [54->57] fNBytesInfo Number of bytes in TStreamerInfo record

34 -> 37 [58->75] fCompress Universal Unique ID

The first four bytes of the file header contain the string "root" which identifies a file as a ROOT file. Because of

this identifier, ROOT is not dependent on the ".root" extension. It is still a good idea to use the extension, just

for us to recognize them easier. The nfree and value is the number of free records. This variable along with

FNBytesFree keeps track of the free space in terms of records and bytes. This count also includes the deleted

records, which are available again.

The Top Directory Description

The 84 bytes after the file header contain the top directory description, including the name, the date and time it
was created, and the date and time of the last modification.

20010404/092347 At:64 N=84 TFile

 Input/Output 161

The Histogram Records

What follows are the 15 histograms, in records of variable length.

20010404/092347 At:148 N=380 TH1F CX = 2.49

20010404/092347 At:528 N=377 TH1F CX = 2.51

The first 4 bytes of each record is an integer holding the number of bytes in this record. A negative number flags
the record as deleted, and makes the space available for recycling in the next writing. The rest of bytes in the
header contain all the information to identify uniquely a data block on the file. It is followed by the object data.

The next table explains the values in each individual record. If the key is located past the 32 bit file limit
(> 2 GB) then some fields will be 8 bytes instead of 4 bytes (values between the brackets):

Byte Value Name Description

1 -> 4 Nbytes Length of compressed object (in bytes)

5 -> 6 Version TKey version identifier

7 -> 10 ObjLen Length of uncompressed object

11 -> 14 Datime Date and time when object was written to file

15 -> 16 KeyLen Length of the key structure (in bytes)

17 -> 18 Cycle Cycle of key

19 -> 22 [19->26] SeekKey Pointer to record itself (consistency check)

23 -> 26 [27->34] SeekPdir Pointer to directory header

27 -> 27 [35->35] lname Number of bytes in the class name

28 -> … [36->…] ClassName Object Class Name

… -> … lname Number of bytes in the object name

… -> … Name lName bytes with the name of the object

… -> … lTitle Number of bytes in the object title

… -> … Title Title of the object

… -> … DATA Data bytes associated to the object

You see a reference to TKey. It is explained in detail in the next section.

The Class Description List (StreamerInfo List)

The histogram records are followed by the StreamerInfo list of class descriptions. The list contains the

description of each class that has been written to file.

20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41

The class description is recursive, because to fully describe a class, its ancestors and object data members

have to be described also. In demo.root, the class description list contains the description for:

 TH1F

 all classes in the TH1F inheritance tree

 all classes of the object data members

 all classes in the object data members' inheritance tree.

This description is implemented by the TStreamerInfo class, and is often referred to as simply

StreamerInfo. You can print a file's StreamerInfolist with the TFile::ShowStreamerInfo method.

Below is an example of the output. Only the first line of each class description is shown. The demo.root

example contains only TH1F objects. Here we see the recursive nature of the class description; it contains the

StreamerInfoof all the classes needed to describe TH1F.

root[] f.ShowStreamerInfo()

StreamerInfo for class: TH1F, version=1

 BASE TH1 offset=0 type= 0 1-Dim histogram base class

 BASE TArrayF offset=0 type= 0 Array of floats

StreamerInfo for class: TH1, version=3

 BASE TNamed offset=0 type=67 The basis for named object(name,title)

 BASE TAttLine offset=0 type=0 Line attributes

162 Input/Output

 BASE TAttFill offset=0 type=0 Fill area attributes

 BASE TAttMarker offset=0 type=0 Marker attributes

 Int_t fNcells offset=0 type=3 number bins(1D),cells(2D)+U/Overflows

 TAxis fXaxis offset=0 type=61 X axis descriptor

 TAxis fYaxis offset=0 type=61 Y axis descriptor

 TAxis fZaxis offset=0 type=61 Z axis descriptor

 Short_t fBarOffset offset=0 type=2 (1000*offset) for barcharts or legos

 Short_t fBarWidth offset=0 type=2 (1000*width) for bar charts or legos

 Stat_t fEntries offset=0 type=8 Number of entries //continued…

 Stat_t fTsumw offset=0 type=8 Total Sum of weights

 Stat_t fTsumw2 offset=0 type=8 Total Sum of squares of weights

 Stat_t fTsumwx offset=0 type=8 Total Sum of weight*X

 Stat_t fTsumwx2 offset=0 type=8 Total Sum of weight*X*X

 Double_t fMaximum offset=0 type=8 Maximum value for plotting

 Double_t fMinimum offset=0 type=8 Minimum value for plotting

 Double_t fNormFactor offset=0 type=8 Normalization factor

 TArrayD fContour offset=0 type=62 Array to display contour levels

 TArrayD fSumw2 offset=0 type=62 Array of sum of squares of weights

 TString fOption offset=0 type=65 histogram options

 TList* fFunctions offset=0 type=63 ->Pointer to list of functions(fits,user)

StreamerInfo for class: TNamed, version=1

…

StreamerInfo for class: TAttLine, version=1

…

StreamerInfo for class: TAttFill, version=1

…

StreamerInfo for class: TAttMarker, version=1

…

StreamerInfo for class: TArrayF, version=1

…

StreamerInfo for class: TArray, version=1

…

StreamerInfo for class: TAxis, version=6

…

StreamerInfo for class: TAttAxis, version=4

…

ROOT allows a class to have multiple versions, and each version has its own description in form of a

StreamerInfo. Above you see the class name and version number. The StreamerInfolist has only one

description for each class/version combination it encountered. The file can have multiple versions of the same

class, for example objects of old and new versions of a class can be in the same file. The StreamerInfois

described in detail in the section on Streamers.

The List of Keys and the List of Free Blocks

The last three entries on the output of TFile::Map() are the list of keys, the list of free segments, and the

address where the data ends.. When a file is closed, it writes a linked list of keys at the end of the file. This is
what we see in the third to the last entry. In our example, the list of keys is stored in 732 bytes beginning at
byte# 8244.

20010404/092347 At:8244 N=732 KeysList

20010404/092347 At:8976 N=53 FreeSegments

20010404/092347 At:9029 N=1 END

The second to last entry is a list of free segments. In our case, this starts 8976 and is not very long, only 53
bytes, since we have not deleted any objects. The last entry is the address of the last byte in the file.

File Recovery

A file may become corrupted or it may be impossible to write it to disk and close it properly. For example if the
file is too large and exceeds the disk quota, or the job crashes or a batch job reaches its time limit before the file
can be closed. In these cases, it is imperative to recover and retain as much information as possible. ROOT
provides an intelligent and elegant file recovery mechanism using the redundant directory information in the
record header.

If a file that has been not properly closed is opened again, it is scanned and rebuilt according to the information
in the record header. The recovery algorithm reads the file and creates the saved objects in memory according
to the header information. It then rebuilds the directory and file structure. If the file is opened in write mode, the
recovery makes the correction on disk when the file is closed; however if the file is opened in read mode, the
correction can not be written to disk. You can also explicitly invoke the recovery procedure by calling the
TFile::Recover() method. You can recover the directory structure, but you cannot save what you recovered

 Input/Output 163

to the file on disk. In the following example, we interrupted and aborted the previous ROOT session, causing the
file not to be closed. When we start a new session and attempt to open the file, it gives us an explanation and
status on the recovery attempt.

root[] TFile f("demo.root")

Warning in <TFile::TFile>: file demo.root probably not closed, trying to recover

successfully recovered 15 keys

The Logical ROOT File: TFile and TKey
We saw that the TFile::Map() method reads the file sequentially and prints information about each record

while scanning the file. It is not feasible to support only sequential access and hence ROOT provides random or
direct access, i.e. reading a specified object at a time. To do so, TFile keeps a list of TKeys, which is

essentially an index to the objects in the file. The TKey class describes the record headers of objects in the file.

For example, we can get the list of keys and print them. To find a specific object on the file we can use the
TFile::Get() method.

root[] TFile f("demo.root")

root[] f.GetListOfKeys()->Print()

TKey Name = h0, Title = histo nr:0, Cycle = 1

TKey Name = h1, Title = histo nr:1, Cycle = 1

TKey Name = h2, Title = histo nr:2, Cycle = 1

TKey Name = h3, Title = histo nr:3, Cycle = 1

TKey Name = h4, Title = histo nr:4, Cycle = 1

TKey Name = h5, Title = histo nr:5, Cycle = 1

TKey Name = h6, Title = histo nr:6, Cycle = 1

TKey Name = h7, Title = histo nr:7, Cycle = 1

TKey Name = h8, Title = histo nr:8, Cycle = 1

TKey Name = h9, Title = histo nr:9, Cycle = 1

TKey Name = h10, Title = histo nr:10, Cycle = 1

TKey Name = h11, Title = histo nr:11, Cycle = 1

TKey Name = h12, Title = histo nr:12, Cycle = 1

TKey Name = h13, Title = histo nr:13, Cycle = 1

TKey Name = h14, Title = histo nr:14, Cycle = 1

root[] TH1F *h9 = (TH1F*)f.Get("h9");

The TFile::Get() finds the TKey object with name "h9". Using the TKey info it will import in memory the

object in the file at the file address #3352 (see the output from the TFile::Map above). This is done by the

Streamer method that is covered in detail in a later section. Since the keys are available in a TList of TKeys

we can iterate over the list of keys:

{

 TFile f("demo.root");

 TIter next(f.GetListOfKeys());

 TKey *key;

 while ((key=(TKey*)next())) {

 printf("key: %s points to an object of class: %s at %d\n",

 key->GetName(),

 key->GetClassName(),key->GetSeekKey());

 }

}

The output of this script is:

root[] .x iterate.C

key: h0 points to an object of class: TH1F at 150

key: h1 points to an object of class: TH1F at 503

key: h2 points to an object of class: TH1F at 854

key: h3 points to an object of class: TH1F at 1194

key: h4 points to an object of class: TH1F at 1539

key: h5 points to an object of class: TH1F at 1882

key: h6 points to an object of class: TH1F at 2240

key: h7 points to an object of class: TH1F at 2582

key: h8 points to an object of class: TH1F at 2937

key: h9 points to an object of class: TH1F at 3293

key: h10 points to an object of class: TH1F at 3639

key: h11 points to an object of class: TH1F at 3986

key: h12 points to an object of class: TH1F at 4339

key: h13 points to an object of class: TH1F at 4694

key: h14 points to an object of class: TH1F at 5038

In addition to the list of keys, TFile also keeps two other lists: TFile::fFree is a TList of free blocks used

to recycle freed up space in the file. ROOT tries to find the best free block. If a free block matches the size of

164 Input/Output

the new object to be stored, the object is written in the free block and this free block is deleted from the list. If
not, the first free block bigger than the object is used. TFile::fListHead contains a sorted list

(TSortedList) of objects in memory. The diagram below illustrates the logical view of the TFile and TKey.

 Figure 11-2 ROOT File/Directory/Key description

Viewing the Logical File Contents

TFile is a descendent of TDirectory, which means it behaves like a TDirectory. We can list the contents,

print the name, and create subdirectories. In a ROOT session, you are always in a directory and the directory
you are in is called the current directory and is stored in the global variable gDirectory. Let us look at a more

detailed example of a ROOT file and its role as the current directory. First, we create a ROOT file by executing
a sample script.

root[] .x $ROOTSYS/tutorials/hsimple.C

Now you should have hsimple.root in your directory. The file was closed by the script so we have to open it

again to work with it. We open the file with the intent to update it, and list its contents.

root[] TFile f ("hsimple.root","UPDATE")

root[] f.ls()

TFile** hsimple.root

TFile* hsimple.root

KEY: TH1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;1 py vs px

KEY: TProfile hprof;1 Profile of pz versus px

KEY: TNtuple ntuple;1 Demo ntuple

It shows the two lines starting with TFile followed by four lines starting with the word "KEY". The four keys tell

us that there are four objects on disk in this file. The syntax of the listing is:

KEY: <class> <variable>;<cycle number> <title>

For example, the first line in the list means there is an object in the file on disk, called hpx. It is of the class

TH1F (one-dimensional histogram of floating numbers). The object's title is "This is the px distribution". If the

line starts with OBJ, the object is in memory. The <class> is the name of the ROOT class (T-something). The

 Input/Output 165

<variable> is the name of the object. The cycle number along with the variable name uniquely identifies the
object. The <title> is the string given in the constructor of the object as title.

Figure 11-3 The structure of TFile

The figure shows a TFile with five objects in the top directory (kObjA;1, kObjA;2, kObjB;1, kObjC;1

and kObjD;1). ObjA is on file twice with two different cycle numbers. It also shows four objects in memory

(mObjE, mObjeF, mObjM, mObjL). It also shows several subdirectories.

The Current Directory

When you create a TFile object, it becomes the current directory. Therefore, the last file to be opened is

always the current directory. To check your current directory you can type:

root[] gDirectory->pwd()

Rint:/

This means that the current directory is the ROOT session (Rint). When you create a file, and repeat the

command the file becomes the current directory.

root[] TFile f1("AFile1.root");

root[] gDirectory->pwd()

AFile1.root:/

If you create two files, the last becomes the current directory.

root[] TFile f2("AFile2.root");

root[] gDirectory->pwd()

AFile2.root:/

To switch back to the first file, or to switch to any file in general, you can use the TDirectory::cd method.

The next command changes the current directory back to the first file.

root[] f1.cd();

root[] gDirectory->pwd()

AFile1.root:/

Note that even if you open the file in "READ" mode, it still becomes the current directory. CINT also offers a

shortcut for gDirectory->pwd() and gDirectory->ls(), you can type:

root[] .pwd

AFile1.root:/

root[] .ls

TFile** AFile1.root

TFile* AFile1.root

To return to the home directory where we were before:

root[] gROOT->cd()

(unsigned char)1

root[] gROOT->pwd()

Rint:/

Objects in Memory and Objects on Disk

The TFile::ls() method has an option to list the objects on disk ("-d") or the objects in memory ("-m"). If no

option is given it lists both, first the objects in memory, then the objects on disk. For example:

root[] TFile *f = new TFile("hsimple.root");

root[] gDirectory->ls("-m")

TFile** hsimple.root

 TFile* hsimple.root

166 Input/Output

Remember that gDirectory is the current directory and at this time is equivalent to "f". This correctly states

that no objects are in memory.

The next command lists the objects on disk in the current directory.

root[] gDirectory->ls("-d")

TFile** hsimple.root

 TFile* hsimple.root

 KEY: TH1F hpx;1 This is the px distribution

 KEY: TH2F hpxpy;1 py vs px

 KEY: TProfile hprof;1 Profile of pz versus px

 KEY: TNtuple ntuple;1 Demo ntuple

To bring an object from disk into memory, we have to use it or "Get" it explicitly. When we use the object, ROOT

gets it for us. Any reference to hprof will read it from the file. For example drawing hprof will read it from the

file and create an object in memory. Here we draw the profile histogram, and then we list the contents.

root[] hprof->Draw()

<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

root[] f->ls()

TFile** hsimple.root

TFile* hsimple.root

OBJ: TProfile hprof Profile of pz versus px : 0

KEY: TH1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;1 py vs px

KEY: TProfile hprof;1 Profile of pz versus px

KEY: TNtuple ntuple;1 Demo ntuple

We now see a new line that starts with OBJ. This means that an object of class TProfile, called hprof has

been added in memory to this directory. This new hprof in memory is independent from the hprof on disk. If

we make changes to the hprof in memory, they are not propagated to the hprof on disk. A new version of

hprof will be saved once we call Write.

You may wonder why hprof is added to the objects in the current directory. hprof is of the class TProfile

that inherits from TH1D, which inherits from TH1. TH1 is the basic histogram. All histograms and trees are

created in the current directory (also see "Histograms and the Current Directory"). The reference to "all
histograms" includes objects of any class descending directly or indirectly from TH1. Hence, our TProfile

hprof is created in the current directory f.There was another side effect when we called the TH1::Draw

method. CINT printed this statement:

<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

It tells us that a TCanvas was created and it named it c1. This is where ROOT is being nice, and it creates a

canvas for drawing the histogram if no canvas was named in the draw command, and if no active canvas exists.
The newly created canvas, however, is NOT listed in the contents of the current directory. Why is that? The
canvas is not added to the current directory, because by default ONLY histograms and trees are added to the
object list of the current directory. Actually, TEventList objects are also added to the current directory, but at

this time, we don't have to worry about those. If the canvas is not in the current directory then where is it?
Because it is a canvas, it was added to the list of canvases.

This list can be obtained by the command gROOT->GetListOfCanvases()->ls(). The ls() will print the

contents of the list. In our list, we have one canvas called c1. It has a TFrame, a TProfile, and a

TPaveStats.

root[] gROOT->GetListOfCanvases()->ls()

Canvas Name=c1 Title=c1

Option=TCanvas fXlowNDC=0 fYlowNDC=0 fWNDC=1 fHNDC=1

Name= c1 Title= c1

Option=TFrame X1= -4.000000 Y1=0.000000 X2=4.000000 Y2=19.384882

 OBJ: TProfile hprof Profile of pz versus px : 0

 TPaveText X1=-4.900000 Y1=20.475282 X2=-0.950000 Y2=21.686837 title

 TPaveStats X1=2.800000 Y1=17.446395 X2=4.800000 Y2=21.323371 stats

Lets proceed with our example and draw one more histogram, and we see one more OBJ entry.

root[] hpx->Draw()

root[] f->ls()

TFile** hsimple.root

 TFile* hsimple.root

 OBJ: TProfile hprof Profile of pz versus px : 0

 OBJ: TH1F hpx This is the px distribution : 0

 KEY: TH1F hpx;1 This is the px distribution

 KEY: TH2F hpxpy;1 py vs px

 KEY: TProfile hprof;1 Profile of pz versus px

 KEY: TNtuple ntuple;1 Demo ntuple

 Input/Output 167

TFile::ls() loops over the list of objects in memory and the list of objects on disk. In both cases, it calls the

ls() method of each object. The implementation of the ls method is specific to the class of the object, all of

these objects are descendants of TObject and inherit the TObject::ls() implementation. The histogram

classes are descendants of TNamed that in turn is a descent of TObject. In this case, TNamed::ls() is

executed, and it prints the name of the class, and the name and title of the object. Each directory keeps a list of
its objects in the memory. You can get this list by TDirectory::GetList(). To see the lists in memory

contents you can do:

root[] f->GetList()->ls()

OBJ: TProfile hprof Profile of pz versus px : 0

OBJ: TH1F hpx This is the px distribution : 0

Since the file f is the current directory (gDirectory), this will yield the same result:

root[] gDirectory->GetList()->ls()

OBJ: TProfile hprof Profile of pz versus px : 0

OBJ: TH1F hpx This is the px distribution : 0

Saving Histograms to Disk

At this time, the objects in memory (OBJ) are identical to the objects on disk (KEY). Let's change that by adding

a fill to the hpx we have in memory.

root[] hpx->Fill(0)

Now the hpx in memory is different from the histogram (hpx) on disk. Only one version of the object can be in

memory, however, on disk we can store multiple versions of the object. The TFile::Write method will write

the list of objects in the current directory to disk. It will add a new version of hpx and hprof.

root[] f->Write()

root[] f->ls()

TFile** hsimple.root

 TFile* hsimple.root

 OBJ: TProfile hprof Profile of pz versus px : 0

 OBJ: TH1F hpx This is the px distribution : 0

 KEY: TH1F hpx;2 This is the px distribution

 KEY: TH1F hpx;1 This is the px distribution

 KEY: TH2F hpxpy;1 py vs px

 KEY: TProfile hprof;2 Profile of pz versus px

 KEY: TProfile hprof;1 Profile of pz versus px

 KEY: TNtuple ntuple;1 Demo ntuple

Figure 11-4 The file before and after the call to Write

The TFile::Write method wrote the entire list of objects in the current directory to the file. You see that it

added two new keys: hpx;2 and hprof;2 to the file. Unlike memory, a file is capable of storing multiple

objects with the same name. Their cycle number, the number after the semicolon, differentiates objects on disk

with the same name. If you wanted to save only hpx to the file, but not the entire list of objects, you could use

the TH1::Write method of hpx:

root[] hpx->Write()

A call to obj->Write without any parameters will call obj->GetName() to find the name of the object and

use it to create a key with the same name. You can specify a new name by giving it as a parameter to the

Write method.

root[] hpx->Write("newName")

If you want to re-write the same object, with the same key, use the overwrite option.

168 Input/Output

root[] hpx->Write("",TObject::kOverwrite)

If you give a new name and use the kOverwrite, the object on disk with the matching name is overwritten if

such an object exists. If not, a new object with the new name will be created.

root[] hpx->Write("newName",TObject::kOverwrite)

The Write method did not affect the objects in memory at all. However, if the file is closed, the directory is

emptied and the objects on the list are deleted.

root[] f->Close()

root[] f->ls()

TFile** hsimple.root

TFile* hsimple.root

In the code snipped above, you can see that the directory is now empty. If you followed along so far, you can

see that c1 which was displaying hpx is now blank. Furthermore, hpx no longer exists.

root[] hpx->Draw()

Error: No symbol hpx in current scope

This is important to remember, do not close the file until you are done with the objects or any attempt to
reference the objects will fail.

Histograms and the Current Directory

When a histogram is created, it is added by default to the list of objects in the current directory. You can get the
list of histograms in a directory and retrieve a pointer to a specific histogram.

TH1F *h = (TH1F*)gDirectory->Get("myHist"); // or

TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

The method TDirectory::GetList() returns a TList of objects in the directory. You can change the

directory of a histogram with the SetDirectory method.

h->SetDirectory(newDir);

If the parameter is 0, the histogram is no longer associated with a directory.

h->SetDirectory(0);

Once a histogram is removed from the directory, it will no longer be deleted when the directory is closed. It is
now your responsibility to delete this histogram object once you are finished with it. To change the default that
automatically adds the histogram to the current directory, you can call the static function:

TH1::AddDirectory(kFALSE);

In this case, you will need to do all the bookkeeping for all the created histograms.

Saving Objects to Disk

In addition to histograms and trees, you can save any object in a ROOT file. For example to save a canvas to
the ROOT file you can use either TObject::Write() or TDirectory::WriteTObject(). The example:

root[] c1->Write()

This is equivalent to:

root[] f->WriteTObject(c1)

For objects that do not inherit from TObject use:

root[] f->WriteObject(ptr,"nameofobject")

Another example:

root[] TFile *f = new TFile("hsimple.root","UPDATE")

root[] hpx->Draw()

<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

root[] c1->Write()

root[] f->ls()

TFile** hsimple.root

TFile* hsimple.root

OBJ: TH1F hpx This is the px distribution : 0

 KEY: TH1F hpx;2 This is the px distribution

 KEY: TH1F hpx;1 This is the px distribution

 KEY: TH2F hpxpy;1 py vs px

 KEY: TProfile hprof;2 Profile of pz versus px

 KEY: TProfile hprof;1 Profile of pz versus px

 KEY: TNtuple ntuple;1 Demo ntuple

 KEY: TCanvas c1;1 c1

 Input/Output 169

Saving Collections to Disk

All collection classes inherit from TCollection and hence inherit the TCollection::Write() method.

When you call TCollection::Write() each object in the container is written individually into its own key in

the file. To write all objects into one key you can specify the name of the key and use the option
TObject::kSingleKey. For example:

root[] TList * list = new TList;

root[] TNamed * n1, * n2;

root[] n1 = new TNamed("name1","title1");

root[] n2 = new TNamed("name2","title2");

root[] list->Add(n1);

root[] list->Add(n2);

root[] gFile->WriteObject(list,"list",TObject::kSingleKey);

A TFile Object Going Out of Scope

There is another important point to remember about TFile::Close and TFile::Write. When a variable is

declared on the stack in a function such as in the code below, it will be deleted when it goes out of scope.

void foo() {

 TFile f("AFile.root","RECREATE");

}

As soon as the function foo has finished executing, the variable f is deleted. When a TFile object is deleted

an implicit call to TFile::Close is made. This will save only the file descriptor to disk. It contains the file

header, the StreamerInfo list, the key list, the free segment list, and the end address. See "The Physical

Layout of ROOT Files". The TFile::Close does not make a call to Write(), which means that the objects in

memory will not be saved in the file. You need to explicitly call TFile::Write() to save the object in memory

to file before the exit of the function.

void foo() {

 TFile f("AFile.root","RECREATE");

 … stuff …

 f.Write();

}

To prevent an object in a function from being deleted when it goes out of scope, you can create it on the heap
instead of on the stack. This will create a TFile object f, that is available on a global scope, and it will still be

available when exiting the function.

void foo() {

 TFile *f = new TFile("AFile.root","RECREATE");

}

Retrieving Objects from Disk

If you have a ROOT session running, please quit and start fresh.

We saw that multiple versions of an object with the same name could be in a ROOT file. In our example, we

saved a modified histogram hpx to the file, which resulted in two hpx's uniquely identified by the cycle number:

hpx;1 and hpx;2. The question is how we can retrieve the right version of hpx. When opening the file and

using hpx, CINT retrieves the one with the highest cycle number. To read the hpx;1 into memory, rather than

the hpx:2 we would get by default, we have to explicitly get it and assign it to a variable.

root[] TFile *f1 = new TFile("hsimple.root")

root[] TH1F *hpx1; f1->GetObject("hpx;1",hpx)

root[] hpx1->Draw()

Subdirectories and Navigation

The TDirectory class lets you organize its contents into subdirectories, and TFile being a descendent of

TDirectory inherits this ability. Here is an example of a ROOT file with multiple subdirectories as seen in the

ROOT browser. To add a subdirectory to a file use TDirectory::mkdir. The example below opens the file

for writing and creates a subdirectory called "Wed011003". Listing the contents of the file shows the new
directory in the file and the TDirectory object in memory.

root[] TFile *f = new TFile("AFile.root","RECREATE")

root[] f->mkdir("Wed011003")

(class TDirectory*)0x1072b5c8

170 Input/Output

root[] f->ls()

TFile** AFile.root

TFile* AFile.root

 TDirectory* Wed011003 Wed011003

 KEY: TDirectory Wed011003;1 Wed011003

We can change the current directory by navigating into the subdirectory, and after changing directory; we can
see that gDirectory is now "Wed011003".

root[] f->cd("Wed011003")

root[] gDirectory->pwd()

AFile.root:/Wed011003

In addition to gDirectory we have gFile, another global that points to the current file. In our example,

gDirectory points to the subdirectory, and gFile points to the file (i.e. the files' top directory).

root[] gFile->pwd()

AFile.root:/

Use cd() without any arguments to return to the file's top directory.

root[] f->cd()

AFile.root:/

Change to the subdirectory again, and create a histogram. It is added to the current directory, which is the

subdirectory "Wed011003".

root[] f->cd("Wed011003")

root[] TH1F *histo = new TH1F("histo","histo",10,0,10)

root[] gDirectory->ls()

TDirectory* Wed011003 Wed011003

 OBJ: TH1F histo histo : 0

If you are in a subdirectory and you want to have a pointer to the file containing the subdirectory, you can do:

root[] gDirectory->GetFile()

If you are in the top directory gDirectory is the same as gFile. We write the file to save the histogram on

disk, to show you how to retrieve it later.

root[] f->Write()

root[] gDirectory->ls()

TDirectory* Wed011003 Wed011003

 OBJ: TH1F histo histo : 0

 KEY: TH1F histo;1 histo

When retrieving an object from a subdirectory, you can navigate to the subdirectory first or give it the path name
relative to the file. The read object is created in memory in the current directory. In this first example, we get

histo from the top directory and the object will be in the top directory.

root[] TH1 *h; f->GetObject("Wed011003/histo;1",h)

If file is written, a copy of histo will be in the top directory. This is an effective way to copy an object from one

directory to another. In contrast, in the code box below, histo will be in memory in the subdirectory because

we changed the current directory.

root[] f->cd("Wed011003")

root[] TH1 *h; gDirectory->GetObject("histo;1",h)

Note that there is no warning if the retrieving was not successful. You need to explicitly check the value of h,
and if it is null, the object could not be found. For example, if you did not give the path name the histogram
cannot be found and the pointer to h is null:

root[] TH1 *h; gDirectory->GetObject("Wed011003/histo;1",h)

root[] h

(class TH1*)0x10767de0

root[] TH1 *h; gDirectory->GetObject("histo;1",h)

root[] h

(class TH1*)0x0

To remove a subdirectory you need to use TDirectory::Delete. There is no TDirectory::rmdir. The

Delete method takes a string containing the variable name and cycle number as a parameter.

void Delete(const char *namecycle)

The namecycle string has the format name;cycle. The next are some rules to remember:

 name = * means all, but don't remove the subdirectories

 cycle = * means all cycles (memory and file)

 cycle = "" means apply to a memory object

 cycle = 9999 also means apply to a memory object

 Input/Output 171

 namecycle = "" means the same as namecycle ="T*"

 namecycle = T* delete subdirectories

For example to delete a directory from a file, you must specify the directory cycle:

root[] f->Delete("Wed011003;1")

Some other examples of namecycle format are:

 foo: delete the object named foo from memory

 foo;1: delete the cycle 1 of the object named foo from the file

 foo;*: delete all cycles of foo from the file and also from memory

 *;2: delete all objects with cycle number 2 from the file

 ;: delete all objects from memory and from the file

 T*;*: delete all objects from memory and from the file including all subdirectories

Streamers
To follow the discussion on Streamers, you need to know what a simple data type is. A variable is of a simple

data type if it cannot be decomposed into other types. Examples of simple data types are longs, shorts, floats,
and chars. In contrast, a variable is of a composite data type if it can be decomposed. For example, classes,
structures, and arrays are composite types. Simple types are also called primitive types, basic types, and CINT
sometimes calls them fundamental types.

When we say, "writing an object to a file", we actually mean writing the current values of the data members. The
most common way to do this is to decompose (also called the serialization of) the object into its data members

and write them to disk. The decomposition is the job of the Streamer. Every class with ambitions to be stored

in a file has a Streamer that decomposes it and "streams" its members into a buffer.

The methods of the class are not written to the file, it contains only the persistent data members. To decompose

the parent classes, the Streamer calls the Streamer of the parent classes. It moves up the inheritance tree

until it reaches an ancestor without a parent. To serialize the object data members it calls their Streamer. They

in turn move up their own inheritance tree and so forth. The simple data members are written to the buffer
directly. Eventually the buffer contains all simple data members of all the classes that make up this particular

object. Data members that are references (as MyClass &fObj;) are never saved, it is always the

responsibility of the object's constructor to set them properly.

Automatically Generated Streamers

A Streamer usually calls other Streamers: the Streamer of its parents and data members. This

architecture depends on all classes having Streamers, because eventually they will be called. To ensure that

a class has a Streamer, rootcint automatically creates one in the ClassDef macro that is defined in

$ROOTSYS/include/Rtypes.h. ClassDef defines several methods for any class, and one of them is the

Streamer. The automatically generated Streamer is complete and can be used as long as no customization

is needed.

The Event class is defined in $ROOTSYS/test/Event.h. Looking at the class definition, we find that it

inherits from TObject. It is a simple example of a class with diverse data members.

class Event : public TObject {

private:

 TDirectory *fTransient; //! current directory

 Float_t fPt; //! transient value

 char fType[20];

 Int_t fNtrack;

 Int_t fNseg;

 Int_t fNvertex;

 UInt_t fFlag;

 Float_t fTemperature;

 EventHeader fEvtHdr; //|| don't split

 TClonesArray *fTracks; //->

 TH1F *fH; //->

 Int_t fMeasures[10];

 Float_t fMatrix[4][4];

 Float_t *fClosestDistance; //[fNvertex]

…

The Event class is added to the CINT dictionary by the rootcint utility. This is the rootcint statement in the

$ROOTSYS/test/Makefile:

@rootcint -f EventDict.cxx -c Event.h EventLinkDef.h

The EventDict.cxx file contains the automatically generated Streamer for Event:

172 Input/Output

void Event::Streamer(TBuffer &R__b) {

 // Stream an object of class Event.

 if (R__b.IsReading()) {

 Event::Class()->ReadBuffer(R__b, this);

 } else {

 Event::Class()->WriteBuffer(R__b, this);

 }

}

When writing an Event object, TClass::WriteBuffer is called. WriteBuffer writes the current version

number of the Event class, and its contents into the buffer R__b. The Streamer calls

TClass::ReadBuffer when reading an Event object. The ReadBuffer method reads the information from

buffer R__b into the Event object.

Transient Data Members (//!)

To prevent a data member from being written to the file, insert a "!" as the first character after the comment

marks. It tells ROOT not to save that data member in a root file when saving the class. For example, in this

version of Event, the fPt and fTransient data members are not persistent.

class Event : public TObject {

private:

 TDirectory *fTransient; //! current directory

 Float_t fPt; //! transient value

…

The Pointer to Objects (//->)

The string "->" in the comment field of the members *fH and *fTracks instruct the automatic Streamer to

assume these will point to valid objects and the Streamer of the objects can be called rather than the more

expensive R__b << fH. It is important to note that no check is done on the validity of the pointer value. In

particular if the pointer points, directly or indirectly, back to the current object, this will result in an infinite
recursion and the abrupt end of the process.

TClonesArray *fTracks; //->

TH1F *fH; //->

Variable Length Array

When the Streamer comes across a pointer to a simple type, it assumes it is an array. Somehow, it has to

know how many elements are in the array to reserve enough space in the buffer and write out the appropriate
number of elements. This is done in the class definition. For example:

class Event : public TObject {

private:

 char fType[20];

 Int_t fNtrack;

 Int_t fNseg;

 Int_t fNvertex;

…

 Float_t *fClosestDistance; //[fNvertex]

The array fClosestDistance is defined as a pointer of floating point numbers. A comment mark (//), and the

number in square brackets tell the Streamer the length of the array for this object. In general the syntax is:

<simple type> *<name> //[<length>]

The length cannot be an expression. If a variable is used, it needs to be an integer data member of the class. It
must be defined ahead of its use, or in a base class.

The same notation also applies to variable length array of object and variable length array of pointer to objects.

MyObject *obj; //[fNojbs]

MyObject **objs; //[fDatas]

Double32_t

Math operations very often require double precision, but on saving single usually precision is sufficient. For this
purpose we support the typedef Double32_t which is stored in memory as a double and on disk as a float or
interger. The actual size of disk (before compression) is determined by the parameter next to the data member
declartion. For example:

Double32_t m_data; //[min,max<,nbits>]

 Input/Output 173

If the comment is absent or does not contain min, max, nbit, the member is saved as a float.

If min and max are present, they are saved as a 32 bits precision. min and max can be explicit values or be

expressions of values known to CINT (e.g. "pi").

If nbits is present, the member is saved as int with 'nbit'. For more details see the io tutorials double32.C.

Figure 11-5 Compression and precision of Double32_t

Prevent Splitting (//||)

If you want to prevent a data member from being split when writing it to a tree, append the characters || right
after the comment string. This only makes sense for object data members. For example:

EventHeader fEvtHdr; //|| do not split the header

Streamers with Special Additions

Most of the time you can let rootcint generate a Streamer for you. However if you want to write your own

Streamer you can do so. For some classes, it may be necessary to execute some code before or after the

read or write block in the automatic Streamer. For example after the execution of the read block, one can

initialize some non persistent members. There are two reasons why you would need to write your own
Streamer: 1) if you have a non-persistent data member that you want to initialize to a value depending on the
read data members; 2) if you want or need to handle the schema evolution on your own. In addition, the

automatic Streamer does not support C-structures. It is best to convert the structure to a class definition.

First, you need to tell rootcint not to build a Streamer for you. The input to the rootcint command (in the

makefile) is a list of classes in a LinkDef.h file. For example, the list of classes for Event is listed in

$ROOTSYS/test/EventLinkDef.h. The "-" at the end of the class name tells rootcint not to generate a

Streamer. In the example, you can see the Event class is the only one for which rootcint is instructed not

to generate a Streamer.

#ifdef __CINT__

#pragma link off all globals;

#pragma link off all classes;

#pragma link off all functions;

#pragma link C++ class EventHeader+;

#pragma link C++ class Event-;

#pragma link C++ class HistogramManager+;

#pragma link C++ class Track+;

#endif

#pragma link C++ class EventHeader+;

The "+" sign tells rootcint to use the new Streamer system introduced in ROOT 3.0. The following is an

example of a customized Streamer for Event. The Streamer takes a TBuffer as a parameter, and first

checks to see if this is a case of reading or writing the buffer.

174 Input/Output

void Event::Streamer(TBuffer &R__b) {

 if (R__b.IsReading()) {

 Event::Class()->ReadBuffer(R__b, this);

 fTransient = gDirectory; //save current directory

 fPt= TMath::Sqrt(fPx*fPx + fPy*fPy + fPz*fPz);

 } else {

 Event::Class()->WriteBuffer(R__b, this);

 }

}

Writing Objects

The Streamer decomposes the objects into data members and writes them to a buffer. It does not write the

buffer to a file, it simply populates a buffer with bytes representing the object. This allows us to write the buffer
to a file or do anything else we could do with the buffer. For example, we can write it to a socket to send it over
the network. This is beyond the scope of this chapter, but it is worthwhile to emphasize the need and advantage
of separating the creation of the buffer from its use. Let us look how a buffer is written to a file. The dictionary for
a class needs to be loaded before any object of that type can be saved.

The TObject::Write method does the following:

 Creates a TKey object in the current directory

 Creates a TBuffer object which is part of the newly created TKey

 Fills the TBuffer with a call to the class::Streamer method

 Creates a second buffer for compression, if needed

 Reserves space by scanning the TFree list. At this point, the size of the buffer is known.

 Writes the buffer to the file

 Releases the TBuffer part of the key

In other words, the TObject::Write calls the Streamer method of the class to build the buffer. The buffer is

in the key and the key is written to disk. Once written to disk the memory consumed by the buffer part is
released. The key part of the TKey is kept.

Figure 11-6 A diagram of a streamed TH1F in the buffer

The key consumes about 60 bytes, whereas the buffer, since it contains the object data, can be very large.

Ignore Object Streamers

Your class can ignore the TObject Streamer with the MyClass->Class::IgnoreObjectStreamer()

method. When the class kIgnoreTObjectStreamer bit is set (by calling the IgnoreTObjectStreamer

method), the automatically generated Streamer will not call TObject::Streamer, and the TObject part of

the class is not streamed to the file. This is useful in case you do not use the TObject fBits and fUniqueID

data members. You gain space on the file, and you do not loose functionality if you do not use the fBits and

fUniqueID. See ―The Role of TObject‖ on the use of fBits and fUniqueID.

Streaming a TClonesArray

When writing a TClonesArray it bypasses by default the Streamer of the member class and uses a more

efficient internal mechanism to write the members to the file. You can override the default and specify that the
member class Streamer is used by setting the TClonesArray::BypassStreamer bit to false:

TClonesArray *fTracks;

fTracks->BypassStreamer(kFALSE); // use the member Streamer

When the kBypassStreamer bit is set, the automatically generated Streamer can call directly the method

TClass::WriteBuffer. Bypassing the Streamer improves the performance when writing/reading the

objects in the TClonesArray. However, the drawback is when a TClonesArray is written with split=0

bypassing the Streamer, the StreamerInfo of the class in the array being optimized, one cannot later use

the TClonesArray with split > 0. For example, there is a problem with the following scenario: a class Foo

has a TClonesArray of Bar objects the Foo object is written with split=0 to Tree T1. In this case the

 Input/Output 175

StreamerInfo for the class Bar is created in optimized mode in such a way that data members of the same

type are written as an array improving the I/O performance. In a new program, T1 is read and a new Tree T2 is

created with the object Foo in split > 1.

When the T2 branch is created, the StreamerInfo for the class Bar is created with no optimization

(mandatory for the split mode). The optimized Bar StreamerInfo is going to be used to read the

TClonesArray in T1. The result will be Bar objects with data member values not in the right sequence. The

solution to this problem is to call BypassStreamer(kFALSE) for the TClonesArray. In this case, the normal

Bar::Streamer function will be called. The Bar::Streamer function works OK independently if the Bar

StreamerInfo had been generated in optimized mode or not.

Pointers and References in Persistency
An object pointer as a data member presents a challenge to the streaming software. If the object pointed to is
saved every time, it could create circular dependencies and consume a large amount of disk space. The
network of references must be preserved on disk and recreated upon reading the file.

If you use independent I/O operations for pointers and their referenced objects you can use the TRef class.

Later in this section is an example that compares disk space, memory usage, and I/O times of C++ pointers and
TRefs. In general, a TRef is faster than C++ but the advantage of a C++ pointer is that it is already C++.

Streaming C++ Pointers

When ROOT encounters a pointer data member it calls the Streamer of the object and labels it with a unique

object identifier. The object identifier is unique for one I/O operation. If there is another pointer to the object in
the same I/O operation, the first object is referenced i.e. it is not saved again. When reading the file, the object
is rebuilt and the references recalculated.

Figure 11-7 Streaming object pointers

In this way, the network of pointers and their objects is rebuilt and ready to use the same way it was used
before it was persistent. If the pointer hold the address of an object which in embedded in another object (as
opposed to being pointed to by a pointer), the object will be duplicate at read time. To avoid this, make the
pointer a transient data member.

Motivation for the TRef Class

If the object is split into several files or into several branches of one or more TTrees, standard C++ pointers

cannot be used because each I/O operation will write the referenced objects, and multiple copies will exist. In
addition, if the pointer is read before the referenced object, it is null and may cause a run time system error. To
address these limitations, ROOT offers the TRef class.

TRef allows referencing an object in a different branch and/or in a different file. TRef also supports the

complex situation where a TFile is updated multiple times on the same machine or a different machine. When

a TRef is read before its referenced object, it is null. As soon as the referenced object is read, the TRef points

to it. In addition, one can specify an action to be taken by TRef in the case it is read before its reference object

(see‖Action on Demand‖ below).

Using TRef

A TRef is a lightweight object pointing to any TObject. This object can be used instead of normal C++ pointers

in case:

 The referenced object R and the pointer P are not written to the same file

 P is read before R

 R and P are written to different Tree branches

Below is a line from the example in $ROOTSYS/test/Event.cxx.

TRef fLastTrack; //pointer to last track

…

Track *track = new(tracks[fNtrack++])Track(random);

// Save reference to last Track in the collection of Tracks

176 Input/Output

fLastTrack = track;

The track and its reference fLastTrack can be written with two separate I/O calls in the same or in different

files, in the same or in different branches of a TTree. If the TRef is read and the referenced object has not yet

been read, TRef will return a null pointer. As soon as the referenced object will be read, TRef will point to it.

How Does It Work?

A TRef is itself a TObject with an additional transient pointer fPID. When a TRef is used to point to a

TObject *R, for example in a class with

TRef P;

one can do:

P = R; //to set the pointer

 When the statement P = R is executed, the following happens:

 The pointer fPID is set to the current TProcessID (see below).

 The current ObjectNumber (see below) is incremented by one.

 R.fUniqueID is set to ObjectNumber.

 In the fPID object, the element fObjects[ObjectNumber] is set to R

 P.fUniqueID is also set to ObjectNumber.

After having set P, one can immediately return the value of R using P.GetObject(). This function returns the

fObjects[fUniqueID] from the fPID object.

When the TRef is written, the process id number pidf of fPID is written in addition to the TObject part of the

TRef (fBits,fUniqueID). When the TRef is read, its pointer fPID is set to the value stored in the

TObjArray of TFile::fProcessIDs (fProcessIDs[pidf]).

When a referenced object is written, TObject::Streamer writes the pidf in addition to the standard fBits

and fUniqueID. When TObject::Streamer reads a reference object, the pidf is read. At this point, the

referenced object is entered into the table of objects of the TProcessID corresponding to pidf.

WARNING: If MyClass is the class of the referenced object, The TObject part of MyClass must be streamed.

One should not call MyClass::Class()->IgnoreTObjectStreamer().

TProccessID and TUUID

A TProcessID uniquely identifies a ROOT job. The TProcessID title consists of a TUUID object, which

provides a globally unique identifier. The TUUID class implements the UUID (Universally Unique Identifier), also

known as GUID (Globally Unique Identifier). A UUID is 128 bits long, and if generated according to this
algorithm, is either guaranteed to be different from all other UUID generated until 3400 A.D. or extremely likely
to be different.

The TROOT constructor automatically creates a TProcessID. When a TFile contains referenced objects, the

TProcessID object is written to the file. If a file has been written in multiple sessions (same machine or not), a

TProcessID is written for each session. The TProcessID objects are used by TRef to uniquely identify the

referenced TObject.

When a referenced object is read from a file (its bit kIsReferenced is set), this object is entered into the

objects table of the corresponding TProcessID. Each TFile has a list of TProcessIDs (see

TFile::fProcessIDs) also accessible from TProcessID::fgPIDs (for all files). When this object is

deleted, it is removed from the table via the cleanup mechanism invoked by the TObject destructor. Each

TProcessID has a table (TObjArray *fObjects) that keeps track of all referenced objects. If a referenced

object has a fUniqueID, a pointer to this unique object may be found using fObjects->At(fUniqueID). In

the same way, when a TRef::GetObject is called, GetObject uses its own fUniqueID to find the pointer

to the referenced object. See TProcessID::GetObjectWithID and PutObjectWithID.

Object Number

When an object is referenced, a unique identifier is computed and stored in both the fUniqueID of the

referenced and referencing object. This uniqueID is computed by incrementing by one the static global in

TProcessID::fgNumber. The fUniqueID is the serial object number in the current session. One can

retrieve the current fgNumber value by calling the static function TProcessID::GetObjectCount at any

time or can set this number by TProcessID::SetObjectCount. To avoid a growing table of fObjects in

TProcessID, in case, for example, one processes many events in a loop, it might be necessary to reset the

object number at the end of processing of one event. See an example in $ROOTSYS/test/Event.cxx (look at

function Build). The value of ObjectNumber may be saved at the beginning of one event and reset to this

original value at the end of the event. These actions may be nested.

 Input/Output 177

saveNumber = TProcessID::GetObjectCount();

…

TProcessID::SetObjectCount(savedNumber);

Action on Demand

The normal behavior of a TRef has been described above. In addition, TRef supports "Actions on Demand". It

may happen that the referenced object is not yet in the memory, on a separate file or not yet computed. In this
case, TRef is able to execute automatically an action:

 Call to a compiled function (static function of member function)

 Call to an interpreted function

 Execution of a CINT script

How to Select This Option?

In the definition of the TRef data member in the original class, do:

TRef fRef; //EXEC:execName points to something

When the special keyword "EXEC:" is found in the comment field of the member, the next string is assumed to

be the name of a TExec object. When a file is connected, the dictionary of the classes on the file is read in

memory (see TFile::ReadStreamerInfo). When the TStreamerElement object is read, a TExec object

is automatically created with the name specified after the keyword "EXEC:" in case a TExec with a same

name does not already exist.

The action to be executed via this TExec can be specified with:

 A call to the TExec constructor, if the constructor is called before

 Opening the file.

 A call to TExec::SetAction at any time.

One can compute a pointer to an existing TExec with a name with:

TExec *myExec = gROOT->GetExec(execName);

myExec->SetAction(actionCommand);

The parameter actionCommand is a string containing a CINT instruction. Examples:

myExec->SetAction("LoadHits()");

myExec->SetAction(".x script.C");

When a TRef is de-referenced via TRef::GetObject, its TExec is automatically executed. The TExec

function/script can do one or more of the following:

 Load a file containing the referenced object. This function typically looks in the file catalog.

 Compute a pointer to the referenced object and communicate this pointer back to the calling
function TRef::SetObject via:

TRef::SetObject(object)

As soon as an object is returned to GetObject, the fUniqueID of the TRef is set to the fUniqueID of the

referenced object. At the next call to GetObject, the pointer stored in fPid:fObjects[fUniqueID] will be

returned directly. An example of action on demand is in $ROOTSYS/test/Event.h:

TRef fWebHistogram; //EXEC:GetWebHistogram

When calling fWebHistogram.GetObject(), the function GetObject will automatically invoke the script

GetWebHistogram.C via the interpreter. An example of a GetWebHistogram.C script is shown below:

void GetWebHistogram() {

 TFile *f=TFile::Open("http://root.cern.ch/files/pippa.root");

 f->cd("DM/CJ");

 TH1 *h6 = (TH1*)gDirectory->Get("h6");

 h6->SetDirectory(0);

 delete f;

 TRef::SetObject(h6);

}

In the above example, a call to fWebHistogram.GetObject() executes the script with the function

GetWebHistogram. This script connects a file with histograms: pippa.root on the ROOT Web site and

returns the object h6 to TRef::GetObject.

TRef fWebHistogram; //EXEC:GetWebHistogram()

Note that if the definition of the TRef fWebHistogram had been changed the compiled or interpreted function

GetWebHistogram() would have been called instead of the CINT script GetWebHistogram.C.

178 Input/Output

Array of TRef

When storing multiple TRefs, it is more efficient to use a TRefArray. The efficiency is due to having a single

pointer fPID for all TRefs in the array. It has a dynamic compact table of fUniqueIDs. We recommend that

you use a TRefArray rather then a collection of TRefs.

Example:

 Suppose a TObjArray *mytracks containing a list of Track objects.

 Suppose a TRefArray *pions containing pointers to the pion tracks in mytracks. This list is

created with statements like: pions->Add(track);

 Suppose a TRefArray *muons containing pointers to the muon tracks in mytracks.

The 3 arrays mytracks, pions and muons may be written separately.

Schema Evolution
Schema evolution is a problem faced by long-lived data. When a schema changes, existing persistent data can
become inaccessible unless the system provides a mechanism to access data created with previous versions of
the schema. In the lifetime of collaboration, the class definitions (i.e. the schema) are likely to change
frequently. Not only can the class itself change, but any of its parent classes or data member classes can
change also. This makes the support for schema evolution necessary.

ROOT fully supports schema evolution. The next figure below illustrates some of the scenarios.

Figure 11-8 The ROOT schema evolution

The top half represents different versions of the shared library with the class definitions. These are the in-
memory class versions. The bottom half represents data files that contain different versions of the classes.

 An old version of a shared library and a file with new class definitions - this can be the case when
someone has not updated the library and is reading a new file.

 Reading a file with a shared library that is missing a class definition (i.e. missing class D).

 Reading a file without any class definitions. This can be the case where the class definition is
lost, or unavailable.

 The current version of a shared library and an old file with old class versions (backward
compatibility). This is often the case when reading old data.

 Reading a file with a shared library built with MakeProject. This is the case when someone has

already read the data without a shared library and has used ROOT MakeProject feature to

reconstruct the class definitions and shared library (MakeProject is explained in detail later on).

In case of a mismatch between the in-memory version and the persistent version of a class, ROOT maps the
persistent one to the one in memory. This allows you to change the class definition at will, for example:

 Change the order of data members in the class.

 Add new data members. By default, the value of the missing member will be 0 or in case of an
object it will be set to null.

 Remove data members.

 Move a data member to a base class or vice-versa.

 Change the type of a member if it is a simple type or a pointer to a simple type. If a loss of
precision occurs, a warning is given.

 Add or remove a base class

 Input/Output 179

Figure 11-9 The schema evolution for objects written on disk and in memory

ROOT supports schema evolution by keeping a class description of each version of the class that was ever
written to disk, with the class. When it writes an object to file, it also writes the description of the current class

version along with it. This description is implemented in the StreamerInfo class.

The TStreamerInfo Class

Each class has a list of StreamerInfo objects, one for each version of the class if that version was written to

disk at least once. When reading an object from a file, the system uses the StreamerInfo list to decode an

object into the current version. The StreamerInfo is made up of TStreamerElements . Each describes one

persistent data member of the class. By default, all data members of a class are persistent. To exclude a data

member (i.e. make it not persistent), add a ―!" after the comment marks. For example the pointer *fPainter of

a TH1 is not persistent:

TVirtualHistPainter* fPainter //!pointer to histogram painter

The TStreamerElement Class

A TStreamerElement describes a data member of a simple type, object, array, pointer, or container. The

offset in the TStreamerElement is the starting address of the data for that data member.

BASE TNamed offset= 0 type=67 The basis for a named object

BASE TAttLine offset= 28 type= 0 Line attributes

 In this example, the TNamed data starts at byte 0, and TAttLine starts at byte 28. The offset is machine and

compiler dependent and is computed when the StreamerInfo is analyzed. The types are defined in the file

TStreamerInfo.h and listed here:

enum EReadWrite {

 kBase=0, kChar=1, kShort=2, kInt=3, kLong=4,

 kFloat=5, kCounter=6, kCharStar=7, kDouble=8, kUChar=11,

 kUShort=12, kUInt=13, kULong=14, kBits=15, kOffsetL=20,

 kOffsetP=40, kObject=61, kAny=62, kObjectp=63, kObjectP=64,

 kTString=65, kTObject=66, kTNamed=67, kSkip=100, kSkipL=120,

 kSkipP=140, kConv=200, kConvL=220, kConvP=240, kStreamer=500,

 kStreamLoop=501, kMissing=99999

};

The method TClass::GetStreamerInfo analyzes the StreamerInfo the same way it would be analyzed

by referring to the class. While analyzing the StreamerInfo, it computes the offsets. The type field is the type

of the TStreamerElement. It is specific to the StreamerInfo definition.

Example: TH1 StreamerInfo

In the StreamerInfo of the TH1 class we see the four base classes: TNamed, TAttLine, TAttFill, and

TAttMarker. These are followed by a list of the data members. Each data member is implemented by a

TStreamerElement object.

root[] TH1::Class()->GetStreamerInfo()->ls()

StreamerInfo for class: TH1, version=3

 BASE TNamed offset= 0 type=67 The basis for a named object

 BASE TAttLine offset= 28 type= 0 Line attributes

 BASE TAttFill offset= 40 type= 0 Fill area attributes

 BASE TAttMarker offset= 48 type= 0 Marker attributes

 Int_t fNcells offset= 60 type= 3 number of bins(1D

 TAxis fXaxis offset= 64 type=61 X axis descriptor

 TAxis fYaxis offset=192 type=61 Y axis descriptor

 TAxis fZaxis offset=320 type=61 Z axis descriptor

 Short_t fBarOffset offset=448 type= 2(1000*offset)for bar charts or legos

 Short_t fBarWidth offset=450 type= 2 (1000*width)for bar charts or legos

 Stat_t fEntries offset=452 type= 8 Number of entries

180 Input/Output

 Stat_t fTsumw offset=460 type= 8 Total Sum of weights

 Stat_t fTsumw2 offset=468 type= 8 Total Sum of squares of weights

 Stat_t fTsumwx offset=476 type= 8 Total Sum of weight*X

 Stat_t fTsumwx2 offset=484 type= 8 Total Sum of weight*X*X

 Double_t fMaximum offset=492 type= 8 Maximum value for plotting

 Double_t fMinimum offset=500 type= 8 Minimum value for plotting

 Double_t fNormFactor offset=508 type= 8 Normalization factor

 TArrayD fContour offset=516 type=62 Array to display contour levels

 TArrayD fSumw2 offset=528 type=62 Array of sum of squares of weights

 TString fOption offset=540 type=65 histogram options

 TList* fFunctions offset=548 type=63 ->Pointer to list of functions

 i= 0, TNamed type= 67, offset= 0, len=1, method=0

 i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480

 i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992

 i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704

 i= 4, fNcells type= 3, offset= 60, len=1, method=0

 i= 5, fXaxis type= 61, offset= 64, len=1, method=1081287424

 i= 6, fYaxis type= 61, offset=192, len=1, method=1081287548

 i= 7, fZaxis type= 61, offset=320, len=1, method=1081287676

 i= 8, fBarOffset type= 22, offset=448, len=2, method=0

 i= 9, fEntries type= 28, offset=452, len=8, method=0

 i=10, fContour type= 62, offset=516, len=1, method=1081287804

 i=11, fSumw2 type= 62, offset=528, len=1, method=1081287924

 i=12, fOption type= 65, offset=540, len=1, method=1081288044

 i=13, fFunctions type= 63, offset=548, len=1, method=1081288164

Optimized StreamerInfo

The entries starting with "i = 0" is the optimized format of the StreamerInfo. Consecutive data members of

the same simple type and size are collapsed and read at once into an array for performance optimization.

i= 0, TNamed type= 67, offset= 0, len=1, method=0

i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480

i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992

i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704

For example, the five data members beginning with fEnties and the three data members beginning with

fMaximum, are put into an array called fEntries (i = 9) with the length 8.

i= 9, fEntries type= 28, offset=452, len=8, method=0

Only simple type data members are combined, object data members are not combined. For example the three
axis data members remain separate. The "method" is a handle to the method that reads the object.

Automatic Schema Evolution

When a class is defined in ROOT, it must include the ClassDef macro as the last line in the header file inside

the class definition. The syntax is:

ClassDef(<ClassName>,<VersionNumber>)

The version number identifies this particular version of the class. When a class has version 0 it is not stored in a
root file but its base class(es) is(are). The reason can be that this class has no data members worth saving or
all real info is in the base classes. The version number is written to the file in the Streamer by the call
TBuffer::WriteVersion. You, as the designer of the class, do not need to do any manual modification in

the Streamer. ROOT schema evolution mechanism is automatic and handled by the StreamerInfo.

Manual Schema Evolution

If you have written your own Streamer as described in the section "Streamers with Special Additions", you will
have to manually add code for each version and manage the evolution of your class. When you add or remove
data members, you must modify the Streamer by hand. ROOT assumes that you have increased the class

version number in the ClassDef statement and introduced the relevant test in the read part of the Streamer.

For example, if a new version of the Event class above includes a new member: Int_t fNew the ClassDef

statement should be changed to ClassDef(Event,2) and the following lines should be added to the read

part of the Streamer:

if (R__v > 1) R__b >> fNew;

else fNew = 0; // set to some default value

If, in the same new version 2 you remove the member fH, you must add the following code to read the

histogram object into some temporary object and delete it:

 Input/Output 181

if (R__v) < 2 {

 TH1F *dummy = 0;

 R__b >> dummy;

 delete dummy;

}

Our experience with manual schema evolution shows that it is easy to make and mismatches between

Streamer writers and readers are frequent and increase as the number of classes increase. We recommend

you use rootcint generated Streamers whenever you can, and profit from the automatic schema evolution.

Building Class Definitions with the StreamerInfo

A ROOT file's StreamerInfo list contains the description of all versions of all classes in the file. When a file is

opened the StreamerInfo is read into memory and it provides enough information to make the file

browsable. The TStreamerInfo enables us to recreate a header file for the class in case the compiled class

is not available. This is done with the TFile::MakeProject method. It creates a directory with the header

files for the named classes and a makefile to compile a shared library with the class definitions.

Example: MakeProject

To explain the details, we use the example of the ATLFast project that is a fast simulation for the ATLAS

experiment. The complete source for ATLFast can be down loaded at ftp://root.cern.ch/root/atlfast.tar.gz. Once

we compile and run ATLFast we get a ROOT file called atlfast.root, containing the ATLFast objects.

When we open the file, we get a warning that the file contains classes that are not in the CINT dictionary. This is
correct since we did not load the class definitions.

root[] TFile f("atlfast.root")

Warning in <TClass::TClass>: no dictionary for class TMCParticle is available

Warning in <TClass::TClass>: no dictionary for class ATLFMuon available

We can see the StreamerInfo for the classes:

root[] f.ShowStreamerInfo()

…

StreamerInfo for class: ATLFMuon, version=1

 BASE TObject offset= 0 type=66 Basic ROOT object

 BASE TAtt3D offset= 0 type= 0 3D attributes

 Int_t m_KFcode offset= 0 type= 3 Muon KF-code

 Int_t m_MCParticle offset= 0 type= 3 Muon position in MCParticles list

 Int_t m_KFmother offset= 0 type= 3 Muon mother KF-code

 Int_t m_UseFlag offset= 0 type= 3 Muon energy usage flag

 Int_t m_Isolated offset= 0 type= 3 Muon isolation (1 for isolated)

 Float_t m_Eta offset= 0 type= 5 Eta coordinate

 Float_t m_Phi offset= 0 type= 5 Phi coordinate

 Float_t m_PT offset= 0 type= 5 Transverse energy

 Int_t m_Trigger offset= 0 type= 3 Result of trigger…

However, when we try to use a specific class we get a warning because the class is not in the CINT dictionary.

We can create a class using gROOT->GetClass() which makes a fake class from the StreamerInfo.

// Build a 'fake' class

root[] gROOT->GetClass("ATLFMuon")

(const class TClass*)0x87e5c08

// The fake class has a StreamerInfo

root[] gROOT->GetClass("ATLFMuon")->GetStreamerInfo()->ls()

StreamerInfo for class: ATLFMuon, version=1

 BASE TObject offset= 0 type=66 Basic ROOT object

 BASE TAtt3D offset= 0 type= 0 3D attributes

 Int_t m_KFcode offset= 16 type= 3 Muon KF-code

 Int_t m_MCParticle offset= 20 type= 3 Muon position in MCParticles list

 Int_t m_KFmother offset= 24 type= 3 Muon mother KF-code

 Int_t m_UseFlag offset= 28 type= 3 Muon energy usage flag

 Int_t m_Isolated offset= 32 type= 3 Muon isolation

 Float_t m_Eta offset= 36 type= 5 Eta coordinate

 Float_t m_Phi offset= 40 type= 5 Phi coordinate

 Float_t m_PT offset= 44 type= 5 Transverse energy

 Int_t m_Trigger offset= 48 type= 3 Result of trigger

 i= 0, TObject type= 66, offset= 0, len=1, method=0

 i= 1, TAtt3D type= 0, offset= 0, len=1, method=142684688

 i= 2, m_KFcode type= 23, offset= 16, len=5, method=0

 i= 3, m_Eta type= 25, offset= 36, len=3, method=0

 i= 4, m_Trigger type= 3, offset= 48, len=1, method=0

ftp://root.cern.ch/root/atlfast.tar.gz

182 Input/Output

MakeProject has three parameters:

MakeProject(const char *dirname,const char *classes,Option_t *option)

The first is the directory name in which to place the generated header files. The second parameter is the name
of the classes to include in the project. By default, all classes are included. It recognizes the wild card character
, for example, "ATLF" includes all classes beginning with ATLF. The third parameter is an option with the
following values:

 "new" If the directory does not exist, it is created.

 "recreate" If the directory does not exist, it is creates as in "new", in addition if the directory

 does exist, all existing files are deleted before creating the new files.

 "update" The new classes are added to the existing directory and the existing classes are

 replaced with the new definition. If the directory does not exist, it creates it as in
 "new".

 "+": This option can be used in combination with the other three. It will create the
 necessary files to easily build a shared library containing the class definitions.
 Specifically it will:

 Generate a script called MAKE that builds the shared library containing the definition of all classes

in the directory.

 Generate a LinkDef.h files to use with rootcint in MAKE.

 Run rootcint to generate a <dirname>ProjectDict.cxx file.

 Compile the <dirname>ProjectDict.cxx with the current options in compiledata.h.

 Build a shared library <dirname>.so.

 "++": This option can be used instead of the single "+". It does everything the single "+"

 does, and dynamically loads the shared library <dirname>.so.

This example makes a directory called MyProject that will contain all class definitions from the

atlfast.root file. The necessary makefile to build a shared library are also created, and since the '++' is

appended, the shared library is also loaded.

root[] f.MakeProject("MyProject","*", "recreate++")

MakeProject has generated 0 classes in MyProject

MyProject/MAKE file has been generated

Shared lib MyProject/MyProject.so has been generated

Shared lib MyProject/MyProject.so has been dynamically linked

The contents of MyProject:

root[] .! ls MyProject

ATLFCluster.h ATLFJet.h ATLFMiscMaker.h ATLFTrack.h

TMCParticle.h ATLFClusterMaker.h ATLFJetMaker.h ATLFMuon.h

ATLFElectron.h ATLFMCMaker.h ATLFMuonMaker.h ATLFElectronMaker.h

ATLFMaker.h ATLFPhoton.h ATLFHistBrowser.h ATLFMisc.h

ATLFPhotonMaker.h ATLFTrackMaker.h ATLFTrigger.h ATLFTriggerMaker.h

LinkDef.h MAKE MyProject.so MyProjectProjectDict.h

MyProjectProjectDict.cxx MyProjectProjectDict.o

Now you can load the shared library in any consecutive root session to use the atlfast classes.

root[] gSystem->Load("MyProject/MyProject")

root[] ATLFMuon muon

This is an example of a generated header file:

//

// This class has been generated by TFile::MakeProject

// (Thu Apr 5 10:18:37 2001 by ROOT version 3.00/06)

// from the TStreamerInfo in file atlfast.root

//

#ifndef ATLFMuon_h

#define ATLFMuon_h

#include "TObject.h"

#include "TAtt3D.h"

class ATLFMuon : public TObject , public TAtt3D {

public:

 Int_t m_KFcode; //Muon KF-code

 Int_t m_MCParticle; //Muon position in MCParticles list

 Int_t m_KFmother; //Muon mother KF-code

 Int_t m_UseFlag; //Muon energy usage flag

 Int_t m_Isolated; //Muon isolation (1 for isolated)

 Float_t m_Eta; //Eta coordinate

 Float_t m_Phi; //Phi coordinate

 Float_t m_PT; //Transverse energy

 Input/Output 183

 Int_t m_Trigger; //Result of trigger

 ATLFMuon() {;}

 virtual ~ATLFMuon() {;}

 ClassDef(ATLFMuon,1) //

};

 ClassImp(ATLFMuon)

#endif

Migrating to ROOT 3
We will distinguish the following cases:

Case A: You have your own Streamer method in your class implementation file. This also means that you

have specified MyClass in the LinkDef.h file.

 Keep MyClass - unchanged.

 Increment your class version id in ClassDef by 1, e.g. ClassDef(MyClass, 2)

 Change your Streamer function in the following way: The old write block can be replaced by the

new standard Write. Change the read block to use the new scheme for the new versions and the
old code for the old versions.

 void MyClass::Streamer(TBuffer &R__b) {

 // Stream an object of class MyClass.

 if (R__b.IsReading()) {

 UInt_t R__s, R__c;

 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);

 if (R__v > 1) {

 MyClass::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);

 return;

 }

 // process old versions before automatic schema evolution

 R__b >> xxxx;

 R__b >> .. etc

 R__b.CheckByteCount(R__s, R__c, MyClass::IsA()); // end of old versions

 } else

 MyClass::Class()->WriteBuffer(R__b,this);

}

Case B: You use the automatic Streamer in the dictionary file.

 Move the old Streamer from the file generated by rootcint to your class implementation file,

then modify the Streamer function as in Case A above.

 Increment your class version id in ClassDef by 1, i.e. ClassDef(MyClass, 2)

 Add option "-" in the pragma line of LinkDef.

Case C: You use the automatic Streamer in the dictionary file and you already use the option "+" in the

LinkDef file. If the old automatic Streamer does not contain any statement using the function WriteArray,

you have nothing to do, except running rootcint again to regenerate the new form of the Streamer function,

otherwise proceed like for case B.

Compression and Performance
ROOT uses a compression algorithm based on the well-known gzip algorithm. It supports nine levels of

compression. The default for ROOT is one. The compression level can be set with the method
TFile::SetCompressionLevel. The experience with this algorithm shows that a compression level of 1.3

for raw data files and around two on most DST files is the optimum. The choice of one for the default is a
compromise between the time it takes to read and write the object vs. the disk space savings.

To specify no compression, set the level to zero.

We recommend using compression when the time spent in I/O is small compared to the total processing time. If
the I/O operation is increased by a factor of 5 it is still a small percentage of the total time and it may compress
the data by a factor of 10. On the other hand if the time spend on I/O is large, compression may have a large
impact on the program's performance.

The compression factor, i.e. the savings of disk space, varies with the type of data. A buffer with a same value
array is compressed so that the value is only written once. For example, a track has the mass of a pion that it is
always the same, and the charge of the pion that is either positive or negative. For 1000 pions, the mass will be
written only once, and the charge only twice (positive and negative). When the data is sparse, i.e. when there
are many zeros, the compression factor is also high.

184 Input/Output

 Compression level Bytes Write
Time (sec)

 Read
Time (sec.)

0 1,004,998 4.77 0.07

1 438,366 6.67 0.05

5 429,871 7.03 0.06

9 426,899 8.47 0.05

The time to uncompress an object is small compared to the compression time and is independent of the
selected compression level. Note that the compression level may be changed at any time, but the new
compression level will only apply to newly written objects. Consequently, a ROOT file may contain objects with
different compression levels. This table shows four runs of the demo script that creates 15 histograms with
different compression parameters. To make the numbers more significant, the macro was modified to create
1000 histograms. We have included two more examples to show the impact of compression on Trees in the
next chapter.

Remotely Access to ROOT Files via a rootd
Reading and writing ROOT files over the net can be done by creating a TNetFile object instead of a TFile

object. Since the TNetFile class inherits from the TFile class, it has exactly the same interface and

behavior. The only difference is that it reads and writes to a remote rootd daemon.

TNetFile URL

TNetFile file names are in standard URL format with protocol "root". The following are valid TNetFile

URL's:

root://hpsalo/files/aap.root

root://hpbrun.cern.ch/root/hsimple.root

root://pcna49a:5151/~na49/data/run821.root

root://pcna49d.cern.ch:5050//v1/data/run810.root

The only difference with the well-known http URL's is that the root of the remote file tree is the remote user's

home directory. Therefore an absolute pathname requires a // after the host or port (as shown in the last

example above). Further the expansion of the standard shell characters, like ~, $, .., etc. is handled as

expected. The default port on which the remote rootd listens is 1094 and TNetFile (actually by TUrl that is

used by TNetFile) assumes this default port. The port number has been allocated by the IANA and is

reserved for ROOT.

Remote Authentication

Connecting to a rootd daemon requires a remote user id and password. TNetFile supports several ways for

you to provide your login information:

● Setting it globally via the static methods TNetFile::SetUser and TNetFile::SetPasswd

● Via the ~/.netrc file (same format and file as used by ftp)

● Via command line prompt

● Setting the SPR password file via the option –P FILE, i.e. the next line will start the rootd daemon using the

files $HOME/.srootdpass2.conf and $HOME/.srootdpass2 for SPR authentication: rootd –P

$HOME/.srootdpass2

A Simple Session

root[] TFile *f1 = TFile::Open("local/file.root","update")

root[] TFile *f2 = TFile::Open("root://pcna49a.cern.ch/data/file.root","new")

Name (pcna49a:rdm):

Password:

root[] TFile *f3 = TFile::Open("http://root.cern.ch/~rdm/hsimple.root")

root[] f3.ls()

TWebFile** http://root.cern.ch/~rdm/hsimple.root

TWebFile* http://root.cern.ch/~rdm/hsimple.root

KEY: TH1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;1 py vs px

KEY: TProfile hprof;1 Profile of pz versus px

KEY: TNtuple ntuple;1 Demo ntuple

root[] hpx.Draw()

 Input/Output 185

The rootd Daemon

The rootd daemon works with the TNetFile class. It allows remote access to ROOT database files in read

or read/write mode. The rootd daemon can be found in the directory $ROOTSYS/bin. It can be started either

via inetd or by hand from the command line (no need to be super user). Its performance is comparable with

NFS but while NFS requires all kind of system permissions to setup, rootd can be started by any user. The

simplest way to start rootd is by starting it from the command line while being logged in to the remote

machine. Once started rootd goes immediately in the background (does not need &) and you can log out from

the remote node. The only required argument is the range of ports (specified using –p port1-port2). rootd

will listen on the first available port in this range. You can also specify -p 0-N to search relative to the service

port specified in /etc/services. If a single port is specified (rootd -p 1094) then no search is made.

Unless started by inetd (rootd -i), it prints information about the found port, something like:

ROOTD_PORT=5151, ROOTD_PID=14433 before spawning the daemon. This way the user knows what was

used (eval `rootd` will set these as variables in Bourne-like shells). Also, rootd shows an error message (as

well as sending the syslog message) if there is any problem binding the port or forking the daemon.

Using TNetFile you can now read and write files on the remote machine.

In the example below, rootd runs on the remote node under user id minuser and searches for an available

port into the range 1094-1098. It finds and listens to port 1094. When creating a TNetFile object you have to

specify the same port number 1094 and use minuser (and corresponding password) as login id. When rootd

is started in this way, you can only login with the user id under which rootd was started on the remote

machine.

hpsalo[] telnet fsgi02.fnal.gov

login: minuser

Password:

<fsgi02> rootd -p 1094-1098

ROOTD_PORT=1094

ROOTD_PID=14433

<fsgi02> exit

hpsalo[] root

root[] TFile *f = TFile::Open("root://fsgi02.fnal.gov:1094/file.root","new")

Name (fsgi02.fnal.gov:rdm): minuser

Password:

root[] f.ls()

However, you can make many connections since the original rootd will fork (spawn) a new rootd that will

service the requests from the TNetFile. The original rootd keeps listening on the specified port for other

connections. Each time a TNetFile makes a connection; it gets a new private rootd that will handle its

requests. At the end of a ROOT, session when all TNetFiles are closed only the original rootd will stay alive

ready to service future TNetFiles.

Starting rootd via inetd

If you expect to often connect via TNetFile to a remote machine, it is more efficient to install rootd as a

service of the inetd super daemon. In this way, it is not necessary for each user to run a private rootd.

However, this requires a one-time modification of two system files (and super user privileges to do so). Add to

/etc/services the line: rootd 1094/tcp. To /etc/inetd.conf the line:

rootd stream tcp nowait root /usr/local/root/bin/rootd rootd -i

After these changes force inetd to reread its configuration file with: "kill -HUP <pid inetd>". It is not

necessary to specify a port number in the URL given to TNetFile when the setup done this way. TNetFile

assumes the default port to be 1094 as specified above in the /etc/services file.

Command Line Arguments for rootd

rootd supports the following arguments:

 -i says that rootd is started by inetd

 -p port#-port# specifies the range of ports to be searched

 -p 0-N the service ports range in /etc/services

 -d level level of debug info written to syslogd

 0 = no debug (default) 1 = minimum

 2 = medium 3 = maximum

186 Input/Output

Reading ROOT Files via Apache Web Server
By adding one ROOT specific module to your Apache web server, you can distribute ROOT files to any ROOT
user. There is no longer a need to send your files via FTP and risking (out of date) histograms or other objects.
Your latest up-to-date results are always accessible to all your colleagues. To access ROOT files via a web
server, create a TWebFile object instead of a TFile object with a standard URL as file name. For example:

root[] TWebFile f("http://root.cern.ch/~rdm/hsimple.root")

root[] f.ls()

TWebFile** http://root.cern.ch/~rdm/hsimple.root

TWebFile* http://root.cern.ch/~rdm/hsimple.root

KEY: TH1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;1 py vs px

KEY: TProfile hprof;1 Profile of pz versus px

KEY: TNtuple ntuple;1 Demo ntuple

root[] hpx.Draw()

Since TWebFile inherits from TFile all TFile operations work as expected. However, due to the nature of a

web server a TWebFile is a read-only file. A TWebFile is ideally suited to read relatively small objects (like

histograms or other data analysis results). Although possible, you don't want to analyze large TTree's via a

TWebFile.

Here follows a step-by-step recipe for making your Apache 1.1 or 1.2 web server ROOT aware:

 Go to your Apache source directory and add the file ftp://root.cern.ch/root/mod_root.c or
ftp://root.cern.ch/root/mod_root133.c when your Apache server is >1.2 (rename the file

mod_root.c).

 Add to the end of the Configuration file the line: Module root_module mod_root.o

 Run the Configure script

 Type make

 Copy the new httpd to its expected place

 Go to the conf directory and add at the end of the srm.conf file the line:
 AddHandler root-action root

 Restart the httpd server

Using the General Open Function of TFile

To make life simple we provide a general function to open any type of file (except shared memory files of class
TMapFile). This functionality is provided by the static TFile::Open() function:

TFile *TFile::Open(const Text_t *name,Option_t *option="",

 const Text_t *title="",Int_t compress,Int_t netopt)

Depending on the name argument, the function returns a TFile, a TNetFile or a TWebFile object. In case

a TNetFile URL specifies a local file, a TFile object will be returned (and of course no login information is

needed). The arguments of the Open() function are the same as the ones for the TFile constructor.

Using ReOpen() method it is possible to reopen a file with a different access mode, like from READ to

UPDATE or from NEW, CREATE, RECREATE, UPDATE to READ. Thus the mode argument can be either
"READ" or "UPDATE". The method returns:

 0 in case the mode was successfully modified;

 1 in case the mode did not change (it was already as requested or there were wrong input
arguments);

 -1 in case of failure. In the last case the file cannot be used anymore.

XML Interface
A new module xml as implemented by Sergey Linev (GSI). It is an optional package that can be used to save a

canvas into file.xml file format instead of file.root. XML files do not have any advantages compared to

the normal ROOT files, except that the information in these files can be edited via a normal editor. The main
motivation for this new format is to facilitate the communication with other non ROOT applications. Currently
writing and reading XML files is limited to ROOT applications. It is our intention to develop a simple reader
independent of the ROOT libraries that could be used as an example for real applications.

The XML format should be used only for small data volumes, typically histogram files, pictures, geometries,
calibrations. The XML file is built in memory before being dumped to disk. Like for normal ROOT files, XML files
use the same I/O mechanism exploiting the ROOT/CINT dictionary. Any class having a dictionary can be saved
in XML format. This first implementation does not support subdirectories or trees.

ftp://root.cern.ch/root/mod_root.c
ftp://root.cern.ch/root/mod_root133.c

 Input/Output 187

The shared library libRXML.so may be loaded dynamically via gSystem->Load("libRXML"). This library is

also automatically loaded by the plug-in manager as soon a XML file is created. To create an XTM file, simply
specify a filename with an .xml extension when calling TFile::Open. TFile::Open will recognize that you

are trying to open an XML file and return a TXMLFile object. When a XML file is open in write mode, one can

use the normal TObject::Write to write an object in the file.

// example of a session saving a histogram to a XML file

TFile *f = TFile::Open("Example.xml","recreate");

TH1F *h = new TH1F("h","test",1000,-2,2)

h->FillRandom("gaus");

h->Write();

delete f;

// example of a session saving a histogram to a XML file

TFile *f = TFile::Open("Example.xml");

TH1F *h = (TH1F*)f->Get("h");

h->Draw();

The canvas can be saved as a XML file format via File menu / Save or Save As menu entries. One can do also:

canvas->Print("Example.xml");

 Trees 189

12 Trees

Why Should You Use a Tree?
In the ―Input/Output‖ chapter, we saw how objects can be saved in ROOT files. In case you want to store large
quantities of same-class objects, ROOT has designed the TTree and TNtuple classes specifically for that

purpose. The TTree class is optimized to reduce disk space and enhance access speed. A TNtuple is a

TTree that is limited to only hold floating-point numbers; a TTree on the other hand can hold all kind of data,

such as objects or arrays in addition to all the simple types.

When using a TTree, we fill its branch buffers with leaf data and the buffers are written to disk when it is full.

Branches, buffers, and leafs, are explained a little later in this chapter, but for now, it is important to realize that
each object is not written individually, but rather collected and written a bunch at a time.

This is where the TTree takes advantage of compression and will produce a much smaller file than if the

objects were written individually. Since the unit to be compressed is a buffer, and the TTree contains many

same-class objects, the header of the objects can be compressed.

The TTree reduces the header of each object, but it still contains the class name. Using compression, the class

name of each same-class object has a good chance of being compressed, since the compression algorithm
recognizes the bit pattern representing the class name. Using a TTree and compression the header is reduced

to about 4 bytes compared to the original 60 bytes. However, if compression is turned off, you will not see these
large savings.

The TTree is also used to optimize the data access. A tree uses a hierarchy of branches, and each branch can

be read independently from any other branch. Now, assume that Px and Py are data members of the event, and

we would like to compute Px2 + Py2 for every event and histogram the result.

If we had saved the million events without a TTree we would have to:

 read each event in its entirety into memory

 extract the Px and Py from the event

 compute the sum of the squares

 fill a histogram

We would have to do that a million times! This is very time consuming, and we really do not need to read the

entire event, every time. All we need are two little data members (Px and Py). On the other hand, if we use a

tree with one branch containing Px and another branch containing Py, we can read all values of Px and Py by

only reading the Px and Py branches. This makes the use of the TTree very attractive.

A Simple TTree
This script builds a TTree from an ASCII file containing statistics about the staff at CERN. This script,

staff.C and its input file staff.dat are in $ROOTSYS/tutorials/tree.

{

// example of macro to read data from an ascii file and

// create a root file with an histogram and a TTree

 gROOT->Reset();

// the structure to hold the variables for the branch

 struct staff_t {

 Int_t cat;

 Int_t division;

 Int_t flag;

 Int_t age;

 Int_t service;

 Int_t children;

 Int_t grade;

 Int_t step;

 Int_t nation;

 Int_t hrweek;

 Int_t cost;

 };

 staff_t staff;

 // continued…

190 Trees

// open the ASCII file

FILE *fp = fopen("staff.dat","r");

char line[81];

// create a new ROOT file

TFile *f = new TFile("staff.root","RECREATE");

// create a TTree

TTree *tree = new TTree("T","staff data from ascii file");

// create one branch with all information from the stucture

tree->Branch("staff",&staff.cat,"cat/I:division:flag:age:service:

 children:grade:step:nation:hrweek:cost");

// fill the tree from the values in ASCII file

while (fgets(&line,80,fp)) {

 sscanf(&line[0],"%d%d%d%d",&staff.cat,&staff.division,&staff.flag,&staff.age);

 sscanf(&line[13],"%d%d%d%d",&staff.service,&staff.children,&staff.grade,

 &staff.step);

 sscanf(&line[24],"%d%d%d",&staff.nation,&staff.hrweek, &staff.cost);

 tree->Fill();

}

// check what the tree looks like

tree->Print();

fclose(fp);

f->Write();

}

The script declares a structure called staff_t, with several integers representing the relevant attribute of a

staff member. It opens the ASCII file, creates a ROOT file and a TTree. Then it creates one branch with the

TTree::Branch method. The first parameter of the Branch method is the branch name. The second

parameter is the address from which the first leaf is to be read. In this example it is the address of the structure

staff. Once the branch is defined, the script reads the data from the ASCII file into the staff_t structure and

fills the tree. The ASCII file is closed, and the ROOT file is written to disk saving the tree. Remember, trees

and histograms are created in the current directory, which is the file in our example. Hence an f->Write()

saves the tree.

Show an Entry with TTree::Show
An easy way to access one entry of a tree is the use the TTree::Show method. For example to look at the 10

th

entry in the staff.root tree:

root[] TFile f("staff.root")

root[] T->Show(10)

======> EVENT:10

 Category = 361

 Flag = 15

 Age = 51

 Service = 29

 Children = 0

 Grade = 7

 Step = 13

 Hrweek = 40

 Cost = 7599

 Division = PS

 Nation = FR

Print the Tree Structure with TTree::Print
A helpful command to see the tree structure meaning the number of entries, the branches and the leaves, is
TTree::Print.

root[] T->Print()

*Tree :T : staff data from ascii file *

*Entries :3354 : Total = 245417 bytes File Size = 59945 *

* Tree compression factor = 2.90 *

Br 0 :staff :Category/I:Flag:Age:Service:Children:Grade:Step:Hrweek:

* | Cost *

*Entries :3354 : Total Size = 154237 bytes File Size = 32316 *

*Baskets : 3 : Basket Size = 32000 bytes Compression= 2.97 *

 Trees 191

Scan a Variable the Tree with TTree::Scan
The TTree::Scan method shows all values of the list of leaves separated by a colon.

root[] T->Scan("Cost:Age:Children")

**

* Row * Cost * Age * Children *

**

* 0 * 11975 * 58 * 0 *

* 1 * 10228 * 63 * 0 *

* 2 * 10730 * 56 * 2 *

* 3 * 9311 * 61 * 0 *

* 4 * 9966 * 52 * 2 *

* 5 * 7599 * 60 * 0 *

* 6 * 9868 * 53 * 1 *

* 7 * 8012 * 60 * 1 *

…

The Tree Viewer
The tree viewer is a quick and easy way to examine a tree. To start the tree viewer, open a file and object
browser. Right click on a TTree and select StartViewer. You can also start the tree viewer from the

command line. First load the viewer library.

Figure 12-1 Activating the tree viewer

root[] TFile f("staff.root")

root[] T->StartViewer()

If you want to start a tree viewer without a tree, you need to load the
tree player library first:

root[] gSystem->Load("libTreeViewer.so")

root[] new TTreeViewer()

Below is what the tree viewer looks like for the example file

staff.root. The left panel contains the list of trees and their

branches; in this case there is only one tree. You can add more trees
with the File-Open command to open the file containing the new tree,

then use the context menu on the right panel, select SetTreeName

and enter the name of the tree to add. On the right are the leaves or
variables in the tree. You can double click on any leaf to a histogram it.

The toolbar in the upper part can be used for user commands,
changing the drawing option and the histogram name. The lower part
contains three picture buttons that draw a histogram, stop the current
command, and refresh the tree.

Figure 12-2 The TreeViewer

192 Trees

The three check buttons toggle the following:

Hist - the histogram drawing mode;

Scan - enables redirecting of TTree::Scan command in an ASCII file;

Rec - enables recording of the last issued command.

To draw more than one dimension you can drag and drop any leaf to the X,Y,Z boxes". Then push

the Draw button, witch is marked with the purple icon on the bottom left.

All commands can be interrupted at any time by pressing this button.

The method TTree::Refresh is called by pressing the refresh button in TTreeViewer. It redraws

the current exposed expression. Calling TTree::Refresh is useful when a tree is produced by a

writer process and concurrently analyzed by one or more readers.

To add a cut/weight to the histogram, enter an expression in the "cut box". The cut box is the one
with the scissor icon.

Below them there are two text widgets for specifying the input and output event lists. A Tree Viewer session is
made by the list of user-defined expressions and cuts, applying to a specified tree. A session can be saved

using File / SaveSource menu or the SaveSource method from the context menu of the right panel. This will

create a macro having as default name treeviewer.C that can be ran at any time to reproduce the session.

Besides the list of user-defined expressions, a session may contain a list of RECORDS. A record can be
produced in the following way: dragging leaves/expression on X/Y/Z; changing drawing options; clicking the
RED button on the bottom when happy with the histogram

NOTE that just double clicking a leaf will not produce a record: the histogram must be produced when clicking
the DRAW button on the bottom-left. The records will appear on the list of records in the bottom right of the tree
viewer. Selecting a record will draw the corresponding histogram. Records can be played using the arrow
buttons near to the record button. When saving the session, the list of records is being saved as well.

Records have a default name corresponding to the Z: Y: X selection, but this can be changed using

SetRecordName() method from the right panel context menu. You can create a new expression by right

clicking on any of the E() boxes. The expression can be dragged and dropped into any of the boxes (X, Y, Z,

Cut, or Scan). To scan one or more variables, drop them into the Scan box, then double click on the box. You

can also redirect the result of the scan to a file by checking the Scan box on top.

When the "Rec" box is checked, the Draw and Scan commands are recorded in the history file and echoed on

the command line. The "Histogram" text box contains the name of the resulting histogram. By default it is

htemp. You can type any name, if the histogram does not exist it will create one. The Option text box contains

the list of Draw options. See ―Draw Options‖. You can select the options with the Options menu. The Command
box lets you enter any command that you could also enter on the command line. The vertical slider on the far
left side can be used to select the minimum and maximum of an event range. The actual start and end index are
shown in on the bottom in the status window.

There is an extensive help utility accessible with the Help menu. The IList and OList are to specify an

input list of entry indices and a name for the output list respectively. Both need to be of type TList and contain

integers of entry indices. These lists are described below in the paragraph "Error! Reference source not
found.".

Figure 12-3 A couple of graphs

The first one is a plot of the age distribution, the second a scatter plot of the cost vs. age. The second one was
generated by dragging the age leaf into the Y-box and the cost leaf into the X-box, and pressing the Draw

button. By default, this will generate a scatter plot. Select a different option, for example "lego" to create a 2D

histogram.

 Trees 193

Creating and Saving Trees
This picture shows the TTree class:

 Figure 12-4 The TTree class

To create a TTree we use its constructor. Then we design our data layout and add the branches. A tree can be

created by giving a name and title:

TTree t("MyTree","Example Tree")

Creating a Tree from a Folder Hierarchy

An alternative way to create a tree and organize it is to use folders (see ―Folders and Tasks‖). You can build a
folder structure and create a tree with branches for each of the sub-folders:

TTree folder_tree("MyFolderTree","/MyFolder")

The second argument "/MyFolder" is the top folder, and the "/" signals the TTree constructor that this is a

folder not just the title. You fill the tree by placing the data into the folder structure and calling TTree::Fill.

Tree and TRef Objects

MyTree->BranchRef();

This call requests the construction of an optional branch supporting table of references (TRefTable). This

branch (TBranchRef) will keep all the information needed to find the branches containing referenced objects at

each Tree::Fill, the branch numbers containing the referenced objects are saved in the table of references.

When the Tree header is saved (via TTree::Write for example), the branch is saved, keeping the information

with the pointers to the branches having referenced objects. Enabling this optional table, allow TTree::Draw to

automatically load the branches needed to dereference a TRef (or TRefArray) object.

194 Trees

Autosave

Autosave gives the option to save all branch buffers every n byte. We recommend using Autosave for large

acquisitions. If the acquisition fails to complete, you can recover the file and all the contents since the last
Autosave. To set the number of bytes between Autosave you can use the TTree::SetAutosave()

method. You can also call TTree::Autosave in the acquisition loop every n entry.

Trees with Circular Buffers

When a TTree is memory resident, you set it up so that it retains retain only the last few entries. For example,

this can be very useful for monitoring purpose.

void TTree::SetCircular(Long64_t maxEntries)

where maxEntries is the maximum number of entries to be kept in the buffers. When the number of entries

exceeds this value, the first entries in the Tree are deleted and the buffers used again. An example of a script

using a circular buffer is shown below:

void circular() {

 gROOT->cd(); //make sure that the Tree is memory resident

 TTree *T = new TTree("T","test circular buffers");

 TRandom r;

 Float_t px,py,pz;

 Double_t random;

 UShort_t i;

 T->Branch("px",&px,"px/F");

 T->Branch("py",&py,"py/F");

 T->Branch("pz",&pz,"pz/F");

 T->Branch("random",&random,"random/D");

 T->Branch("i",&i,"i/s");

 T->SetCircular(20000);

 for (i = 0; i < 65000; i++) {

 r.Rannor(px,py);

 pz = px*px + py*py;

 random = r.Rndm();

 T->Fill();

 }

 T->Print();

}

Size of TTree in the File

When writing a TTree to a file, if the file size reaches the value stored in the TTree::GetMaxTreeSize(),

the current file is closed and a new file is created. If the original file is named "myfile.root", subsequent files

are named "myfile_1.root", "myfile_2.root", etc.

Currently, the automatic change of file is restricted to the case where the tree is in the top level directory. The
file should not contain sub-directories. Before switching to a new file, the tree header is written to the current

file, then the current file is closed. To process the multiple files created by ChangeFile(), one must use a

TChain.

The new file name has a suffix "_N" where N is equal to fFileNumber+1. By default a Root session starts with

fFileNumber=0. One can set fFileNumber to a different value via TTree::SetFileNumber(). In case a

file named "_N" already exists, the function will try a file named "__N", then "___N", etc. The maximum tree size

can be set via the static function TTree::SetMaxTreeSize(). The default value of fgMaxTreeSize is 1.9

GB. If the current file contains other objects (like TH1 and TTree), these objects are automatically moved to the

new file.

User Info Attached to a TTree Object
The function TTree::GetUserInfo() allows adding any object defined by a user to the tree that is not

depending on the entry number. For example:

tree->GetUserInfo()->Add(myruninfo);

Indexing a Tree

Use TTree::BuildIndex(), to build an index table using expressions depending on the value in the leaves.

tree->BuildIndex(majorname, minorname);

The index is built in the following way:

 Trees 195

 a pass on all entries is made like in TTree::Draw()

 var1 = majorname

 var2 = minorname

 sel = 2
31
 x majorname + minorname

 for each entry in the tree the sel expression is evaluated and the results array is sorted into
fIndexValues

Once the index is computed, using the TTree::GetEntryWithIndex(majornumber, minornumber)

one entry can be retrieved. Example:

// to create an index using leaves Run and Event

tree.BuildIndex("Run","Event");

// to read entry corresponding to Run=1234 and Event=56789

tree.GetEntryWithIndex(1234,56789);

Note that majorname and minorname may be expressions using original tree variables e.g.: "run-90000",

"event +3*xx". In case an expression is specified, the equivalent expression must be computed when calling

GetEntryWithIndex(). To build an index with only majorname, specify minorname="0" (default).

Note that once the index is built, it can be saved with the TTree object with:

tree.Write(); //if the file has been open in "update" mode

The most convenient place to create the index is at the end of the filling process just before saving the tree
header. If a previous index was computed, it is redefined by this new call.

Note that this function can also be applied to a TChain. The return value is the number of entries in the Index

(< 0 indicates failure).

Branches
The organization of branches allows the designer to optimize the data for the anticipated use. The class for a
branch is called TBranch. If two variables are independent, and the designer knows the variables will not be

used together, they should be placed on separate branches. If, however, the variables are related, such as the
coordinates of a point, it is most efficient to create one branch with both coordinates on it. A variable on a
TBranch is called a leaf (yes - TLeaf). Another point to keep in mind when designing trees is that branches of

the same TTree can be written to separate files. To add a TBranch to a TTree we call the method

TTree::Branch(). Note that we DO NOT use the TBranch constructor.

The TTree::Branch method has several signatures. The branch type differs by what is stored in it. A branch

can hold an entire object, a list of simple variables, contents of a folder, contents of a TList, or an array of

objects. Let's see some examples. To follow along you will need the shared library libEvent.so. First, check

if it is in $ROOTSYS/test. If it is, copy it to your own area. If it is not there, you have to build it by typing make in

$ROOTSYS/test.

Adding a Branch to Hold a List of Variables
As in the very first example (staff.root) the data we want to save is a list of simple variables,

such as integers or floats. In this case, we use the following TTree::Branch signature:

tree->Branch("Ev_Branch",&event,"temp/F:ntrack/I:nseg:nvtex:flag/i ");

The first parameter is the branch name.

The second parameter is the address from which the first variable is to be read. In the code
above, ―event‖ is a structure with one float and three integers and one unsigned integer. You
should not assume that the compiler aligns the elements of a structure without gaps. To avoid

alignment problems, you need to use structures with same length members. If your structure does not qualify,
you need to create one branch for each element of the structure.

The leaf name is NOT used to pick the variable out of the structure, but is only used as the name for the leaf.
This means that the list of variables needs to be in a structure in the order described in the third parameter.

This third parameter is a string describing the leaf list. Each leaf has a name and a type separated by a "/" and it

is separated from the next leaf by a ":".

<Variable>/<type>:<Variable>/<type>

The example on the next line has two leafs: a floating-point number called temp and an integer named ntrack.

"temp/F:ntrack/I:"

The type can be omitted and if no type is given, the same type as the previous variable is assumed. This leaf list

has three integers called ntrack, nseg, and nvtex.

"ntrack/I:nseg:nvtex"

196 Trees

There is one more rule: when no type is given for the very first leaf, it becomes a float (F). This leaf list has

three floats called temp, mass, and px.

"temp:mass:px"

The symbols used for the type are:

 C: a character string terminated by the 0 character

 B: an 8 bit signed integer

 b: an 8 bit unsigned integer

 S: a 16 bit signed integer

 s: a 16 bit unsigned integer

 I: a 32 bit signed integer

 i: a 32 bit unsigned integer

 L: a 64 bit signed integer

 l: a 64 bit unsigned integer

 F: a 32 bit floating point

 D: a 64 bit floating point

The type is used for a byte count to decide how much space to allocate. The variable written is simply the block
of bytes starting at the starting address given in the second parameter. It may or may not match the leaf list
depending on whether or not the programmer is being careful when choosing the leaf address, name, and type.

By default, a variable will be copied with the number of bytes specified in the type descriptor symbol. However,
if the type consists of two characters, the number specifies the number of bytes to be used when copying the

variable to the output buffer. The line below describes ntrack to be written as a 16-bit integer (rather than a

32-bit integer).

"ntrack/I2"

With this Branch method, you can also add a leaf that holds an entire array of variables. To add an array of

floats use the f[n] notation when describing the leaf.

Float_t f[10];

tree->Branch("fBranch",f,"f[10]/F");

You can also add an array of variable length:

{

 TFile *f = new TFile("peter.root","recreate");

 Int_t nPhot;

 Float_t E[500];

 TTree* nEmcPhotons = new TTree("nEmcPhotons","EMC Photons");

 nEmcPhotons->Branch("nPhot",&nPhot,"nPhot/I");

 nEmcPhotons->Branch("E",E,"E[nPhot]/F");

}

See ―Example 2: A Tree with a C Structure‖ below ($ROOTSYS/tutorials/tree/tree2.C) and staff.C at

the beginning of this chapter.

Adding a TBranch to Hold an Object
To write a branch to hold an event object, we need to load the definition of the Event class, which is in

$ROOTSYS/test/libEvent.so (if it doesn‘t exist type make in $ROOTSYS/test). An object can be saved

in a tree if a ROOT dictionary for it class has been generated and loaded.

root[] .L libEvent.so

First, we need to open a file and create a tree.

root[] TFile *f = new TFile("AFile.root","RECREATE")

root[] TTree *tree = new TTree("T","A Root Tree")

We need to create a pointer to an Event object that will be used as a reference in the TTree::Branch

method. Then we create a branch with the TTree::Branch method.

root[] Event *event = new Event()

root[] tree->Branch("EventBranch","Event",&event,32000,99)

To add a branch to hold an object we use the signature above. The first parameter is the name of the branch.
The second parameter is the name of the class of the object to be stored. The third parameter is the address of
a pointer to the object to be stored.

Note that it is an address of a pointer to the object, not just a pointer to the object.

 Trees 197

The fourth parameter is the buffer size and is by default 32000 bytes. It is the number of bytes of data for that
branch to save to a buffer until it is saved to the file. The last parameter is the split-level, which is the topic of the
next section. Static class members are not part of an object and thus not written with the object. You could store
them separately by collecting these values in a special "status" object and write it to the file outside of the tree. If
it makes sense to store them for each object, make them a regular data member.

Setting the Split-level

To split a branch means to create a sub-branch for each data member in the object. The split-level can be set to
0 to disable splitting or it can be a set to a number between 1 and 99 indicating the depth of splitting.

If the split-level is set to zero, the whole object is written in its entirety to one branch. The TTree will look like

the one on the right, with one branch and one leaf holding the entire event object.

A tree that is split A tree that is not split

When the split-level is 1, an object data member is assigned a branch. If the split-level is 2, the data member
objects will be split also, and a split level of 3 its data members objects, will be split. As the split-level increases
so does the splitting depth. The ROOT default for the split-level is 99. This means the object will be split to the
maximum.

Memory Considerations when Splitting a Branch

Splitting a branch can quickly generate many branches. Each branch has its own buffer in memory. In case of
many branches (say more than 100), you should adjust the buffer size accordingly. A recommended buffer size
is 32000 bytes if you have less than 50 branches. Around 16000 bytes if you have less than 100 branches and
4000 bytes if you have more than 500 branches. These numbers are recommended for computers with memory
size ranging from 32MB to 256MB. If you have more memory, you should specify larger buffer sizes. However,
in this case, do not forget that your file might be used on another machine with a smaller memory configuration.

Performance Considerations when Splitting a Branch

A split branch is faster to read, but slightly slower to write. The reading is quicker because variables of the same
type are stored consecutively and the type does not have to be read each time. It is slower to write because of
the large number of buffers as described above. See ―

Performance Benchmarks‖ for performance impact of split and non-split mode.

Rules for Splitting

When splitting a branch, variables of different types are handled differently. Here are the rules that apply when
splitting a branch.

 If a data member is a basic type, it becomes one branch of class TBranchElement.

 A data member can be an array of basic types. In this case, one single branch is created for the
array.

 A data member can be a pointer to an array of basic types. The length can vary, and must be
specified in the comment field of the data member in the class definition. See ―Input/Output‖.

 Pointer data member are not split, except for pointers to a TClonesArray. The TClonesArray

(pointed to) is split if the split level is greater than two. When the split level is one, the
TClonesArray is not split.

 If a data member is a pointer to an object, a special branch is created. The branch will be filled by

calling the class Streamer function to serialize the object into the branch buffer.

 If a data member is an object, the data members of this object are split into branches according
to the split-level (i.e. split-level > 2).

 Base classes are split when the object is split.

 Abstract base classes are never split.

 All STL containers are supported.

// STL vector of vectors of TAxis*

vector<vector<TAxis *> > fVectAxis;

// STL map of string/vector

map<string,vector<int> > fMapString;

198 Trees

// STL deque of pair

deque<pair<float,float> > fDequePair;

 As of ROOT 4.01/00, only std::vector of objects can be split. Support for splitting the other

type of STL containers will be introduced in the near future.

 C-structure data members are not supported in split mode.

 An object that is not split may be slow to browse.

 A STL container that is not split will not be accessible in the browser.

Exempt a Data Member from Splitting

If you are creating a branch with an object and in general you want the data members to be split, but you want
to exempt a data member from the split. You can specify this in the comment field of the data member:

class Event : public TObject {

private:

 EventHeader fEvtHdr; //|| Don't split the header

Adding a Branch to Hold a TClonesArray

ROOT has two classes to manage arrays of objects. The TObjArray can manage objects of different classes,

and the TClonesArray that specializes in managing objects of the same class (hence the name Clones

Array). TClonesArray takes advantage of the constant size of each element when adding the elements to the

array. Instead of allocating memory for each new object as it is added, it reuses the memory. Here is an
example of the time a TClonesArray can save over a TObjArray. We have 100,000 events, and each has

10,000 tracks, which gives 1,000,000,000 tracks. If we use a TObjArray for the tracks, we implicitly make a

call to new and a corresponding call to delete for each track. The time it takes to make a pair of new/delete calls

is about 7 s (10
-6

). If we multiply the number of tracks by 7 s, (1,000,000,000 * 7 * 10
-6

) we calculate that the
time allocating and freeing memory is about 2 hours. This is the chunk of time saved when a TClonesArray is

used rather than a TObjArray. If you do not want to wait 2 hours for your tracks (or equivalent objects), be

sure to use a TClonesArray for same-class objects arrays. Branches with TClonesArrays use the same

method (TTree::Branch) as any other object described above. If splitting is specified the objects in the

TClonesArray are split, not the TClonesArray itself.

Identical Branch Names

When a top-level object (say event), has two data members of the same class the sub branches end up with

identical names. To distinguish the sub branch we must associate them with the master branch by including a

―.‖ (a dot) at the end of the master branch name. This will force the name of the sub branch to be master.sub

branch instead of simply sub branch. For example, a tree has two branches Trigger and MuonTrigger,

each containing an object of the same class (Trigger). To identify uniquely the sub branches we add the dot:

tree->Branch("Trigger.","Trigger",&b1,8000,1);

tree->Branch("MuonTrigger.","Trigger",&b2,8000,1);

If Trigger has three members, T1, T2, T3, the two instructions above will generate sub branches called:

Trigger.T1, Trigger.T2, Trigger.T3, MuonTrigger.T1, MuonTrigger.T2, and MuonTrigger.T3.

Adding a Branch with a Folder
Use the syntax below to add a branch from a folder:

tree->Branch("/aFolder");

This method creates one branch for each element in the folder. The method returns the total number of
branches created.

Adding a Branch with a Collection
This Branch method creates one branch for each element in the collection.

tree->Branch(*aCollection, 8000, 99);

// Int_t TTree::Branch(TCollection *list, Int_t bufsize,Int_t splitlevel,

// const char *name)

The method returns the total number of branches created. Each entry in the collection becomes a top level
branch if the corresponding class is not a collection. If it is a collection, the entry in the collection becomes in
turn top level branches, etc. The split level is decreased by 1 every time a new collection is found. For example
if list is a TObjArray*

 Trees 199

 If splitlevel = 1, one top level branch is created for each element of the TObjArray.

 If splitlevel = 2, one top level branch is created for each array element. If one of the array

elements is a TCollection, one top level branch will be created for each element of this

collection.

In case a collection element is a TClonesArray, the special Tree constructor for TClonesArray is called.

The collection itself cannot be a TClonesArray. If name is given, all branch names will be prefixed with

name_.

IMPORTANT NOTE1: This function should not be called if splitlevel<1.

IMPORTANT NOTE2: The branches created by this function will have names corresponding to the collection or
object names. It is important to give names to collections to avoid misleading branch names or identical branch
names. By default collections have a name equal to the corresponding class name, e.g. the default name of
TList is ―TList‖.

Examples for Writing and Reading Trees
The following sections are examples of writing and reading trees increasing in complexity from a simple tree
with a few variables to a tree containing folders and complex Event objects. Each example has a named script

in the $ROOTSYS/tutorials/tree directory. They are called tree1.C to tree4.C. The examples are:

 tree1.C: a tree with several simple (integers and floating point) variables.

 tree2.C: a tree built from a C structure (struct). This example uses the Geant3 C wrapper

as an example of a FORTRAN common block ported to C with a C structure.

 tree3.C: in this example, we will show how to extend a tree with a branch from another tree

with the Friends feature. These trees have branches with variable length arrays. Each entry has
a variable number of tracks, and each track has several variables.

 tree4.C: a tree with a class (Event). The class Event is defined in $ROOTSYS/test. In this

example we first encounter the impact of splitting a branch.

Each script contains the main function, with the same name as the file (i.e. tree1), the function to write -

tree1w, and the function to read - tree1r. If the script is not run in batch mode, it displays the tree in the

browser and tree viewer. To study the example scripts, you can either execute the main script, or load the script
and execute a specific function. For example:

// execute the function that writes, reads, shows the tree

root[] x tree1.C

// use ACLiC to build shared library, check syntax, execute

root[] x tree1.C++

// Load the script and select a function to execute

root[] L tree1.C

root[] tree1w()

root[] tree1r()

Example 1: A Tree with Simple Variables
This example shows how to write, view, and read a tree with several simple (integers and floating-point)
variables.

Writing the Tree

Below is the function that writes the tree (tree1w). First, the variables are defined (px, py, pz, random and

ev). Then we add a branch for each of the variables to the tree, by calling the TTree::Branch method for

each variable.

void tree1w() {

 //create a tree file tree1.root - create the file, the Tree and a few branches

 TFile f("tree1.root","recreate");

 TTree t1("t1","a simple Tree with simple variables");

 Float_t px, py, pz;

 Double_t random;

 Int_t ev;

 t1.Branch("px",&px,"px/F");

 t1.Branch("py",&py,"py/F");

 t1.Branch("pz",&pz,"pz/F");

 t1.Branch("ev",&ev,"ev/I");

200 Trees

 //fill the tree

 for (Int_t i=0; i<10000; i++) {

 gRandom->Rannor(px,py);

 pz = px*px + py*py;

 random = gRandom->Rndm();

 ev = i;

 t1.Fill();

 }

 //save the Tree heade; the file will be automatically closed

 //when going out of the function scope

 t1.Write();

}

Creating Branches with A single Variable

This is the signature of TTree::Branch to create a branch with a list of variables:

TBranch* TTree::Branch(const char* name,void* address, const char* leaflist,

 Int_t bufsize = 32000)

The first parameter is the branch name. The second parameter is the address from which to read the value. The
third parameter is the leaf list with the name and type of each leaf. In this example, each branch has only one

leaf. In the box below, the branch is named px and has one floating point type leaf also called px.

t1.Branch("px",&px,"px/F");

Filling the Tree

First we find some random values for the variables. We assign px and py a Gaussian with mean = 0 and sigma

= 1 by calling gRandom->Rannor(px,py), and calculate pz. Then we call the TTree::Fill() method.

The call t1.Fill() fills all branches in the tree because we have already organized the tree into branches and

told each branch where to get the value from. After this script is executed we have a ROOT file called

tree1.root with a tree called t1. There is a possibility to fill branches one by one using the method

TBranch::Fill(). In this case you do not need to call TTree::Fill() method. The entries can be set by

TTree::SetEntries(Double_t n). Calling this method makes sense only if the number of existing entries

is null.

Viewing the Tree

Figure 12-5 The tree1.root file and its tree in the browser

Figure 12-6 A leaf histogram

 Trees 201

In the right panel of the ROOT object browse are the branches: ev, px, py, pz, and random. Note that these

are shown as leaves because they are "end" branches with only one leaf. To histogram a leaf, we can simply

double click on it in the browser. This is how the tree t1 looks in the Tree Viewer. Here we can add a cut and

add other operations for histogramming the leaves. See ―The Tree Viewer‖. For example, we can plot a two
dimensional histogram.

Figure 12-7 The tree viewer

Reading the Tree

The tree1r function shows how to read the tree and access each entry and each leaf. We first define the

variables to hold the read values.

Float_t px, py, pz;

Then we tell the tree to populate these variables when reading an entry. We do this with the method
TTree::SetBranchAddress. The first parameter is the branch name, and the second is the address of the

variable where the branch data is to be placed. In this example, the branch name is px. This name was given

when the tree was written (see tree1w). The second parameter is the address of the variable px.

t1->SetBranchAddress("px",&px);

GetEntry

Once the branches have been given the address, a specific entry can be read into the variables with the method
TTree::GetEntry(n). It reads all the branches for entry (n) and populates the given address accordingly. By

default, GetEntry() reuses the space allocated by the previous object for each branch. You can force the

previous object to be automatically deleted if you call mybranch.SetAutoDelete(kTRUE) (default is

kFALSE).

Consider the example in $ROOTSYS/test/Event.h. The top-level branch in the tree T is declared with:

Event *event = 0;

//event must be null or point to a valid object; it must be initialized

T.SetBranchAddress("event",&event);

When reading the Tree, one can choose one of these 3 options:

Option 1:

for (Int_t i = 0; i<nentries; i++) {

 T.GetEntry(i);

 //the object event has been filled at this point

 }

This is the default and recommended way to create an object of the class Event. It will be pointed by event.

At the following entries, event will be overwritten by the new data. All internal members that are TObject* are

automatically deleted. It is important that these members be in a valid state when GetEntry is called. Pointers

must be correctly initialized. However these internal members will not be deleted if the characters "->" are

specified as the first characters in the comment field of the data member declaration.

The pointer member is read via the pointer->Streamer(buf) if ―->― is specified. In this case, it is assumed

that the pointer is never null (see pointer TClonesArray *fTracks in the $ROOTSYS/test/Event

example). If ―->" is not specified, the pointer member is read via buf >> pointer. In this case the pointer

may be null. Note that the option with ―->" is faster to read or write and it also consumes less space in the file.

Option 2 - the option AutoDelete is set:

TBranch *branch = T.GetBranch("event");

branch->SetAddress(&event);

202 Trees

branch->SetAutoDelete(kTRUE);

for (Int_t i=0; i<nentries; i++) {

 T.GetEntry(i); // the object event has been filled at this point

}

At any iteration, the GetEntry deletes the object event and a new instance of Event is created and filled.

Option 3 - same as option 1, but you delete the event yourself:

for (Int_t i=0; i<nentries; i++) {

 delete event;

 event = 0; //EXTREMELY IMPORTANT

 T.GetEntry(i);

 // the objrect event has been filled at this point

}

It is strongly recommended to use the default option 1. It has the additional advantage that functions like
TTree::Draw (internally calling TTree::GetEntry) will be functional even when the classes in the file are

not available. Reading selected branches is quicker than reading an entire entry. If you are interested in only
one branch, you can use the TBranch::GetEntry method and only that branch is read. Here is the script

tree1r:

void tree1r() {

 //read the Tree generated by tree1w and fill two histograms

 //note that we use "new" to create the TFile and TTree objects,

 //to keep them alive after leaving this function.

 TFile *f = new TFile("tree1.root");

 TTree *t1 = (TTree*)f->Get("t1");

 Float_t px, py, pz;

 Double_t random;

 Int_t ev;

 t1->SetBranchAddress("px",&px);

 t1->SetBranchAddress("py",&py);

 t1->SetBranchAddress("pz",&pz);

 t1->SetBranchAddress("random",&random);

 t1->SetBranchAddress("ev",&ev);

 //create two histograms

 TH1F *hpx = new TH1F("hpx","px distribution",100,-3,3);

 TH2F *hpxpy = new TH2F("hpxpy","py vs px",30,-3,3,30,-3,3);

 //read all entries and fill the histograms

 Int_t nentries = (Int_t)t1->GetEntries();

 for (Int_t i=0; i<nentries; i++) {

 t1->GetEntry(i);

 hpx->Fill(px);

 hpxpy->Fill(px,py);

 }

 //We do not close the file. We want to keep the generated histograms

 //we open a browser and the TreeViewer

 if (gROOT->IsBatch()) return;

 new TBrowser ();

 t1->StartViewer();

 //In the browser, click on "ROOT Files", then on "tree1.root"

 //You can click on the histogram icons in the right panel to draw

 //them in the TreeViewer, follow the instructionsin the Help.

}

Example 2: A Tree with a C Structure
The executable script for this example is $ROOTSYS/tutorials/tree/tree2.C. In this example we show:

 how to build branches from a C structure

 how to make a branch with a fixed length array

 how to make a branch with a variable length array

 how to read selective branches

 how to fill a histogram from a branch

 how to use TTree::Draw to show a 3D plot

A C structure (struct) is used to build a ROOT tree. In general we discourage the use of C structures, we

recommend using a class instead. However, we do support them for legacy applications written in C or

FORTRAN. The example struct holds simple variables and arrays. It maps to a Geant3 common block

/gctrak/. This is the definition of the common block/structure:

 Trees 203

const Int_t MAXMEC = 30;

// PARAMETER (MAXMEC=30)

// COMMON/GCTRAK/VECT(7),GETOT,GEKIN,VOUT(7)

// + ,NMEC,LMEC(MAXMEC)

// + ,NAMEC(MAXMEC),NSTEP

// + ,PID,DESTEP,DESTEL,SAFETY,SLENG

// + ,STEP,SNEXT,SFIELD,TOFG,GEKRAT,UPWGHT

typedef struct {

 Float_t vect[7];

 Float_t getot;

 Float_t gekin;

 Float_t vout[7];

 Int_t nmec;

 Int_t lmec[MAXMEC];

 Int_t namec[MAXMEC];

 Int_t nstep;

 Int_t pid;

 Float_t destep;

 Float_t destel;

 Float_t safety;

 Float_t sleng;

 Float_t step;

 Float_t snext;

 Float_t sfield;

 Float_t tofg;

 Float_t gekrat;

 Float_t upwght;

} Gctrak_t;

When using Geant3, the common block is filled by Geant3 routines at each step and only the TTree::Fill

method needs to be called. In this example we emulate the Geant3 step routine with the helixStep function.

We also emulate the filling of the particle values. The calls to the Branch methods are the same as if Geant3

were used.

void helixStep(Float_t step, Float_t *vect, Float_t *vout)

{

 // extrapolate track in constant field

 Float_t field = 20; // field in kilogauss

 enum Evect {kX,kY,kZ,kPX,kPY,kPZ,kPP};

 vout[kPP] = vect[kPP];

 Float_t h4 = field*2.99792e-4;

 Float_t rho = -h4/vect[kPP];

 Float_t tet = rho*step;

 Float_t tsint = tet*tet/6;

 Float_t sintt = 1 - tsint;

 Float_t sint = tet*sintt;

 Float_t cos1t = tet/2;

 Float_t f1 = step*sintt;

 Float_t f2 = step*cos1t;

 Float_t f3 = step*tsint*vect[kPZ];

 Float_t f4 = -tet*cos1t;

 Float_t f5 = sint;

 Float_t f6 = tet*cos1t*vect[kPZ];

 vout[kX] = vect[kX] + (f1*vect[kPX] - f2*vect[kPY]);

 vout[kY] = vect[kY] + (f1*vect[kPY] + f2*vect[kPX]);

 vout[kZ] = vect[kZ] + (f1*vect[kPZ] + f3);

 vout[kPX] = vect[kPX] + (f4*vect[kPX] - f5*vect[kPY]);

 vout[kPY] = vect[kPY] + (f4*vect[kPY] + f5*vect[kPX]);

 vout[kPZ] = vect[kPZ] + (f4*vect[kPZ] + f6);

}

Writing the Tree

void tree2w() {

 // write tree2 example

 //create a Tree file tree2.root

 TFile f("tree2.root","recreate");

204 Trees

 //create the file, the Tree

 TTree t2("t2","a Tree with data from a fake Geant3");

 // declare a variable of the C structure type

 Gctrak_t gstep;

 // add the branches for a subset of gstep

 t2.Branch("vect",gstep.vect,"vect[7]/F");

 t2.Branch("getot",&gstep.getot,"getot/F");

 t2.Branch("gekin",&gstep.gekin,"gekin/F");

 t2.Branch("nmec",&gstep.nmec,"nmec/I");

 t2.Branch("lmec",gstep.lmec,"lmec[nmec]/I");

 t2.Branch("destep",&gstep.destep,"destep/F");

 t2.Branch("pid",&gstep.pid,"pid/I");

 //Initialize particle parameters at first point

 Float_t px,py,pz,p,charge=0;

 Float_t vout[7];

 Float_t mass = 0.137;

 Bool_t newParticle = kTRUE;

 gstep.step = 0.1;

 gstep.destep = 0;

 gstep.nmec = 0;

 gstep.pid = 0;

 //transport particles

 for (Int_t i=0; i<10000; i++) {

 //generate a new particle if necessary (Geant3 emulation)

 if (newParticle) {

 px = gRandom->Gaus(0,.02);

 py = gRandom->Gaus(0,.02);

 pz = gRandom->Gaus(0,.02);

 p = TMath::Sqrt(px*px+py*py+pz*pz);

 charge = 1;

 if (gRandom->Rndm() < 0.5) charge = -1;

 gstep.pid += 1;

 gstep.vect[0] = 0;

 gstep.vect[1] = 0;

 gstep.vect[2] = 0;

 gstep.vect[3] = px/p;

 gstep.vect[4] = py/p;

 gstep.vect[5] = pz/p;

 gstep.vect[6] = p*charge;

 gstep.getot = TMath::Sqrt(p*p + mass*mass);

 gstep.gekin = gstep.getot - mass;

 newParticle = kFALSE;

 }

 // fill the Tree with current step parameters

 t2.Fill();

 //transport particle in magnetic field (Geant3 emulation)

 helixStep(gstep.step, gstep.vect, vout); //make one step

 //apply energy loss

 gstep.destep = gstep.step*gRandom->Gaus(0.0002,0.00001);

 gstep.gekin -= gstep.destep;

 gstep.getot = gstep.gekin + mass;

 gstep.vect[6]= charge*TMath::Sqrt(gstep.getot*gstep.getot - mass*mass);

 gstep.vect[0] = vout[0];

 gstep.vect[1] = vout[1];

 gstep.vect[2] = vout[2];

 gstep.vect[3] = vout[3];

 gstep.vect[4] = vout[4];

 gstep.vect[5] = vout[5];

 gstep.nmec = (Int_t)(5*gRandom->Rndm());

 for (Int_t l=0; l<gstep.nmec; l++) gstep.lmec[l] = l;

 if (gstep.gekin < 0.001) newParticle = kTRUE;

 if (TMath::Abs(gstep.vect[2]) > 30) newParticle = kTRUE;

 }

 //save the Tree header. The file will be automatically

 // closed when going out of the function scope

 t2.Write();

}

 Trees 205

Adding a Branch with a Fixed Length Array

At first, we create a tree and create branches for a subset of variables in the C structure Gctrak_t. Then we

add several types of branches. The first branch reads seven floating-point values beginning at the address of

'gstep.vect'. You do not need to specify &gstep.vect, because in C and C++ the array variable holds the

address of the first element.

t2.Branch("vect",gstep.vect,"vect[7]/F");

t2.Branch("getot",&gstep.getot,"getot/F");

t2.Branch("gekin",&gstep.gekin,"gekin/F");

Adding a Branch with a Variable Length Array

The next two branches are dependent on each other. The first holds the length of the variable length array and

the second holds the variable length array. The lmec branch reads nmec number of integers beginning at the

address gstep.lmec.

t2.Branch("nmec",&gstep.nmec,"nmec/I");

t2.Branch("lmec",gstep.lmec,"lmec[nmec]/I");

The variable nmec is a random number and is reset for each entry.

gstep.nmec = (Int_t)(5*gRandom->Rndm());

Filling the Tree

In this emulation of Geant3, we generate and transport particles in a magnetic field and store the particle
parameters at each tracking step in a ROOT tree.

Analysis

In this analysis, we do not read the entire entry we only read one branch. First, we set the address for the
branch to the file dstep, and then we use the TBranch::GetEntry method. Then we fill a histogram with the

dstep branch entries, draw it and fit it with a Gaussian. In addition, we draw the particle's path using the three

values in the vector. Here we use the TTree::Draw method. It automatically creates a histogram and plots the

3 expressions (see Trees in Analysis).

void tree2r() {

 // read the Tree generated by tree2w and fill one histogram

 // we are only interested by the destep branch

 // note that we use "new" to create the TFile and TTree objects because we

 // want to keep these objects alive when we leave this function

 TFile *f = new TFile("tree2.root");

 TTree *t2 = (TTree*)f->Get("t2");

 static Float_t destep;

 TBranch *b_destep = t2->GetBranch("destep");

 b_destep->SetAddress(&destep);

 //create one histogram

 TH1F *hdestep = new TH1F("hdestep","destep in Mev",100,1e-5,3e-5);

 //read only the destep branch for all entries

 Int_t nentries = (Int_t)t2->GetEntries();

 for (Int_t i=0;i<nentries;i++) {

 b_destep->GetEntry(i);

 // fill the histogram with the destep entry

 hdestep->Fill(destep);

 }

 // we do not close the file; we want to keep the generated histograms;

 // we fill a 3-d scatter plot with the particle step coordinates

 TCanvas *c1 = new TCanvas("c1","c1",600,800);

 c1->SetFillColor(42);

 c1->Divide(1,2);

 c1->cd(1);

 hdestep->SetFillColor(45);

 hdestep->Fit("gaus");

 c1->cd(2);

 gPad->SetFillColor(37); // continued…

206 Trees

 t2->SetMarkerColor(kRed);

 t2->Draw("vect[0]:vect[1]:vect[2]");

 if (gROOT->IsBatch()) return;

 // invoke the x3d viewer

 gPad->GetViewer3D(“x3d”);

}

Example 3: Adding Friends to Trees
In this example, we will show how to extend a tree with a branch from another tree with the Friends feature.

Adding a Branch to an Existing Tree

You may want to add a branch to an existing tree. For example, if one variable in the tree was computed with a
certain algorithm, you may want to try another algorithm and compare the results. One solution is to add a new
branch, fill it, and save the tree. The code below adds a simple branch to an existing tree. Note that the

kOverwrite option in the Write method overwrites the existing tree. If it is not specified, two copies of the

tree headers are saved.

void tree3AddBranch() {

 TFile f("tree3.root","update");

 Float_t new_v;

 TTree *t3 = (TTree*)f->Get("t3");

 TBranch *newBranch = t3-> Branch("new_v",&new_v,"new_v/F");

 //read the number of entries in the t3

 Int_t nentries = (Int_t)t3->GetEntries();

 for (Int_t i = 0; i < nentries; i++){

 new_v= gRandom->Gaus(0,1);

 newBranch->Fill();

 }

 t3->Write("",TObject::kOverwrite); // save only the new version of the tree

}

Adding a branch is often not possible because the tree is in a read-only file and you do not have permission to
save the modified tree with the new branch. Even if you do have the permission, you risk loosing the original
tree with an unsuccessful attempt to save the modification. Since trees are usually large, adding a branch could
extend it over the 2GB limit. In this case, the attempt to write the tree fails, and the original data is may also be
corrupted. In addition, adding a branch to a tree enlarges the tree and increases the amount of memory needed
to read an entry, and therefore decreases the performance. For these reasons, ROOT offers the concept of
friends for trees (and chains). We encourage you to use TTree::AddFriend rather than adding a branch

manually.

 Trees 207

TTree::AddFriend

A tree keeps a list of friends. In the context of a tree (or a chain), friendship means unrestricted access to the
friends data. In this way it is much like adding another branch to the tree without taking the risk of damaging it.
To add a friend to the list, you can use the TTree::AddFriend method. The TTree (tree) below has two

friends (ft1 and ft2) and now has access to the variables a,b,c,i,j,k,l and m.

The AddFriend method has two parameters, the first is the tree name and the second is the name of the

ROOT file where the friend tree is saved. AddFriend automatically opens the friend file. If no file name is

given, the tree called ft1 is assumed to be in the same file as the original tree.

tree.AddFriend("ft1","friendfile1.root");

If the friend tree has the same name as the original tree, you can give it an alias in the context of the friendship:

tree.AddFriend("tree1 = tree","friendfile1.root");

Once the tree has friends, we can use TTree::Draw as if the friend's variables were in the original tree. To

specify which tree to use in the Draw method, use the syntax:

<treeName>.<branchname>.<varname>

If the variablename is enough to identify uniquely the variable, you can leave out the tree and/or branch

name.

For example, these commands generate a 3-d scatter plot of variable "var" in the TTree tree versus variable

v1 in TTree ft1 versus variable v2 in TTree ft2.

tree.AddFriend("ft1","friendfile1.root");

tree.AddFriend("ft2","friendfile2.root");

tree.Draw("var:ft1.v1:ft2.v2");

The picture illustrates the access of the tree and its friends with a Draw

command.

When AddFriend is called, the ROOT file is automatically opened and the

friend tree (ft1) header is read into memory. The new friend (ft1) is

added to the list of friends of tree. The number of entries in the friend

must be equal or greater to the number of entries of the original tree. If the
friend tree has fewer entries, a warning is given and the missing entries are
not included in the histogram.

Use TTree::GetListOfFriends to retrieve the list of friends from a

tree.

When the tree is written to file (TTree::Write), the friends list is saved with it. Moreover, when the tree is

retrieved, the trees on the friends list are also retrieved and the friendship restored. When a tree is deleted, the
elements of the friend list are also deleted. It is possible to declare a friend tree that has the same internal
structure (same branches and leaves) as the original tree, and compare the same values by specifying the tree.

tree.Draw("var:ft1.var:ft2.var")

The example code is in $ROOTSYS/tutorials/tree/tree3.C. Here is the script:

void tree3w() {

// Example of a Tree where branches are variable length arrays

// A second Tree is created and filled in parallel.

// Run this script with .x tree3.C

// In the function treer, the first Tree is open.

// The second Tree is declared friend of the first tree.

// TTree::Draw is called with variables from both Trees.

 const Int_t kMaxTrack = 500;

 Int_t ntrack;

 Int_t stat[kMaxTrack];

 Int_t sign[kMaxTrack];

 Float_t px[kMaxTrack];

 Float_t py[kMaxTrack];

 Float_t pz[kMaxTrack];

 Float_t pt[kMaxTrack];

208 Trees

 Float_t zv[kMaxTrack];

 Float_t chi2[kMaxTrack];

 Double_t sumstat;

 // create the first root file with a tree

 TFile f("tree3.root","recreate");

 TTree *t3 = new TTree("t3","Reconst ntuple");

 t3->Branch("ntrack",&ntrack,"ntrack/I");

 t3->Branch("stat",stat,"stat[ntrack]/I");

 t3->Branch("sign",sign,"sign[ntrack]/I");

 t3->Branch("px",px,"px[ntrack]/F");

 t3->Branch("py",py,"py[ntrack]/F");

 t3->Branch("pz",pz,"pz[ntrack]/F");

 t3->Branch("zv",zv,"zv[ntrack]/F");

 t3->Branch("chi2",chi2,"chi2[ntrack]/F");

 // create the second root file with a different tree

 TFile fr("tree3f.root","recreate");

 TTree *t3f = new TTree("t3f","a friend Tree");

 t3f->Branch("ntrack",&ntrack,"ntrack/I");

 t3f->Branch("sumstat",&sumstat,"sumstat/D");

 t3f->Branch("pt",pt,"pt[ntrack]/F");

 // Fill the trees

 for (Int_t i=0;i<1000;i++) {

 Int_t nt = gRandom->Rndm()*(kMaxTrack-1);

 ntrack = nt;

 sumstat = 0;

 // set the values in each track

 for (Int_t n=0;n<nt;n++) {

 stat[n] = n%3;

 sign[n] = i%2;

 px[n] = gRandom->Gaus(0,1);

 py[n] = gRandom->Gaus(0,2);

 pz[n] = gRandom->Gaus(10,5);

 zv[n] = gRandom->Gaus(100,2);

 chi2[n] = gRandom->Gaus(0,.01);

 sumstat += chi2[n];

 pt[n] = TMath::Sqrt(px[n]*px[n] + py[n]*py[n]);

 }

 t3->Fill();

 t3f->Fill();

 }

 // Write the two files

 t3->Print();

 f.cd();

 t3->Write();

 fr.cd();

 t3f->Write();

}

// Function to read the two files and add the friend

void tree3r() {

 TFile *f = new TFile("tree3.root");

 TTree *t3 = (TTree*)f->Get("t3");

 // Add the second tree to the first tree as a friend

 t3->AddFriend("t3f","tree3f.root");

 // Draw pz which is in the first tree and use pt

 // in the condition. pt is in the friend tree.

 t3->Draw("pz","pt>3");

}

// This is executed when typing .x tree3.C

void tree3() {

 tree3w();

 tree3r();

}

 Trees 209

Example 4: A Tree with an Event Class
This example is a simplified version of $ROOTSYS/test/MainEvent.cxx and where Event objects are saved

in a tree. The full definition of Event is in $ROOTSYS/test/Event.h. To execute this macro, you will need the

library $ROOTSYS/test/libEvent.so. If it does not exist you can build the test directory applications by

following the instruction in the $ROOTSYS/test/README file.

In this example we will show

 the difference in splitting or not splitting a branch

 how to read selected branches of the tree,

 how to print a selected entry

The Event Class

Event is a descendent of TObject. As such it inherits the data members of TObject and its methods such as

Dump() and Inspect() and Write(). In addition, because it inherits from TObject it can be a member of

a collection. To summarize, the advantages of inheriting from a TObject are:

 Inherit the Write, Inspect, and Dump methods

 Enables a class to be a member of a ROOT collection

 Enables RTTI

Below is the list of the Event data members. It contains a character array, several integers, a floating-point

number, and an EventHeader object. The EventHeader class is described in the following paragraph. Event

also has two pointers, one to a TClonesArray of tracks and one to a histogram. The string "->" in the

comment field of the members *fTracks and *fH instructs the automatic Streamer to assume that the

objects *fTracks and *fH are never null pointers and that fTracks->Streamer can be used instead of the

more time consuming form R__b << fTracks.

class Event : public TObject {

private:

 char fType[20];

 Int_t fNtrack;

 Int_t fNseg;

 Int_t fNvertex;

 UInt_t fFlag;

 Float_t fTemperature;

 EventHeader fEvtHdr;

 TClonesArray *fTracks; //->

 TH1F *fH; //->

 Int_t fMeasures[10];

 Float_t fMatrix[4][4];

 Float_t *fClosestDistance; //[fNvertex]

 static TClonesArray *fgTracks;

 static TH1F *fgHist;

// … list of methods

 ClassDef(Event,1) //Event structure

};

The EventHeader Class

The EventHeader class (also defined in Event.h) does not inherit from TObject. Beginning with ROOT 3.0,

an object can be placed on a branch even though it does not inherit from TObject. In previous releases

branches were restricted to objects inheriting from the TObject. However, it has always been possible to write

a class not inheriting from TObject to a tree by encapsulating it in a TObject descending class as is the case

in EventHeader and Event.

class EventHeader {

private:

 Int_t fEvtNum;

 Int_t fRun;

 Int_t fDate;

 // … list of methods

 ClassDef(EventHeader,1) //Event Header

};

210 Trees

The Track Class

The Track class descends from TObject since tracks are in a TClonesArray (i.e. a ROOT collection class)

and contains a selection of basic types and an array of vertices. Its TObject inheritance enables Track to be

in a collection and in Event is a TClonesArray of Tracks.

class Track : public TObject {

private:

 Float_t fPx; //X component of the momentum

 Float_t fPy; //Y component of the momentum

 Float_t fPz; //Z component of the momentum

 Float_t fRandom; //A random track quantity

 Float_t fMass2; //The mass square of this particle

 Float_t fBx; //X intercept at the vertex

 Float_t fBy; //Y intercept at the vertex

 Float_t fMeanCharge; //Mean charge deposition of all hits

 Float_t fXfirst; //X coordinate of the first point

 Float_t fXlast; //X coordinate of the last point

 Float_t fYfirst; //Y coordinate of the first point

 Float_t fYlast; //Y coordinate of the last point

 Float_t fZfirst; //Z coordinate of the first point

 Float_t fZlast; //Z coordinate of the last point

 Float_t fCharge; //Charge of this track

 Float_t fVertex[3]; //Track vertex position

 Int_t fNpoint; //Number of points for this track

 Short_t fValid; //Validity criterion

// method definitions …

 ClassDef(Track,1) //A track segment

};

Writing the Tree

We create a simple tree with two branches both holding Event objects. One is split and the other is not. We

also create a pointer to an Event object (event).

void tree4w() {

 // check to see if the event class is in the dictionary

 // if it is not load the definition in libEvent.so

 if (!TClassTable::GetDict("Event")) {

 gSystem->Load("$ROOTSYS/test/libEvent.so");

 }

 // create a Tree file tree4.root

 TFile f("tree4.root","RECREATE");

 // create a ROOT Tree

 TTree t4("t4","A Tree with Events");

 // create a pointer to an Event object

 Event *event = new Event();

 // create two branches, split one

 t4.Branch("event_branch", "Event", &event,16000,2);

 t4.Branch("event_not_split", "Event", &event,16000,0);

 // a local variable for the event type

 char etype[20];

 // fill the tree

 for (Int_t ev = 0; ev <100; ev++) {

 Float_t sigmat, sigmas;

 gRandom->Rannor(sigmat,sigmas);

 Int_t ntrack = Int_t(600 + 600 *sigmat/120.);

 Float_t random = gRandom->Rndm(1);

 sprintf(etype,"type%d",ev%5);

 event->SetType(etype);

 event->SetHeader(ev, 200, 960312, random);

 event->SetNseg(Int_t(10*ntrack+20*sigmas));

 event->SetNvertex(Int_t(1+20*gRandom->Rndm()));

 event->SetFlag(UInt_t(random+0.5));

 event->SetTemperature(random+20.);

 for(UChar_t m = 0; m < 10; m++) {

 event->SetMeasure(m, Int_t(gRandom->Gaus(m,m+1)));

 }

 // continued…

 Trees 211

 // fill the matrix

 for(UChar_t i0 = 0; i0 < 4; i0++) {

 for(UChar_t i1 = 0; i1 < 4; i1++) {

 event->SetMatrix(i0,i1,gRandom->Gaus(i0*i1,1));

 }

 }

 // create and fill the Track objects

 for (Int_t t = 0; t < ntrack; t++) event->AddTrack(random);

 t4.Fill(); // Fill the tree

 event->Clear(); // Clear before reloading event

 }

 f.Write(); // Write the file header

 t4.Print(); // Print the tree contents

}

Reading the Tree

First, we check if the shared library with the class definitions is loaded. If not we load it. Then we read two
branches, one for the number of tracks and one for the entire event. We check the number of tracks first, and if
it meets our condition, we read the entire event. We show the fist entry that meets the condition.

void tree4r() {

 // check if the event class is in the dictionary

 // if it is not load the definition in libEvent.so

 if (!TClassTable::GetDict("Event")) {

 gSystem->Load("$ROOTSYS/test/libEvent.so");

 }

 // read the tree generated with tree4w

 // note that we use "new" to create the TFile and TTree objects, because we

 // want to keep these objects alive when we leave this function.

 TFile *f = new TFile("tree4.root");

 TTree *t4 = (TTree*)f->Get("t4");

 // create a pointer to an event object for reading the branch values.

 Event *event = new Event();

 // get two branches and set the branch address

 TBranch *bntrack = t4->GetBranch("fNtrack");

 TBranch *branch = t4->GetBranch("event_split");

 branch->SetAddress(&event);

 Int_t nevent = t4->GetEntries();

 Int_t nselected = 0;

 Int_t nb = 0;

 for (Int_t i=0; i<nevent; i++) {

 //read branch "fNtrack"only

 bntrack->GetEntry(i);

 //reject events with more than 587 tracks

 if (event->GetNtrack() > 587)continue;

 //read complete accepted event in memory

 nb += t4->GetEntry(i);

 nselected++;

 //print the first accepted event

 if (nselected == 1) t4->Show();

 //clear tracks array

 event->Clear();

 }

 if (gROOT->IsBatch()) return;

 new TBrowser();

 t4->StartViewer();

}

Now, let's see how the tree looks like in the tree viewer.

212 Trees

Figure 12-8 The tree viewer with tree4 example

You can see the two branches in the tree in the left panel: the event branch is split and hence expands when
clicked on. The other branch event not split is not expandable and we can not browse the data members.

The TClonesArray of tracks fTracks is also split because we set the split level to 2. The output on the

command line is the result of tree4->Show(). It shows the first entry with more than 587 tracks:

======> EVENT:26

 event_split =

 fUniqueID = 0

 fBits = 50331648

 fType[20] = 116 121 112 101 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 fNtrack = 585

 fNseg = 5834

 fNvertex = 17

 fFlag = 0

 fTemperature = 20.044315

 fEvtHdr.fEvtNum = 26

 fEvtHdr.fRun = 200

 fEvtHdr.fDate = 960312

 fTracks = 585

 fTracks.fUniqueID = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

…

Example 5: Import an ASCII File into a TTree
The method TTree::ReadFile can be used to automatic define the structure of the TTree and read the data

from a formatted ascii file.

Long64_t TTree::ReadFile(const char *filename, const char *branchDescriptor)

Creates or simply read branches from the file named whose name is passed in 'filename'.

{ gROOT->Reset();

 TFile *f = new TFile("basic2.root","RECREATE");

 TH1F *h1 = new TH1F("h1","x distribution",100,-4,4);

 TTree *T = new TTree("ntuple","data from ascii file");

 Long64_t nlines = T->ReadFile("basic.dat","x:y:z");

 printf(" found %lld points\n",nlines);

 T->Draw("x","z>2");

 T->Write();

}

 Trees 213

If branchDescriptor is set to an empty string (the default), it is assumed that the Tree descriptor is given in

the first line of the file with a syntax like: A/D:Table[2]/F:Ntracks/I:astring/C.

Otherwise branchDescriptor must be specified with the above syntax.Lines in the input file starting with "#" are
ignored. A TBranch object is created for each variable in the expression. The total number of rows read from

the file is returned.

Trees in Analysis
The methods TTree::Draw, TTree::MakeClass and TTree::MakeSelector are available for data

analysis using trees. The TTree::Draw method is a powerful yet simple way to look and draw the trees

contents. It enables you to plot a variable (a leaf) with just one line of code. However, the Draw method falls
short once you want to look at each entry and design more sophisticated acceptance criteria for your analysis.
For these cases, you can use TTree::MakeClass. It creates a class that loops over the trees entries one by

one. You can then expand it to do the logic of your analysis.

The TTree::MakeSelector is the recommended method for ROOT data analysis. It is especially important

for large data set in a parallel processing configuration where the analysis is distributed over several processors

and you can specify which entries to send to each processor. With MakeClass the user has control over the

event loop, with MakeSelector the tree is in control of the event loop.

Simple Analysis Using TTree::Draw
We will use the tree in staff.root that was made by the macro in $ROOTSYS/tutorials/tree/staff.C.

First, open the file and lists its contents.

root[] TFile f ("staff.root")

root[] f.ls()

TFile** staff.root

 TFile* staff.root

 KEY: TTree T;1 staff data from ascii file

We can see the TTree "T" in the file. We will use it to experiment with the TTree::Draw method, so let‘s

create a pointer to it:

root[] TTree *MyTree = T

CINT allows us to get simply the object by using it. Here we define a pointer to a TTree object and assign it the

value of "T", the TTree in the file. CINT looks for "T" and returns it. To show the different Draw options, we

create a canvas with four sub-pads. We will use one sub-pad for each Draw command.

root[] TCanvas *myCanvas = new TCanvas()

root[] myCanvas->Divide(2,2)

We activate the first pad with the TCanvas::cd statement:

root[] myCanvas->cd(1)

We then draw the variable Cost:

root[] MyTree->Draw("Cost")

As you can see, the last call TTree::Draw has only one parameter. It is a string containing the leaf name. A

histogram is automatically created as a result of a TTree::Draw. The style of the histogram is inherited from

the TTree attributes and the current style (gStyle) is ignored. The TTree gets its attributes from the current

TStyle at the time it was created. You can call the method TTree::UseCurrentStyle to change to the

current style rather than the TTree style. (See gStyle; see also ―Graphics and the Graphical User Interface‖)

In the next segment, we activate the second pad and draw a scatter plot variables:

root[] myCanvas->cd(2)

root[] MyTree->Draw("Cost:Age")

This signature still only has one parameter, but it now has two dimensions separated by a colon (“x:y”). The

item to be plotted can be an expression not just a simple variable. In general, this parameter is a string that

contains up to three expressions, one for each dimension, separated by a colon (―e1:e2:e3‖). A list of

examples follows this introduction.

Using Selection with TTree:Draw

Change the active pad to 3, and add a selection to the list of parameters of the draw command.

root[] myCanvas->cd(3)

root[] MyTree->Draw("Cost:Age","Nation == \"FR\"")

214 Trees

This will draw the Cost vs. Age for the entries where the nation is equal to ―FR‖. You can use any C++

operator, and some functions defined in TFormula, in the selection parameter. The value of the selection is

used as a weight when filling the histogram. If the expression includes only Boolean operations as in the
example above, the result is 0 or 1. If the result is 0, the histogram is not filled. In general, the expression is:

Selection = "weight *(boolean expression)"

If the Boolean expression evaluates to true, the histogram is filled with a weight. If the weight is not explicitly
specified it is assumed to be 1.

For example, this selection will add 1 to the histogram if x is less than y and the square root of z is less than 3.2.

"x<y && sqrt(z)>3.2"

On the other hand, this selection will add x+y to the histogram if the square root of z is larger than 3.2.

"(x+y)*(sqrt(z)>3.2)"

The Draw method has its own parser, and it only looks in the current tree for variables. This means that any

variable used in the selection must be defined in the tree. You cannot use an arbitrary global variable in the
TTree::Draw method.

Using TCut Objects in TTree::Draw

The TTree::Draw method also accepts TCutG objects. A TCut is a specialized string object used for TTree

selections. A TCut object has a name and a title. It does not have any data members in addition to what it

inherits from TNamed. It only adds a set of operators to do logical string concatenation. For example, assume:

TCut cut1 = "x<1"

TCut cut2 = "y>2"

then

cut1 && cut2

//result is the string "(x<1)&&(y>2)"

Operators =, +=, +, *, !, &&, || are overloaded, here are some examples:

root[] TCut c1 = "x < 1"

root[] TCut c2 = "y < 0"

root[] TCut c3 = c1 && c2

root[] MyTree.Draw("x", c1)

root[] MyTree.Draw("x", c1 || "x>0")

root[] MyTree.Draw("x", c1 && c2)

root[] MyTree.Draw("x", "(x + y)" * (c1 && c2))

Accessing the Histogram in Batch Mode

The TTree::Draw method creates a histogram called htemp and puts it on the active pad. In a batch program,

the histogram htemp created by default, is reachable from the current pad.

// draw the histogram

nt->Draw("x", "cuts");

// get the histogram from the current pad

TH1F htemp = (TH1F*)gPad->GetPrimitive("htemp");

// now we have full use of the histogram

htemp->GetEntries();

If you pipe the result of the TTree::Draw into a histogram, the histogram is also available in the current

directory. You can do:

// Draw the histogram and fill hnew with it

nt->Draw("x>>hnew","cuts");

// get hnew from the current directory

TH1F *hnew = (TH1F*)gDirectory->Get("hnew");

// or get hnew from the current Pad

TH1F *hnew = (TH1F*)gPad->GetPrimitive("hnew");

Using Draw Options in TTree::Draw

The next parameter is the draw option for the histogram:

root[] myCanvas->cd(4)

root[] MyTree->Draw("Cost:Age","Nation == \"FR\"","surf2”);

 Trees 215

Figure 12-9 Using draw options in trees

The draw options are the same as for TH1::Draw. See ―Draw Options‖ where they are listed. In addition to the

draw options defined in TH1, there are three more. The 'prof' and 'profs' draw a profile histogram

(TProfile) rather than a regular 2D histogram (TH2D) from an expression with two variables. If the expression

has three variables, a TProfile2D is generated.

The 'profs' generates a TProfile with error on the spread. The 'prof' option generates a TProfile with

error on the mean. The "goff" option suppresses generating the graphics. You can combine the draw options

in a list separated by commas. After typing the lines above, you should now have a canvas that looks this.

Superimposing Two Histograms

When superimposing two 2-D histograms inside a script with TTree::Draw and using the "same" option, you

will need to update the pad between Draw commands.

{ // superimpose two 2D scatter plots

 // Create a 2D histogram and fill it with random numbers

 TH2 *h2 = new TH2D ("h2","2D histo",100,0,70,100,0,20000);

 for (Int_t i = 0; i < 10000; i++)

 h2->Fill(gRandom->Gaus(40,10),gRandom->Gaus(10000,3000));

 // set the color to differentiate it visually

 h2->SetMarkerColor(kGreen);

 h2->Draw();

 // Open the example file and get the tree

 TFile f("staff.root");

 TTree *myTree = (TTree*)f.Get("T");

 // the update is needed for the next draw command to work properly

 gPad->Update();

 myTree->Draw("Cost:Age", "","same");

}

In this example, h2->Draw is only adding the object h2 to the pad's list of primitives. It does not paint the object

on the screen. However, TTree::Draw when called with option "same" gets the current pad coordinates to

build an intermediate histogram with the right limits. Since nothing has been painted in the pad yet, the pad

limits have not been computed. Calling pad->Update() forces the painting of the pad and allows

TTree::Draw to compute the right limits for the intermediate histogram.

Setting the Range in TTree::Draw

There are two more optional parameters to the TTree::Draw method: one is the number of entries and the

second one is the entry to start with. For example, this command draws 1000 entries starting with entry 100:

myTree->Draw("Cost:Age", "","",1000,100);

TTree::Draw Examples

The examples below use the Event.root file generated by the $ROOTSYS/test/Event executable and the

Event, Track, and EventHeader class definitions are in $ROOTSYS/test/Event.h. The commands have

been tested on the split-levels 0, 1, and 9. Each command is numbered and referenced by the explanations
immediately following the examples.

216 Trees

// Data members and methods

1 tree->Draw("fNtrack");

2 tree->Draw("event.GetNtrack()");

3 tree->Draw("GetNtrack()");

4 tree->Draw("fH.fXaxis.fXmax");

5 tree->Draw("fH.fXaxis.GetXmax()");

6 tree->Draw("fH.GetXaxis().fXmax");

7 tree->Draw("GetHistogram().GetXaxis().GetXmax()");

// Expressions in the selection paramter

8 tree->Draw("fTracks.fPx","fEvtHdr.fEvtNum%10 == 0");

9 tree->Draw("fPx","fEvtHdr.fEvtNum%10 == 0");

// Two dimensional arrays defined as: Float_t fMatrix[4][4] in Event class

10 tree->Draw("fMatrix");

11 tree->Draw("fMatrix[][]");

12 tree->Draw("fMatrix[2][2]");

13 tree->Draw("fMatrix[][0]");

14 tree->Draw("fMatrix[1][]");

// using two arrays… Float_t fVertex[3]; in Track class

15 tree->Draw("fMatrix - fVertex");

16 tree->Draw("fMatrix[2][1] - fVertex[5][1]");

17 tree->Draw("fMatrix[][1] - fVertex[5][1]");

18 tree->Draw("fMatrix[2][] - fVertex[5][]");

19 tree->Draw("fMatrix[][2] - fVertex[][1]");

20 tree->Draw("fMatrix[][2] - fVertex[][]");

21 tree->Draw("fMatrix[][] - fVertex[][]");

// variable length arrays

22 tree->Draw("fClosestDistance");

23 tree->Draw("fClosestDistance[fNvertex/2]");

// mathematical expressions

24 tree->Draw("sqrt(fPx*fPx + fPy*fPy + fPz*fPz))");

// external function call

25 tree->Draw("TMath::BreitWigner(fPx,3,2)");

// strings

26 tree->Draw("fEvtHdr.fEvtNum","fType==\"type1\" ");

27 tree->Draw("fEvtHdr.fEvtNum","strstr(fType,\"1\" ");

// Where fPoints is defined in the track class:

// Int_t fNpoint;

// Int_t *fPoints; [fNpoint]

28 tree->Draw("fTracks.fPoints");

29 tree->Draw("fTracks.fPoints – fTracks.fPoints[][fAvgPoints]");

30 tree->Draw("fTracks.fPoints[2][]- fTracks.fPoints[][55]");

31 tree->Draw("fTracks.fPoints[][] - fTracks.fVertex[][]");

// selections

32 tree->Draw("fValid&0x1","(fNvertex>10) && (fNseg<=6000)");

33 tree->Draw("fPx","(fBx>.4) || (fBy<=-.4)");

34 tree->Draw("fPx","fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");

35 tree->Draw("fVertex","fVertex>10");

36 tree->Draw("fPx[600]");

37 tree->Draw("fPx[600]","fNtrack>600");

// alphanumeric bin histogram

// where Nation is a char* indended to be used as a string

38 tree->Draw("Nation");

// where MyByte is a char* intended to be used as a byte

39 tree->Draw("MyByte + 0");

// where fTriggerBits is a data member of TTrack of type TBits

40 tree->Draw("fTracks.fTriggerBits");

// using alternate values

41 tree->Draw("fMatrix-Alt$(fClosestDistance,0)");

// using meta information about the formula

42 tree->Draw("fMatrix:Iteration$")

43 T->Draw("fLastTrack.GetPx():fLastTrack.fPx");

44 T->Scan("((Track*)(fLastTrack@.GetObject())).GetPx()","","");

45 tree->Draw("This->GetReadEntry()");

46 tree->Draw("mybr.mystring");

47 tree->Draw("myTimeStamp");

Explanations:

1. tree->Draw("fNtrack");

It fills the histogram with the number of tracks for each entry. fNtrack is a member of event.

 Trees 217

2. tree->Draw("event.GetNtrack()");

Same as case 1, but use the method of event to get the number of tracks. When using a method, you can
include parameters for the method as long as the parameters are literals.

3. tree->Draw("GetNtrack()");

Same as case 2, the object of the method is not specified. The command uses the first instance of the

GetNtrack method found in the objects stored in the tree. We recommend using this shortcut only if the

method name is unique.

4. tree->Draw("fH.fXaxis.fXmax");

Draw the data member of a data member. In the tree, each entry has a histogram. This command draws the
maximum value of the X-axis for each histogram.

5.tree->Draw("fH.fXaxis.GetXmax()");

Same as case 4, but use the method of a data member.

6.tree->Draw("fH.GetXaxis().fXmax");

The same as case 4: a data member of a data member retrieved by a method.

7. tree->Draw("GetHistogram().GetXaxis().GetXmax()");

Same as case 4, but using methods.

8.tree->Draw("fTracks.fPx","fEvtHdr.fEvtNum%10 == 0");

Use data members in the expression and in the selection parameter to plot fPx or all tracks in every 10th entry.

Since fTracks is a TClonesArray of Tracks, there will be d values of fPx for each entry.

9. tree->Draw("fPx","fEvtHdr.fEvtNum%10 == 0");

Same as case 8, use the name of the data member directly.

10.tree->Draw("fMatrix");

When the index of the array is left out or when empty brackets are used [], all values of the array are selected.

Draw all values of fMatrix for each entry in the tree. If fMatrix is defined as: Float_t fMatrix[4][4],

all 16 values are used for each entry.

11. tree->Draw("fMatrix[][]");

The same as case 10, all values of fMatrix are drawn for each entry.

12. tree->Draw("fMatrix[2][2]");

The single element at fMatrix[2][2] is drawn for each entry.

13. tree->Draw("fMatrix[][0]");

Four elements of fMatrix are used: fMatrix[1][0], fMatrix[2][0], fMatrix[3][0],

fMatrix[4][0].

14. tree->Draw("fMatrix[1][]");

Four elements of fMatrix are used: fMatrix[1][0], fMatrix[1][2], fMatrix[1][3],

fMatrix[1][4].

15. tree->Draw("fMatrix - fVertex");

With two arrays and unspecified element numbers, the number of selected values is the minimum of the first

dimension times the minimum of the second dimension. In this case fVertex is also a two dimensional array

since it is a data member of the tracks array. If fVertex is defined in the track class as:

Float_t *fVertex[3], it has fNtracks x 3 elements. fMatrix has 4 x 4 elements. This case, draws 4

(the smaller of fNtrack and 4) times 3 (the smaller of 4 and 3), meaning 12 elements per entry. The selected

values for each entry are:

fMatrix[0][0] – fVertex[0][0]

fMatrix[0][1] – fVertex[0][1]

fMatrix[0][2] – fVertex[0][2]

fMatrix[1][0] – fVertex[1][0]

fMatrix[1][1] – fVertex[1][1]

fMatrix[1][2] – fVertex[1][2]

fMatrix[2][0] – fVertex[2][0]

fMatrix[2][1] – fVertex[2][1]

fMatrix[2][2] – fVertex[2][2]

fMatrix[3][0] – fVertex[3][0]

fMatrix[3][1] – fVertex[3][1]

fMatrix[3][2] – fVertex[3][2]

16. tree->Draw("fMatrix[2][1] - fVertex[5][1]");

This command selects one value per entry.

17. tree->Draw("fMatrix[][1] - fVertex[5][1]");

218 Trees

The first dimension of the array is taken by the fMatrix.

fMatrix[0][1] - fVertex[5][1]

fMatrix[1][1] - fVertex[5][1]

fMatrix[2][1] - fVertex[5][1]

fMatrix[3][1] - fVertex[5][1]

18. tree->Draw("("fMatrix[2][] - fVertex[5][]");

The first dimension minimum is 2, and the second dimension minimum is 3 (from fVertex). Three values are

selected from each entry:

fMatrix[2][0] - fVertex[5][0]

fMatrix[2][1] - fVertex[5][1]

fMatrix[2][2] - fVertex[5][2]

19. tree->Draw("fMatrix[][2] - fVertex[][1]")

This is similar to case 18. Four values are selected from each entry:

fMatrix[0][2] - fVertex[0][1]

fMatrix[1][2] - fVertex[1][1]

fMatrix[2][2] - fVertex[2][1]

fMatrix[3][2] - fVertex[3][1]

20. tree->Draw("fMatrix[][2] - fVertex[][]")

This is similar to case 19. Twelve values are selected (4x3) from each entry:

fMatrix[0][2] - fVertex[0][0]

fMatrix[0][2] - fVertex[0][1]

fMatrix[0][2] - fVertex[0][2]

fMatrix[1][2] - fVertex[1][0]

fMatrix[1][2] - fVertex[1][1]

fMatrix[1][2] - fVertex[1][2]

fMatrix[2][2] - fVertex[2][0]

fMatrix[2][2] - fVertex[2][1]

fMatrix[2][2] - fVertex[2][2]

fMatrix[3][2] - fVertex[3][0]

fMatrix[3][2] - fVertex[3][1]

fMatrix[3][2] - fVertex[3][2]

21. tree->Draw("fMatrix[][] - fVertex[][]")

This is the same as case 15. The first dimension minimum is 4 (from fMatrix), and the second dimension

minimum is 3 (from fVertex). Twelve values are selected from each entry.

22. tree->Draw("fClosestDistance")

This event data member fClosestDistance is a variable length array:

Float_t *fClosestDistance; //[fNvertex]

This command selects all elements, but the number per entry depends on the number of vertices of that entry.

23. tree->Draw("fClosestDistance[fNvertex/2]")

With this command the element at fNvertex/2 of the fClosestDistance array is selected. Only one per

entry is selected.

24. tree->Draw("sqrt(fPx*fPx + fPy*fPy + fPz*fPz)")

This command shows the use of a mathematical expression. It draws the square root of the sum of the product.

25. tree->Draw("TMath::BreitWigner(fPx,3,2)")

The formula can contains call to a function that takes numerical arguments and returns a numerical value. The
function needs to be declared to the dictionary and need to be available from the global namespace. In
particular, global functions and public static member functions can be called.

26. tree->Draw("fEvtHdr.fEvtNum","fType==\"type1\" ")

You can compare strings, using the symbols == and !=, in the first two parameters of the Draw command

(TTreeFormula). In this case, the event number for ‗type1‘ events is plotted.

27. tree->Draw("fEvtHdr.fEvtNum","strstr(fType,\"1\") ")

To compare strings, you can also use strstr. In this case, events having a '1' in fType are selected.

28. tree->Draw("fTracks.fPoints")

If fPoints is a data member of the Track class declared as:

Int_t fNpoint;

 Trees 219

Int_t *fPoints; [fNpoint]

The size of the array fPoints varies with each track of each event. This command draws all the value in the

fPoints arrays.

29. tree->Draw("fTracks.fPoints - fTracks.fPoints[][fAvgPoints]");

When fAvgPoints is a data member of the Event class, this example selects:

fTracks[0].fPoints[0] - fTracks[0].fPoint[fAvgPoints]

fTracks[0].fPoints[1] - fTracks[0].fPoint[fAvgPoints]

fTracks[0].fPoints[2] - fTracks[0].fPoint[fAvgPoints]

fTracks[0].fPoints[3] - fTracks[0].fPoint[fAvgPoints]

fTracks[0].fPoints[4] - fTracks[0].fPoint[fAvgPoints]

…

fTracks[0].fPoints[max0]- fTracks[0].fPoint[fAvgPoints]

…

fTracks[1].fPoints[0] - fTracks[1].fPoint[fAvgPoints]

fTracks[1].fPoints[1] - fTracks[1].fPoint[fAvgPoints]

fTracks[1].fPoints[2] - fTracks[1].fPoint[fAvgPoints]

fTracks[1].fPoints[3] - fTracks[1].fPoint[fAvgPoints]

fTracks[1].fPoints[4] - fTracks[1].fPoint[fAvgPoints]

…

fTracks[1].fPoints[max1]- fTracks[1].fPoint[fAvgPoints]

…

fTracks[fNtrack-1].fPoints[0] - fTracks[fNtrack-1].fPoint[fAvgPoints]

fTracks[fNtrack-1].fPoints[1] - fTracks[fNtrack-1].fPoint[fAvgPoints]

fTracks[fNtrack-1].fPoints[2] - fTracks[fNtrack-1].fPoint[fAvgPoints]

fTracks[fNtrack-1].fPoints[3] - fTracks[fNtrack-1].fPoint[fAvgPoints]

fTracks[fNtrack-1].fPoints[4] - fTracks[fNtrack-1].fPoint[fAvgPoints]

…

fTracks[fNtrack-1].fPoints[maxn] - fTracks[fNtrack-1].fPoint[fAvgPoints]

Where max0, max1, … max n, is the size of the fPoints array for the respective track.

30. tree->Draw("fTracks.fPoints[2][]– fTracks.fPoints[][55]")

For each event, this expression is selected:

fTracks[2].fPoints[0] - fTracks[0].fPoints[55]

fTracks[2].fPoints[1] - fTracks[1].fPoints[55]

fTracks[2].fPoints[2] - fTracks[2].fPoints[55]

fTracks[2].fPoints[3] - fTracks[3].fPoints[55]

 ...

fTracks[2].fPoints[max] - fTracks[max].fPoints[55]

where max is the minimum of fNtrack and fTracks[2].fNpoint.

31. tree->Draw("fTracks.fPoints[][] - fTracks.fVertex[][]")

For each event and each track, this expression is selected. It is the difference between fPoints and of

fVertex. The number of elements used for each track is the minimum of fNpoint and 3 (the size of the

fVertex array).

fTracks[0].fPoints[0] - fTracks[0].fVertex[0]

fTracks[0].fPoints[1] - fTracks[0].fVertex[1]

fTracks[0].fPoints[2] - fTracks[0].fVertex[2]

// with fTracks[1].fNpoint==7

fTracks[1].fPoints[0] - fTracks[1].fVertex[0]

fTracks[1].fPoints[1] - fTracks[1].fVertex[1]

fTracks[1].fPoints[2] - fTracks[1].fVertex[2]

// with fTracks[1].fNpoint==5

fTracks[2].fPoints[0] - fTracks[1].fVertex[0]

fTracks[2].fPoints[1] - fTracks[1].fVertex[1]

// with fTracks[2].fNpoint==2

fTracks[3].fPoints[0] - fTracks[3].fVertex[0]

// with fTracks[3].fNpoint==1

220 Trees

fTracks[4].fPoints[0] - fTracks[4].fVertex[0]

fTracks[4].fPoints[1] - fTracks[4].fVertex[1]

fTracks[4].fPoints[2] - fTracks[4].fVertex[2]

// with fTracks[4].fNpoint==3

32. tree->Draw("fValid&0x1","(fNvertex>10) && (fNseg<=6000)")

You can use bit patterns (&,|,<<) or Boolean operation.

33. tree->Draw("fPx","(fBx>.4) || (fBy<=-.4)");

34. tree->Draw("fPx","fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");

The selection argument is used as a weight. The expression returns a multiplier and in case of a Boolean the

multiplier is either 0 (for false) or 1 (for true). The first command draws fPx for the range between 0.4 and –0.4,

the second command draws fPx for the same range, but adds a weight using the result of the second

expression.

35. tree->Draw("fVertex","fVertex>10")

When using arrays in the selection and the expression, the selection is applied to each element of the array.

if (fVertex[0]>10) fVertex[0]

if (fVertex[1]>10) fVertex[1]

if (fVertex[2]>10) fVertex[2]

36. tree->Draw("fPx[600]")

37. tree->Draw("fPx[600]","fNtrack > 600")

When using a specific element for a variable length array the entries with fewer elements are ignored. Thus
these two commands are equivalent.

38. tree->Draw("Nation")

Nation is a char* branch. When drawing a char* it will plot an alphanumeric histogram, of the different value

of the string Nation. The axis will have the Nation values. See ―Histograms‖.

39. tree->Draw("MyChar +0")

If you want to plot a char* variable as a byte rather than a string, you can use the syntax above.

40. tree->Draw("fTracks.fTriggerBits")

fTriggerBits is a data member of TTrack of type TBits. Objects of class TBits can be drawn directly.

This command will create a 1D histogram from 0 to nbits which is filled for each non-null bit-number.

41. tree->Draw("fMatrix-Alt$(fClosestDistance,0)")

Alt$(primary,alternate) returns the value of "primary" if it is available for the current iteration;

otherwise return the value of "alternate". Assuming that fClosestDistance is a smaller array than

fMatrix. This example will draw fMatrix[i]+fClosestDistance[i] for i less than the size of

fClosestDistance, and will draw fMatrix[i]+0 for the other value of i.

42. tree->Draw("fClosestDistance:Iteration$")

This example draws a 2D plot with, for all entries, fClosestDistance[i]:i for each value of i between 0

and the size of fClosestDistance. Iterations$ is one of four special variables giving some indications of

the state of the loops implied by the formula:

Entry$: return the current entry number (TTree::GetReadEntry())

Entries$: return the total number of entries (TTree::GetEntries())

Length$: return the total number of element of this formula for this entry

Iteration$: return the current iteration over this formula for this entry (i.e. varies from 0 to Length$).

43. T->Draw("fLastTrack.GetPx():fLastTrack.fPx");

TRef and TRefArray are automatically deferenced and this shows the value of the fPx of the track referenced

by fLastTrack. To access the TRef object itself use the '@' notation (see next example). This auto

dereferencing can be extended (via an implementation of TVirtualRefProxy) to any reference type.

44. T->Scan("((Track*)(fLastTrack@.GetObject())).GetPx()","","");

Will cast the return value of GetObject() (which happens to be TObject* in this case) before requesting the

GetPx() member functions.

45. tree->Draw("This->GetReadEntry()");

You can refer to the tree (or chain) containing the data by using the string 'This'. You can also call any TTree

methods. Next example will display the name of the first 'user info' object:

tree->Draw("This->GetUserInfo()->At(0)->GetName()");

46. tree->Draw("mybr.mystring");

TString and std::string object are plotted directly. The example 45 draws the same results - i.e. an

histogram whose labels are the string value of 'mystring':

tree->Draw("mybr.mystring.c_str()");

 Trees 221

or

tree->Draw("mybr.mytstring.Data()");

47. tree->Draw("myTimeStamp");

You can plot plot objects of any class which has either AsDouble or AsString (AsDouble has priority). For

such a class (for example TTimeStamp), the line 46 will plot the same as:

tree->Draw("myTimeStamp.AsDouble");

AsString can be returning either a char*, or a TString or an std::string.

Using TTree::Scan

TTree::Scan can be used to print the content of the tree's entries optional passing a selection.

root[] MyTree->Scan();

will print the first 8 variables of the tree.

root[] MyTree->Scan("*");

will print all the variable of the tree.

Specific variables of the tree can be explicit selected by list them in column separated list:

root[] MyTree->Scan("var1:var2:var3");

will print the values of var1, var2 and var3. A selection can be applied in the second argument:

root[] MyTree->Scan("var1:var2:var3","var1==0");

will print the values of var1, var2 and var3 for the entries where var1 is exactly 0.

TTree::Scan returns the number of entries passing the selection. By default 50 rows are shown before

TTree::Scan pauses and ask you to press the Enter key to see the next 50 rows. You can change the default

number of rows to be shown before <CR> via mytree->SetScanfield(maxrows) where maxrows is 50 by

default. If maxrows is set to 0 all rows of the Tree are shown. This option is interesting when dumping the

contents of a Tree to an ascii file, eg from the command line:

root[] tree->SetScanField(0);

root[] tree->Scan("*"); >tree.log

will create a file tree.log.

Arrays (within an entry) are printed in their linear forms. If several arrays with multiple dimensions are printed

together, they will NOT be synchronized. For example, with a tree containing arr1[4][2] and arr2[2][3],

root[] MyTree("arr1:arr2");

will results in a printing similar to:

**

 * Row * Instance * arr1 * arr2 *

 * x * 0 * arr1[0][0]* arr2[0][0]*

 * x * 1 * arr1[0][1]* arr2[0][1]*

 * x * 2 * arr1[1][0]* arr2[0][2]*

 * x * 3 * arr1[1][1]* arr2[1][0]*

 * x * 4 * arr1[2][0]* arr2[1][1]*

 * x * 5 * arr1[2][1]* arr2[1][2]*

 * x * 6 * arr1[3][0]* *

 * x * 7 * arr1[3][1]* *

However, if there is a selection criterium which is an array, then all the formulas will be synchronized with the
selection criterium (see TTree::Draw for more information).

The third parameter of TTree::Scan can be use to specific the layout of the table:

 lenmax=dd - where 'dd' is the maximum number of elements per array that should be printed. If

'dd' is 0, all elements are printed (this is the default).

 colsize=ss - where 'ss' will be used as the default size for all the column. If this options is not

specified, the default column size is 9.

 precision=pp - where 'pp' will be used as the default 'precision' for the printing format.

 col=xxx - where 'xxx' is colon (:) delimited list of printing format for each column if no format is

specified for a column, the default is used.

For example:

tree->Scan("a:b:c","","colsize=30 precision=3 col=::20.10");

will print 3 columns, the first 2 columns will be 30 characters long, the third columns will be 20 characters long.

The printf format for the columns (assuming they are numbers) will be respectively: %30.3g %30.3g %20.10g.

222 Trees

TEventList and TEntryList

The TTree::Draw method can also be used to build a list of the entries. When the first argument is preceded

by ">>" ROOT knows that this command is not intended to draw anything, but to save the entries in a list with

the name given by the first argument. As a result, a TEventList or a TEntryList object is created in the

current directory. For example, to create a TEventList of all entries with more than 600 tracks, do:

root[] TFile *f = new TFile("Event.root");

root[] T->Draw(">> myList","fNtrack > 600");

To create a TEntryList, use the option "entrylist".

root[] T->Draw(">>myList", "fNtrack>600", "entrylist");

This list contains the entry number of all entries with more than 600 tracks. To see the entry numbers use the

Print("all") command.

root[] myList->Print("all");

When using the ">>" whatever was in the list is overwritten. The list can be grown by using the ">>+" syntax.

For example to add the entries, with exactly 600 tracks:

root[] T->Draw(">>+ myList","fNtrack == 600", "entrylist");

If the Draw command generates duplicate entries, they are not added to the list.

root[] T->Draw(">>+ myList"," fNtrack > 610", "entrylist");

This command does not add any new entries to the list because all entries with more than 610 tracks have
already been found by the previous command for entries with more than 600 tracks.

Main Differences between TEventList and TEntryList

The functionality is essentialy the same: both are used to store entry numbers. TEntryList, however, uses

considerably less memory for storage, and is optimized for both very high and very low selectivity of cuts (see
TEntryListBlock class description for the details of internal storage). Unlike the TEventList, TEntryList

makes a distinction between indices from a TChain and from a TTree. While a TEntryList for a TTree can

be seen as just a list of numbers, a TEntryList for a TChain is a collection of TEntryList(s) for the

TTree(s) that constitute this TChain. Such "sub-lists" can be extracted by calling the function

TEntryList::GetEntryList(const char *treename, const char *filename)

and then be used to construct a new TEntryList for a new TChain, or processed independently as normal

TEntryList(s) for TTree(s). This modularity makes TEntryList much better suited for PROOF processing

than the TEventList.

Using an Event List

A TEventList or a TEntryList can be used to limit the TTree to the events in the list. The methods

SetEventList and SetEntryList tell the tree to use the list and hence limit all subsequent calls to Draw,

Scan, Process, Query, Principal and CopyTree methods to the entries in the list. In general, it affects the

GetEntryNumber method and all functions using it for looping over the tree entries. The GetEntry and

GetEntries methods are not affected. Note, that in the SetEventList method, the TEventList argument

is internally transformed into a TEntryList, and this operation, in case of a TChain, requires loading of all the

tree headers. In this example, we create a list with all entries with more than 600 tracks and then set it so that
the tree will use this list. To reset the TTree to use all events use SetEventList(0) or SetEntryList(0).

1) Let‘s look at an example. First, open the file and draw the fNtrack.

root[] TFile *f = new TFile("Event.root");

root[] TTree *T = (TTree*)f->Get("T");

root[] T->Draw("fNtrack");

2) Now, put the entries with over 600 tracks into a TEntryList called myList. We get the list from the current

directory and assign it to a variable list.

root[] T->Draw(">>myList","fNtrack > 600","entrylist");

root[]TEntryList *list=(TEntryList*)gDirectory->Get("myList");

3) Instruct the tree T to use the new list and draw it again. Note that this is exactly the same Draw command.

The list limits the entries.

root[] T->SetEntryList(list);

root[] T->Draw("fNtrack");

You should now see a canvas similar to this one.

 Trees 223

Operations on TEntryLists

If you have entry lists that were created using different cuts, you can combine the lists to get a new list, with
entries passing at least one of the cuts. Example:

root[] T->Draw(">>list1","fNtrack>600","entrylist");

root[] TEntryList *list1 = (TEntryList*)gDirectory->Get("list1");

root[] T->Draw(">>list2","fNtrack<590","entrylist");

root[] TEntryList *list2 = (TEntryList*)gDirectory->Get("list2");

root[] list1->Add(list2);

list1 now contains entries with more than 600 or less than 590 tracks. Check this by calling:

root[] T->SetEntryList(list1);

root[] T->Draw("fNtrack");

You can also subtract TEntryList from each other, so that the first list contains only the entries, passing the

selection of the first list and not present in the second list.

To add some individual entries, use TEntryList::Enter() function. To remove the entries you don't like,

use TEntryList::Remove(). To see if the entry is in the list, use TEntryList::Contains(). Remember,

that all operation in a TEntryList for a TChain are on the TTree level. This is illustrated by the following

example:

root[] TEntryList *list1 = new TEntryList("list1","list1");

root[] list1->SetTree("tree1","file1")

root[] list1->Enter(0);

root[] list1->Enter(2);

root[] TEntryList *list2 = new TEntryList("list2", "list2");

root[] list2->SetTree("tree2", "file2");

root[] list2->Enter(0);

root[] list2->Enter(3);

root[] list1->Add(list2);

root[] list1->Print("all")

tree1 file1

0

2

tree2 file2

0

3

The result is a TEntryList for a TChain of tree1 and tree2. If the second list was for the same TTree in

the same file as the first list, the result would be as follows:

root[] TEntryList *list2_2 = new TEntryList("list2_2", "list2_2");

root[] list2_2->SetTree("tree2", "file2");

root[] list2_2->Enter(1);

root[] list2_2->Enter(2);

root[] list2->Add(list2_2);

root[] list2->Print("all")

tree2 file2

0

1

2

3

224 Trees

TEntryListFromFile

This is a special kind of TEntryList, used only when processing TChain objects (see the method

TChain::SetEntryListFile()). It is used in the case, when the entry lists, corresponding to the trees of

this chain, are stored in separate files. It allows to load the entry lists in memory one by one, keeping only the
list for the currently processed tree loaded.

For more details on entry lists, see TEntryList, TEntryListBlock and TEntryListFromFile class

descriptions, functions TChain::SetEntryList(), TChain::SetEntryListFile(), and the macro

$ROOTSYS/test/stressEntryList.C.

Filling a Histogram

The TTree::Draw method can also be used to fill a specific histogram. The syntax is:

root[] TFile *f = new TFile("Event.root")

root[] T->Draw("fNtrack >> myHisto")

root[] myHisto->Print()

TH1.Print Name= myHisto, Entries= 100, Total sum= 100

As we can see, this created a TH1, called myHisto. If you want to append more entries to the histogram, you

can use this syntax:

root[] T->Draw("fNtrack >>+ myHisto")

If you do not create a histogram ahead of time, ROOT will create one at the time of the Draw command (as is
the case above). If you would like to draw the variable into a specific histogram where you, for example, set the
range and bin number, you can define the histogram ahead of time and use it in the Draw command. The
histogram has to be in the same directory as the tree.

root[] TH1 *h1 = new TH1("h1","h1",50,0.,150.);

root[] T->Draw("fNtrack>> h1");

When you project a TTree into a histogram, the histogram inherits the TTree attributes and not the current

style attributes. This allows you to project two Trees with different attributes into the same picture. You can call
the method TTree::UseCurrentStyle to change the histogram to use the current style gStyle. See

―Graphics and the Graphical User Interface.

The binning of the newly created histogram can be specified in two ways. You can set a default in the .rootrc

and/or you can add the binning information in the TTree::Draw command.

To set number of bins default for the 1-D, 2-D, 3-D histograms can be specified in the .rootrc file via the

environment variables, e.g.:

default binnings

Hist.Binning.1D.x: 100

Hist.Binning.2D.x: 40

Hist.Binning.2D.y: 40

Hist.Binning.2D.Prof: 100

Hist.Binning.3D.x: 20

Hist.Binning.3D.y: 20

Hist.Binning.3D.z: 20

Hist.Binning.3D.Profx: 100

Hist.Binning.3D.Profy: 100

To set the number of bins for a specific histogram when using TTree::Draw, add up to nine numbers

following the histogram name. The numbers meaning is:

1 bins in x-direction

2 lower limit in x-direction

3 upper limit in x-direction

4-6 same for y-direction

7-9 same for z-direction

When a bin number is specified, the value becomes the default. Any of the numbers can be skipped. For
example:

tree.Draw("sqrt(x)>>hsqrt(500,10,20)";

// plot sqrt(x) between 10 and 20 using 500 bins

tree.Draw("sqrt(x):sin(y)>>hsqrt(100,10,,50,.1,.5)";

// plot sqrt(x) against sin(y) 100 bins in x-direction;

// lower limit on x-axis is 10; no upper limit

// 50 bins in y-direction; lower limit on y-axis is .1; upper limit is .5

 Trees 225

When the name is followed by binning information, appending the histogram with a "+", will not reset hsqrt, but

will continue to fill it.

tree.Draw("sqrt(x)>>+hsqrt","y>0");

This works for 1-D, 2-D and 3-D histograms.

Projecting a Histogram

If you would like to fill a histogram, but not draw it you can use the TTree::Project() method.

root[] T->Project("quietHisto","fNtrack")

Making a Profile Histogram

In case of a two dimensional expression, you can generate a TProfile histogram instead of a two dimensional

histogram by specifying the 'prof' or 'profs' option. The prof option is automatically selected when the

output is redirected into a TProfile. For example y:x>>pf where pf is an existing TProfile histogram.

Tree Information

Once we have drawn a tree, we can get information about the tree. These are the methods used to get
information from a drawn tree TTree:

 GetSelectedRows: Returns the number of entries accepted by the selection expression. In

case where no selection was specified, it returns the number of entries processed.

 GetV1: Returns a pointer to the float array of the first variable.

 GetV2: Returns a pointer to the float array of second variable

 GetV3: Returns a pointer to the float array of third variable.

 GetW: Returns a pointer to the float array of Weights where the weight equals the result of the

selection expression.

To read the drawn values of fNtrack into an array, and loop through the entries follow the lines below. First,

open the file and draw the fNtrack variable:

root[] TFile *f = new TFile("Event.root")

root[] T->Draw("fNtrack")

Then declare a pointer to a float and use the GetV1 method to retrieve the first dimension of the tree. In this

example we only drew one dimension (fNtrack) if we had drawn two, we could use GetV2 to get the second

one.

root[] Float_t *a

root[] a = T->GetV1()

Loop through the first 10 entries and print the values of fNtrack:

root[] for (int i = 0; i < 10; i++)

root[] cout << a[i] << " " << endl // need an endl to see the values

594 597 606 595 604 610 604 602 603 596

By default, TTree::Draw creates these arrays with fEstimate words where fEstimate can be set via

TTree::SetEstimate. If you have more entries than fEstimate only the first fEstimate selected entries

will be stored in the arrays. The arrays are used as buffers. When fEstimate entries have been processed,

ROOT scans the buffers to compute the minimum and maximum of each coordinate and creates the
corresponding histograms. You can use these lines to read all entries into these arrays:

 root[] Int_t nestimate = (Int_t)T->GetEntries();

 root[] T->SetEstimate(nestimate);

Obviously, this will not work if the number of entries is very large. This technique is useful in several cases, for

example if you want to draw a graph connecting all the x, y(or z) points. Note that you may have a tree (or

chain) with 1 billion entries, but only a few may survive the cuts and will fit without problems in these arrays.

Using TTree::MakeClass
The TTree::Draw method is convenient and easy to use; however it falls short if you need to do some

programming with the variable.

For example, for plotting the masses of all oppositely changed pairs of tracks, you would need to write a
program that loops over all events, finds all pairs of tracks, and calculates the required quantities. We have
shown how to retrieve the data arrays from the branches of the tree in the previous section, and you could just
write that program from scratch. Since this is a very common task, ROOT provides a utility that generates a
skeleton class designed to loop over the entries of the tree.

226 Trees

This is the TTree::MakeClass method. We will now go through the steps of using MakeClass with a

simplified example. The methods used here obviously work for complex event loop calculations.

These are our assumptions: we would like to do selective plotting and loop through each entry of the tree and

tracks. We chose a simple example: we want to plot fPx of the first 100 tracks of each entry. We have a ROOT

tree with a branch for each data member in the "Event" object. To build this file and tree follow the instructions

on how to build the examples in $ROOTSYS/test. Execute Event and instruct it to split the object with this

command (from the UNIX command line).

> $ROOTSYS/test/Event 400 1 2 1

This creates an Event.root file with 400 events, compressed, split, and filled.

See $ROOTSYS/test/MainEvent.cxx for more info.

The person who designed the tree makes a shared library available to you, which defines the classes needed.

In this case, the classes are Event, EventHeader, and Track and they are defined in the shared library

libEvent.so. The designer also gives you the Event.h file to see the definition of the classes. You can

locate Event.h in $ROOTSYS/test, and if you have not yet built libEvent.so, please see the instructions of

how to build it (typing make in $ROOTSYS/test is enough). If you have already built it, you can now use it

again.

Creating a Class with MakeClass

First, we load the shared library and open Event.root.

root[] .L libEvent.so

root[] TFile *f = new TFile("Event.root");

root[] f->ls();

TFile** Event.root TTree benchmark ROOT file

 TFile* Event.root TTree benchmark ROOT file

 KEY: TH1F htime;1 Real-Time to write versus time

 KEY: TTree T;1 An example of a ROOT tree

We can see there is a tree ―T‖, and just to verify that we are working with the correct one, we print the tree,

which will show us the header and branches.

root[] T->Print();

From the output of print we can see that the tree has one branch for each data member of Event, Track, and

EventHeader. Now we can use TTree::MakeClass on our tree ―T‖. MakeClass takes one parameter, a

string containing the name of the class to be made. In the command below, the name of our class will be

―MyClass‖.

root[] T->MakeClass("MyClass")

Files: MyClass.h and MyClass.C generated from Tree: T

CINT informs us that it has created two files. MyClass.h contains the class definition and MyClass.C contains

the MyClass::Loop() method. MyClass has more methods than just Loop(). The other methods are a

constructor, a destructor, GetEntry(), LoadTree(), Notify(), Cut() and Show(). The implementations

of these methods are in the .h file. This division of methods was done intentionally. The .C file is kept as short
as possible, and contains only code that is intended for you to customize. The .h file contains all the other

methods. It is clear that you want to be as independent as possible of the header file (i.e. MyClass.h)

generated by MakeClass. The solution is to implement a derived class, for example MyRealClass deriving

from MyClass such that a change in your Tree or regeneration of MyClass.h does not force you to change

MyRealClass.h. You can imagine deriving several classes from MyClass.h, each with a specific algorithm.

To understand both files, let‘s start with MyClass.h and the class declaration:

MyClass.h

class MyClass {

public :

 //pointer to the analyzed TTree or TChain

 TTree *fChain;

 //current Tree number in a TChain

 Int_t fCurrent;

 //Declaration of leaves types

 UInt_t fUniqueID;

 UInt_t fBits;

 Char_t fType[20];

 Int_t fNtrack;

 Int_t fNseg;

 Int_t fNvertex;

 UInt_t fFlag;

 Float_t fTemperature;

 Trees 227

 Int_t fEvtHdr_fEvtNum;

 //List of branches

 TBranch *b_fUniqueID;

 TBranch *b_fBits;

 TBranch *b_fType;

 TBranch *b_fNtrack;

 TBranch *b_fNseg;

 TBranch *b_fNvertex;

 TBranch *b_fFlag;

 TBranch *b_fTemperature;

 TBranch *b_fEvtHdr_fEvtNum;

…

 MyClass(TTree *tree=0);

 ~MyClass();

 Int_t Cut(Int_t entry);

 Int_t GetEntry(Int_t entry);

 Int_t LoadTree(Int_t entry);

 void Init(TTree *tree);

 void Loop();

 Bool_t Notify();

 void Show(Int_t entry = -1);

};

We can see data members in the generated class. The first data member is fChain. Once this class is

instantiated, fChain will point to the original tree or chain this class was made from. In our case, this is ―T‖ in

―Event.root‖. If the class is instantiated with a tree as a parameter to the constructor, fChain will point to the

tree named in the parameter. Next is fCurrent, which is also a pointer to the current tree/chain. Its role is only

relevant when we have multiple trees chained together in a TChain. The class definition shows us that this tree

has one branch and one leaf per data member. The methods of MyClass are:

 MyClass(TTree *tree=0) - this constructor has an optional tree for a parameter. If you

pass a tree, MyClass will use it rather than the tree from which it was created.

 void Init(TTree *tree) – it is called by the constructor to initialize the tree for reading. It

associates each branch with the corresponding leaf data member.

 ~MyClass() - the destructor, nothing special.

 Int_t GetEntry(Int_t entry) - it loads the class with the entry specified. Once you have

executed GetEntry, the leaf data members in MyClass are set to the values of the entry. For

example, GetEntry(12) loads the 13
th

 event into the event data member of MyClass (note that

the first entry is 0). GetEntry returns the number of bytes read from the file. In case the same

entry is read twice, ROOT does not have to do any I/O. In this case GetEntry returns 1. It does

not return 0, because many people assume a return of 0 means an error has occurred while
reading.

 Int_t LoadTree(Int_t entry) and void Notify() - these two methods are related

to chains. LoadTree will load the tree containing the specified entry from a chain of trees.

Notify is called by LoadTree to adjust the branch addresses.

 void Loop() - it is the skeleton method that loops through each entry of the tree. This is

interesting to us, because we will need to customize it for our analysis.

MyClass.C

MyClass::Loop consists of a for-loop calling GetEntry for each entry. In the template, the numbers of bytes

are added up, but it does nothing else. If we were to execute it now, there would be no output.

void MyClass::Loop() {

 if (fChain == 0) return;

 Int_t nentries = Int_t(fChain->GetEntries());

 Int_t nbytes = 0, nb = 0;

 for (Int_t jentry=0; jentry<nentries;jentry++) {

 Int_t ientry = LoadTree(jentry);

 // in case of a TChain, ientry is the entry number in the current file

 nb = fChain->GetEntry(jentry); nbytes += nb;

 // if (Cut(ientry) < 0) continue;

 }

}

At the beginning of the file are instructions about reading selected branches. They are not reprinted here, but
please read them from your own file

228 Trees

Modifying MyClass::Loop

Let us continue with the goal of going through the first 100 tracks of each entry and plot Px. To do this we

change the Loop method.

…

 if (fChain == 0) return;

 Int_t nentries = Int_t(fChain->GetEntries());

 TH1F *myHisto = new TH1F("myHisto","fPx", 100, -5,5);

 TH1F *smallHisto = new TH1F("small","fPx", 100, -5,5);

…

In the for-loop, we need to add another for-loop to go over all the tracks. In the outer for-loop, we get the entry

and the number of tracks. In the inner for-loop, we fill the large histogram (myHisto) with all tracks and the

small histogram (smallHisto) with the track if it is in the first 100.

…

 for (Int_t jentry=0; jentry<nentries;jentry++) {

 GetEntry(jentry);

 for (Int_t j = 0; j < 100; j++){

 myHisto->Fill(fTracks_fPx[j]);

 if (j < 100){

 smallHisto->Fill(fTracks_fPx[j]);

 }

 }

 }

…

Outside of the for-loop, we draw both histograms on the same canvas.

…

myHisto->Draw();

smallHisto->Draw("Same");

…

Save these changes to MyClass.C and start a fresh root session. We will now load MyClass and experiment

with its methods.

Loading MyClass

The first step is to load the library and the class file. Then we can instantiate a MyClass object.

root[] .L libEvent.so

root[] .L MyClass.C

root[] MyClass m

Now we can get a specific entry and populate the event leaf. In the code snipped below, we get entry 0, and
print the number of tracks (594). Then we get entry 1 and print the number of tracks (597).

root[] m.GetEntry(0)

(int)57503

root[] m.fNtrack()

(Int_t)594

root[] m.GetEntry(1)

(int)48045

root[] m.fNtrack()

(Int_t)597

Now we can call the Loop method, which will build and display the two histograms.

root[] m.Loop()

You should now see a canvas that looks like this.

 Trees 229

To conclude the discussion on MakeClass let us lists the steps that got us here.

 Call TTree::MakeClass, which automatically creates a class to loop over the tree.

 Modify the MyClass::Loop() method in MyClass.C to fit your task.

 Load and instantiate MyClass, and run MyClass::Loop().

Using TTree::MakeSelector
With a TTree we can make a selector and use it to process a limited set of entries. This is especially important

in a parallel processing configuration where the analysis is distributed over several processors and we can
specify which entries to send to each processor. The TTree::Process method is used to specify the selector

and the entries. Before we can use TTree::Process we need to make a selector. We can call the

TTree::MakeSelector method. It creates two files similar to TTree::MakeClass.

In the resulting files is a class that is a descendent of TSelector and implements the following methods:

 TSelector::Begin() - this method is called every time a loop over the tree starts. This is a

convenient place to create your histograms.

 TSelector::Notify() - it is called at the first entry of a new tree in a chain.

 TSelector::Process() - it is called to process an event. It is the user's responsibility to read

the corresponding entry in memory (may be just a partial read). Once the entry is in memory one
can apply a selection and if the event is selected histograms can be filled. Processing stops when
this function returns kFALSE. It combines the methods TSelector::ProcessCut() and

TSelector::ProcessFill() in one, avoiding the necessity to maintain the state in the class

to communicate between these two functions. It reduces the information that needs to be shared
between them and promotes a more granular data access by reading branches as they are
needed.

 TSelector::Terminate() - it is called at the end of a loop on a TTree. This is a convenient

place to draw and fit your histograms.

 TSelector::Version() - this function provides backward compatibility for old versions and

support for the future upgrades.

 The TSelector, unlike the resulting class from MakeClass, separates the processing into a

ProcessCut() and ProcessFill(), so we can limit reading of branches to the ones we need.

 When a selector is used with a TChain in methods Process(), ProcessFill(),

ProcessCut(), you must use the pointer to the current TTree to call the method

GetEntry(entry). The parameter entry is always the local entry number in the current tree.

Assuming that fChain is the pointer to the TChain being processed, use

fChain->GetTree()->GetEntry(entry);

To create a selector call:

root[] T->MakeSelector("MySelector");

Where T is the TTree and MySelector is the name of created class and the name of the .h and .C files. The

resulting TSelector is the argument to TTree::Process. The argument can be the file name or a pointer to

the selector object.

root[] T->Process("MySelector.C","",1000,100);

230 Trees

This call will interpret the class defined in MySelector.C and process 1000 entries beginning with entry 100.

The file name can be appended with a "+" or a "++" to use ACLiC.

root[] T->Process("MySelector.C++","",1000,100);

When appending a "++", the class will be compiled and dynamically loaded.

root[] T->Process("MySelector.C+","",1000,100);

When appending a "+", the class will also be compiled and dynamically loaded. When it is called again, it

recompiles only if the macro (MySelector.C) has changed since it was compiled last. If not, it loads the

existing library. The next example shows how to create a selector with a pointer:

MySelector *selector = (MySelector *)TSelector::GetSelector(“MySelector.C+”);

T->Process(selector);

Using this form, you can do things like:

selector->public_attribute1 = init_value;

for (int i=0; i<limit; i++) {

 T->Process(selector);

 selector->public_attribute1 = function(selector->public_attribute2);

}

TTree::Process() is aware of PROOF, ROOT parallel processing facility. If PROOF is setup, it divides the

processing amongst the slave CPUs.

Performance Benchmarks

The program $ROOTSYS/test/bench.cxx compares the I/O performance of STL vectors to the ROOT native

TClonesArrays collection class. It creates trees with and without compression for the following cases:

vector<THit>, vector<THit*>, TClonesArray(TObjHit) not split TClonesArray(TObjHit) split.

The next graphs show the two columns on the right which represent the split and non-split TClonesArray, are

significantly lower than the vectors. The most significant difference is in reading a file without compression.

The file size with compression, write times with and without compression and the read times with and without
compression all favor the TClonesArray.

Impact of Compression on I/O
This benchmark illustrates the pros and cons of the compression option. We recommend using compression
when the time spent in I/O is small compared to the total processing time. In this case, if the I/O operation is
increased by a factor of 5 it is still a small percentage of the total time and it may very well save a factor of 10 on
disk space. On the other hand if the time spend on I/O is large, compression may slow down the program's

performance. The standard test program $ROOTSYS/test/Event was used in various configurations with 400

events. The data file contains a TTree. The program was invoked with:

 Event 400 comp split

 Trees 231

 comp = 0 means: no compression at all.

 comp = 1 means: compress everything if split = 0.

 comp = 1 means: compress only the tree branches with integers if split = 1.

 comp = 2 means: compress everything if split=1.

 split = 0 : the full event is serialized into one single buffer.

 split = 1 : the event is split into branches. One branch for each data member of the Event class.
The list of tracks (a TClonesArray) has the data members of the Track class also split into

individual buffers.

These tests were run on Pentium III CPU with 650 MHz.

Event
Parameters

File
Size

Total Time to
Write (MB/sec)

Effective Time to
Write (MB/sec)

Total Time to Read
All (MB/sec)

Total Time to Read
Sample (MB/sec)

Comp = 0

Split = 1

19.75
MB

6.84 s.(2.8 MB/s) 3.56 s.(5.4 MB/s) 0.79s.(24.2 MB/s) 0.79 s.(24.2 MB/s)

Comp = 1

Split = 1

17.73
MB

6.44 s.(3.0 MB/s) 4.02 s.(4.8 MB/s) 0.90 s.(21.3 MB/s) 0.90 s.(21.3 MB/s)

Comp = 2

Split = 1

13.78
MB

11.34s.(1.7 MB/s) 9.51 s.(2.0 MB/s) 2.17 s.(8.8 MB/s) 2.17 s.(8.8 MB/s)

The Total Time is the real time in seconds to run the program. Effective time is the real time minus the time

spent in non I/O operations (essentially the random number generator). The program Event generates in

average 600 tracks per event. Each track has 17 data members. The read benchmark runs in the interactive
version of ROOT. The ‗Total Time to Read All‘ is the real time reported by the execution of the script

&ROOTSYS/test/eventa.

We did not correct this time for the overhead coming from the interpreter itself. The Total time to read sample

is the execution time of the script $ROOTSYS/test/eventb. This script loops on all events. For each event,

the branch containing the number of tracks is read. In case the number of tracks is less than 585, the full event
is read in memory. This test is obviously not possible in non-split mode. In non-split mode, the full event must be
read in memory. The times reported in the table correspond to complete I/O operations necessary to deal with
machine independent binary files. On Linux, this also includes byte-swapping operations. The ROOT file
allows for direct access to any event in the file and direct access to any part of an event when split=1.

Note also that the uncompressed file generated with split=0 is 48.7 Mbytes and only 47.17 Mbytes for the option
split=1. The difference in size is due to the object identification mechanism overhead when the event is written
to a single buffer. This overhead does not exist in split mode because the branch buffers are optimized for

homogeneous data types. You can run the test programs on your architecture. The program Event will report

the write performance. You can measure the read performance by executing the scripts eventa and eventb.

The performance depends not only of the processor type, but also of the disk devices (local, NFS, AFS, etc.).

Chains
A TChain object is a list of ROOT files containing the same tree. As an example, assume we have three files

called file1.root, file2.root, file3.root. Each file contains one tree called "T". We can create a

chain with the following statements:

TChain chain("T"); // name of the tree is the argument

chain.Add("file1.root");

chain.Add("file2.root");

chain.Add("file3.root");

The name of the TChain will be the same as the name of the tree; in this case it will be "T". Note that two

objects can have the same name as long as they are not histograms in the same directory, because there, the
histogram names are used to build a hash table. The class TChain is derived from the class TTree. For

example, to generate a histogram corresponding to the attribute "x" in tree "T" by processing sequentially the

three files of this chain, we can use the TChain::Draw method.

chain.Draw("x");

When using a TChain, the branch address(es) must be set with:

chain.SetBranchAdress(branchname,…) // use this for TChain

rather than:

branch->SetAddress(…); // this will not work

The second form returns the pointer to the branch of the current TTree in the chain, typically the first one. The

information is lost when the next TTree is loaded. The following statements illustrate how to set the address of

the object to be read and how to loop on all events of all files of the chain.

232 Trees

{

 TChain chain("T"); // create the chain with tree "T"

 chain.Add("file1.root"); // add the files

 chain.Add("file2.root");

 chain.Add("file3.root");

 TH1F *hnseg = new TH1F("hnseg","Number of segments for selected tracks",

 5000,0,5000);

 // create an object before setting the branch address

 Event *event = new Event();

 // Specify the address where to read the event object

 chain.SetBranchAddress("event", &event);

 // Start main loop on all events In case you want to read only a few

 // branches, use TChain::SetBranchStatus to activate a branch.

 Int_t nevent = chain.GetEntries();

 for (Int_t i=0;i<nevent;i++) {

 // read complete accepted event in memory

 chain.GetEvent(i);

 // Fill histogram with number of segments

 hnseg->Fill(event->GetNseg());

 }

 // Draw the histogram

 hnseg->Draw();

}

TChain::AddFriend

A TChain has a list of friends similar to a tree (see TTree::AddFriend). You can add a friend to a chain

with the TChain::AddFriend method. With TChain::GetListOfFriends you can retrieve the list of

friends. The next example has four chains each has 20 ROOT trees from 20 ROOT files.

TChain ch("t"); // a chain with 20 trees from 20 files

TChain ch1("t1");

TChain ch2("t2");

TChain ch3("t3");

Now we can add the friends to the first chain.

ch.AddFriend("t1")

ch.AddFriend("t2")

ch.AddFriend("t3")

The parameter is the name of friend chain (the name of a chain is always the name of the tree from which it was
created). The original chain has access to all variables in its friends. We can use the TChain::Draw method

as if the values in the friends were in the original chain. To specify the chain to use in the Draw method, use:

<chainname>.<branchname>.<varname>

If the variable name is enough to identify uniquely the variable, you can leave out the chain and/or branch
name. For example, this generates a 3-d scatter plot of variable "var" in the TChain ch versus variable v1 in

TChain t1 versus variable v2 in TChain t2.

ch.Draw("var:t1.v1:t2.v2");

When a TChain::Draw is executed, an automatic call to TTree::AddFriend connects the trees in the

chain. When a chain is deleted, its friend elements are also deleted.

The number of entries in the friend must be equal or greater to the number of entries of the original chain. If the
friend has fewer entries a warning is given and the resulting histogram will have missing entries. For additional
information see TTree::AddFriends(). A full example of a tree and friends is in Example #3

($ROOTSYS/tutorials/tree/tree3.C) in the Trees section above.

 Math Libraries in ROOT 233

13 Math Libraries in ROOT

The aim of Math libraries in ROOT is to provide and to support a coherent set of mathematical and statistical

functions. The latest developments have been concentrated in providing first versions of the MathCore and

MathMore libraries, included in ROOT v5.08. Other recent developments include the new version of MINUIT,

which has been re-designed and re-implemented in the C++ language. It is integrated in ROOT. In addition, an
optimized package for describing small matrices and vector with fixed sizes and their operation has been

developed (SMatrix). The structure is shown in the following picture.

Figure 13-1 Math libraries and packages

TMath
In the namespace, TMath a collection of free functions is provided for the following functionality:

 numerical constants (like pi, e, h, etc.);

 elementary and trigonometric functions;

 functions to find min and max of arrays;

 statistic functions to find mean and rms of arrays of data;

 algorithms for binary search/hashing sorting;

 special mathematical functions like Bessel, Erf, Gamma, etc.;

 statistical functions, like common probability and cumulative (quantile) distributions

For more details, see the reference documentation of TMath at http://root.cern.ch/root/htmldoc/TMath.html.

Random Numbers
In ROOT pseudo-random numbers can be generated using the TRandom classes. 4 different types exist:

TRandom, TRandom1, TRandom2 and TRandom3. All they implement a different type of random generators.

TRandom is the base class used by others. It implements methods for generating random numbers according to

pre-defined distributions, such as Gaussian or Poisson.

TRandom

Pseudo-random numbers are generated using a linear congruential random generator. The multipliers used are

the same of the BSD rand() random generator. Its sequence is:

 xn 1 (axn c)modm with a =1103515245, c = 12345 and m =2
31

.

This type of generator uses a state of only a 32 bit integer and it has a very short period, 2
31

,about 10
9
, which

can be exhausted in just few seconds. The quality of this generator is therefore BAD and it is strongly
recommended to NOT use for any statistical study.

http://root.cern.ch/root/htmldoc/TMath.html

234 Math Libraries in ROOT

TRandom1

This random number generator is based on the Ranlux engine, developed by M. Lüsher and implemented in
Fortran by F. James. This engine has mathematically proven random proprieties and a long period of about

10
171

. Various luxury levels are provided (1,2,3,4) and can be specified by the user in the constructor.

Higher the level, better random properties are obtained at a price of longer CPU time for generating a random
number. The level 3 is the default, where any theoretical possible correlation has very small chance of being
detected. This generator uses a state of 24 32-bits words. Its main disadvantage is that is much slower than the
others (see timing table). For more information on the generator see the following article:

 F. James, ―RANLUX: A Fortran implementation of the high quality pseudo-random number
generator of Lüscher‖, Computer Physics Communication, 79 (1994) 111.

TRandom2

This generator is based on the maximally equidistributed combined Tausworthe generator by L'Ecuyer. It uses
only 3 32-bits words for the state and it has a period of about 10

26
. It is fast and given its small states, it is

recommended for applications, which require a very small random number size. For more information on the
generator see the following article:

 P. L‘Ecuyer, ―Maximally Equidistributed Combined Tausworthe Generators‖, Mathematics of
Computation, 65, 213 (1996), 203-213.

TRandom3

This is based on the Mersenne and Twister pseudo-random number generator, developed in 1997 by Makoto
Matsumoto and Takuji Nishimura. The newer implementation is used, referred in the literature as MT19937. It
is a very fast and very high quality generator with a very long period of 10

6000
. The disadvantage of this

generator is that it uses a state of 624 words. For more information on the generator see the following article:

 M. M. Matsumoto and T. Nishimura, ―Mersenne twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator‖, ACM Trans. on Modeling and Computer Simulations,
8, 1, (1998), 3-20.

TRandom3 is the recommended random number generator, and it is used by default in ROOT using the global

gRandom object (see chapter gRandom).

Seeding the Generators

The seeds for the generators can be set in the constructor or by using the SetSeed method. When no value is

given the generator default seed is used, like 4357 for TRandom3. In this case identical sequence will be

generated every time the application is run. When the 0 value is used as seed, then a unique seed is generated
using a TUUID, for TRandom1, TRandom2 and TRandom3. For TRandom the seed is generated using only the

machine clock, which has a resolution of about 1 sec. Therefore identical sequences will be generated if the
elapsed time is less than a second.

Examples of Using the Generators

The method Rndm() is used for generating a pseudo-random number distributed between 0 and 1 as shown in

the following example:

// use default seed (same random numbers will be generated each time)

TRandom3 r; // generate a number in interval]0,1] (0 is excluded)

r.Rndm();

double x[100];

r.RndmArray(100,x); // generate an array of random numbers in]0,1]

TRandom3 rdm(111); // construct with a user-defined seed

// use 0: a unique seed will be automatically generated using TUUID

TRandom1 r1(0);

TRandom2 r2(0);

TRandom3 r3(0);

// use a seed generated using machine clock (different every second)

TRandom r0(0);

Random Number Distributions

The TRandom base class provides functions, which can be used by all the other derived classes for generating

random variates according to predefined distributions. In the simplest cases, like in the case of the exponential
distribution, the non-uniform random number is obtained by applying appropriate transformations. In the more
complicated cases, random variates are obtained using acceptance-rejection methods, which require several
random numbers.

 Math Libraries in ROOT 235

TRandom3 r;

// generate a gaussian distributed number with mu=0, sigma=1 (default values)

double x1 = r.Gaus();

double x2 = r.Gaus(10,3); // use mu = 10, sigma = 3;

The following table shows the various distributions that can be generated using methods of the TRandom

classes. More information is available in the reference documentation for TRandom. In addition, random

numbers distributed according to a user defined function, in a limited interval, or to a user defined histogram,
can be generated in a very efficient way using TF1::GetRandom() or TH1::GetRandom().

Distributions Description

Double_t Uniform(Double_t x1,Double_t x2) Uniform random numbers between x1,x2

Double_t Gaus(Double_t mu,Double_t sigma) Gaussian random numbers.

Default values: mu=0, sigma=1

Double_t Exp(Double_t tau) Exponential random numbers with mean tau.

Double_t Landau(Double_t mean,Double_t sigma) Landau distributed random numbers.

Default values: mean=0, sigma=1

Double_t BreitWigner(Double_t mean,

 Double_t gamma)

Breit-Wigner distributed random numbers.

Default values mean=0, gamma=1

Int_t Poisson(Double_t mean)

Double_t PoissonD(Double_t mean)

Poisson random numbers

Int_t Binomial(Int_t ntot,Double_t prob) Binomial Random numbers

Circle(Double_t &x,Double_t &y,Double_t r) Generate a random 2D point (x,y) in

a circle of radius r

Sphere(Double_t &x,Double_t &y,

 Double_t &z,Double_t r)

Generate a random 3D point (x,y,z) in

a sphere of radius r

Rannor(Double_t &a,Double_t &b) Generate a pair of Gaussian random

numbers with mu=0 and sigma=1

UNURAN

An interface to a new package, UNU.RAN, (Universal Non Uniform Random number generator for generating
non-uniform pseudo-random numbers) was introduced in ROOT v5.16.

UNU.RAN is an ANSI C library licensed under GPL. It contains universal (also called automatic or black-box)
algorithms that can generate random numbers from large classes of continuous (in one or multi-dimensions),
discrete distributions, empirical distributions (like histograms) and also from practically all standard distributions.
An extensive online documentation is available at the UNU.RAN Web Site http://statmath.wu-wien.ac.at/unuran/

The ROOT class TUnuran is used to interface the UNURAN package. It can be used as following:

 With the UNU.RAN native, string API for pre-defined distributions (see UNU.RAN documentation
for the allowed string values at http://statistik.wu-wien.ac.at/unuran/doc/unuran.html):

TUnuran unr;

//initialize unuran to generate normal random numbers using a "arou" method

unr.Init("normal()","method=arou");

...

// sample distributions N times (generate N random numbers)

for (int i = 0; i<N; ++i)

 double x = unr.Sample();

 For continous 1D distribution object via the class TUnuranContDist that can be created for

example from a TF1 function providing the pdf (probability density function) . The user can

optionally provide additional information via TUnuranContDist::SetDomain(min,max) like

the domain() for generating numbers in a restricted region.

//1D case: create a distribution from two TF1 object pointers pdfFunc

TUnuranContDist dist(pdfFunc);

//initialize unuran passing the distribution and a string defining the method

unr.Init(dist, "method=hinv");

// sample distribution N times (generate N random numbers)

for (int i = 0; i < N; ++i)

 double x = unr.Sample();

http://statmath.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/doc/unuran.html

236 Math Libraries in ROOT

 For multi-dimensional distribution via the class TUnuranMultiContDist, which can be created

from a the multi-dimensional pdf.

// Multi- dimensional case from a TF1 (TF2 or TF3) objects

TUnuranMultiContDist dist(pdfFuncMulti);

// the recommended method for multi-dimensional function is "hitro"

unr.Init(dist,"method=hitro");

// sample distribution N times (generate N random numbers)

double x[NDIM];

for (int i = 0; i<N; ++i)

 unr.SampleMulti(x);

 For discrete distribution via the class TUnuranDiscrDist, which can be initialized from a TF1

or from a vector of probabilities.

// Create distribution from a vector of probabilities

double pv[NSize] = {0.1,0.2,...};

TUnuranDiscrDist dist(pv,pv+NSize);

// the recommended method for discrete distribution is

unr.Init(dist, "method=dgt");

// sample N times (generate N random numbers)

for (int i = 0; i < N; ++i)

 int k = unr.SampleDiscr();

 For empirical distribution via the class TUnuranEmpDist. In this case one can generate random

numbers from a set of un-bin or bin data. In the first case the parent distribution is estimated by
UNU.RAN using a gaussian kernel smoothing algorithm. The TUnuranEmpDist distribution

class can be created from a vector of data or from TH1 (using the bins or from its buffer for un-

binned data).

// Create distribution from a set of data

// vdata is an std::vector containing the data

TUnuranEmpDist dist(vdata.begin(),vdata.end());

unr.Init(dist);

// sample N times (generate N random numbers)

for (int i = 0; i<N; ++i)

 double x = unr.Sample();

 For some predefined distributions, like Poisson and Binomial, one can use directly a function

in the TUnuran class. This is more convenient in passing distribution parameters than using

directly the string interface.

TUnuran unr;

// Initialize unuran to generate normal random numbers from the Poisson

// distribution with parameter mu

unr.InitPoisson(mu);

...

// Sample distributions N times (generate N random numbers)

for (int i = 0; i<N; ++i)

 int k = unr.SampleDiscr();

Functionality is also provided via the C++ classes for using a different random number generator by passing a
TRandom pointer when constructing the TUnuran class (by default the ROOT gRandom is passed to

UNURAN).

Performances of Random Numbers

Here are the CPU times obtained using the four random classes on an lxplus machine with an Intel 64 bit
architecture and compiled using gcc 3.4:

 TRandom

(ns/call)

TRandom1

(ns/call)

TRandom2

(ns/call)

TRandom3

(ns/call)

Rndm() - - 6 9

Gaus() 31 161 35 42

Rannor() 116 216 126 130

Poisson(m=10) 147 1161 162 239

Poisson(m=10)UNURAN 80 294 89 99

 Math Libraries in ROOT 237

MathCore Library
MathCore provides a collection of functions and C++ classes for numerical computing. This library includes

only the basic mathematical functions and algorithms and not all the functionality required by the physics

community. A more advanced mathematical functionality is provided by the MathMore library. The current set

included classes are:

 Basic special functions like the gamma, beta and error function.

 Mathematical functions used in statistics, such as the probability density functions and the
cumulative distributions functions (lower and upper integral of the pdf's).

 GenVector: physics and geometry vectors for 3 and 4 dimensions with their transformations

(rotations and boost).

 Generic (ROOT::Math::IFunction) and parametric (ROOT::Math::IParamFunction)

function interfaces for one and multi dimensions.

A detailed description for all MathCore classes is available in the online reference documentation. The

MathCore library presented in the ROOT distribution contains the CINT dictionary for I/O and interactive usage.

For the template classes, the dictionary is provided for some of the possible types, such as those based on

double and Double32_t. For the I/O or interactive use of other types, the dictionary must be first generated.

An example on how to generate the required dictionary is provided in the tutorial mathcoreVectorFloatIO.C

(in $ROOTSYS/tutorials/math). MathCore can also be built as an independent package using

configure/make. In this case the library will not contain the dictionary information and cannot be used

interactively in ROOT.

Generic Vectors for 2, 3 and 4 Dimensions (GenVector)
GenVector is a package intended to represent vectors and their operations and transformations, such as

rotations and Lorentz transformations, in 3 and 4 dimensions. The 3D space is used to describe the geometry
vectors and points, while the 4D space-time is used for physics vectors representing relativistic particles. These
3D and 4D vectors are different from vectors of the linear algebra package, which describe generic N-
dimensional vectors. Similar functionality is currently provided by the CLHEP Vector and Geometry packages
and the ROOT Physics vector classes (See ―Physics Vectors‖). It also re-uses concepts and ideas from the

CMS Common Vector package. In contrast to CLHEP or the ROOT physics libraries, GenVector provides

class templates for modeling the vectors. The user can control how the vector is internally represented. This is
expressed by a choice of coordinate system, which is supplied as a template parameter when the vector is
constructed. Furthermore, each coordinate system is itself a template, so that the user can specify the
underlying scalar type.

The GenVector classes do not inherit from TObject, therefore cannot be used as in the case of the physics

vector classes in ROOT collections.

In addition, to optimize performances, no virtual destructors are provided. In the following paragraphs, the main

characteristics of GenVector are described. A more detailed description of all the GenVector classes is

available also at http://seal.cern.ch/documents/mathlib/GenVector.pdf

Optimal Runtime Performances

We try to minimize any overhead in the run-time performance. We have deliberately avoided the use of any
virtual function and even virtual destructors in the classes. In addition, as much as possible functions are

defined as inline. For this reason, we have chosen to use template classes to implement the GenVector

concepts instead of abstract or base classes and virtual functions. It is then recommended to avoid using the

GenVector classes polymorphically and developing classes inheriting from them.

Points and Vector Concept

Mathematically vectors and points are two distinct concepts. They have different transformations, as vectors
only rotate while points rotate and translate. You can add two vectors but not two points and the difference
between two points is a vector. We then distinguish for the 3 dimensional case, between points and vectors,
modeling them with different classes:

 ROOT::Math::DisplacementVector2D and ROOT::Math::DisplacementVector3D

template classes describing 2 and 3 component direction and magnitude vectors, not rooted at
any particular point;

 ROOT::Math::PositionVector2D and ROOT::Math::PositionVector3D template

classes modeling the points in 2 and 3 dimensions.

For the 4D space-time vectors, we use the same class to model them, ROOT::Math::LorentzVector, since

we have recognized a limited need for modeling the functionality of a 4D point.

http://seal.web.cern.ch/seal/MathLibs/MathCore/html/index.html
http://proj-clhep.web.cern.ch/proj-clhep/manual/UserGuide/VectorDefs/index.html
http://www.hep.phy.cam.ac.uk/lhcb/doc/CLHEP/1.9.1.2/html/namespaceHepGeom.html
http://lcgapp.cern.ch/doxygen/SEAL/snapshot/html/dir_000007.html
http://seal.cern.ch/documents/mathlib/GenVector.pdf

238 Math Libraries in ROOT

Generic Coordinate System

The vector classes are based on a generic type of coordinate system, expressed as a template parameter of
the class. Various classes exist to describe the various coordinates systems:

2D coordinate system classes:

 ROOT::Math::Cartesian2D, based on (x,y);

 ROOT::Math::Polar2D, based on (r,phi);

3D coordinate system classes:

 ROOT::Math::Cartesian3D, based on (x,y,z);

 ROOT::Math::Polar3D, based on (r,theta,phi);

 ROOT::Math::Cylindrical3D, based on (rho,z,phi)

 ROOT::Math::CylindricalEta3D, based on (rho,eta,phi), where eta is the pseudo-

rapidity;

4D coordinate system classes:

 ROOT::Math::PxPyPzE4D, based on based on (px,py,pz,E);

 ROOT::Math::PxPyPzM4D, based on based on (px,py,pz,M);

 ROOT::Math::PtEtaPhiE4D, based on based on (pt,eta,phi,E);

 ROOT::Math::PtEtaPhiM4D, based on based on (pt,eta,phi,M);

Users can define the vectors according to the coordinate type, which is the most efficient for their use.
Transformations between the various coordinate systems are available through copy constructors or the
assignment (=) operator. For maximum flexibility and minimize memory allocation, the coordinate system
classes are templated on the scalar type. To avoid exposing templated parameter to the users, typedefs are
defined for all types of vectors based on doubles. See in the examples for all the possible types of vector
classes, which can be constructed by users with the available coordinate system types.

Coordinate System Tag

The 2D and 3D points and vector classes can be associated to a tag defining the coordinate system. This can
be used to distinguish between vectors of different coordinate systems like global or local vectors. The
coordinate system tag is a template parameter of the ROOT::Math::DisplacementVector3D and

ROOT::Math::PositionVector3D (and also for 2D classes). A default tag exists for users who do not need

this functionality, ROOT::Math::DefaultCoordinateSystemTag.

Transformations

The transformations are modeled using simple (non-template) classes, using double as the scalar type to avoid
too large numerical errors. The transformations are grouped in rotations (in 3 dimensions), Lorentz

transformations and Poincare transformations, which are translation/rotation combinations. Each group has

several members which may model physically equivalent transformations but with different internal

representations. Transformation classes can operate on all type of vectors by using the operator () or the

operator * and the transformations can be combined via the operator *. The available transformations are:

▪ 3D rotation classes

 rotation described by a 3x3 matrix (ROOT::Math::Rotation3D)

 rotation described by Euler angles (ROOT::Math::EulerAngles)

 rotation described by a direction axis and an angle (ROOT::Math::AxisAngle)

 rotation described by a quaternion (ROOT::Math::Quaternion)

 optimized rotation around x (ROOT::Math::RotationX), y (ROOT::Math::RotationY) and z

(ROOT::Math::RotationZ) and described by just one angle.

▪ 3D transformation: we describe the transformations defined as a composition between a rotation and a
translation using the class ROOT::Math::Transform3D. It is important to note that transformations act

differently on vectors and points. The vectors only rotate, therefore when applying a transformation (rotation +
translation) on a vector, only the rotation operates while the translation has no effect. The Transform3D class

interface is similar to the one used in the CLHEP Geometry package (class HepGeom::Transform3D).

▪ Lorentz rotation:

 generic Lorentz rotation described by a 4x4 matrix containing a 3D rotation part and a boost part
(class ROOT::Math::LorentzRotation)

 a pure boost in an arbitrary direction and described by a 4x4 symmetric matrix or 10 numbers
(class ROOT::Math::Boost)

 boost along the axis: x (ROOT::Math::BoostX), y (ROOT::Math::BoostY) and z

(ROOT::Math::BoostZ).

http://www.hep.phy.cam.ac.uk/lhcb/doc/CLHEP/1.9.1.2/html/classHepGeom_1_1Transform3D.html

 Math Libraries in ROOT 239

Minimal Vector Classes Interface

We have tried to keep the interface to a minimal level by:

 Avoiding methods that provide the same functionality but use different names (like getX() and

x()).

 Minimizing the number of setter methods, avoiding methods, which can be ambiguous and can
set the vector classes in an inconsistent state. We provide only methods which set all the
coordinates at the same time or set only the coordinates on which the vector is based, for

example SetX() for a Cartesian vector. We then enforce the use of transformations as rotations

or translations (additions) for modifying the vector contents.

 The majority of the functionality, which is present in the CLHEP package, involving operations on
two vectors, is moved in separated helper functions (see ROOT::Math::VectorUtil). This has

the advantage that the basic interface will remain more stable with time while additional functions
can be added easily.

Naming Convention

As part of ROOT, the GenVector package adheres to the prescribed ROOT naming convention, with some

(approved) exceptions, as described here:

 Every class and function is in the ROOT::Math namespace.

 Member function names start with upper-case letter, apart some exceptions (see the next section
about CLHEP compatibility).

Compatibility with CLHEP Vector Classes

 For backward compatibility with CLHEP the vector classes can be constructed from a CLHEP
HepVector or HepLorentzVector, by using a template constructor, which requires only that

the classes implement the accessors x(), y(), and z() (and t() for the 4D).

 We provide vector member function with the same naming convention as CLHEP for the most

used functions like x(), y() and z().

Connection to Linear Algebra Package

In some use cases, like in track reconstruction, it is needed to use the content of the vector and rotation classes
in conjunction with linear algebra operations. We prefer to avoid any direct dependency to any linear algebra
package. However, we provide some hooks to convert to and from linear algebra classes. The vector and the

transformation classes have methods which allow to get and set their data members (like SetCoordinates

and GetCoordinates) passing either a generic iterator or a pointer to a contiguous set of data, like a C array.

This allows an easy connection with the linear algebra package, which in turn, allows creation of matrices using
C arrays (like the ROOT TMatrix classes) or iterators (SMatrix classes). Multiplication between linear

algebra matrices and GenVector vectors is possible by using the template free functions

ROOT::Math::VectorUtil::Mult. This function works for any linear algebra matrix, which implements the

operator (i,j) and with first matrix element at i=j=0.

Example: 3D Vector Classes

To avoid exposing template parameter to the users, typedef's are defined for all types of vectors based on

double's and float's. To use them, one must include the header file Math/Vector3D.h. The following

typedef's, defined in the header file Math/Vector3Dfwd.h, are available for the different instantiations of the

template class ROOT::Math::DisplacementVector3D:

 ROOT::Math::XYZVector vector based on x,y,z coordinates (Cartesian) in double precision

 ROOT::Math::XYZVectorF vector based on x,y,z coordinates (Cartesian) in float precision

 ROOT::Math::Polar3DVector vector based on r,theta,phi coordinates (polar) in double

precision

 ROOT::Math::Polar3DVectorF vector based on r,theta,phi coordinates (polar) in float

precision

 ROOT::Math::RhoZPhiVector vector based on rho,z,phi coordinates (cylindrical) in

double precision

 ROOT::Math::RhoZPhiVectorF vector based on rho,z,phi coordinates (cylindrical) in float

precision

 ROOT::Math::RhoEtaPhiVector vector based on rho,eta,phi coordinates (cylindrical

using eta instead of z) in double precision

 ROOT::Math::RhoEtaPhiVectorF vector based on rho,eta,phi coordinates (cylindrical

using eta instead of z) in float precision

240 Math Libraries in ROOT

Constructors and Assignment

The following declarations are available:

XYZVector v1; //an empty vector (x=0, y=0, z=0)

XYZVector v2(1,2,3); //vector with x=1, y=2, z=3;

Polar3DVector v3(1,PI/2,PI); //vector with r=1, theta=PI/2, phi=PI

RhoEtaPHiVector v4(1,2, PI); //vector with rho=1, eta=2, phi=PI

Note that each vector type is constructed by passing its coordinate representation, so a XYZVector(1,2,3) is

different from a Polar3DVector(1,2,3). In addition, the vector classes can be constructed by any vector,

which implements the accessors x(), y() and z(). This can be another 3D vector based on a different

coordinate system type. It can be even any vector of a different package, like the CLHEP HepThreeVector

that implements the required signature.

XYZVector v1(1,2,3);

RhoEtaPhiVector r2(v1);

CLHEP::HepThreeVector q(1,2,3);

XYZVector v3(q);

Coordinate Accessors

All coordinate accessors are available through the class ROOT::Math::DisplacementVector3D:

//returns cartesian components for the cartesian vector v1

v1.X(); v1.Y(); v1.Z();

//returns cylindrical components for the cartesian vector v1

v1.Rho(); v1.Eta(); v1.Phi();

//returns cartesian components for the cylindrical vector r2

r2.X(); r2.Y(); r2.Z()

In addition, all the 3 coordinates of the vector can be retrieved with the GetCoordinates method:

double d[3];

v1.GetCoordinates(d); //fill d array with (x,y,z) components of v1

r2.GetCoordinates(d); //fill d array with (r,eta,phi) components of r2

std::vector vc(3);

//fill std::vector with (x,y,z) components of v1

v1.GetCoordinates(vc.begin(),vc.end());

See the reference documentation of ROOT::Math::DisplacementVector3D for more details on all the

coordinate accessors.

Setter Methods

One can set only all the three coordinates via:

v1.SetCoordinates(c1,c2,c3); //sets the (x,y,z) for a XYZVector

r2.SetCoordinates(c1,c2,c3); //sets r,theta,phi for a Polar3DVector

r2.SetXYZ(x,y,z); //sets the 3 cartesian components for Polar3DVector

Single coordinate setter methods are available for the basic vector coordinates, like SetX() for a XYZVector

or SetR() for a polar vector. Attempting to do a SetX() on a polar vector will not compile.

XYZVector v1; v1.SetX(1); //OK setting x for a Cartesian vector

Polar3DVector v2; v2.SetX(1); //ERROR: cannot set X for a Polar vector.

 //Method will not compile

v2.SetR(1); //OK setting r for a Polar vector

In addition, there are setter methods from C arrays or iterator

double d[3] = {1.,2.,3.};

XYZVector v;

v.SetCoordinates(d); //set (x,y,z) components of v using values from d

or, for example, from an std::vector using the iterator

std::vector w(3);

//set (x,y,z) components of v using values from w

v.SetCoordinates(w.begin(),w.end());

Arithmetic Operations

The following operations are possible between vector classes, even of different coordinate system types:
(v1,v2 are any type of ROOT::Math::DisplacementVector3D classes, v3 is the same type of v1; a is a

scalar value)

v1 += v2;

 Math Libraries in ROOT 241

v1 -= v2;

v1 = - v2;

v1 *= a;

v1 /= a;

v2 = a * v1;

v2 = v1 / a;

v2 = v1 * a;

v3 = v1 + v2;

v3 = v1 - v2;

Comparison

For v1 and v2 of the same type (same coordinate system and same scalar type):

v1 == v2;

v1 != v2;

Dot and Cross Product

We support the dot and cross products, through the Dot() and Cross() method, with any vector (q)

implementing x(), y() and z().

XYZVector v1(x,y,z);

double s = v1.Dot(q);

XYZVector v2 = v1.Cross(q);

Note that the multiplication between two vectors using the operator * is not supported because it is ambiguous.

Other Methods

XYZVector u = v1.Unit(); //return unit vector parallel to v1

Example: 3D Point Classes

To use all possible types of 3D points one must include the header file Math/Point3D.h. The following

typedef‘s defined in the header file Math/Point3Dfwd.h, are available for different instantiations of the

template class ROOT::Math::PositionVector3D:

 ROOT::Math::XYZPoint point based on x, y, z coordinates (Cartesian) in double precision

 ROOT::Math::XYZPointF point based on x, y, z coordinates (Cartesian) in float precision

 ROOT::Math::Polar3DPoint point based on r, theta, phi coordinates (polar) in double

precision

 ROOT::Math::Polar3DPointF point based on r, theta, phi coordinates (polar) in float

precision

 ROOT::Math::RhoZPhiPoint point based on rho, z, phi coordinates (cylindrical using z) in

double precision

 ROOT::Math::RhoZPhiPointF point based on rho, z, phi coordinates (cylindrical using z) in

float precision

 ROOT::Math::RhoEtaPhiPoint point based on rho, eta, phi coordinates (cylindrical using

eta instead of z) in double precision

 ROOT::Math::RhoEtaPhiPointF point based on rho, eta, phi coordinates (cylindrical using

eta instead of z) in float precision

Constructors and Assignment

The following declarations are available:

XYZPoint p1; //an empty vector (x=0, y=0, z=0)

XYZPoint p2(1,2,3); //vector with x=1, y=2, z=3;

Polar3DPoint p3(1,PI/2,PI); //vector with r=1, theta=PI/2, phi=PI

RhoEtaPHiPoint p4(1,2,PI); //vector with rho=1, eta=2, phi=PI

Note that each point type is constructed by passing its coordinate representation, so a XYZPoint(1,2,3) is

different from a Polar3DPoint(1,2,3). In addition the point classes can be constructed by any vector,

which implements the accessors x(), y() and z(). This can be another 3D point based on a different

coordinate system type or even any vector of a different package, like the CLHEP HepThreePoint that

implements the required signatures.

XYZPoint p1(1,2,3);

RhoEtaPHiPoint r2(v1);

242 Math Libraries in ROOT

CLHEP::HepThreePoint q(1,2,3);

XYZPoint p3(q);

Coordinate Accessors and Setter Methods

For the points classes we have the same getter and setter methods as for the vector classes. See ―Example: 3D
Vector Classes‖.

Point-Vector Operations

The following operations are possible between points and vector classes: (p1, p2 and p3 are instantiations of

the ROOT::Math::PositionVector3D objects with p1 and p3 of the same type; v1 and v2 are

ROOT::Math::DisplacementVector3D objects).

p1 += v1;

p1 -= v1;

p3 = p1 + v1; //p1 and p3 are the same type

p3 = v1 + p1; //p3 is based on the same coordinate system as v1

p3 = p1 - v1;

p3 = v1 - p1;

v2 = p1 - p2; //difference between points returns a vector v2 based on the

 //same coordinate system as p1

Note that the addition between two points is NOT possible and the difference between points returns a vector.

Other Operations

Exactly as for the 3D Vectors, the following operations are allowed:

 comparison of points

 scaling and division of points with a scalar

 dot and cross product with any type of vector

Example: LorentzVector Classes

As in the 3D case, typedef‘s are defined for user convenience. and can be used by including the header file

Math/Vector4D.h. The following typedef's, defined in the header file Math/Vector4Dfwd.h, are available

for the different instantiations of the template class ROOT::Math::LorentzVector:

 ROOT::Math::XYZTVector vector based on x, y, z, t coordinates (Cartesian) in double

precision

 ROOT::Math::XYZTVectorF vector based on x, y, z, t coordinates (Cartesian) in float

precision

 ROOT::Math::PtEtaPhiEVector vector based on pt(rho), eta, phi and E(t) coordinates

in double precision

 ROOT::Math::PtEtaPhiMVector vector based on pt(rho), eta, phi and M(t) coordinates

in double precision

 ROOT::Math::PxPyPzMVector vector based on px, py, pz and M(mass) coordinates in

double precision

The metric used for all the LorentzVector is (-,-,-,+) .

Constructors and Assignment

The following declarations are available:

XYZTVector v1; //create an empty vector (x=0, y=0, z=0, t=0)

XYZTVector v2(1,2,3,4); //vector with x=1, y=2, z=3, t=4

PtEtaPhiEVector v3(1,2,PI,5); //vector with pt=1, eta=2, phi=PI, E=5

Note that each type of vector is constructed by passing its coordinate representation, so a
XYZTVector(1,2,3,4) is different from a PtEtaPhiEVector(1,2,3,4). In addition, the Vector classes

can be constructed by any vector, which implements the accessors x(), y(), z() and t().

This can be another ROOT::Math::LorentzVector based on a different coordinate system or any vector of

a different package, like the CLHEP HepLorentzVector that implements the required signature.

XYZTVector v1(1,2,3,4);

PtEtaPhiEVector v2(v1);

CLHEP::HepLorentzVector q(1,2,3,4);

XYZTVector v3(q);

 Math Libraries in ROOT 243

Coordinate Accessors

All the same coordinate accessors are available through the interface of ROOT::Math::LorentzVector. For

example:

//returns cartesian components for the cartesian vector v1

v1.X(); v1.X(); v1.Z(); v1.T();

//returns cartesian components for the cylindrical vector v2

v2.Px(); v2.Py(); v2.Pz(); v2.E();

//returns other components for the cartesian vector v1

v1.Pt(); v1.Eta(); v1.Phi(); v1.M()

In addition, all 4 vector coordinates can be retrieved with the GetCoordinates method:

double d[4];

v1.GetCoordinates(d); //fill d array with (x,y,z,t) components of v1

v2.GetCoordinates(d); //fill d array with (pt,eta,phi,e) components of v2

std::vector w(4);

v1.GetCoordinates(w.begin(),w.end()); //fill std::vector with (x,y,z,t)

 //components of v1

To get information on all the coordinate accessors see the ROOT::Math::LorentzVector reference

documentation.

Setter Methods

One can set only all the three coordinates via:

v1.SetCoordinates(c1,c2,c3,c4); //sets the (x,y,z,t) for a XYZTVector

v2.SetCoordinates(c1,c2,c3,c4); //sets pt,eta,phi,e for a PtEtaPhiEVector

v2.SetXYZ(x,y,z,t); //sets cartesian components for PtEtaPhiEVector

Single coordinate setter methods are available for the basic vector coordinates, like SetX() for a XYZTVector

or SetPt() for a PtEtaPhiEVector. Attempting to do a SetX() on a non-Cartesian vector will not compile.

XYZTVector v1; v1.SetX(1); //OK setting x for a cartesian vector

PtEtaPhiEVector v2; v2.SetX(1); //ERROR: cannot set X for a non-cartesian

 //vector. Method will not compile.

v2.SetR(1) // OK setting Pt for a PtEtaPhiEVector vector

In addition, there are setter methods from C arrays or iterators.

double d[4] = {1.,2.,3.,4.};

XYZTVector v;

v.SetCoordinates(d); //set (x,y,z,t) components of v using values from d

or for example from an std::vector using the iterators

std::vector w(4);

//set (x,y,z,t) components of v using values from w

v.SetCoordinates(w.begin(),w.end());

Arithmetic Operations

The following operations are possible between Lorentz vectors classes, even of different coordinate system

types: (v and w are two Lorentz vector of the same type, q is a generic Lorentz vector implementing x(), y(),

z() and t(), and a is a generic scalar type: double, float, int, etc.) .

v += q;

v -= q;

v = -q;

v *= a;

v /= a;

w = v + q;

w = v - q;

w = v * a;

w = a * v;

w = v / a;

Comparison

v == w;

v != w;

244 Math Libraries in ROOT

Other Methods

a = v.Dot(q); //dot product in metric(+,+,+,-) of 2 LorentzVectors

XYZVector s = v.Vect() //return the spatial components (x,y,z)

v.Beta(); //return beta and gamma value (vector must

v.Gamma() // be time-like otherwise result is meaningless)

XYZVector b = v.BoostToCM(); //return boost vector which will bring the Vector

 //in its mas frame (P=0)

Example: Vector Transformations

Transformation classes are grouped in rotations (in three dimensions), Lorentz transformations and Poincarre

transformations, which are translation/rotation combinations. Each group has several members which may

model physically equivalent transformations but with different internal representations. All the classes are non-
template and use double precision as the scalar type. The following types of transformation classes are defined:

3D rotations:

 ROOT::Math::Rotation3D, rotation described by a 3x3 matrix of doubles

 ROOT::Math::EulerAngles rotation described by the three Euler angles (phi, theta and

psi) following the GoldStein definition.

 ROOT::Math::RotationZYX rotation described by three angles defining a rotation first along

the Z axis, then along the rotated Y' axis and then along the rotated X'' axis.

 ROOT::Math::AxisAngle, rotation described by a vector (axis) and an angle

 ROOT::Math::Quaternion, rotation described by a quaternion (4 numbers)

 ROOT::Math::RotationX, specialized rotation along the X axis

 ROOT::Math::RotationY, specialized rotation along the Y axis

 ROOT::Math::RotationZ, specialized rotation along the Z axis

3D transformations (rotations + translations)

 ROOT::Math::Transform3D, (rotations and then translation) described by a 3x4 matrix (12

double numbers)

 ROOT::Math::Translation3D (only translation) described by a 3D Vector

Lorentz rotations and boosts

 ROOT::Math::LorentzRotation, 4D rotation (3D rotation plus a boost) described by a 4x4

matrix

 ROOT::Math::Boost, a Lorentz boost in an arbitrary direction and described by a 4x4

symmetrix matrix (10 numbers)

 ROOT::Math::BoostX, a boost in the X axis direction

 ROOT::Math::BoostY, a boost in the Y axis direction

 ROOT::Math::BoostZ, a boost in the Z axis direction

Constructors

All rotations and transformations are default constructible (giving the identity transformation). All rotations are
constructible taking a number of scalar arguments matching the number (and order of components).

Rotation3D rI; //a summy rotation (Identity matrix)

RotationX rX(PI); //a RotationX with an angle PI

EulerAngles rE(phi,theta,psi); //an Euler rotation with phi,theta,psi angles

XYZVector u(ux,uy,uz);

AxisAngle rA(u,delta); //a rotation based on direction u, angle delta

In addition, all rotations and transformations (other than the axial rotations) and transformations are

constructible from (begin,end) iterators or from pointers behave like iterators.

double data[9];

Rotation3D r(data,data+9); //create a rotation from a rotation matrix

std::vector w(12);

Transform3D t(w.begin(),w.end()); //create Transform3D from std::vector content

All rotations, except the axial rotations, are constructible and assigned from any other type of rotation (including
the axial):

//create a rotation 3D from a rotation along X axis of angle PI

Rotation3D r(ROOT::Math::RotationX(PI));

//construct an Euler rotation from A Rotation3D

EulerAngles r2(r);

http://mathworld.wolfram.com/EulerAngles.html

 Math Libraries in ROOT 245

//assign an Axis rotation from an Euler Rotation

AxisAngle r3; r3 = r2;

Transform3D (rotation + translation) can be constructed from a rotation and a translation vector:

Rotation3D r;

XYZVector v;

Transform3D t1(r,v); //construct from rotation and then translation

Transform3D t2(v,r); //construct inverse from first translation then rotation

Transform3D t3(r); //construct from only a rotation (zero translation)

Transform3D t4(v); //construct from only translation (identity rotation)

Operations

All transformations can be applied to vector and points using the operator * or using the operator()

XYZVector v1(...);

Rotation3D r(...);

XYZVector v2 = r*v1; //rotate vector v1 using r

v2 = r(v1); //equivalent

Transformations can be combined using the operator *. Rotation, translation and Transform3D classes can be

all combined with the operator *. The result of a combination of a rotation and a translation will be a
Transform3D class. Note that the rotations are not commutative, the order is then important.

Rotation3D r1(...);

Rotation3D r2(...);

Rotation3D r3 = r2*r1; //a combine rotation r3 by applying first r1 then r2

We can combine rotations of different types, like Rotation3D with any other type of rotations. The product of

two different axial rotations returns a Rotation3D:

RotationX rx(1.);

RotationY ry(2.);

Rotation3D r = ry * rx; //rotation along X and then Y axis

It is also possible to invert all the transformation or return their inverse:

Rotation3D r1(...);

 r1.Invert(); //invert the rotation modifying its content

Rotation3D r2 =r1.Inverse(); //return the inverse in a new rotation class

We have used rotation as examples, but all these operations can be applied to all the transformation classes.

Set/GetComponents Methods

Common methods to all transformations are Get and SetComponents. They can be used to retrieve all the

scalar values on which the transformation is based.

RotationX rx;

rx.SetComponents(1.); //set agle of the X rotation

double d[9] = {........};

Rotation3D r;

r.SetComponents(d,d+9); //set 9 components of 3D rotation

double d[16];

LorentzRotation lr;

lr.GetComponents(d,d+16); //get 16 components of a LorentzRotation

TMatrixD(3,4) m;

Transform3D t;

t.GetComponens(m); //fill 3x4 matrix with components of t

The GetComponents and SetComponents methods can be used with a signature based iterators or by using

any foreign matrix which implements the operator(i,j) or a different signatures depending on the

transformation type. For more details on all methods see the reference documentation of any specific
transformation class.

Example with External Packages

Connection to Linear Algebra Classes

It is possible to use the vector and rotation classes together with the linear algebra classes and to set and get
the contents of any 3D or 4D vector from a linear algebra vector class which implements an iterator or

something which behaves like an iterator. For example a pointer to a C array (double*) behaves like an iterator.

It is then assumed that the coordinates, like (x,y,z) will be stored contiguously.

246 Math Libraries in ROOT

TVectorD r2(N); //ROOT Linear Algebra Vector containing many vectors

XYZVector v2;

//construct vector from x=r[INDEX], y=r[INDEX+1], z=r[INDEX+2]

v2.SetCoordinates(&r2[INDEX],&r2[index]+3);

To fill a linear algebra vector from a 3D or 4D vector, with GetCoordinates() one can get the internal

coordinate data.

HepVector c(3); //CLHEP Linear algebra vector

//fill HepVector c with c[0]=x, c[1]=y, c[2]=z

v2.GetCoordinates(&c[0],&c[index]+3)

or using TVectorD:

double *data[3];

v2.GetCoordinates(data,data+3);

TVectorD r1(3,data); //create a new Linear Algebra vector copying the data

In the case of transformations, constructor and method to set/get components exist with linear algebra

matrices. The requisite is that the matrix data are stored, for example in the case of a Lorentz rotation, from

(0,0) thru (3,3)

TMatrixD(4,4) m;

LorentzRotation r(m); //create Lorentz rotation from matrix m

r.GetComponents(m); //fill matrix m with LorentzRotation components

Connection to Other Vector Classes

The 3D and 4D vectors of the GenVector package can be constructed and assigned from any vector which

satisfies the following requisites:

 for 3D vectors implementing the x(), y() and z() methods

 for Lorentz vectors implementing the x(), y(), z() and t() methods.

CLHEP::Hep3Vector hv;

XYZVector v1(hv); //create 3D vector from CLHEP 3D Vector

HepGeom::Point3D hp;

XYZPoint p1(hp); //create a 3D point from CLHEP geom Point

CLHEP::HepLorentzVector hq;

XYZTVector q(hq); //create a Lorentz vector from CLHEP L.V.

MathMore Library
The MathMore library provides an advanced collection of functions and C++ classes for numerical computing.

This is an extension of the functionality provided by the MathCore library. The current set includes:

▪ Special functions (see Special Functions in MathMore)

▪ Mathematical functions used in statistics such as probability density functions, cumulative distributions
functions and their inverse.

▪ Numerical algorithms for one dimensional functions based on implementation of the GNU Scientific Library
(GSL):

 Numerical integration using the class ROOT::Math::Integrator which is based on the

Adaptive integration algorithms of QUADPACK

 Numerical differentiation via ROOT::Math::Derivator

 Root finder via ROOT::Math::RootFinder which uses different solver algorithms from GSL

 Minimization via ROOT::Math::Minimizer1D

 Interpolation via ROOT::Math::Interpolation. All the GSL interpolation types are supported

 Function approximation based on Chebyshev polynomials via the class
ROOT::Math::Chebyshev

 Random number generators and distributions

 Polynomial evaluation and root solvers

The mathematical functions are implemented as a set of free functions in the namespace ROOT::Math. The

naming used for the special functions is the same proposed for the C++ standard (see C++ standard extension

proposal document).The MathCore library is implemented wrapping in C++ the GNU Scientific Library (GSL).

Building MathMore requires a version of GSL larger or equal 1.8. The source code of MathMore is distributed

under the GNU General Public License.

MathMore (and its ROOT CINT dictionary) can be built within ROOT whenever a GSL library is found in the

system. The GSL library and header file location can be specified in the ROOT configure script, by doing:
./configure --with-gsl-incdir=... --with-gsl-libdir=...

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1687.pdf
http://www.gnu.org/software/gsl

 Math Libraries in ROOT 247

MathMore can be built also a stand-alone library (without requiring ROOT) downloding the tar file from the Web

at this link. In this case the library will not contain the dictionary information and therefore cannot be used
interactively

More information on the classes and functions present in MathMore is available in the online reference

documentation.

Mathematical Functions
The mathematical functions are present in both MathCore and MathMore libraries. All mathematical functions

are implemented as free functions in the namespace ROOT::Math. The most used functions are in the

MathCore library while the others are in the MathMore library. The functions in MathMore are all using the

implementation of the GNU Scientific Library (GSL). The naming of the special functions is the same defined in
the C++ Technical Report on Standard Library extensions. The special functions are defined in the header file

Math/SpecFunc.h.

Special Functions in MathCore

 ROOT::Math::beta(double x,double y) - evaluates the beta function:

)(

)()(
,

yx

yx
yx

 double ROOT::Math::erf(double x) - evaluates the error function encountered in

integrating the normal distribution:

dtexerf

x

t

0

22

 double ROOT::Math::erfc(double x) – evaluates the complementary error function:

dtexerfxerfc
x

t22
)(1

 double ROOT::Math::tgamma(double x) - calculates the gamma function:

dtetx tx

0

1)(

Special Functions in MathMore

 double ROOT::Math::assoc_legendre(unsigned l,unsigned m,double x) -

computes the associated Legendre polynomials (with m≥0, l≥m and |x|<1):

)()1()(2/2 xP
dx

d
xxP lm

m
mm

l

 double ROOT::Math::comp_ellint_1(double k) - calculates the complete elliptic

integral of the first kind (with 0≤k2≤1):
2/

0
22 sin1

)2/,()(
k

d
kFkK

 double ROOT::Math::comp_ellint_2(double k) - calculates the complete elliptic

integral of the second kind (with 0≤k2≤1):

 dkkEkE

2/

0

22 sin1)2/,()(

 double ROOT::Math::comp_ellint_3(double n,double k) - calculates the complete

elliptic integral of the third kind (with 0≤k2≤1):
2/

0
222 sin1)sin1(

)2/,,(
kn

d
kn

 double ROOT::Math::conf_hyperg(double a,double b,double z) - calculates the

confluent hyper-geometric functions of the first kind:

http://seal.web.cern.ch/seal/MathLibs/MathMore/html/index.html
http://seal.web.cern.ch/seal/MathLibs/MathMore/html/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1687.pdf

248 Math Libraries in ROOT

0

11
!)(

)(

)(

)(
);;(

n

n

nnb

zna

a

b
zbaF

 double ROOT::Math::conf_hypergU(double a,double b,double z) - calculates the

confluent hyper-geometric functions of the second kind, known also as Kummer function of the
second type. It is related to the confluent hyper-geometric function of the first kind:

 U(a,b,z)
sin b

1F1(a;b;z)

(a b 1)

z1 b

1F1(a b 1;2 b;z)

(a)

 double ROOT::Math::cyl_bessel_i(double nu,double x) - calculates the modified

Bessel function of the first kind, also called regular modified (cylindrical) Bessel function:

0

2

)1(!

)
2

1
(

)()(
k

kv

v

v

v
kvk

x

ixJixI

 double ROOT::Math::cyl_bessel_j(double nu,double x) - calculates the (cylindrical)

Bessel function of the first kind, also called regular (cylindrical) Bessel function:

0

2

)1(!

)
2

1
()1(

)(
k

kvk

v
kvk

x

xJ

 double ROOT::Math::cyl_bessel_k(double nu,double x) - calculates the modified

Bessel function of the second kind, also called irregular modified (cylindrical) Bessel function for

x>0, v>0:

 integralfor
sin

)()(
lim

2

 integral-nonfor
sin

)()(

2
))()((

2
)(1

xIxI

xIxI

ixiNixJixK

vv

v

v

v

 double ROOT::Math::cyl_neumann(double nu,double x) - calculates the (cylindrical)

Bessel function of the second kind, also called irregular (cylindrical) Bessel function or
(cylindrical) Neumann function:

 integralfor
sin

)(cos
lim

 integral-nonfor
sin

)(cos

)()(xJJ

xJJ

xYxN

vv

vv

 double ROOT::Math::ellint_1(double k,double phi) - calculates incomplete elliptic

integral of the first kind (with 0≤k2≤1):

0
22 sin1

),(
k

d
kF

 double ROOT::Math::ellint_2(double k,double phi) - calculates the complete

elliptic integral of the second kind (with 0≤k2≤1):

0

22 sin1),(dkkE

 double ROOT::Math::ellint_3(double n,double k,double phi) - calculates the

complete elliptic integral of the third kind (with 0≤k2≤1):

0
222 sin1)sin1(

),,(
kn

d
kn

 Math Libraries in ROOT 249

 double ROOT::Math::expint(double x) - calculates the exponential integral:

dt
t

e
xEi

x

t

)(

 double ROOT::Math::hyperg(double a,double b,double c,double x) - calculates

Gauss' hyper-geometric function:

!)(

)()(

)()(

)(
);;,(

0

12
n

x

nc

nbna

ba

c
xcbaF

n

n

 double ROOT::Math::legendre(unsigned l,double x) - calculates the Legendre

polynomials for l≥0, |x|≤1 in the Rodrigues representation:

l

l

l

ll x
dx

d

l
xP)1(

!2

1
)(2

 double ROOT::Math::riemann_zeta(double x) - calculates the Riemann zeta function:

1)1()1()
2

1
sin(2

1
)(

1

1

xxxx

xk
x

xx

k

x

 double ROOT::Math::sph_bessel(unsigned n,double x) - calculates the spherical

Bessel functions of the first kind (also called regular spherical Bessel functions):

)(
2

)(2/1 xJ
x

xj nn

 double ROOT::Math::sph_neumann(unsigned n,double x) - calculates the spherical

Bessel functions of the second kind (also called irregular spherical Bessel functions or spherical
Neumann functions):

)(
2

)()(2/1 xN
x

xyxn nnn

Probability Density Functions (PDF)

Probability density functions of various distributions. All the functions, apart from the discrete ones, have the

extra location parameter x0, which by default is zero. For example, in the case of a gaussian pdf, x0 is the

mean, mu, of the distribution. All the probability density functions are defined in the header file

Math/DistFunc.h and are part of the MathCore libraries. The definition of these functions is documented in

the reference doc for statistical functions:

double ROOT::Math::beta_pdf(double x,double a, double b);

double ROOT::Math::binomial_pdf(unsigned int k,double p,unsigned int n);

double ROOT::Math::breitwigner_pdf(double x,double gamma,double x0=0);

double ROOT::Math::cauchy_pdf(double x,double b=1,double x0=0);

double ROOT::Math::chisquared_pdf(double x,double r,double x0=0);

double ROOT::Math::exponential_pdf(double x,double lambda,double x0=0);

double ROOT::Math::fdistribution_pdf(double x,double n,double m,double x0=0);

double ROOT::Math::gamma_pdf(double x,double alpha,double theta,double x0=0);

double ROOT::Math::gaussian_pdf(double x,double sigma,double x0=0);

double ROOT::Math::landau_pdf(double x,double s,double x0=0);

double ROOT::Math::lognormal_pdf(double x,double m,double s,double x0=0);

double ROOT::Math::normal_pdf(double x,double sigma,double x0=0);

double ROOT::Math::poisson_pdf(unsigned int n,double mu);

double ROOT::Math::tdistribution_pdf(double x,double r,double x0=0);

double ROOT::Math::uniform_pdf(double x,double a,double b,double x0=0);

Cumulative Distribution Functions (CDF)

For all the probability density functions, we have the corresponding cumulative distribution functions and their

complements. The functions with extension _cdf calculate the lower tail integral of the probability density

function:

http://seal.web.cern.ch/seal/MathLibs/5_0_8/MathCore/html/group__StatFunc.html

250 Math Libraries in ROOT

x

dxxpxD ')'()(

while those with the cdf_c extension calculate the upper tail of the probability density function, so-called in

statistics the survival function. For example, the function:

double ROOT::Math::gaussian_cdf(double x,double sigma,double x0=0);

evaluates the lower tail of the Gaussian distribution:

'
2

1
)(

22
0 2/)'(

2
dxexD

xx

x

while the function:

double ROOT::Math::gaussian_cdf_c(double x, double sigma, double x0=0);

evaluates the upper tail of the Gaussian distribution:

'
2

1
)(

22
0 2/)'(

2
dxexD

xx

x

The cumulative distributions functions are defined in the header file Math/ProbFunc.h. The majority of the

CDF's are present in the MathCore, apart from the chisquared, fdistribution, gamma and

tdistribution, which are in the MathMore library.

Inverse of the Cumulative Distribution Functions(Quantiles)

For almost all the cumulative distribution functions (_cdf) and their complements (_cdf_c) present in the

library, we provide the inverse functions. The inverse of the cumulative distribution function is called in statistics

quantile function. The functions with the extension _quantile calculate the inverse of the cumulative

distribution function (lower tail integral of the probability density function), while those with the quantile_c

extension calculate the inverse of the complement of the cumulative distribution (upper tail integral). All the

inverse distributions are in the MathMore library and are defined in the header file Math/ProbFuncInv.h.

The following picture illustrates the available statistical functions (PDF, CDF and quantiles) in the case of the
normal distribution.

Figure 13-2 PDF, CDF and quantiles in the case of the normal distribution

Linear Algebra: SMatrix Package
The ROOT Linear algebra package is documented in a separate chapter (see ―Linear Algebra in ROOT‖).

SMatrix is a C++ package, for high performance vector and matrix computations. It has been introduced in

ROOT v5.08. It is optimized for describing small matrices and vectors and It can be used only in problems when
the size of the matrices is known at compile time, like in the tracking reconstruction of physics experiments. It is
based on a C++ technique, called expression templates, to achieve an high level optimization. The C++
templates can be used to implement vector and matrix expressions such that these expressions can be
transformed at compile time to code which is equivalent to hand optimized code in a low-level language like
FORTRAN or C (see for example T. Veldhuizen, Expression Templates, C++ Report, 1995).

The SMatrix has been developed initially by T. Glebe in Max-Planck-Institut, Heidelberg, as part of the HeraB

analysis framework. A subset of the original package has been now incorporated in the ROOT distribution, with
the aim to provide a stand-alone and high performance matrix package. The API of the current package differs
from the original one, in order to be compliant to the ROOT coding conventions.

SMatrix contains the generic ROOT::Math::SMatrix and ROOT::Math::SVector classes for describing

matrices and vectors of arbitrary dimensions and of arbitrary type. The classes are templated on the scalar type
and on the size, like number of rows and columns for a matrix . Therefore, the matrix/vector dimension has to

 Math Libraries in ROOT 251

be known at compile time. An advantage of using the dimension as template parameters is that the correctness
of dimension in the matrix/vector operations can be checked at compile time.

SMatrix supports, since ROOT v5.10, symmetric matrices using a storage class (ROOT::Math::MatRepSym)

which contains only the N*(N+1)/2 independent element of a NxN symmetric matrix. It is not in the mandate of

this package to provide complete linear algebra functionality. It provides basic matrix and vector functions such
as matrix-matrix, matrix-vector, vector-vector operations, plus some extra functionality for square matrices, like
inversion and determinant calculation. The inversion is based on the optimized Cramer method for squared

matrices of size up to 6x6.

The SMatrix package contains only header files. Normally one does not need to build any library. In the ROOT

distribution a library, libSmatrix is produced with the C++ dictionary information for squared and symmetric

matrices and vectors up to dimension 7 and based on Double_t, Float_t and Double32_t. The following

paragraphs describe the main characteristics of the matrix and vector classes. More detailed information about

the SMatrix classes API is available in the online reference documentation.

Example: Vector Class (SVector)

The template class ROOT::Math::SVector represents n-dimensional vectors for objects of arbitrary type.

This class has 2 template parameters, which define at compile time, its properties: 1) type of the contained
elements (for example float or double); 2) size of the vector. The use of this dictionary is mandatory if one want

to use Smatrix in CINT and with I/O.

Creating a Vector

The following constructors are available to create a vector:

 Default constructor for a zero vector (all elements equal to zero).

 Constructor (and assignment) from a vector expression, like v=p*q+w. Due to the expression

template technique, no temporary objects are created in this operation.

 Constructor by passing directly the elements. This is possible only for vectors up to size 10.

 Constructor from an iterator copying the data referred by the iterator. It is possible to specify the
begin and end of the iterator or the begin and the size. Note that for the Vector the iterator is not

generic and must be of type T*, where T is the type of the contained elements.

In the following example we assume that we are using the namespace ROOT::Math

SVector<double,3> v; //create an empty vector of size 3 (v[0]=v[1]=v[2]=0)

double d[3] = {1,2,3};

SVector<double,3> v(d,3); //create a vector from a C array

Accessing and Setting Methods

The single vector elements can be set or retrieved using the operator[i], operator(i) or the iterator

interface. Notice that the index starts from zero and not from one as in FORTRAN. Also no check is performed

on the passed index. The full vector elements can be set also by using the SetElements function passing a

generic iterator.

double x = m(i); // return the i-th element

x = *(m.begin()+i); // return the i-th element

v[0] = 1; // set the first element

v(1) = 2; // set the second element

*(v.begin()+3) = 3; // set the third element

std::vector<double> w(3);

// set vector elements from a std::vector<double>::iterator

v.SetElements(w.begin(),w.end());

In addition there are methods to place a sub-vector in a vector. If the size of the sub-vector is larger than the
vector size a static assert (a compilation error) is produced.

SVector>double,N> v;

SVector>double,M> w;

// M <= N otherwise a compilation error is obtained later

// place a vector of size M starting from element ioff, v[ioff+i]=w[i]

v.Place_at(w,ioff);

// return a sub-vector of size M starting from v[ioff]: w[i]=v[ioff+i]

w = v.Sub < SVector>double,M> > (ioff);

For the vector functions see later in the Matrix and Vector Operators and Functions paragraph.

http://seal.web.cern.ch/seal/MathLibs/SMatrix/html

252 Math Libraries in ROOT

Example: Matrix Class (SMatrix)

The template class ROOT::Math::SMatrix represents a matrix of arbitrary type with nrows x ncol

dimension. The class has 4 template parameters, which define at compile time, its properties:

 type of the contained elements, T, for example float or double;

 number of rows;

 number of columns;

 representation type. This is a class describing the underlined storage model of the Matrix.
Presently exists only two types of this class:

 ROOT::Math::MatRepStd for a general nrows x ncols matrix. This class is itself a template

on the contained type T, the number of rows and the number of columns. Its data member is an

array T[nrows*ncols] containing the matrix data. The data are stored in the row-major C

convention. For example, for a matrix M, of size 3x3, the data {a0,a1,…,a8} are stored in the

following order:

M

a0 a1 a2

a3 a4 a5

a6 a7 a8

 ROOT::Math::MatRepSym for a symmetric matrix of size NxN. This class is a template on the

contained type and on the symmetric matrix size N. It has as data member an array of type T of

size N*(N+1)/2, containing the lower diagonal block of the matrix. The order follows the lower

diagonal block, still in a row-major convention. For example for a symmetric 3x3 matrix the order

of the 6 independent elements {a0,a1,…,a5} is:

M

a0 a1 a3

a1 a2 a4

a3 a4 a5

Creating a Matrix

The following constructors are available to create a matrix:

 Default constructor for a zero matrix (all elements equal to zero).

 Constructor of an identity matrix.

 Copy constructor (and assignment) for a matrix with the same representation, or from a different
one when possible, for example from a symmetric to a general matrix.

 Constructor (and assignment) from a matrix expression, like D=A*B+C. Due to the expression

template technique, no temporary objects are created in this operation. In the case of an

operation like A=A*B+C, a temporary object is needed and it is created automatically to store the

intermediary result in order to preserve the validity of this operation.

 Constructor from a generic STL-like iterator copying the data referred by the iterator, following its
order. It is both possible to specify the begin and end of the iterator or the begin and the size. In
case of a symmetric matrix, it is required only the triangular block and the user can specify
whether giving a block representing the lower (default case) or the upper diagonal part.

Here are some examples on how to create a matrix. We use typedef's in the following examples to avoid the full
C++ names for the matrix classes. Notice that for a general matrix the representation has the default value,
ROOT::Math::MatRepStd, and it is not needed to be specified. Furthermore, for a general square matrix, the

number of column may be as well omitted.

// typedef definitions used in the following declarations

typedef ROOT::Math::SMatrix<double,3> SMatrix33;

typedef ROOT::Math::SMatrix<double,2> SMatrix22;

typedef ROOT::Math::SMatrix<double,3,3,

 ROOT::Math::MatRepSym<double,3>> SMatrixSym3;

typedef ROOT::Math::SVector>double,2> SVector2;

typedef ROOT::Math::SVector>double,3> SVector3;

typedef ROOT::Math::SVector>double,6> SVector6;

SMatrix33 m0; // create a zero 3x3 matrix

// create an 3x3 identity matrix

SMatrix33 i = ROOT::Math::SMatrixIdentity();

double a[9] = {1,2,3,4,5,6,7,8,9}; // input matrix data

// create a matrix using the a[] data

SMatrix33 m(a,9); // this will produce the 3x3 matrix

 // (1 2 3)

 // (4 5 6)

 // (7 8 9)

Example to fill a symmetric matrix from an std::vector:

 Math Libraries in ROOT 253

std::vector<double> v(6);

for (int i = 0; i<6; ++i) v[i] = double(i+1);

SMatrixSym3 s(v.begin(),v.end()) // this will produce the symmetric matrix

 // (1 2 4)

 // (2 3 5)

 // (4 5 6)

//create a general matrix from a symmetric matrix (the opposite will not compile)

SMatrix33 m2 = s;

Accessing and Setting Methods

The matrix elements can be set using the operator()(irow,icol), where irow and icol are the row and

column indexes or by using the iterator interface. Notice that the indexes start from zero and not from one as in

FORTRAN. Furthermore, all the matrix elements can be set also by using the SetElements function passing a

generic iterator. The elements can be accessed by the same methods as well as by using the function
ROOT::Math::SMatrix::apply. The apply(i) has exactly the same behavior for general and symmetric

matrices; in contrast to the iterator access methods which behave differently (it follows the data order).

SMatrix33 m;

m(0,0) = 1; // set the element in first row and first column

*(m.begin()+1) = 2; // set the second element (0,1)

double d[9]={1,2,3,4,5,6,7,8,9};

m.SetElements(d,d+9); // set the d[] values in m

double x = m(2,1); // return the element in 3rd row and 1st column

x = m.apply(7); // return the 8-th element (row=2,col=1)

x = *(m.begin()+7); // return the 8-th element (row=2,col=1)

// symmetric matrices

//(note the difference in behavior between apply and the iterators)

x = *(m.begin()+4) // return the element (row=2,col=1)

x = m.apply(7); // returns again the (row=2,col=1) element

There are methods to place and/or retrieve ROOT::Math::SVector objects as rows or columns in (from) a

matrix. In addition one can put (get) a sub-matrix as another ROOT::Math::SMatrix object in a matrix. If the

size of the sub-vector or sub-matrix is larger than the matrix size a static assert (a compilation error) is
produced. The non-const methods are:

SMatrix33 m;

SVector2 v2(1,2);

// place a vector in the first row from element (0,1) : m(0,1)=v2[0]

m.Place_in_row(v2,0,1);

// place the vector in the second column from (0,1) : m(0,1) = v2[0]

m.Place in_col(v2,0,1);

SMatrix22 m2;

// place m2 in m starting from the element (1,1) : m(1,1) = m2(0,0)

m.Place_at(m2,1,1);

SVector3 v3(1,2,3);

// set v3 as the diagonal elements of m : m(i,i) = v3[i] for i=0,1,2

m.SetDiagonal(v3)

The const methods retrieving contents (getting slices of a matrix) are:

a = {1,2,3,4,5,6,7,8,9};

SMatrix33 m(a,a+9);

SVector3 irow = m.Row(0); // return as vector the first row

SVector3 jcol = m.Col(1); // return as vector the second column

// return a slice of the first row from (0,1): r2[0]= m(0,1); r2[1]=m(0,2)

SVector2 r2 = m.SubRow<SVector2> (0,1);

// return a slice of the second column from (0,1): c2[0] = m(0,1); c2[1] = m(1,1)

SVector2 c2 = m.SubCol<SVector2> (1,0);

// return a sub-matrix 2x2 with the upper left corner at(1,1)

SMatrix22 subM = m.Sub<SMatrix22> (1,1);

// return the diagonal element in a SVector

SVector3 diag = m.Diagonal();

// return the upper(lower) block of the matrix m

SVector6 vub = m.UpperBlock(); // vub = [1, 2, 3, 5, 6, 9]

SVector6 vlb = m.LowerBlock(); // vlb = [1, 4, 5, 7, 8, 9]

254 Math Libraries in ROOT

Linear Algebra Matrix Functions (Inversion, Determinant)

Only limited linear algebra functionality is available for SMatrix. It is possible for squared matrices NxN, to find

the inverse or to calculate the determinant. Different inversion algorithms are used if the matrix is smaller than

6x6 or if it is symmetric. In the case of a small matrix, a faster direct inversion is used. For a large (N>6)

symmetric matrix the Bunch-Kaufman diagonal pivoting method is used while for a large (N>6) general matrix

an LU factorization is performed using the same algorithm as in the CERNLIB routine dinv.

// Invert a NxN matrix.

// The inverted matrix replaces the existing one if the result is successful

bool ret = m.Invert(); // return the inverse matrix of m.

// If the inversion fails ifail is different than zero ???

int ifail = 0;

ifail = m.Inverse(ifail);

// determinant of a square matrix - calculate the determinant modyfing the

// matrix content and rerutns it if the calculation was successful

double det;

bool ret = m.Det(det);

// calculate determinant by using a temporary matrix; preserves matrix content

bool ret = n.Det2(det);

Example: Matrix and Vector Functions and Operators

Matrix and Vector Operators

The ROOT::Math::SVector and ROOT::Math::SMatrix classes define the following operators described

below. The m1, m2, m3 are vectors or matrices of the same type (and size) and a is a scalar value:

m1 == m2 //returns whether m1 is equal to m2 (element by element comparison)

m1 != m2 //returns whether m1 is NOT equal to m2 (element by element comparison)

m1 < m2 //returns whether m1 is less than m2 (element wise comparison)

m1 > m2 //returns whether m1 is greater than m2 (element wise comparison)

//in the following m1 and m3 can be general and m2 symmetric, but not vice-versa

m1 += m2 // add m2 to m1

m1 -= m2 // subtract m2 to m1

m3 = m1 + m2 // addition

m1 - m2 // subtraction

// Multiplication and division via a scalar value a

m3 = a*m1; m3 = m1*a; m3 = m1/a;

Vector-Vector multiplication: The operator * defines an element by element multiplication between vectors.

For the standard vector-vector algebraic multiplication returning a scalar, vTv (dot product), one must use the

ROOT::Math::Dot function. In addition, the Cross (only for vector sizes of 3), ROOT::Math::Cross, and the

Tensor product, ROOT::Math::TensorProd, are defined.

Matrix - Vector multiplication: The operator * defines the matrix-vector multiplication:

yi Mi, j
j

x j . The operation compiles only if the matrix and the vectors have the right sizes.

// M is a N1xN2 matrix, x is a N2 size vector, y is a N1 size vector

y = M * x

Matrix - Matrix multiplication: The operator * defines the matrix-matrix multiplication:

Ci, j Ai,k
k

Bk, j .

// A is a N1xN2 matrix, B is a N2xN3 matrix and C is a N1xN3 matrix

C = A * B

The operation compiles only if the matrices have the right size. In the case that A and B are symmetric matrices,

C is a general one, since their product is not guaranteed to be symmetric.

 Math Libraries in ROOT 255

Matrix and Vector Functions

The most used matrix functions are:

 ROOT::Math::Transpose(M) returns the transpose matrix MT

 ROOT::Math::Similarity(v,M) returns the scalar value resulting from the matrix-vector

product vTMv

 ROOT::Math::Similarity(U,M) returns the matrix resulting from the product: U M UT. If M is

symmetric, the returned resulting matrix is also symmetric

 ROOT::Math::SimilarityT(U,M) returns the matrix resulting from the product: UT M U. If M

is symmetric, the returned resulting matrix is also symmetric

The major vector functions are:

 ROOT::Math::Dot(v1,v2) returns the scalar value resulting from the vector dot product

 ROOT::Math::Cross(v1,v2) returns the vector cross product for two vectors of size 3. Note

that the Cross product is not defined for other vector sizes

 ROOT::Math::Unit(v) returns unit vector. One can use also the v.Unit() method.

 ROOT::Math::TensorProd(v1,v2) returns a general matrix M of size N1xN2 resulting from

the tensor product between the vector v1 of size N1 and v2 of size N2:

For a list of all the available matrix and vector functions see the SMatrix online reference documentation.

Matrix and Vector I/O

One can print (or write in an output stream) Vectors and Matrices) using the Print method or the << operator:

// m is a SMatrix or a SVector object

m.Print(std::cout);

std::cout << m << std::endl;

In the ROOT distribution, the CINT dictionary is generated for SMatrix and SVector for for Double_t,

Float_t and Double32_t up to dimension 7. This allows the possibility to store them in a ROOT file.

Minuit2 Package
Minuit2 is a new object-oriented implementation, written in C++, of the popular MINUIT minimization package.

Compared with the TMinuit class, which is a direct conversion from FORTRAN to C++, Minuit2 is a

complete redesign and re-implementation of the package. This new version provides all the functionality present
in the old FORTRAN version, with almost equivalent numerical accuracy and computational performances.
Furthermore, it contains new functionality, like the possibility to set single side parameter limits or the FUMILI
algorithm (see ―FUMILI Minimization Package‖ in ―Fitting Histograms‖ chapter), which is an optimized method

for least square and log likelihood minimizations. Minuit2 has been originally developed by M. Winkler and F.

James in the SEAL project. More information can be found on the MINUIT Web Site and in particular at the
following documentation page at http://www.cern.ch/minuit/doc/doc.html.

The API has been then changed in this new version to follow the ROOT coding convention (function names
starting with capital letters) and the classes have been moved inside the namespace ROOT::Minuit2. In

addition, the ROOT distribution contains classes needed to integrate Minuit2 in the ROOT framework, like

TFitterMinuit and TFitterFumili. Minuit2 can be used in ROOT as another fitter plug-in. For example

for using it in histogram fitting, one only needs to do:

TVirtualFitter::SetDefaultFitter("Minuit2"); //or Fumili2 for the FUMILI

algorithmhistogram->Fit();

For minimization problem, providing an FCN function to minimize, one can do:

TVirtualFitter::SetDefaultFitter("Minuit2");

TVirtualFitter * minuit2 = TVirtualFitter::Fitter(0,2);

Then set the parameters, the FCN and minimize using the TVirtualFitter methods: SetParameter,

SetFCN and ExecuteCommand. The FCN function can also be given to Minuit2 as an instance of a class

implementing the ROOT::Minuit2::FCNBase interface. In this case one must use directly the

TFitterMinuit class via the method SetMinuitFCN.

Examples on how to use the Minuit2 and Fumili2 plug-ins are provided in the tutorials‘ directory

$ROOTSYS/tutorials/fit: minuit2FitBench.C, minuit2FitBench2D.C and minuit2GausFit.C.

More information on the classes and functions present in Minuit2 is available at online reference

documentation. In addition, the C++ MINUIT User Guide provides all the information needed for using directly
the package without TVirtualFitter interface (see http://seal.cern.ch/documents/minuit/mnusersguide.pdf).

Useful information on MINUIT and minimization in general is provided in the following documents:

F. James, Minuit Tutorial on Function Minimization (http://seal.cern.ch/documents/minuit/mntutorial.pdf);
F. James, The Interpretation of Errors in Minuit (http://seal.cern.ch/documents/minuit/mnerror.pdf);

http://www.cern.ch/minuit
http://www.cern.ch/minuit/doc/doc.html
http://seal.web.cern.ch/seal/MathLibs/Minuit2/html/
http://seal.web.cern.ch/seal/MathLibs/Minuit2/html/
http://seal.cern.ch/documents/minuit/mnusersguide.pdf
http://seal.cern.ch/documents/minuit/mntutorial.pdf
http://seal.cern.ch/documents/minuit/mnerror.pdf

256 Math Libraries in ROOT

ROOT Statistics Classes

Classes for Computing Limits and Confidence Levels

TFeldmanCousins class calculates the CL upper/lower limit for a Poisson process using the Feldman-Cousins

method (as described in PRD V57 #7, p3873-3889). No treatment is provided in this method for the
uncertainties in the signal or the background.

TRolke computes confidence intervals for the rate of a Poisson process in the presence of background and

efficiency, using the profile likelihood technique for treating the uncertainties in the efficiency and background
estimate. The signal is always assumed to be Poisson; background may be Poisson, Gaussian, or user-
supplied; efficiency may be Binomial, Gaussian, or user-supplied. See publication at Nucl. Instrum. Meth.
A551:493-503,2005.

TLimit class computes 95% C.L. limits using the Likelihood ratio semi-Bayesian method (CLs method; see

e.g. T. Junk, NIM A434, p. 435-443, 1999). It takes signal background and data histograms wrapped in a
TLimitDataSource as input, and runs a set of Monte Carlo experiments in order to compute the limits. If needed,
inputs are fluctuated according to systematic.

Specialized Classes for Fitting

TFractionFitter fits Monte Carlo (MC) fractions to data histogram (a la HMCMLL, R. Barlow and C.

Beeston, Comp. Phys. Comm. 77 (1993) 219-228). It takes into account both data and Monte Carlo statistical
uncertainties through a likelihood fit using Poisson statistics. However, the template (MC) predictions are also
varied within statistics, leading to additional contributions to the overall likelihood. This leads to many more fit
parameters (one per bin per template), but the minimization with respect to these additional parameters is done
analytically rather than introducing them as formal fit parameters. Some special care needs to be taken in the
case of bins with zero content.

TMultiDimFit implements multi-dimensional function parameterization for multi-dimensional data by fitting

them to multi-dimensional data using polynomial or Chebyshev or Legendre polynomial

TSpectrum contains advanced spectra processing functions for 1- and 2-dimensional background estimation,

smoothing, deconvolution, peak search and fitting, and orthogonal transformations.

RooFit is a complete toolkit for fitting and data analysis modeling (see the RooFit User Guide at

ftp://root.cern.ch/root/doc/RooFit_Users_Manual_2.07-29.pdf)

TSplot - to disentangle signal from background via an extended maximum likelihood fit and with a tool to

access the quality and validity of the fit producing distributions for the control variables. (see M. Pivk and F.R.
Le Diberder, Nucl. Inst. Meth.A 555, 356-369, 2005).

Multi-variate Analysis Classes

TMultiLayerPerceptron is a Neural Network class (see for more details the chapter ―Neural Networks‖).

TPrincipal provides the Principal Component Analysis.

TRobustEstimator is a robust method for minimum covariance determinant estimator (MCD).

TMVA is a package for multivariate data analysis (see http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf

the User‘s Guide).

http://root.cern.ch/root/doc/TomJunk.pdf
http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf

 Linear Algebra in ROOT 257

14 Linear Algebra in ROOT

The linear algebra package is supposed to give a complete environment in ROOT to perform calculations like
equation solving and eigenvalue decompositions. Most calculations are performed in double precision. For
backward compatibility, some classes are also provided in single precision like TMatrixF, TMatrixFSym and

TVectorF. Copy constructors exist to transform these into their double precision equivalent, thereby allowing

easy access to decomposition and eigenvalue classes, only available in double precision.

The choice was made not to provide the less frequently used complex matrix classes. If necessary, users can
always reformulate the calculation in 2 parts, a real one and an imaginary part. Although, a linear equation
involving complex numbers will take about a factor of 8 more computations, the alternative of introducing a set
of complex classes in this non-template library would create a major maintenance challenge.

Another choice was to fill in both the upper-right corner and the bottom-left corner of a symmetric matrix.
Although most algorithms use only the upper-right corner, implementation of the different matrix views was
more straightforward this way. When stored only the upper-right part is written to file.

For a detailed description of the interface, the user should look at the root reference guide at:
http://root.cern.ch/root/Reference.html

Overview of Matrix Classes
The figure below shows an overview of the classes available in the linear algebra library, libMatrix.so. At

the center is the base class TMatrixDBase from which three different matrix classes, TMatrixD,

TMatrixDSym and TMatrixDFSparse derive. The user can define customized matrix operations through the

classes TElementActionD and TElementsPosActionD.

Figure 14-1 Overview of matrix classes

Reference to different views of the matrix can be created through the classes on the right-hand side, see ―Matrix
Views‖. These references provide a natural connection to vectors.

Matrix decompositions (used in equation solving and matrix inversion) are available through the classes on the
left-hand side (see ―Matrix Decompositions‖). They inherit from the TDecompBase class. The Eigen Analysis is

performed through the classes at the top, see ―Matrix Eigen Analysis‖. In both cases, only some matrix types
can be analyzed. For instance, TDecompChol will only accept symmetric matrices as defined TMatrixDSym.

The assignment operator behaves somewhat different than of most other classes. The following lines will result
in an error:

TMatrixD a(3,4);

TMatrixD b(5,6);

b = a;

It required to first resize matrix b to the shape of a.

TMatrixD a(3,4);

TMatrixD b(5,6);

b.ResizeTo(a);

b = a;

http://root.cern.ch/root/Reference.html

258 Linear Algebra in ROOT

Matrix Properties
A matrix has five properties, which are all set in the constructor:

 precision - float or double. In the first case you will use the TMatrixF class family, in the latter

case the TMatrixD one;

 type - general (TMatrixD), symmetric (TMatrixDSym) or sparse (TMatrixDSparse);

 size - number of rows and columns;

 index - range start of row and column index. By default these start at zero;

 sparse map - this property is only relevant for a sparse matrix. It indicates where elements are

unequal zero.

Accessing Properties

The following table shows the methods to access the information about the relevant matrix property:

Method Descriptions

Int_t GetRowLwb() row lower-bound index

Int_t GetRowUpb() row upper-bound index

Int_t GetNrows() number of rows

Int_t GetColLwb() column lower-bound index

Int_t GetColUpb() column upper-bound index

Int_t GetNcols() number of columns

Int_t GetNoElements() number of elements, for a dense matrix this equals: fNrows x
fNcols

Double_t GetTol() tolerance number which is used in decomposition operations

Int_t *GetRowIndexArray() for sparse matrices, access to the row index of fNrows+1

entries

Int_t *GetColIndexArray() for sparse matrices, access to the column index of fNelems

entries

The last two methods in this table are specific to the sparse matrix, which is implemented according to the

Harwell-Boeing format. Here, besides the usual shape/size descriptors of the matrix like fNrows, fRowLwb,

fNcols and fColLwb, we also store a row index, fRowIndex and column index, fColIndex for the elements

unequal zero:

fRowIndex[0,..,fNrows]:

Stores for each row the index range of the elements in the data
and column array

fColIndex[0,..,fNelems-1]: Stores the column number for each data element != 0.

The code to print all matrix elements unequal zero would look like:

TMatrixDSparse a;

const Int_t *rIndex = a.GetRowIndexArray();

const Int_t *cIndex = a.GetColIndexArray();

const Double_t *pData = a.GetMatrixArray();

for (Int_t irow = 0; irow < a.getNrows(); irow++) {

 const Int_t sIndex = rIndex[irow];

 const Int_t eIndex = rIndex[irow+1];

 for (Int_t index = sIndex; index < eIndex; index++) {

 const Int_t icol = cIndex[index];

 const Double_t data = pData[index];

 printf("data(%d,%d) = %.4e\n",irow+a.GetfRowLwb(),

 icol+a.GetColLwb(),data);

 }

}

Setting Properties

The following table shows the methods to set some of the matrix properties. The resizing procedures will

maintain the matrix elements that overlap with the old shape. The optional last argument nr_zeros is only

relevant for sparse matrices. If supplied, it sets the number of non-zero elements. If it is smaller than the

number overlapping with the old matrix, only the first (row-wise) nr_zeros are copied to the new matrix.

 Linear Algebra in ROOT 259

Method Descriptions

SetTol(Double_t tol) set the tolerance number

ResizeTo(Int_t nrows,Int_t ncols,

 Int_t nr_nonzeros=-1)

change matrix shape to nrows × ncols. Index

will start at zero

ResizeTo(Int_t row_lwb,Int_t row_upb,

 Int_t col_lwb,Int_t col_upb,

 Int_t nr_nonzeros=-1)

change matrix shape to

row_lwb:row_upb × col_lwb:col_upb

SetRowIndexArray(Int_t *data) for sparse matrices, set the row index. The

array data should contains at least fNrows+1

entries column lower-bound index

SetColIndexArray(Int_t *data) for sparse matrices, set the column index. The

array data should contains at least fNelems

entries

SetSparseIndex(Int_t nelems new) allocate memory for a sparse map of

nelems_new elements and copy (if exists) at

most nelems_new matrix elements over to the

new structure

SetSparseIndex(const TMatrixDBase &a) copy the sparse map from matrix a Note that

this can be a dense matrix!

SetSparseIndexAB(const TMatrixDSparse &a,

 const TMatrixDSparse &b)

set the sparse map to the same of the map of

matrix a and b

The second half of the table is only relevant for sparse matrices. These methods define the sparse structure. It
should be clear that a call to any of these methods has to be followed by a SetMatrixArray (...) which will

supply the matrix data, see the next chapter ―Creating and Filling a Matrix‖.

Creating and Filling a Matrix
The matrix constructors are listed in the next table. In the simplest ones, only the number of rows and columns
is given. In a slightly more elaborate version, one can define the row and column index range. Finally, one can
also define the matrix data in the constructor. In Matrix Operators and Methods we will encounter more fancy
constructors that will allow arithmetic operations.

TMatrixD(Int_t nrows,Int_t ncols)

TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb)

TMatrixD(Int_t nrows,Int_t ncols,const Double_t *data, Option_t option="")

TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,

 const Double_t *data,Option_t *option="")

TMatrixDSym(Int_t nrows)

TMatrixDSym(Int_t row_lwb,Int_t row_upb)

TMatrixDSym(Int_t nrows,const Double_t *data,Option_t *option="")

TMatrixDSym(Int_t row_lwb,Int_t row_upb,const Double_t *data, Option_t *opt="")

TMatrixDSparse(Int_t nrows,Int_t ncols)

TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb, Int_t col_upb)

TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,

 Int_t nr_nonzeros,Int_t *row,Int_t *col,Double_t *data)

If only the matrix shape is defined in the constructor, matrix data has to be supplied and possibly the sparse
structure. In ―Setting Properties‖ was discussed how to set the sparse structure.

Several methods exist to fill a matrix with data:

SetMatrixArray(const Double_t*data,Option_t*option=""), copies the array data. If option="F",

the array fills the matrix column-wise else row-wise. This option is only implemented for TMatrixD and

TMatrixDSym. It is expected that the array data contains at least fNelems entries.

SetMatrixArray(Int_t nr,Int_t *irow,Int_t *icol,Double_t *data), is only available for

sparse matrices. The three arrays should each contain nr entries with row index, column index and data entry.

Only the entries with non-zero data value are inserted!

260 Linear Algebra in ROOT

operator() or operator[], these operators provide the easiest way to fill a matrix but are in particular for a

sparse matrix expensive. If no entry for slot (i,j) is found in the sparse index table it will be entered, which

involves some memory management! Therefore, before invoking this method in a loop it is wise to set the index

table first through a call to the SetSparseIndex method.

SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixDBase &source), the matrix to be inserted

at position (row_lwb,col_lwb) can be both, dense or sparse.

Use(...) allows inserting another matrix or data array without actually copying the data. Next table shows the

different flavors for the different matrix types.

Use(TMatrixD &a)

Use(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,Double_t *data)

Use(Int_t nrows,Int_t ncols,Double_t *data)

Use(TMatrixDSym &a)

Use(Int_t nrows,Double_t *data)

Use(Int_t row_lwb,Int_t row_upb,Double_t *data)

Use(TMatrixDSparse &a)

Use(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,Int_t nr_nonzeros,

 Int_t *pRowIndex,Int_t *pColIndex,Double_t *pData)

Use(Int_t nrows,Int_t ncols,Int_t nr_nonzeros,Int_t *pRowIndex,

 Int_t *pColIndex,Double_t *pData)

Below follow a few examples of creating and filling a matrix. First we create a Hilbert matrix by copying an array.

TMatrixD h(5,5);

TArrayD data(25);

for (Int_t = 0; i < 25; i++) {

 const Int_t ir = i/5;

 const Int_t ic = i%5;

 data[i] = 1./(ir+ic);

}

h.SetMatrixArray(data.GetArray());

We also could assign the data array to the matrix without actually copying it.

TMatrixD h; h.Use(5,5,data.GetArray());

h.Invert();

The array data now contains the inverted matrix. Finally, create a unit matrix in sparse format.

TMatrixDSparse unit1(5,5);

TArrayI row(5),col(5);

for (Int_t i = 0; i < 5; i++) row[i] = col[i] = i;

TArrayD data(5); data.Reset(1.);

unit1.SetMatrixArray(5,row.GetArray(),col.GetArray(),data.GetArray());

TMatrixDSparse unit2(5,5);

unit2.SetSparseIndex(5);

unit2.SetRowIndexArray(row.GetArray());

unit2.SetColIndexArray(col.GetArray());

unit2.SetMatrixArray(data.GetArray());

Matrix Operators and Methods
It is common to classify matrix/vector operations according to BLAS (Basic Linear Algebra Subroutines) levels,
see following table:

BLAS level operations example floating-point operations

1 vector-vector x
T
y n

2 matrix-vector matrix A x n
2

3 matrix-matrix A B n
3

Most level 1, 2 and 3 BLAS are implemented. However, we will present them not according to that classification
scheme it is already boring enough.

 Linear Algebra in ROOT 261

Arithmetic Operations between Matrices

Description Format Comment

element

wise sum

C=A+B

A+=B

Add(A,alpha,B)

TMatrixD(A,TMatrixD::kPlus,B)

overwrites A

A += α B constructor

element wise subtraction

C=A-B

A-=B

TMatrixD(A,TMatrixD::kMinus,B)

overwrites A

constructor

matrix multiplication

C=A*B

A*=B

C.Mult(A,B)

overwrites A

TMatrixD(A,TMatrixD::kMult,B) constructor of BA

TMatrixD(A,TMatrixD::kTransposeMult,B) constructor of BAT

TMatrixD(A,TMatrixD::kMultTranspose,B) constructor of
TBA

element wise

multiplication

element wise division

ElementMult(A,B)

ElementDiv(A,B)

A(i,j)*= B(i,j)

A(i,j)/= B(i,j)

Arithmetic Operations between Matrices and Real Numbers

Description Format Comment

element wise sum

C=r+A

C=A+r

A+=r
overwrites A

element wise subtraction

C=r-A

C=A-r

A-=r
overwrites A

matrix multiplication

C=r*A

C=A*r

A*=r
overwrites A

Comparisons and Boolean Operations

The following table shows element wise comparisons between two matrices:

Format Output Description

A == B Bool_t equal to

A != B

A > B

A >= B

A < B

A <= B

matrix
matrix
matrix
matrix
matrix

Not equal
Greater than
Greater than or equal to
Smaller than
Smaller than or equal to

AreCompatible(A,B)

Compare(A,B)

VerifyMatrixIdentity(A,B,verb, maxDev)

Bool_t

Bool_t

Compare matrix properties

return summary of comparison

Check matrix identity within maxDev

tolerance

262 Linear Algebra in ROOT

The following table shows element wise comparisons between matrix and real:

Format Output Description

A == r

A != r

A > r

A >= r

A < r

A <= r

Bool_t

Bool_t

Bool_t

Bool_t

Bool_t

Bool_t

equal to
Not equal
Greater than
Greater than or equal to
Smaller than
Smaller than or equal to

VerifyMatrixValue(A,r,verb, maxDev) Bool_t
Compare matrix value with r within

maxDev tolerance

Matrix Norms

Format Output Description

A.RowNorm()

A.NormInf()

A.ColNorm()

A.Norm1()

A.E2Norm()

A.NonZeros()

A.Sum()

A.Min()

A.Max()

Double_t

Double_t

Double_t

Double_t

Double_t

Int_t

Double_t

Double_t

Double_t

norm induced by the infinity vector norm,

maxi iji A

maxi ijj A

norm induced by the 1 vector norm, maxj iji A

maxj iji A

Square of the Euclidean norm,
2

ijji A

number of elements unequal zero

ijji A

minij ijA

maxij ijA

A.NormByColumn(v,"D")

A.NormByRow(v,"D")

TMatrixD

TMatrixD

iij vA / , divide each matrix column by vector v. If

the second argument is ―M―, the column is multiplied.

jij vA / , divide each matrix row by vector v. If the

second argument is ―M―, the row is multiplied.

Miscellaneous Operators

Format Output Description

A.Zero() TMatrixX 0ijA

A.Abs() TMatrixX
ijij AA

A.Sqr()
TMatrixX

2

ijij AA

A.Sqrt() TMatrixX
ijij AA

A.UnitMatrix() TMatrixX 1ijA for i ==j else 0

A.Randomize(alpha,beta,seed) TMatrixX

1,0ijA , a random

matrix is generated with elements uniformly

distributed between α and β

 Linear Algebra in ROOT 263

A.T() TMatrixX jiij AA

A.Transpose(B) TMatrixX jiij BA

A.Invert(&det) TMatrixX

Invert matrix A. If the optional pointer to the

Double_t argument det is supplied, the

matrix determinant is calculated.

A.InvertFast(&det) TMatrixX

like Invert but for matrices

i =(6x6)a faster but less accurate Cramer

algorithm is used

A.Rank1Update(v,alpha) TMatrixX
Perform with vector v a rank 1 operation on

the matrix:
TAA

A.RandomizePD (alpha,beta,seed) TMatrixX

1,0ijA , a

random symmetric positive-definite matrix is
generated with elements uniformly distributed

between and

Output TMatrixX indicates that the returned matrix is of the same type as A, being TMatrixD, TMatrixDSym

or TMatrixDSparse. Next table shows miscellaneous operations for TMatrixD.

Format Output Description

A.Rank1Update(v1,v2,alpha) TMatrixD

Perform with vector v1 and v2, a rank 1

operation on the matrix:
TAA 2

Matrix Views
Another way to access matrix elements is through the matrix-view classes, TMatrixDRow, TMatrixDColumn,

TMatrixDDiag and TMatrixDSub (each has also a const version which is obtained by simply appending

const to the class name). These classes create a reference to the underlying matrix, so no memory
management is involved. The next table shows how the classes access different parts of the matrix:

class view

TMatrixDRow const(X,i)

TMatrixDRow(X,i)

nnn

inijio

onoo

xx

xxx

xx

0

......

TMatrixDColumn const(X,j)

TMatrixDColumn(X,j)

nnnjn

ij

onojoo

xxx

x

xxx

0

...

...

TMatrixDDiag const(X)

TMatrixDDiag(X)

nnn

onoo

xx

xx

0

...

...

...

TMatrixDSub const(X,i,l,j,k)

TMatrixDSub(X,i,l,j,k)

nnn

lklj

ikij

onoo

xx

xx

xx

xx

0

...

...

264 Linear Algebra in ROOT

View Operators

For the matrix views TMatrixDRow, TMatrixDColumn and TMatrixDDiag, the necessary assignment

operators are available to interact with the vector class TVectorD. The sub matrix view TMatrixDSub has

links to the matrix classes TMatrixD and TMatrixDSym. The next table summarizes how the access individual

matrix elements in the matrix views:

Format Comment

TMatrixDRow(A,i)(j)

TMatrixDRow(A,i)[j]
element ijA

TMatrixDColumn(A,j)(i)

TMatrixDColumn(A,j)[i]
element ijA

TMatrixDDiag(A(i)

TMatrixDDiag(A[i]
element iiA

TMatrixDSub(A(i)

TMatrixDSub(A,rl,rh,cl,ch)(i,j)

element iiA

element jclirlA ,

The next two tables show the possible operations with real numbers, and the operations between the matrix
views:

Description Format Comment

assign real

TMatrixDRow(A,i) = r

TMatrixDColumn(A,j) = r

TMatrixDDiag(A) = r

TMatrixDSub(A,i,l,j,k) = r

row i

column j

matrix diagonal

sub matrix

add real

TMatrixDRow(A,i) += r

TMatrixDColumn(A,j) += r

TMatrixDDiag(A) += r

TMatrixDSub(A,i,l,j,k) += r

row i

column j

matrix diagonal

sub matrix

multiply with

real

TMatrixDRow(A,i) *= r

TMatrixDColumn(A,j) *= r

TMatrixDDiag(A) *= r

TMatrixDSub(A,i,l,j,k) *= r

row i

column j

matrix diagonal

sub matrix

Description Format Comment

add matrix
slice

TMatrixDRow(A,i1) +=

TMatrixDRow const(B,i2)
add row 2i to row 1i

TMatrixDColumn(A,j1) +=

TMatrixDColumn const(A,j2)
add column 2j to column 1j

TMatrixDDiag(A) +=

TMatrixDDiag const(B) add B diagonal to A diagonal

multiply
matrix slice

TMatrixDRow(A,i1) *=

TMatrixDRow const(B,i2)
multiply row 2i with row 1i element wise

TMatrixDColumn(A,j1) *=

TMatrixDColumn const(A,j2)

multiply column 2j with column 1j element

wise

TMatrixDDiag(A) *=

TMatrixDDiag const(B)
multiply B diagonal with A diagonal element
wise

TMatrixDSub(A,i1,l1,j1,k1) *=

TMatrixDSub(B,i2,l2,j2,k2) multiply sub matrix of A with sub matrix of B

TMatrixDSub(A,i,l,j,k) *= B multiply sub matrix of A with matrix of B

In the current implementation of the matrix views, the user could perform operations on a symmetric matrix that
violate the symmetry. No checking is done. For instance, the following code violates the symmetry.

 Linear Algebra in ROOT 265

TMatrixDSym A(5);

A.UnitMatrix();

TMatrixDRow(A,1)[0] = 1;

TMatrixDRow(A,1)[2] = 1;

View Examples

Inserting row i1 into row i2 of matrix A can easily accomplished through:

TMatrixDRow(A,i1) = TMatrixDRow(A,i2)

Which more readable than:

const Int_t ncols = A.GetNcols();

Double_t *start = A.GetMatrixArray();

Double_t *rp1 = start+i*ncols;

const Double_t *rp2 = start+j*ncols;

while (rp1 < start+ncols)

*rp1++ = *rp2++;

Check that the columns of a Haar -matrix of order order are indeed orthogonal:

const TMatrixD haar = THaarMatrixD(order);

TVectorD colj(1<<order);

TVectorD coll(1<<order);

for (Int_t j = haar.GetColLwb(); j <= haar.GetColUpb(); j++) {

 colj = TMatrixDColumn_const(haar,j);

 Assert(TMath::Abs(colj*colj-1.0) <= 1.0e-15);

 for (Int_t l = j+1; l <= haar.GetColUpb(); l++) {

 coll = TMatrixDColumn_const(haar,l);

 Assert(TMath::Abs(colj*coll) <= 1.0e-15);

 }

}

Multiplying part of a matrix with another part of that matrix (they can overlap)

TMatrixDSub(m,1,3,1,3) *= m.GetSub(5,7,5,7);

Matrix Decompositions
The linear algebra package offers several classes to assist in matrix decompositions. Each of the
decomposition methods performs a set of matrix transformations to facilitate solving a system of linear
equations, the formation of inverses as well as the estimation of determinants and condition numbers. More
specifically the classes TDecompLU, TDecompBK, TDecompChol, TDecompQRH and TDecompSVD give a

simple and consistent interface to the LU, Bunch-Kaufman, Cholesky, QR and SVD decompositions. All of these
classes are derived from the base class TDecompBase of which the important methods are listed in next table:

Method Action

Bool_t Decompose() perform the matrix decomposition

Double_t Condition()
calculate ||A||1 ||A

-1
||1, see ―Condition number―

void Det(Double_t &d1,Double_t &d2)
the determinant is d1 2

2d
. Expressing the

determinant this way makes under/over-flow very
unlikely

Bool_t Solve(TVectorD &b) solve Ax=b; vector b is supplied through the

argument and replaced with solution x

TVectorD Solve(const TVectorD &b,

 Bool_t &ok)
solve Ax=b; x is returned

Bool_t Solve(TMatrixDColumn &b) solve Ax=column(B,j); column(B,j) is

supplied through the argument and replaced with

solution x

Bool_t TransSolve(TVectorD &b) solve ATx=b; vector b is supplied through the

argument and replaced with solution x

TVectorD TransSolve(const TVectorD b,

 Bool_t &ok)
solve ATx=b; vector x is returned

266 Linear Algebra in ROOT

Bool_t TransSolve(TMatrixDColumn &b) solve A
T
x=column(B,j); column(B,j) is

supplied through the argument and replaced with

solution x

Bool_t MultiSolve(TMatrixD &B) solve AX=B. matrix B is supplied through the

argument and replaced with solution X

void Invert(TMatrixD &inv) call to MultiSolve with as input argument the

unit matrix. Note that for a matrix (m x n)− A with

m>n, a pseudo-inverse is calculated

TMatrixD Invert() call to MultiSolve with as input argument the

unit matrix. Note that for a matrix (m x n)− A with

m>n, a pseudo-inverse is calculated

Through TDecompSVD and TDecompQRH one can solve systems for a (m x n) − A with m>n. However, care has

to be taken for methods where the input vector/matrix is replaced by the solution. For instance in the method
Solve(b), the input vector should have length m but only the first n entries of the output contain the solution.

For the Invert(B) method, the input matrix B should have size (m x m) so that the returned (m x n) pseudo-

inverse can fit in it.

The classes store the state of the decomposition process of matrix A in the user-definable part of
TObject::fBits, see the next table. This guarantees the correct order of the operations:

kMatrixSet

kDecomposed

kDetermined

kCondition

kSingular

A assigned

A decomposed, bit kMatrixSet must have been set.

det (A) calculated, bit kDecomposed must have been set.

||A||1 ||A
-1

||1 is calculated bit kDecomposed must have been set.

A is singular

The state is reset by assigning a new matrix through SetMatrix(TMatrixD &A) for TDecompBK and

TDecompChol (actually SetMatrix(TMatrixDSym &A) and SetMatrix(TMatrixDSparse &A) for

TMatrixDSparse).

As the code example below shows, the user does not have to worry about the decomposition step before calling

a solve method, because the decomposition class checks before invoking Solve that the matrix has been

decomposed.

TVectorD b = ..;

TMatrixD a = ..;

.

TDecompLU lu(a);

Bool_t ok;

lu.Solve(b,ok);

In the next example, we show again the same decomposition but now performed in a loop and all necessary
steps are manually invoked. This example also demonstrates another very important point concerning memory
management! Note that the vector, matrix and decomposition class are constructed outside the loop since the
dimensions of vector/matrix are constant. If we would have replaced lu.SetMatrix(a) by TDecompLU

lu(a), we would construct/deconstruct the array elements of lu on the stack.

TVectorD b(n);

TMatrixD a(n,n);

TDecompLU lu(n);

Bool_t ok;

for (....) {

 b = ..;

 a = ..;

 lu.SetMatrix(a);

 lu.Decompose();

 lu.Solve(b,ok);

}

Tolerances and Scaling

The tolerance parameter fTol (a member of the base class TDecompBase) plays a crucial role in all

operations of the decomposition classes. It gives the user a tool to monitor and steer the operations its default

value is ε where 1+ε=1.

 Linear Algebra in ROOT 267

If you do not want to be bothered by the following considerations, like in most other linear algebra packages,

just set the tolerance with SetTol to an arbitrary small number. The tolerance number is used by each

decomposition method to decide whether the matrix is near singular, except of course SVD that can handle
singular matrices. This will be checked in a different way for any decomposition. For instance in LU, a matrix is
considered singular in the solving stage when a diagonal element of the decomposed matrix is smaller than

fTol. Here an important point is raised. The Decompose() method is successful as long no zero diagonal

element is encountered. Therefore, the user could perform decomposition and only after this step worry about
the tolerance number.

If the matrix is flagged as being singular, operations with the decomposition will fail and will return matrices or
vectors that are invalid. If one would like to monitor the tolerance parameter but not have the code stop in case

of a number smaller than fTol, one could proceed as follows:

TVectorD b = ..;

TMatrixD a = ..;

.

TDecompLU lu(a);

Bool_t ok;

TVectorD x = lu.Solve(b,ok);

Int_t nr = 0;

while (!ok) {

 lu.SetMatrix(a);

 lu.SetTol(0.1*lu.GetTol());

 if (nr++ > 10) break;

 x = lu.Solve(b,ok);

}

if (x.IsValid())

 cout << "solved with tol =" << lu.GetTol() << endl;

else

 cout << "solving failed " << endl;

The observant reader will notice that by scaling the complete matrix by some small number the decomposition
will detect a singular matrix. In this case, the user will have to reduce the tolerance number by this factor. (For
CPU time saving we decided not to make this an automatic procedure).

Condition number

The numerical accuracy of the solution x in Ax = b can be accurately estimated by calculating the condition

number k of matrix A , which is defined as:

 k =
1

A
1

1A where
1

A =

i
j

Aijmax

A good rule of thumb is that if the matrix condition number is 10
n
, the accuracy in x is 15−n digits for double

precision.

Hager devised an iterative method (W.W. Hager, Condition estimators, SIAM J. Sci. Stat. Comp., 5 (1984), pp.

311-316) to determine
1

1A without actually having to calculate
1A . It is used when calling Condition ().

A code example below shows the usage of the condition number. The matrix A is a (10x10) Hilbert matrix that

is badly conditioned as its determinant shows. We construct a vector b by summing the matrix rows. Therefore,

the components of the solution vector x should be exactly 1. Our rule of thumb to the 2.10
12

 condition number

predicts that the solution accuracy should be around 15−12 = 3 digits. Indeed, the largest deviation is 0.00055
in component 6.

TMatrixDSym H = THilbertMatrixDSym(10);

TVectorD rowsum(10);

for (Int_t irow = 0; irow < 10; irow++)

 for (Int_t icol = 0; icol < 10; icol++)

 rowsum(irow) += H(irow,icol);

TDecompLU lu(H);

Bool_t ok;

TVectorD x = lu.Solve(rowsum,ok);

Double_t d1,d2;

lu.Det(d1,d2);

cout << "cond:" << lu.Condition() << endl;

cout << "det :" << d1*TMath:Power(2.,d2) << endl;

cout << "tol :" << lu.GetTol() << endl;

x.Print();

cond:3.9569e+12

det :2.16439e-53

tol :2.22045e-16

268 Linear Algebra in ROOT

Vector 10 is as follows

 | 1 |

0 |1

1 |1

2 |0.999997

3 |1.00003

4 |0.999878

5 |1.00033

6 |0.999452

7 |1.00053

8 |0.999723

9 |1.00006

LU

Decompose an n×n matrix A .

 PA = LU

P permutation matrix stored in the index array fIndex: j=fIndex[i] indicates that row j and row i

 should be swapped. Sign of the permutation, -1
n
, where n is the number of interchanges in the

 permutation, stored in fSign.

L is lower triangular matrix, stored in the strict lower triangular part of fLU. The diagonal elements of L

 are unity and are not stored.

U is upper triangular matrix, stored in the diagonal and upper triangular part of fU.

The decomposition fails if a diagonal element of fLU equals 0.

Bunch-Kaufman

Decompose a real symmetric matrix A

A = UDU
T

D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks Dk.

U is product of permutation and unit upper triangular matrices:

U = Pn-1Un-1 · · ·PkUk · · · where k decreases from n − 1 to 0 in steps of 1 or 2. Permutation matrix Pk is stored

in fIpiv. Uk is a unit upper triangular matrix, such that if the diagonal block Dk is of order s (s = 1, 2), then

knssk

kn

s

skv

U k

100

010

01

If s = 1, Dk overwrites A (k, k), and v overwrites A (0: k − 1, k).

If s = 2, the upper triangle of Dk overwrites A (k−1, k−1), A (k−1, k), and A (k, k), and v overwrites

A (0 : k − 2, k − 1 : k).

Cholesky

Decompose a symmetric, positive definite matrix A .

A = U
T
U

U is an upper triangular matrix. The decomposition fails if a diagonal element of fU≤0, the matrix is not

 positive negative.

QRH

Decompose a (m x n) - matrix A with m ≥ n.

A = QRH

Q orthogonal (m x n) - matrix, stored in fQ;

R upper triangular (n x n) - matrix, stored in fR;

 Linear Algebra in ROOT 269

H (n x n) - Householder matrix, stored through;

fUp n - vector with Householder up‘s;

fW n - vector with Householder beta‘s.

The decomposition fails if in the formation of reflectors a zero appears, i.e. singularity.

 SVD

Decompose a (m x n) - matrix A with m ≥ n.

A = USV
T

U (m x m) orthogonal matrix, stored in fU;

S is diagonal matrix containing the singular values. Diagonal stored in vector fSig which is ordered so

 that fSig[0] >= fSig[1] >= ... >= fSig[n-1];

V (n x n) orthogonal matrix, stored in fV.

The singular value decomposition always exists, so the decomposition will (as long as m ≥ n) never fail. If m < n,

the user should add sufficient zero rows to A , so that m == n. In the SVD, fTol is used to set the threshold on

the minimum allowed value of the singular values: min singular = fTol maxi(Sii).

Matrix Eigen Analysis
Classes TMatrixDEigen and TMatrixDSymEigen compute eigenvalues and eigenvectors for general dense

and symmetric real matrices, respectively. If matrix A is symmetric, then
TVDVA , where the

eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. That is, the diagonal values of

D are the eigenvalues, and IVV T

, where I - is the identity matrix. The columns of V represent the

eigenvectors in the sense that DVVA . If A is not symmetric, the eigenvalue matrix D is block diagonal

with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, a+i*b, in 2-by-2 blocks,

[a,b;−b,a]. That is, if the complex eigenvalues look like:

y

x

iba

iba

ivu

ivu

.....

.....

.....

.....

.....

.....

 then D looks like

y

x

ab

ba

uv

vu

.....

.....

....

....

....

....

This keeps V a real matrix in both symmetric and non-symmetric cases, and DVVA . The matrix

V may be badly conditioned, or even singular, so the validity of the equation
1VDVA depends upon

the condition number of V . Next table shows the methods of the classes TMatrixDEigen and

TMatrixDSymEigen to obtain the eigenvalues and eigenvectors. Obviously, MatrixDSymEigen constructors

can only be called with TMatrixDSym:

Format Output Description

eig.GetEigenVectors() TMatrixD
eigenvectors for both TMatrixDEigen and
TMatrixDSymEigen

eig.GetEigenValues() TVectorD eigenvalues vector for TMatrixDSymEigen

eig.GetEigenValues() TMatrixD eigenvalues matrix for TMatrixDEigen

eig.GetEigenValuesRe() TVectorD real part of eigenvalues for TMatrixDEigen

eig.GetEigenValuesIm() TVectorD
imaginary part of eigenvalues for

TMatrixDEigen

Below, usage of the eigenvalue class is shown in an example where it is checked that the square of the singular

values of a matrix are identical to the eigenvalues of
T . :

const TMatrixD m = THilbertMatrixD(10,10);

TDecompSVD svd(m);

270 Linear Algebra in ROOT

TVectorD sig = svd.GetSig(); sig.Sqr();

// Symmetric matrix EigenVector algorithm

TMatrixDSym mtm(TMatrixDBase::kAtA,m);

const TMatrixDSymEigen eigen(mtm);

const TVectorD eigenVal = eigen.GetEigenValues();

const Bool_t ok = VerifyVectorIdentity(sig,eigenVal,1,1.-e-14);

Speed Comparisons
Speed of four matrix operations have been compared between four matrix libraries, GSL CLHEP, ROOT v3.10
and ROOT v4.0. Next figure shows the CPU time for these four operations as a function of the matrix size:

1. A*B The execution time is measured for the sum of A * Bsym, Bsym* A and A * B. Notice the matrix_size
3

dependence of execution time. CLHEP results are hampered by a poor implementation of symmetric matrix
multiplications. For instance, for general matrices of size 100x100, the time is 0.015 sec. while A * Bsym takes
0.028 sec and Bsym* A takes 0.059 sec.

Both GSL and ROOT v4.0 can be setup to use the hardware-optimized multiplication routines of the BLAS
libraries. It was tested on a G4 PowerPC. The improvement becomes clearly visible around sizes of (50x50)
were the execution speed improvement of the Altivec processor becomes more significant than the overhead of
filling its pipe.

2. A-1 Here, the time is measured for an in-place matrix inversion.

Except for ROOT v3.10, the algorithms are all based on an LU factorization followed by forward/back-
substitution. ROOT v3.10 is using the slower Gaussian elimination method. The numerical accuracy of the
CLHEP routine is poor:

- up to 6x6 the numerical imprecise Cramer multiplication is hard-coded. For instance, calculating U=H*H-1,

where H is a (5x5) Hilbert matrix, results in off-diagonal elements of 10
-7

 instead of the 10
-13

 using an LU

according to Crout.

- scaling protection is non-existent and limits are hard-coded, as a consequence inversion of a Hilbert matrix for

sizes>(12x12) fails. In order to gain speed the CLHEP algorithm stores its permutation info of the pivots

points in a static array, making multi-threading not possible.

GSL uses LU decomposition without the implicit scaling of Crout. Therefore, its accuracy is not as good. For
instance a (10x10) Hilbert matrix has errors 10 times larger than the LU Crout result. In ROOT v4.0, the user

can choose between the Invert() and IvertFast() routines, where the latter is using the Cramer algorithm

for sizes<7x7. The speed graph shows the result for InvertFast().

3. A*x=b the execution time is measured for solving the linear equation A*x=b. The same factorizations are

used as in the matrix inversion. However, only 1 forward/back-substitution has to be used instead of msize as in
the inversion of (msize x msize) matrix. As a consequence the same differences are observed but less
amplified. CLHEP shows the same numerical issues as in step the matrix inversion. Since ROOT3.10 has no

dedicated equation solver, the solution is calculated through x=A-1*b. This will be slower and numerically not as

stable.

4. (AT*A)-1*AT timing results for calculation of the pseudo inverse of matrix a. The sequence of operations

measures the impact of several calls to constructors and destructors in the C++ packages versus a C library like
GSL.

Figure 14-2 Speed comparison between the different matrix packages

 Adding a Class 271

15 Adding a Class

The Role of TObject
The light-weight TObject class provides the default behavior and protocol for the objects in the ROOT system.

Specifically, it is the primary interface to classes providing object I/O, error handling, inspection, introspection,
and drawing. The interface to this service is via abstract classes.

Introspection, Reflection and Run Time Type Identification

Introspection, which is also referred to as reflection, or run time type identification (RTTI) is the ability of a class
to reflect upon itself or to "look inside itself. ROOT implements reflection with the TClass class. It provides all

the information about a class, a full description of data members and methods, including the comment field and
the method parameter types. A class with the ClassDef macro has the ability to obtain a TClass with the IsA

method.

TClass *cl = obj->IsA();

It returns a TClass. In addition, an object can directly get the class name and the base classes by:

const char* name = obj->ClassName();

If the class is a descendent of TObject, you can check if an object inherits from a specific class, you can use

the InheritsFrom method. This method returns kTrue if the object inherits from the specified class name or

TClass.

Bool_t b = obj->InheritsFrom("TLine");

Bool_t b = obj->InheritsFrom(TLine::Class());

ROOT and CINT rely on reflection and the class dictionary to identify the type of a variable at run time. With

TObject inheritance come some methods that use Introspection to help you see the data in the object or class.

For instance:

obj->Dump(); // lists all data members and their current valsue

obj->Inspect(); // opens a window to browser data members at all levels

obj->DrawClass(); // Draws the class inheritance tree

For an example of obj->Inspect(), see "Inspecting Objects".

Collections

To store an object in a ROOT collection, it must be a descendent of TObject. This is convenient if you want to

store objects of different classes in the same collection and execute the method of the same name on all
members of the collection. For example, the list of graphics primitives are in a ROOT collection called TList.

When the canvas is drawn, the Paint method is executed on the entire collection. Each member may be a

different class, and if the Paint method is not implemented, TObject::Paint will be executed.

Input/Output

The TObject::Write method is the interface to the ROOT I/O system. It streams the object into a buffer

using the Streamer method. It supports cycle numbers and automatic schema evolution. See ―Input/Output‖.

Paint/Draw

These graphics methods are defaults; their implementation in TObject does not use the graphics subsystem.

The TObject::Draw method is simply a call to AppendPad. The Paint method is empty. The default is

provided so that one can call Paint in a collection. The method GetDrawOption returns the draw option that

was used when the object was drawn on the canvas. This is especially relevant with histograms and graphs.

Clone/DrawClone

Two useful methods are Clone and DrawClone. The Clone method takes a snapshot of the object with the

Streamer and creates a new object. The DrawClone method does the same thing and in addition draws the

clone.

272 Adding a Class

Browse

This method is called if the object is browse-able and is to be displayed in the object browser. For example the
TTree implementation of Browse, calls the Browse method for each branch. The TBranch::Browse method

displays the name of each leaf. For the object's Browse method to be called, the IsFolder() method must

be overridden to return true. This does not mean it has to be a folder, it just means that it is browse-able.

SavePrimitive

This method is called by a canvas on its list of primitives, when the canvas is saved as a script. The purpose of

SavePrimitve is to save a primitive as a C++ statement(s). Most ROOT classes implement the

SavePrimitive method. It is recommended that the SavePrimitive is implemented in user defined classes

if it is to be drawn on a canvas. Such that the command TCanvas::SaveAs(Canvas.C) will preserve the

user-class object in the resulting script.

GetObjectInfo

This method is called when displaying the event status in a canvas. To show the event status window, select

the Options menu and the EventStatus item. This method returns a string of information about the object at

position (x, y). Every time the cursor moves, the object under the cursor executes the GetObjectInfo method.

The string is then shown in the status bar. There is a default implementation in TObject, but it is typically

overridden for classes that can report peculiarities for different cursor positions (for example the bin contents in
a TH1).

IsFolder

By default an object inheriting from TObject is not brows-able, because TObject::IsFolder() returns

kFALSE. To make a class browse-able, the IsFolder method needs to be overridden to return kTRUE. In

general, this method returns kTRUE if the object contains browse-able objects (like containers or lists of other

objects).

Bit Masks and Unique ID

A TObject descendent inherits two data members: fBits and fUniqueID. fBits is 32-bit data member

used with a bit mask to get object information. Bits 0 – 13 are reserved as global bits, bits 14 – 23 can be used
in different class hierarchies.

enum EObjBits {

 kCanDelete = BIT(0), //if can be deleted

 kMustCleanup = BIT(3), //if destructor must call RecursiveRemove()

 kObjInCanvas = BIT(3), //for backward compatibility only

 kIsReferenced = BIT(4), //if referenced by TRef or TRefArray

 kHasUUID = BIT(5), //if has a TUUID (fUniqueID=UUIDNumber)

 kCannotPick = BIT(6), //if cannot be picked in a pad

 kNoContextMenu = BIT(8), //if does not want a context menu

 kInvalidObject = BIT(13) //object ctor succeeded but the object should

 //not be used

};

For example, the bits kMustCleanup and kCanDelete are used in TObject. See ―The kCanDelete Bit‖ and

―The kMustCleanup Bit‖. They can be set by any object and should not be reused. Make sure to no overlap in

any given hierarchy them. The bit 13 (kInvalidObject) is set when an object could not be read from a ROOT

file. It will check this bit and will skip to the next object on the file.

The TObject constructor initializes the fBits to zero depending if the object is created on the stack or

allocated on the heap. When the object is created on the stack, the kCanDelete bit is set to false to protect

from deleting objects on the stack. The high 8 bits are reserved for the system usage; the low 24 bits are user

settable. fUniqueID is a data member used to give a unique identification number to an object. It is initialized

to zero by the TObject constructor. ROOT does not use this data member. The two data members (fBits

and fUniqueID) are streamed out when writing an object to disk. If you do not use them, you can save some

space and time by specifying:

MyClass::Class()->IgnoreTObjectStreamer();

This sets a bit in the TClass object. If the file is compressed, the savings are minimal since most values are

zero; however, it saves some space when the file is not compressed. A call to IgnoreObjectStreamer also

prevents the creation of two additional branches when splitting the object. If left alone, two branches called

fBits and fUniqueID will appear.

 Adding a Class 273

Motivation
If you want to integrate and use your classes with ROOT, to enjoy features like, extensive RTTI (Run Time Type
Information) and ROOT object I/O and inspection, you have to add the following line to your class header files:

ClassDef(ClassName,ClassVersionID); //The class title

For example in TLine.h we have:

ClassDef(TLine,1); //A line segment

The ClassVersionID is used by the ROOT I/O system. It is written on the output stream and during reading

you can check this version ID and take appropriate action depending on the value of the ID. See ―Streamers‖.

Every time you change the data members of a class, you should increase its ClassVersionID by one. The

ClassVersionID should be >=1. Set ClassVersionID=0 in case you don't need object I/O. To be able to

generate properly documentation for your classes using THtml you must add the statement:

ClassImp(ClassName)

For example in TLine.cxx:

ClassImp(TLine)

Note that you should provide a default constructor for your classes, i.e. a constructor with zero parameters or
with one or more parameters all with default values in case you want to use object I/O. If do not provide such a
default contructor, you MUST implement an I/O constructor. If not you will get a compile time error. See the

―The Default Constructor‖ paragraph in this chapter. The ClassDef and ClassImp macros are defined in the

file Rtypes.h. This file is referenced by all ROOT include files, so you will automatically get them if you use a

ROOT include file.

Template Support

In ROOT version 3.03 and older, ROOT provided special ClassDef and ClassImp macros for classes with

two and three template arguments. In ROOT version 3.04 and above, the macros ClassDef and ClassImp

can be used directly even for a class template. ClassImp is used to register an implementation file in a class.

For class templates, the ClassImp can only be used for a specific class template instance.

ClassImp(MyClass1<double>);

For multiple template arguments, you will need to use an intermediary typedef:

typedef MyClass2<int,float> myc_i_f;

ClassImp(myc_i_f);

You can also register an implementation for all instances of a class template by using templateClassImp:

templateClassImp(MyClass3);

Here are examples of a header and a LinkDef file:

// in header file MyClass.h

template <typename T> class MyClass1 {

private:

 T fA;

 ...

public:

 ...

 ClassDef(MyClass1,1)

};

template <typename T1, typename T2> class MyClass2 {

private:

 T1 fA;

 T2 fB;

public:

 ...

 ClassDef(MyClass2,1)

};

template <typename T1, typename T2, typename T3> class MyClass3 {

private:

 T1 fA;

 T2 fB;

 T3 fC;

 ...

public:

 ...

 ClassDef(MyClass3,1)

};

274 Adding a Class

// A LinkDef.h file with all the explicit template instances

// that will be needed at link time

#ifdef __CINT__

#pragma link C++ class MyClass1<float>+;

#pragma link C++ class MyClass1<double>+;

#pragma link C++ class MyClass2<float,int>+;

#pragma link C++ class MyClass2<float,double>+;

#pragma link C++ class MyClass3<float,int,TObject*>+;

#pragma link C++ class MyClass3<float,TEvent*,TObject*>+;

#endif

The Default Constructor
ROOT object I/O requires every class to have either a default constructor or an I/O constructor. A default
constructor is a constructor with zero parameters or with one or more parameters all with default values. An I/O
constructor is a constructor with exactly one parameter which type is a pointer to one of the type marked as an
'io constructor type'. We will come back to this context in a few paragraphs. This default or I/O constructor is
called whenever an object is being read from a ROOT database. Be sure that you do not allocate any space for
embedded pointer objects in this constructor. This space will be lost (memory leak) while reading in the object.
For example:

class T49Event : public TObject {

private:

 Int_t fId;

 TCollection *fTracks;

 ...

public:

 // Error space for TList pointer will be lost

 T49Event() { fId = 0; fTrack = new TList; }

 // Correct default initialization of pointer

 T49Event() { fId = 0; fTrack = 0; }

 ...

};

The memory will be lost because during reading of the object the pointer will be set to the object it was pointing

to at the time the object was written. Create the fTrack list when you need it, e.g. when you start filling the list

or in a not-default constructor.

...

if (!fTrack) fTrack = new TList;

...

The constructor actually called by the ROOT I/O can be customized by using the rootcint pragma:

#pragma link C++ ioctortype UserClass;

For example, with this pragma and a class named MyClass, the ROOT I/O will call the first of the following 3
constructors which exists and is public:

MyClass(UserClass*);

MyClass(TRootIOCtor*);

MyClass(); // Or a constructor with all its arguments defaulted.

When more than one pragma ioctortype is used, the first seen as priority. For example with:

#pragma link C++ ioctortype UserClass1;

#pragma link C++ ioctortype UserClass2;

We look for the first existing public constructor in the following order:

MyClass(UserClass1*);

MyClass(UserClass2*);

MyClass(TRootIoCtor*);

MyClass(); // Or a constructor with all its arguments defaulted.

rootcint: The CINT Dictionary Generator
In the following example, we walk through the steps necessary to generate a dictionary, I/O, and inspect
member functions. Let's start with a TEvent class, which contains a collection of TTracks:

 Adding a Class 275

#ifndef __TEvent__

#define __TEvent__

#include "TObject.h"

class TCollection;

class TTrack;

class TEvent : public TObject {

private:

 Int_t fId; // event sequential id

 Float_t fTotalMom; // total momentum

 TCollection *fTracks; // collection of tracks

public:

 TEvent() { fId = 0; fTracks = 0; }

 TEvent(Int_t id);

 ~TEvent();

 void AddTrack(TTrack *t);

 Int_t GetId() const { return fId; }

 Int_t GetNoTracks() const;

 void Print(Option_t *opt="");

 Float_t TotalMomentum();

 ClassDef(TEvent,1); //Simple event class

};

The things to notice in these header files are:

 The usage of the ClassDef macro

 The default constructors of the TEvent and TTrack classes

 Comments to describe the data members and the comment after the ClassDef macro to

describe the class

These classes are intended for you to create an event object with a certain id, and then add tracks to it. The
track objects have a pointer to their event. This shows that the I/O system correctly handles circular references.

The TTrack.h header is:

#ifndef __TTrack__

#define __TTrack__

#include "TObject.h"

class TEvent;

class TTrack : public TObject {

private:

 Int_t fId; //track sequential id

 TEvent *fEvent; //event to which track belongs

 Float_t fPx; //x part of track momentum

 Float_t fPy; //y part of track momentum

 Float_t fPz; //z part of track momentum

public:

 TTrack() { fId = 0; fEvent = 0; fPx = fPy = fPz = 0; }

 TTrack(Int_t id, Event *ev, Float_t px,Float_t py,Float_t pz);

 Float_t Momentum() const;

 TEvent *GetEvent() const { return fEvent; }

 void Print(Option_t *opt="");

 ClassDef (TTrack,1); //Simple track class

};

#endif

Next is the implementation of these two classes.

Event.cxx:

#include <iostream.h>

#include "TOrdCollection.h"

#include "TEvent.h"

#include "TTrack.h"

ClassImp(TEvent)

...

276 Adding a Class

Track.cxx:

#include <iostream.h>

#include "TMath.h"

#include "Track.h"

#include "Event.h"

ClassImp(TTrack)

...

Now using rootcint we can generate the dictionary file.

Make sure you use a unique filename, because rootcint appends it to the name of static function

(G__cpp_reset_tabableeventdict() and G__set_cpp_environmenteventdict ()).

rootcint eventdict.cxx -c TEvent.h TTrack.h

Looking in the file eventdict.C we can see, besides the many member function calling stubs (used internally

by the interpreter), the Streamer() and ShowMembers() methods for the two classes. Streamer() is

used to stream an object to/from a TBuffer and ShowMembers() is used by the Dump() and Inspect()

methods of TObject. Here is the TEvent::Streamer method:

void TEvent::Streamer(TBuffer &R__b) {

 // Stream an object of class TEvent.

 if (R__b.IsReading()) {

 Version_t R__v = R__b.ReadVersion();

 TObject::(R__b);

 R__b >> fId;

 R__b >> fTotalMom;

 R__b >> fTracks;

 } else {

 R__b.WriteVersion(TEvent::IsA());

 TObject::Streamer(R__b);

 R__b << fId;

 R__b << fTotalMom;

 R__b << fTracks;

 }

}

The TBuffer class overloads the operator<<() and operator>>() for all basic types and for pointers to

objects. These operators write and read from the buffer and take care of any needed byte swapping to make the
buffer machine independent. During writing, the TBuffer keeps track of the objects that have been written and

multiple references to the same object are replaced by an index. In addition, the object's class information is
stored. TEvent and TTracks need manual intervention. Cut and paste the generated Streamer() from the

eventdict.C into the class' source file and modify as needed (e.g. add counter for array of basic types) and

disable the generation of the Streamer() when using the LinkDef.h file for next execution of rootcint. In

case you do not want to read or write this class (no I/O) you can tell rootcint to generate a dummy

Streamer() by changing this line in the source file:

ClassDef(TEvent,0);

If you want to prevent the generation of Streamer(), see the chapter "Adding a Class with a Shared Library".

Dictionaries for STL

Usually, headers are passed to rootcint at the command line. To generate a dictionary for a class from the STL,
e.g.

std::vector<MyClass>, you would normally pass the header defining MyClass and std::vector. The

latter is a compiler specific header and cannot be passed to rootcint directly. Instead, create a little header file
that includes both headers, and pass that to rootcint.

Often ROOT knows where MyClass and the templated class (e.g. vector) are defined, for example because the

files got #included. Knowing these header files ROOT can automatically generate the dictionary for any

template combination (e.g. vector<myClass>) when it is needed, by generating files starting with

AutoDict*. You can toggle this feature on or off at the ROOT prompt by executing .autodict.

 Adding a Class 277

Adding a Class with a Shared Library
Step 1: Define your own class in SClass.h and implement it in SClass.cxx. You must provide a default

constructor or an I/O constructor for your class. See the "The Default Constructor" paragraph in this chapter.

#include <iostream.h>

#include "TObject.h"

class SClass : public TObject {

private:

 Float_t fX; //x position in centimeters

 Float_t fY; //y position in centimeters

 Int_t fTempValue; //! temporary state value

public:

 SClass() { fX = fY = -1; }

 void Print() const;

 void SetX(float x) { fX = x; }

 void SetY(float y) { fY = y; }

 ClassDef(SClass, 1)

};

Step 2: Add a call to the ClassDef macro to at the end of the class definition (in the SClass.h file).

ClassDef(SClass,1). Add a call to the ClassImp macro in the implementation file (SClass.cxx):

ClassImp(SClass).

// SClass.cxx:

#include "SClass.h"

ClassImp(SClass);

void SClass::Print() const {

 cout << "fX = " << fX << ", fY = " << fY << endl;

}

You can add a class without using the ClassDef and ClassImp macros; however, you will be limited.

Specifically the object I/O features of ROOT will not be available to you for these classes. See "CINT the C++

Interpreter". The ShowMembers and Streamer method, as well as the >> operator overloads, are implemented

only if you use ClassDef and ClassImp. See $ROOTSYS/include/Rtypes.h for the definition of

ClassDef and ClassImp. To exclude a data member from the Streamer, add a ! as the first character in the

comments of the field:

Int_t fTempValue; //! temporary state value

The LinkDef.h File

Step 3: The LinkDef.h file tells rootcint for which classes to generate the method interface stubs.

#ifdef __CINT__

#pragma link C++ class SClass;

#endif

Three options can trail the class name:

 - : tells rootcint not to generate the Streamer method for this class. This is necessary for

those classes that need a customized Streamer method.

#pragma link C++ class SClass-; // no streamer

 ! : tells rootcint not to generate the operator>>(TBuffer &b,MyClass *&obj) method

for this class. This is necessary to be able to write pointers to objects of classes not inheriting
from TObject.

#pragma link C++ class SClass!; // no >> operator

// or

#pragma link C++ class SClass-!; // no streamer, no >> operator

 + : in ROOT version 1 and 2 tells rootcint to generate a Streamer with extra byte count

information. This adds an integer to each object in the output buffer, but it allows for powerful

error correction in case a Streamer method is out of sync with data in the file. The + option is

mutual exclusive with both the - and ! options.

IMPORTANT NOTE: In ROOT Version 3, a "+" after the class name tells rootcint to use the new I/O system.

The byte count check is always added.

#pragma link C++ class SClass+; // add byte count

For information on Streamers see ―Input/Output‖. To get help on rootcint type on the UNIX command line:
rootcint -h

278 Adding a Class

The Order Matters

When using template classes, the order of the pragma statements matters. For example, here is a template

class Tmpl and a normal class Norm, which holds a specialized instance of a Tmpl:

class Norm {

private:

 Tmpl<int>* fIntTmpl;

public:

 ...

};

Then in Linkdef.h, the pragma statements must be ordered by listing all specializations before any classes

that need them:

// Correct Linkdef.h ordering

...

#pragma link C++ class Tmpl<int>;

#pragma link C++ class Norm;

...

And not vice versa:

// Bad Linkdef.h ordering

...

#pragma link C++ class Norm;

#pragma link C++ class Tmpl<int>;

...

In this case, rootcint generates Norm::Streamer() that makes reference to Tmpl<int>::Streamer().

Then rootcint gets to process Tmpl<int> and generates a specialized Tmpl<int>::Streamer()

function. The problem is, when the compiler finds the first Tmpl<int>::Streamer(), it will instantiate it.

However, later in the file it finds the specialized version that rootcint generated. This causes the error.

However, if the Linkdef.h order is reversed then rootcint can generate the specialized

Tmpl<int>::Streamer() before it is needed (and thus never instantiated by the compiler).

Other Useful Pragma Statements

The complete list of pragma statements currently supported by CINT is:

#pragma link [C|C++|off] all [class|function|global|typedef];

#pragma link [C|C++|off] [class|struct|union|enum|namespace|protected][name];

#pragma link [C|C++|off] [global|typedef][name];

#pragma link [C|C++|off] [nestedclass|nestedtypedef];

#pragma link [C++|C|off|MACRO] function [name]<(argtypes)>;

#pragma link [C++|C|off|MACRO] function [classname]::[name]<(argtypes)>;

#pragma link off all methods;

#pragma link [C|C++|off] defined_in [filename];

#pragma link [C|C++|off] defined_in [class|struct|namespace] [name];

#pragma link [C|C++|off] all_function [classname];

#pragma link [C|C++|off] all_datamember [classname];

The [classname] and the [name] can also contain wildcards. For example:

#pragma link C++ class MyClass*;

This will request the dictionary for all the class whose name start with 'MyClass' and are already known to

CINT (class templates need to have already been instantiated to be considered).

#pragma link [C|C++|off] all [class|function|global|typedef];

This pragma statement turns on or off the dictionary generation for all classes, structures, namespaces, global
variables, global functions and typedefs seen so far by CINT. Example:

// some C++ header definition

#ifdef __MAKECINT__

// turns off dictionary generation for all

#pragma link off all class;

#pragma link off all function;

#pragma link off all global;

#pragma link off all typedef;

#endif

The next pragma statement selectively turns on or off the dictionary generation for the specified classs,

struct, union, enum or namespace:

#pragma link [C|C++|off][class|class+protected|struct|union|enum|namespace][name];

 Adding a Class 279

The Dictionary of all public members of class and struct will be generated. If the 'class+protected' flag is

used, the dictionary for protected members will also be generated. However, dictionary for protected constructor

and destructor will not be generated. This ' class+protected ' flag will help you only for plain protected

member access, but not for virtual function resolution.

If you use the 'namespace' flag, it is recommended to add also:

#pragma link nestedclass;

#pragma link nestedtypedef;

The behavior of 'class', 'struct' and 'namespace' flag are identical. Example:

// some C++ header definition

#ifdef __MAKECINT__

#pragma link off all class;

#pragma link C++ class A;

#pragma link C++ class B;

#pragma link C++ class C<int>;

#pragma link C++ class+protected D;

#pragma link C++ namespace project1;

#pragma link nestedclass;

#pragma link nestedtypedef;

#endif

The next pragma statement selectively turns on or off the dictionary generation for global variables and typedef.

#pragma link [C|C++|off] [global|typedef] [name];

Example:

// some C/C++ header definition

#ifdef __MAKECINT__

#pragma link off all global;

#pragma link off all typedef;

#pragma link C++ global a;

#pragma link C++ typedef Int_t;

#endif

This pragma statement turns on the dictionary generation for nested classes and nested typedefs.

#pragma link [C|C++|off] [nestedclass|nestedtypedef];

Example:

// some C/C++ header definition

#ifdef __MAKECINT__

#pragma link off all global;

#pragma link off all typedef;

#pragma link C++ global a;

#pragma link C++ typedef Int_t;

#endif

The next pragma statements turn on or off the dictionary generation for the specified function(s) or member

function(s). The list of arguments' type is optional. If you omit argument types, all function with specified [name]

will be affected. If the list of arguments' type is specified, only the function that has exactly same argument list
will be affected.

#pragma link [C++|C|off|MACRO] function [fname]<(argtypes)>;

#pragma link [C++|C|off|MACRO] function [classname]::[fname]<(argtypes)>;

The '#pragma link [C++|C] function' and '#pragma link MACRO function' behaves similarly. The

'#pragma link [C++|C] function' assumes the target to be a real function which has pointer to it. A

pointer to registered function is registered. On the other hand, '#pragma link MACRO function' assumes

target to be macro function. Pointer to function cannot be referenced in this case.

For the next example:

void f(int a);

void f(double a);

int g(int a,double b);

int g(double x);

#define max(a,b) (a>b?a:b)

class A {

public:

 int h(double y);

 int h(int a,double b);

};

The pragma statements are:

280 Adding a Class

#ifdef __MAKECINT__

#pragma link off all functions;

#pragma link C++ function f;

#pragma link C++ function g(int,double);

#pragma link C++ MACRO max;

#pragma link C++ class A;

#pragma link off function A::h(double);

#endif

Until CINT version 5.15.60, in order to generate dictionary for a member function, not only the member function
but also the class itself has to be turned on for the linkage. There was an inconvenience when generating
dictionary for template member function afterwards.

From CINT v.5.15.61, a new behavior is introduced. If link for a member function is specified, dictionary is
generated even if link to the belonging class is off. For example, if you originally have A.h as follows:

// A.h

template<class T> class A {

public:

 template<class E> void f(E& x) { ... }

};

 And generate dictionary for that:

#ifdef __MAKECINT__

#pragma link C++ class A<int>;

#endif

Then prepare another header file and instantiate the template member function of A.:

// B.h

#include "A.h"

class B {

 ...

};

 You can generate dictionary for the newly instantiated template member function only.

#ifdef __MAKECINT__

#pragma link off defined_in A.h;

#pragma link C++ function A<int>::f(B&);

#endif

The next pragma turns off the dictionary generation of all the member functions in all classes.

#pragma link off all methods;

Example:

#ifdef __MAKECINT__

#pragma link off all methods;

#endif

The next pragma statements control the linking of all the member functions or data members for a specified
class.

#pragma link [C|C++|off] all_function [classname];

#pragma link [C|C++|off] all_datamember [classname];

At this moment, there should be no needs to use those statements. Example:

#ifdef __MAKECINT__

#pragma link off all_function A;

#pragma link off all_datamember A;

#endif

See also: #pragma link function.

The next pragma statement turns on/off dictionary generation of the object defined in specific file. The filename
has to be the full pathname of the file.

#pragma link [C|C++|off] defined_in [filename];

Example:

// file1.h

// any C++ header definition

// file2.h

#ifdef __MAKECINT__

 Adding a Class 281

#pragma link off all classes;

#pragma link off all functions;

#pragma link off all globals;

#pragma link off all typedef;

#pragma link C++ defined_in file1.h;

#endif

The next pragma statements turn on or off the dictionary generation of the object defined in a specific scope.

The [scope_name] should be class name, struct name or namespace name. When using these pragmas,

it is recommended to use also:

#pragma link C++ nestedclass

Otherwise, definitions in enclosed scope do not appear in the dictionary.

#pragma link [C|C++|off] defined_in [scope_name];

#pragma link [C|C++|off] defined_in [class|struct|namespace] [scope_name];

Example:

namespace ns {

 int a;

 double b;

};

The pragma statements are:

#ifdef __MAKECINT__

#pragma link C++ defined_in ns;

#pragma link C++ nestedclass;

#endif

This statements controls default link mode for makecint(cint -c-1|-c-2) and rootcint.

#pragma link default [on|off]

By turning default 'on', all language constructs in given header files will be included in generated CINT
dictionary (interface method source file). If default is set to 'off', nothing will be included in the generated
dictionary. The next statement explicitly set linkage to each item:

#pragma link [C|C++|off] [class|function|global]

This pragma statement must be given before cint/rootcint reads any C/C++ definitions from header files.

For pure CINT, default is on. For ROOT, including $ROOTSYSDIR/bin/cint, default is off. This feature was

added from CINT v.5.15.57. Before this version, you had to use explicitly in the ROOT LinkDef.h file the next

statement:

#pragma link off [class|function|global];

From 5.15.57, you can omit them. Example:

#ifdef __MAKECINT__

#pragma link default off;

#endif

class A {

 int a;

 double b;

};

class B {

 int d;

 double e;

};

#ifdef __MAKECINT__

#pragma link C++ class A; // only class A is linked, not B

#endif

Compilation

Step 4: Compile the class using the Makefile. In the Makefile call rootcint to make the dictionary for

the class. Call it SClassDict.cxx. The rootcint utility generates the methods Streamer, TBuffer

&operator>>() and ShowMembers for ROOT classes.

gmake –f Makefile

Load the shared library:

282 Adding a Class

root[] .L SClass.so

root[] SClass *sc = new SClass()

root[] TFile *f = new TFile("Afile.root","UPDATE");

root[] sc->Write();

For more information on rootcint see the $ROOTSYS/test directory Makefile, Event.cxx, and Event.h

for an example, or follow this link: http://root.cern.ch/root/RootCintMan.html

Adding a Class with ACLiC
Step 1: Define your class

#include "TObject.h"

// define the ABC class and make it inherit from TObject so that we can write

// ABC to a ROOT file

class ABC : public TObject {

public:

 Float_t a, b, c, p;

ABC() : a(0), b(0), c(0), p(0){};

 // Define the class for the cint dictionary

 ClassDef (ABC,1)

};

// Call the ClassImp macro to give the ABC class RTTI and full I/O capabilities.

#if !defined(__CINT__)

 ClassImp(ABC);

#endif

Step 2: Load the ABC class in the script.

// Check if ABC is already loaded

if (!TClass::GetDict("ABC")) {

 gROOT->ProcessLine(".L ABCClass.C++");

}

// Use the Class

ABC *v = new ABC;

v->p = (sqrt((v->a * v->a)+ (v->b * v->b)+(v->c * v->c)));

http://root.cern.ch/root/RootCintMan.html

 Collection Classes 283

16 Collection Classes

Collections are a key feature of the ROOT system. Many, if not most, of the applications you write will use
collections. If you have used parameterized C++ collections or polymorphic collections before, some of this
material will be review. However, much of this chapter covers aspects of collections specific to the ROOT
system. When you have read this chapter, you will know

 How to create instances of collections

 The difference between lists, arrays, hash tables, maps, etc.

 How to add and remove elements of a collection

 How to search a collection for a specific element

 How to access and modify collection elements

 How to iterate over a collection to access collection elements

 How to manage memory for collections and collection elements

 How collection elements are tested for equality (IsEqual())

 How collection elements are compared (Compare()) in case of sorted collections

 How collection elements are hashed (Hash()) in hash tables

Understanding Collections
A collection is a group of related objects. You will find it easier to manage a large number of items as a
collection. For example, a diagram editor might manage a collection of points and lines. A set of widgets for a
graphical user interface can be placed in a collection. A geometrical model can be described by collections of
shapes, materials and rotation matrices. Collections can themselves be placed in collections. Collections act as
flexible alternatives to traditional data structures of computers science such as arrays, lists and trees.

General Characteristics

The ROOT collections are polymorphic containers that hold pointers to TObjects, so:

 They can only hold objects that inherit from TObject

 They return pointers to TObjects, that have to be cast back to the correct subclass

Collections are dynamic; they can grow in size as required. Collections themselves are descendants of
TObject so can themselves be held in collections. It is possible to nest one type of collection inside another to

any level to produce structures of arbitrary complexity.

Collections do not own the objects they hold for the very good reason that the same object could be a member
of more than one collection. Object ownership is important when it comes to deleting objects; if nobody owns
the object it could end up as wasted memory (i.e. a memory leak) when no longer needed. If a collection is
deleted, its objects are not. The user can force a collection to delete its objects, but that is the user‘s choice.

Determining the Class of Contained Objects

Most containers may hold heterogeneous collections of objects and then it is left to the user to correctly cast the
TObject pointer to the right class. Casting to the wrong class will give wrong results and may well crash the

program! Therefore, the user has to be very careful. Often a container only contains one class of objects, but if it

really contains a mixture, it is possible to ask each object about its class using the InheritsFrom method.

For example if myObject is a TObject pointer:

if (myObject->InheritsFrom("TParticle") {

 printf("myObject is a TParticle\n");

}

As the name suggests, this test works even if the object is a subclass of TParticle. The member function

IsA() can be used instead of InheritsFrom to make the test exact. The InheritsFrom and IsA methods

use the extensive Run Time Type Information (RTTI) available via the ROOT meta-classes.

Types of Collections

The ROOT system implements the following basic types of collections: unordered collections, ordered
collections and sorted collections. Next figure shows the inheritance hierarchy for the primary collection classes.
All primary collection classes derive from the abstract base class TCollection.

284 Collection Classes

Figure 16-1 The inheritance hierarchy of the primary collection classes

Ordered Collections (Sequences)

Sequences are collections that are externally ordered because they maintain internal elements according to the
order in which they were added. The following sequences are available:

 TList

 THashList

 TOrdCollection

 TObjArray

 TClonesArray

The TOrdCollection, TObjArray as well as the TClonesArray can be sorted using their Sort member

function (if the stored items are sort able). Ordered collections all derive from the abstract base class
TSeqCollection. Sorted collections are ordered by an internal (automatic) sorting mechanism. The following

sorted collections are available (the stored items must be sortable):

 TSortedList

 TBtree

Unordered collections don't maintain the order in which the elements were added, i.e. when you iterate over an
unordered collection, you are not likely to retrieve elements in the same order they were added to the collection.
The following unordered collections are available:

 THashTable

 TMap

Iterators: Processing a Collection
The concept of processing all the members of a collection is generic, i.e. independent of any specific
representation of a collection. To process each object in a collection one needs some type of cursor that is
initialized and then steps over each member of the collection in turn. Collection objects could provide this
service but there is a snag: as there is only one collection object per collection there would only be one cursor.
Instead, to permit the use of as many cursors as required, they are made separate classes called iterator. For
each collection class there is an associated iterator class that knows how to sequentially retrieve each member
in turn. The relationship between a collection and its iterator is very close and may require that the iterator has
full access to the collection (i.e. it is a friend class). In general iterator will be used via the TIter wrapper class.

For example:

 TList TListIter

 TMap TMapIter

Foundation Classes
All collections are based on the fundamental classes: TCollection and TIterator. They are so generic that

it is not possible to create objects from them; they are only used as base classes for other classes (i.e. they are
abstract base classes).

The TCollection class provides the basic protocol (i.e. the minimum set of member functions) that all

collection classes have to implement. These include:

 Add Adds another object to the collection.

 GetSize Returns the number of objects in the collection.

 Clear Clears out the collection, but does not delete the removed objects.

 Collection Classes 285

 Delete Clears out the collection and deletes the removed objects. This should only

 be used if the collection owns its objects (which are not normally the case).

 FindObject Find an object given either its name or address.

 MakeIterator Returns an iterator associated with the collection.

 Remove Removes an object from the collection.

The code example below shows a class containing three lists, where the fTracks list is the owning collection

and the other two lists are used to store a sub-set of the track objects. In the destructor of the class, the method

Delete is called for the owning collection to delete correctly its entire track objects. To delete the objects in the

container use fTrack->Delete(). To delete the container itself, do 'delete fTracks'.

class TEvent : public TObject {

private:

 TList *fTracks; //list of all tracks

 TList *fVertex1; //subset of tracks part of vertex1

 TList *fVertex2; //subset of tracks part of vertex2

 };

TEvent::~TEvent()

{

 fTracks->Delete();

 delete fTracks;

 delete fVertex1;

 delete fVertex2;

}

The TIterator class defines the minimum set of member functions that all iterators must support. These

include:

 Next Returns the next member of the collection or 0 if no more members.

 Reset Resets the iterator so that Next returns the first object.

A Collectable Class
By default, all objects of TObject derived classes can be stored in ROOT containers. However, the TObject

class provides some member functions that allow you to tune the behavior of objects in containers. For
example, by default two objects are considered equal if their pointers point to the same address. This might be
too strict for some classes where equality is already achieved if some or all of the data members are equal. By
overriding the following TObject member functions, you can change the behavior of objects in collections:

 IsEqual() is used by the FindObject() collection method. By default, IsEqual()

compares the two object pointers.

 Compare() returns –1, 0 or 1 depending if the object is smaller, equal or larger than the other

object. By default, a TObject has not a valid Compare() method.

 IsSortable() returns true if the class is sort able (i.e. if it has a valid Compare() method). By

default, a TObject is not sort able.

 Hash() returns a hash value. It needs to be implemented if an object has to be stored in a

collection using a hashing technique, like THashTable, THashList and TMap. By default,

Hash() returns the address of the object. It is essential to choose a good hash function.

The example below shows how to use and override these member functions.

class TObjNum : public TObject {

private:

 Int_t num; // TObjNum is a simple container for an integer.

public:

 TObjNum(Int_t i = 0) : num(i) { }

 ~TObjNum() { }

 void SetNum(Int_t i) { num = i; }

 Int_t GetNum() const { return num; }

 void Print(Option_t *) const

 { printf("num = %d\n", num); }

 Bool_t IsEqual(TObject *obj) const

 { return num == ((TObjNum*)obj)->num; }

 Bool_t IsSortable() const { return kTRUE; }

 Int_t Compare(const TObject *obj) const

 { if (num < ((TObjNum*)obj)->num) return -1;

 else if (num > ((TObjNum*)obj)->num) return 1;

 else return 0; }

 ULong_t Hash() const { return num; }

};

286 Collection Classes

The TIter Generic Iterator
As stated above, the TIterator class is abstract; it is not possible to create TIterator objects. However, it

should be possible to write generic code to process all members of a collection so there is a need for a generic
iterator object. A TIter object acts as generic iterator. It provides the same Next() and Reset() methods as

TIterator although it has no idea how to support them! It works as follows:

 To create a TIter object its constructor must be passed an object that inherits from

TCollection. The TIter constructor calls the MakeIterator() method of this collection to

get the appropriate iterator object that inherits from TIterator.

 The Next() and Reset() methods of TIter simply call the Next() and Reset() methods of

the iterator object.

Therefore, TIter simply acts as a wrapper for an object of a concrete class inheriting from TIterator.

To see this working in practice, consider the TObjArray collection. Its associated iterator is TObjArrayIter.

Suppose myarray is a pointer to a TObjArray that contains MyClass objects, i.e.

TObjArray *myarray;

To create a TIter object called myiter:

TIter myiter(myarray);

As shown in the diagram, this results in several methods being called:

 The TIter constructor is passed a TObjArray

 TIter asks embedded TCollection to make an iterator

 TCollection asks TObjArray to make an iterator

 TObjArray returns a TObjArrayIter.

Now define a pointer for MyClass objects and set it to each member of the TObjArray:

MyClass *myobject;

while ((myobject = (MyClass *)myiter.Next())) {

 // process myobject

}

The heart of this is the myiter.Next() expression which does the following:

 The Next() method of the TIter object myiter is called

 The TIter forwards the call to the TIterator embedded in the TObjArrayIter

 TIterator forwards the call to the TObjArrayIter

 TObjArrayIter finds the next MyClass object and returns it

 TIter passes the MyClass object back to the caller

Sometimes the TIter object is called next, and then instead of writing: next.Next() which is legal, but

looks rather odd, iteration is written as next(). This works because the function operator() is defined for the

TIter class to be equivalent to the Next() method.

 Collection Classes 287

The TList Collection
A TList is a doubly linked list. Before being inserted into the list the object pointer is wrapped in a TObjLink

object that contains, besides the object pointer also a previous and next pointer.

Objects are typically added using:

 Add()

 AddFirst(), AddLast()

 AddBefore(), AddAfter()

Main features of TList: very low cost of adding/removing elements anywhere in the list.

Overhead per element: 1 TObjLink, i.e. two 4 (or 8) byte pointers + pointer to vtable = 12 (or 24) bytes.

Next figure shows the internal data structure of a TList.

Figure 16-2 The internal data structure of a TList

Iterating Over a TList

There are four ways to iterate over a TList:

 Using the ForEach script:

GetListOfPrimitives()->ForEach(TObject,Draw)();

 Using the TList iterator TListIter (via the wrapper class TIter):

TIter next(GetListOfTracks());

while ((TTrack *obj = (TTrack *)next()))

 obj->Draw();

 Using the TObjLink list entries (that wrap the TObject*):

TObjLink *lnk = GetListOfPrimitives()->FirstLink();

while (lnk) {

 lnk->GetObject()->Draw();

 lnk = lnk->Next();

}

 Using the TList's After() and Before() member functions:

TFree *idcur = this;

while (idcur) {

 ...

 idcur = (TFree*)GetListOfFree()->After(idcur);

}

Method 1 uses internally method 2.

Method 2 works for all collection classes. TIter overloads operator().

Methods 3 and 4 are specific for TList.

Methods 2, 3 and 4 can also easily iterate backwards using either a backward TIter (using argument

kIterBackward) or by using LastLink() and lnk->Prev() or by using the Before() method.

The TObjArray Collection
A TObjArray is a collection which supports traditional array semantics via the overloading of operator[].

Objects can be directly accessed via an index. The array expands automatically when objects are added. At
creation time one specifies the default array size (default = 16) and lower bound (default = 0). Resizing involves

288 Collection Classes

a re-allocation and a copy of the old array to the new. This can be costly if done too often. If possible, set initial
size close to expected final size. Index validity is always checked (if you are 100% sure and maximum

performance is needed you can use UnCheckedAt() instead of At() or operator[]). If the stored objects

are sort able the array can be sorted using Sort(). Once sorted, efficient searching is possible via the

BinarySearch() method. The figure shows the internal data structure of a TObjArray:

Figure 16-3 The internal data structure of a TObjArray

Iterating can be done using a TIter iterator or via a simple for loop:

for (int i = 0; i <= fArr.GetLast(); i++)

 if ((track = (TTrack*)fArr[i])) // or fArr.At(i)

 track->Draw();

Main features of TObjArray are simple, well-known array semantics. Overhead per element: none, except

possible over sizing of fCont.

TClonesArray – An Array of Identical Objects
A TClonesArray is an array of identical (clone) objects. The memory for the objects stored in the array is

allocated only once in the lifetime of the clones array. All objects must be of the same class. For the rest this
class has the same properties as a TObjArray.

Figure 16-4 The internal data structure of a TClonesArray

The figure above shows the internal data structure of a TClonesArray. The class is specially designed for

repetitive data analysis tasks, where in a loop many times the same objects, are created and deleted. The only
supported way to add objects to a TClonesArray is via the new with placement method. The different Add()

methods of TObjArray and its base classes are not supported.

The Idea Behind TClonesArray

To reduce the very large number of new and delete calls in large loops like this (O(100000) x O(10000) times
new/delete):

TObjArray a(10000);

while (TEvent *ev = (TEvent *)next()) { // O(100000)

 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)

 a[i] = new TTrack(x,y,z,...);

 ...

 }

 ...

 a.Delete();

}

You better use a TClonesArray which reduces the number of new/delete calls to only O(10000):

 Collection Classes 289

TClonesArray a("TTrack", 10000);

while (TEvent *ev = (TEvent *)next()) { // O(100000)

 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)

 new(a[i]) TTrack(x,y,z,...);

 ...

 }

 ...

 a.Delete();

}

Considering that a pair of new/delete calls on average cost about 70 s, O(10
9
) new/deletes will save about 19

hours. For the other collections, see the class reference guide on the web and the test program
$ROOTSYS/test/tcollex.cxx.

Template Containers and STL
Some people dislike polymorphic containers because they are not truly ―type safe‖. In the end, the compiler
leaves it the user to ensure that the types are correct. This only leaves the other alternative: creating a new
class each time a new (container organization) / (contained object) combination is needed. To say the least this
could be very tedious. Most people faced with this choice would, for each type of container:

Define the class leaving a dummy name for the contained object type. When a particular container was needed,
copy the code and then do a global search and replace for the contained class. C++ has a built in template
scheme that effectively does just this. For example:

template<class T>

class ArrayContainer {

private:

 T *member[10];

...

};

This is an array container with a 10-element array of pointers to T, it could hold up to 10 T objects. This array is

flawed because it is static and hard-coded, it should be dynamic. However, the important point is that the

template statement indicates that T is a template, or parameterized class. If we need an ArrayContainer for

Track objects, it can be created by:

ArrayContainer<Track> MyTrackArrayContainer;

C++ takes the parameter list and substitutes Track for T throughout the definition of the class

ArrayContainer, then compiles the code so generated, effectively doing the same we could do by hand, but

with a lot less effort.

This produces code that is type safe, but does have different drawbacks:

 Templates make code harder to read.

 At the time of writing this documentation, some compilers can be very slow when dealing with
templates.

 It does not solve the problem when a container has to hold a heterogeneous set of objects.

 The system can end up generating a great deal of code; each container/object combination has
its own code, a phenomenon that is sometimes referred to as code bloat.

 The Standard Template Library (STL) is part on ANSI C++, and includes a set of template
containers.

 Physics Vectors 291

17 Physics Vectors

The physics vector classes describe vectors in three and four dimensions and their rotation algorithms. The
classes were ported to root from CLHEP see:

http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Vector/vector.html

The Physics Vector Classes
In order to use the physics vector classes you will have to load the Physics library:

gSystem.Load("libPhysics.so");

There are four classes in this package. They are:

TVector3 is a general three-vector. A TVector3 may be expressed in Cartesian, polar, or cylindrical

coordinates. Methods include dot and cross products, unit vectors and magnitudes, angles between vectors,
and rotations and boosts. There are also functions of particular use to HEP, like pseudo-rapidity, projections,
and transverse part of a TVector3, and kinetic methods on 4-vectors such as Invariant Mass of pairs or

containers of particles.

TLorentzVector is a general four-vector class, which can be used either for the description of position and

time (x, y, z, t) or momentum and energy (px, py, pz, E). TRotation is a class describing a rotation of a

TVector3 object. TLorentzRotation is a class to describe the Lorentz transformations including Lorentz

boosts and rotations. In addition, a TVector2 is a basic implementation of a vector in two dimensions and is

not part of the CLHEP translation.

TVector3
TVector3 is a general three-vector class, which can be used for description of different vectors in 3D.

Components of three vectors:

x, y, z - basic components

 = azimuth angle

 = polar angle

magnitude = mag = sqrt(x
2
 + y

2
 + z

2
)

transverse component = perp = sqrt(x
2
 + y

2
)

Using the TVector3 class, you should remember that it contains

only common features of three vectors and lacks methods specific
for some particular vector values. For example, it has no translated
function because translation has no meaning for vectors.

Declaration / Access to the Components

TVector3 has been implemented as a vector of three Double_t variables, representing the Cartesian

coordinates. By default the values are initialized to zero, however you can change them in the constructor:

TVector3 v1; // v1 = (0,0,0)

TVector3 v2(1); // v2 = (1,0,0)

TVector3 v3(1,2,3); // v3 = (1,2,3)

TVector3 v4(v2); // v4 = v2

It is also possible (but not recommended) to initialize a TVector3 with a Double_t or Float_t C array. You

can get the components by name or by index:

xx = v1.X(); or xx = v1(0);

yy = v1.Y(); yy = v1(1);

zz = v1.Z(); zz = v1(2);

 The methods SetX(), SetY(), SetZ() and SetXYZ() allow you to set the components:

v1.SetX(1.); v1.SetY(2.); v1.SetZ(3.);

v1.SetXYZ(1.,2.,3.);

http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Vector/vector.html

292 Physics Vectors

Other Coordinates

To get information on the TVector3 in spherical (rho, phi, theta) or cylindrical (z, r, theta) coordinates,

the following methods can be used.

Double_t m = v.Mag();

// get magnitude (=rho=Sqrt(x*x+y*y+z*z)))

Double_t m2 = v.Mag2(); // get magnitude squared

Double_t t = v.Theta(); // get polar angle

Double_t ct = v.CosTheta(); // get cos of theta

Double_t p = v.Phi(); // get azimuth angle

Double_t pp = v.Perp(); // get transverse component

Double_t pp2= v.Perp2(); // get transverse squared

It is also possible to get the transverse component with respect to another vector:

Double_t ppv1 = v.Perp(v1);

Double_t pp2v1 = v.Perp2(v1);

The pseudo-rapidity (eta = -ln (tan (theta/2))) can be obtained by Eta() or PseudoRapidity():

Double_t eta = v.PseudoRapidity();

These setters change one of the non-Cartesian coordinates:

v.SetTheta(.5); // keeping rho and phi

v.SetPhi(.8); // keeping rho and theta

v.SetMag(10.); // keeping theta and phi

v.SetPerp(3.); // keeping z and phi

Arithmetic / Comparison

The TVector3 class has operators to add, subtract, scale and compare vectors:

v3 = -v1;

v1 = v2+v3;

v1 += v3;

v1 = v1 - v3;

v1 -= v3;

v1 *= 10;

v1 = 5*v2;

if(v1 == v2) {...}

if(v1 != v2) {...}

Related Vectors

v2 = v1.Unit(); // get unit vector parallel to v1

v2 = v1.Orthogonal(); // get vector orthogonal to v1

Scalar and Vector Products

s = v1.Dot(v2); // scalar product

s = v1 * v2; // scalar product

v = v1.Cross(v2); // vector product

Angle between Two Vectors

Double_t a = v1.Angle(v2);

Rotation around Axes

v.RotateX(.5);

v.RotateY(TMath::Pi());

v.RotateZ(angle);

Rotation around a Vector

v1.Rotate(TMath::Pi()/4, v2); // rotation around v2

 Physics Vectors 293

Rotation by TRotation Class

TVector3 objects can be rotated by TRotation objects using the Transform() method, the operator

*=, or the operator * of the TRotation class. See the later section on TRotation.

TRotation m;

...

v1.Transform(m);

v1 = m*v1;

v1 *= m; // v1 = m*v1

Transformation from Rotated Frame

This code transforms v1 from the rotated frame (z' parallel to direction, x' in the theta plane and y' in the xy

plane as well as perpendicular to the theta plane) to the (x, y, z) frame.

TVector3 direction = v.Unit()

v1.RotateUz(direction); // direction must be TVector3 of unit length

TRotation
The TRotation class describes a rotation of TVector3 object. It is a 3 * 3 matrix of Double_t:

zzzyzx

yzyyyx

xzxyxx

It describes a so-called active rotation, i.e. a rotation of objects inside a static system of coordinates. In case
you want to rotate the frame and want to know the coordinates of objects in the rotated system, you should
apply the inverse rotation to the objects. If you want to transform coordinates from the rotated frame to the
original frame you have to apply the direct transformation. A rotation around a specified axis means
counterclockwise rotation around the positive direction of the axis.

Declaration, Access, Comparisons

TRotation r; // r initialized as identity

TRotation m(r); // m = r

There is no direct way to set the matrix elements - to ensure that a TRotation always describes a real

rotation. But you can get the values by with the methods XX()..ZZ() or the (,) operator:

Double_t xx = r.XX(); // the same as xx=r(0,0)

 xx = r(0,0);

if (r==m) {...} // test for equality

if (r!=m) {..} // test for inequality

if (r.IsIdentity()) {...} // test for identity

Rotation around Axes

The following matrices describe counter-clockwise rotations around the coordinate axes and are implemented

in: RotateX(), RotateY() and RotateZ():

aa

aaaRx

cossin0

sincos0

001

aa

aa

aRy

cos0sin

010

sin0cos

100

0cossin

0sincos

aa

aa

aRz

 r.RotateX(TMath::Pi()); // rotation around the x-axis

Rotation around Arbitrary Axis

The Rotate() method allows you to rotate around an arbitrary vector (not necessary a unit one) and returns

the result.

r.Rotate(TMath::Pi()/3,TVector3(3,4,5));

It is possible to find a unit vector and an angle, which describe the same rotation as the current one:

294 Physics Vectors

Double_t angle;

TVector3 axis;

r.GetAngleAxis(angle,axis);

Rotation of Local Axes

The RotateAxes()method adds a rotation of local axes to the current rotation and returns the result:

TVector3 newX(0,1,0);

TVector3 newY(0,0,1);

TVector3 newZ(1,0,0);

a.RotateAxes(newX,newX,newZ);

Methods ThetaX(), ThetaY(), ThetaZ(), PhiX(), PhiY(), PhiZ() return azimuth and polar angles of the

rotated axes:

Double_t tx,ty,tz,px,py,pz;

tx= a.ThetaX();

...

pz= a.PhiZ();

Inverse Rotation

TRotation a,b;

...

b = a.Inverse(); // b is inverse of a, a is unchanged

b = a.Invert(); // invert a and set b = a

Compound Rotations

The operator * has been implemented in a way that follows the mathematical notation of a product of the two

matrices which describe the two consecutive rotations. Therefore, the second rotation should be placed first:

r = r2 * r1;

Rotation of TVector3

The TRotation class provides an operator * which allows expressing a rotation of a TVector3 analog to

the mathematical notation:

z

y

x

zzzyzx

yzyyyx

xzxyxx

z

y

x

'

'

'

TRotation r;

TVector3 v(1,1,1);

v = r * v;

You can also use the Transform() method or the operator *= of the TVector3 class:

TVector3 v;

TRotation r;

v.Transform(r);

TLorentzVector
TLorentzVector is a general four-vector class, which can be used either for the description of position and

time (x, y, z, t) or momentum and energy (px, py, pz, E).

Declaration

TLorentzVector has been implemented as a set a TVector3 and a Double_t variable. By default, all

components are initialized by zero.

TLorentzVector v1; // initialized by (0.,0.,0.,0.)

TLorentzVector v2(1.,1.,1.,1.);

TLorentzVector v3(v1);

TLorentzVector v4(TVector3(1.,2.,3.),4.);

For backward compatibility there are two constructors from a Double_t and Float_t array.

 Physics Vectors 295

Access to Components

There are two sets of access functions to the components of a TLorentzVector: X(), Y(), Z(), T() and

Px(), Py(), Pz() and E(). Both sets return the same values but the first set is more relevant for use where

TLorentzVector describes a combination of position and time and the second set is more relevant where

TLorentzVector describes momentum and energy:

Double_t xx =v.X();

...

Double_t tt = v.T();

Double_t px = v.Px();

...

Double_t ee = v.E();

The components of TLorentzVector can also accessed by index:

xx = v(0); or xx = v[0];

yy = v(1); yy = v[1];

zz = v(2); zz = v[2];

tt = v(3); tt = v[3];

You can use the Vect() method to get the vector component of TLorentzVector:

TVector3 p = v.Vect();

For setting components there are two methods: SetX(),.., SetPx(),..:

v.SetX(1.); or v.SetPx(1.);

... ...

v.SetT(1.); v.SetE(1.);

To set more the one component by one call you can use the SetVect() function for the TVector3 part or

SetXYZT(), SetPxPyPzE(). For convenience there is also a SetXYZM():

v.SetVect(TVector3(1,2,3));

v.SetXYZT(x,y,z,t);

v.SetPxPyPzE(px,py,pz,e);

v.SetXYZM(x,y,z,m); // v = (x,y,z,e = Sqrt(x*x+y*y+z*z+m*m))

Vector Components in Non-Cartesian Coordinates

There are a couple of methods to get and set the TVector3 part of the parameters in spherical coordinate

systems:

Double_t m, theta, cost, phi, pp, pp2, ppv2, pp2v2;

m = v.Rho();

t = v.Theta();

cost = v.CosTheta();

phi = v.Phi();

v.SetRho(10.);

v.SetTheta(TMath::Pi()*.3);

v.SetPhi(TMath::Pi());

or get information about the r-coordinate in cylindrical systems:

Double_t pp, pp2, ppv2, pp2v2;

pp = v.Perp(); // get transverse component

pp2 = v.Perp2(); // get transverse component squared

ppv2 = v.Perp(v1); // get transverse component with respect to another vector

pp2v2 = v.Perp(v1);

there are two more set functions SetPtEtaPhiE(pt,eta,phi,e) and SetPtEtaPhiM(pt,eta,phi,m) for

convenience.

Arithmetic and Comparison Operators

The TLorentzVector class provides operators to add subtract or compare four-vectors:

v3 = -v1;

v1 = v2+v3;

v1+= v3;

v1 = v2 + v3;

v1-= v3;

if(v1 == v2) {...}

if(v1 != v3) {...}

296 Physics Vectors

Magnitude/Invariant mass, beta, gamma, scalar product

The scalar product of two four-vectors is calculated with the (-,-,-,+) metric:

 s = v1*v2 = t1*t2-x1*x2-y1*y2-z1*z2

The magnitude squared mag2 of a four-vector is therefore:

 mag2 = v*v = t*t-x*x-y*y-z*z

If mag2 is negative: mag = -Sqrt(-mag*mag). The methods are:

Double_t s, s2;

s = v1.Dot(v2); // scalar product

s = v1*v2; // scalar product

s2 = v.Mag2(); or s2 = v.M2();

s = v.Mag(); s = v.M();

Since in case of momentum and energy the magnitude has the meaning of invariant mass TLorentzVector

provides the more meaningful aliases M2() and M(). The methods Beta() and Gamma() returns beta and

gamma = 1/Sqrt(1-beta*beta).

Lorentz Boost

A boost in a general direction can be parameterized with three parameters which can be taken as the

components of a three vector b=(bx,by,bz). With x=(x,y,z) and gamma=1/Sqrt(1-beta*beta) (beta

being the module of vector b), an arbitrary active Lorentz boost transformation (from the rod frame to the
original frame) can be written as:

 x = x' + (gamma-1)/(beta*beta)*(b*x')*b + gamma*t'*b

 t = gamma(t'+ b*x')

The Boost() method performs a boost transformation from the rod frame to the original frame.

BoostVector() returns a TVector3 of the spatial components divided by the time component:

TVector3 b;

v.Boost(bx,by,bz);

v.Boost(b);

b = v.BoostVector(); // b=(x/t,y/t,z/t)

Rotations

There are four sets of functions to rotate the TVector3 component of a TLorentzVector:

Around Axes:

v.RotateX(TMath::Pi()/2.);

v.RotateY(.5);

v.RotateZ(.99);

Around an arbitrary axis:

v.Rotate(TMath::Pi()/4., v1); // rotation around v1

Transformation from rotated frame:

v.RotateUz(direction); // direction must be a unit TVector3

Rotation by TRotation:

TRotation r;

v.Transform(r); //or v *= r; (v = r*v)

Miscellaneous

Angle between two vectors:

Double_t a = v1.Angle(v2); // get angle between v1 and v2

Methods Plus() and Minus() return the positive and negative light-cone components:

Double_t pcone = v.Plus();

Double_t mcone = v.Minus();

A general Lorentz transformation (see class TLorentzRotation) can be used by the Transform() method,

the *=, or * operator of the TLorentzRotation class:

TLorentzRotation l;

v.Transform(l);

v = l*v; or v *= l; // v = l*v

 Physics Vectors 297

TLorentzRotation
The TLorentzRotation class describes Lorentz transformations including Lorentz boosts and rotations (see

TRotation)

tttztytx

ztzzzyzx

ytyzyyyx

xtxzxyxx

lambda

Declaration

By default it is initialized to the identity matrix, but it may also be initialized by other TLorentzRotation, by a

pure TRotation or by a boost:

TLorentzRotation l; // l is initialized as identity

TLorentzRotation m(l); // m = l

TRotation r;

TLorentzRotation lr(r);

TLorentzRotation lb1(bx,by,bz);

TVector3 b;

TLorentzRotation lb2(b);

The Matrix for a Lorentz boosts is:

 │1+gamma'*bx*bx gamma'*bx*by gamma'*bx*bz gamma*bx │

 │ gamma'*bx*bz 1+gamma'*by*by gamma'*by*by gamma*by │

 │ gamma'*bz*bx gamma'*bz*by 1+gamma'*bz*bz gamma*bz │

 │ gamma*bx gamma*by gamma*bz gamma │

with the boost vector b=(bx,by,bz); gamma=1/Sqrt(1-beta*beta); gamma‟=(gamma-1)/beta*beta.

Access to the Matrix Components/Comparisons

The access to the matrix components is possible with the methods XX(), XY() ... TT(), and with the operator

(int,int):

Double_t xx;

TLorentzRotation l;

xx = l.XX(); // gets the xx component

xx = l(0,0); // gets the xx component

if (l == m) {...} // test for equality

if (l != m) {...} // test for inequality

if (l.IsIdentity()) {...} // test for identity

Transformations of a Lorentz Rotation

There are four possibilities to find the product of two TLorentzRotation transformations:

TLorentzRotation a,b,c;

c = b*a; // product

c = a.MatrixMultiplication(b); // a is unchanged

a *= b; // a=a*b

c = a.Transform(b) // a=b*a then c=a

Lorentz boosts:

Double_t bx, by, bz;

TVector3 v(bx,by,bz);

TLorentzRotation l;

l.Boost(v);

l.Boost(bx,by,bz);

Rotations:

TVector3 axis;

l.RotateX(TMath::Pi()); // rotation around x-axis

l.Rotate(.5,axis); // rotation around specified vector

Inverse transformation: use the method Inverse() to return the inverse transformation keeping the current

one unchanged. The method Invert() inverts the current TLorentzRotation:

l1 = l2.Inverse(); // l1 is inverse of l2, l2 unchanged

l1 = l2.Invert(); // invert l2, then l1=l2

298 Physics Vectors

The matrix for the inverse transformation of a TLorentzRotation is as follows:

ttztytxt

tzzzzyzx

tyyzyyyx

txxzxyxx

Transformation of a TLorentzVector

To apply TLorentzRotation to TLorentzVector you can use either the VectorMultiplication()

method or the * operator. You can also use the Transform() function and the *= operator of the class

TLorentzVector.

TLorentzVector v;

TLorentzRotation l;

...

v=l.VectorMultiplication(v);

v = l * v;

v.Transform(l);

v *= l; // v = l*v

Physics Vector Example

The test file $ROOTSYS/test/TestVectors.cxx is an example of using physics vectors. The vector

classes are not loaded by default, and to run it, you will need to load libPhysics.so first:

root[] .L $ROOTSYS/lib/libPhysics.so

root[] .x TestVectors.cxx

To load the physics vector library in a ROOT application use:

gSystem->Load("libPhysics");

The example $ROOTSYS/test/TestVectors.cxx does not return much, especially if all went well, but when

you look at the code you will find examples for many calls.

 The Geometry Package 299

18 The Geometry Package

The new ROOT geometry package is a tool for building, browsing, navigating and visualizing detector
geometries. The code works standalone with respect to any tracking Monte-Carlo engine; therefore, it does not
contain any constraints related to physics. However, the navigation features provided by the package are
designed to optimize particle transport through complex geometries, working in correlation with simulation
packages such as GEANT3, GEANT4 and FLUKA.

Quick Start: Creating the “world”
This chapter will provide a detailed description on how to build valid geometries as well as the ways to optimize
them. There are several components gluing together the geometrical model, but for the time being let us get
used with the most basic concepts.

The basic bricks for building-up the model are called volumes. These represent the un-positioned pieces of the

geometry puzzle. The difference is just that the relationship between the pieces is not defined by neighbors, but

by containment. In other words, volumes are put one inside another making an in-depth hierarchy. From

outside, the whole thing looks like a big pack that you can open finding out other smaller packs nicely arranged

waiting to be opened at their turn. The biggest one containing all others defines the ―world‖ of the model. We

will often call this master reference system (MARS). Going on and opening our packs, we will obviously

find out some empty ones, otherwise, something is very wrong... We will call these leaves (by analogy with a
tree structure).

On the other hand, any volume is a small world by itself – what we need to do is to take it out and to ignore all
the rest since it is a self-contained object. In fact, the modeller can act like this, considering a given volume as
temporary MARS, but we will describe this feature later on. Let us focus on the biggest pack – it is mandatory to
define one. Consider the simplest geometry that is made of a single box. Here is an example on how to build it:

Example 1: Creating the World

We first need to load the geometry library. This is not needed if one does make map in root folder.

root[] gSystem->Load(“libGeom”);

Second, we have to create an instance of the geometry manager class. This takes care of all the modeller
components, performing several tasks to insure geometry validity and containing the user interface for building
and interacting with the geometry. After its creation, the geometry manager class can be accessed with the
global gGeoManager:

root[] new TGeoManager(“world”, “the simplest geometry”);

We want to create a single volume in our geometry, but since any volume needs to have an associated
medium, we will create a dummy one. You can safely ignore the following lines for the time being, since
materials and media will be explained in detail later on.

root[] TGeoMaterial *mat = new TGeoMaterial(“Vacuum”,0,0,0);

root[] TGeoMedium *med = new TGeoMedium(“Vacuum”,1,mat);

We can finally make our volume having a box shape. Note that the world volume does not need to be a box - it
can be any other shape. Generally, boxes and tubes are the most recommendable shapes for this purpose due
to their fast navigation algorithms.

root[] TGeoVolume *top = gGeoManager->MakeBox(“Top”,med,10.,10.,10.);

The default units are in centimeters. Now we want to make this volume our world. We have to do this operation
before closing the geometry.

root[] gGeoManager->SetTopVolume(top);

This should be enough, but it is not since always after defining some geometry hierarchy, TGeo needs to build

some optimization structures and perform some checks. Note the messages posted after the statement is
executed. We will describe the corresponding operations later.

root[] gGeoManager->CloseGeometry();

Now we are really done with geometry building stage, but we would like to see our simple world:

root[] top->SetLineColor(kMagenta);

root[] gGeoManager->SetTopVisible(); // the TOP is generally invisible

root[] top->Draw();

300 The Geometry Package

Example 2: A Geometrical Hierarchy Look and Feel

Before going further, let us get a look and feel of interacting with the modeller. For this, we will use one of the
examples illustrating the geometry package. To get an idea on the geometry structure created in this example,
just look at the link: http://root.cern.ch/root/html/examples/rootgeom.C.html. You will notice that this is a bit more
complex that just creating the ―world‖ since several other volumes are created and put together in a hierarchy.
The purpose here is just to learn how to interact with a geometry that is already built, but just few hints on the
building steps in this example might be useful. The geometry here represents the word ROOT that is replicated
in some symmetric manner. You might for instance ask some questions after having a first look:

Q: “OK, I understand the first lines that load the libGeom library and create a
geometry manager object. I also recognize from the previous example the following

lines creating some materials and media, but what about the geometrical

transformations below?”

A: As explained before, the model that we are trying to create is a hierarchy of volumes based on

containment. This is accomplished by positioning some volumes inside others. Any volume is an un-

positioned object in the sense that it defines only a local frame (matching the one of its shape). In order to

fully define the mother-daughter relationship between two volumes one has to specify how the daughter will be
positioned inside. This is accomplished by defining a local geometrical transformation of the

daughter with respect to the mother coordinate system. These transformations will be subsequently used in the
example.

Q: “I see the lines defining the top level volume as in the previous example, but
what about the other volumes named REPLICA and ROOT?”

A: You will also notice that several other volumes are created by using lines like:

TGeoVolume *someVolume = gGeoManager->MakeXXX(“someName”, ptrMedium,

 /* parameters coresponding to XXX… */)

In the method above XXX represent some shape name (Box, Tube, etc.). This is just a simple way of creating a

volume having a given shape in one-step (see also section: ―Creating and Positioning Volumes‖). As for
REPLICA and ROOT volumes, they are just some virtual volumes used for grouping and positioning

together other real volumes. See ―Positioned Volumes (Nodes)‖. The same structure represented by (a real

or) a virtual volume can be replicated several times in the geometry.

Q: “Fine, so probably the real volumes are the ones composing the letters R, O and
T. Why one have to define so many volumes to make an R?”

A: Well, in real life some objects have much more complex shapes that an R. The modeller cannot just know all

of them; the idea is to make a complex object by using elementary building blocks that have known shapes
(called primitive shapes). Gluing these together in the appropriate way is the user responsibility.

Q: “I am getting the global picture but not making much out of it… There are also a
lot of calls to TGeoVolume::AddNode() that I do not understand.”

A: A volume is positioned inside another one by using this method. The relative geometrical transformation as

well as a copy number must be specified. When positioned, a volume becomes a node of its container and a

new object of the class TGeoNode is automatically created. This method is therefore the key element for the

creation of a hierarchical link between two volumes. As it will be described further on in this document, there are
few other methods performing similar actions, but let us keep things simple for the time being. In addition, notice
that there are some visualization-related calls in the example followed by a final TGeoVolume::Draw() call

for the top volume. These are explained in details in the section ―Visualization Settings and Attributes‖. At this
point, you will probably like to see how this geometry looks like. You just need to run the example and you will
get the following picture that you can rotate using the mouse; or you can zoom / move it around (see what the
Help menu of the GL window displays).

% root rootgeom.C

Now let us browse the hierarchy that was just created. Start a browser and double-click on the item simple1
representing the gGeoManager object. Note that right click opens the context menu of the manager class

where several global methods are available.

http://root.cern.ch/root/html/examples/rootgeom.C.html

 The Geometry Package 301

root[] new TBrowser;

The folders Materials, Media and Local transformations are in fact the containers where the geometry

manager stores the corresponding objects. The Illegal overlaps folder is empty but can be filled after

performing a geometry validity check (see section: ―Checking the Geometry‖). If tracking is performed using
TGeo, the folder Tracks might contain user-defined tracks that can be visualized/animated in the geometry

context (see section: ―Creating and Visualizing Tracks‖). Since for the time being we are interested more in the

geometrical hierarchy, we will focus on the last two displayed items TOP and TOP_1. These are the top volume

and the corresponding top node in the hierarchy.

Double clicking on the TOP volume will unfold all different volumes contained by the top volume. In the right

panel, we will see all the volumes contained by TOP (if the same is positioned 4 times we will get 4 identical

items). This rule will apply to any clicked volume in the hierarchy. Note that right clicking a volume item activates
the volume context menu containing several specific methods. We will call the volume hierarchy developed in

this way as the logical geometry graph. The volume objects are nodes inside this graph and the same

volume can be accessed starting from different branches.

On the other hand, the real geometrical objects that are seen when visualizing or tracking the geometry are

depicted in the TOP_1 branch. These are the nodes of the physical tree of positioned volumes represented

by TGeoNode objects. This hierarchy is a tree since a node can have only one parent and several daughters.

For a better understanding of the hierarchy, have a look at http://root.cern.ch/root/htmldoc/TGeoManager.html.

Just close now the X3D window and focus at the wire frame picture drawn in a pad. Activate Options/Event

Status. Moving the mouse in the pad, you will notice that objects are sometimes changing color to red. Volumes
are highlighted in this way whenever the mouse pointer is close enough to one of its vertices. When this
happens, the corresponding volume is selected and you will see in the bottom right size of the ROOT canvas its
name, shape type and corresponding path in the physical tree. Right clicking on the screen when a volume is
selected will also open its context menu (picking). Note that there are several actions that can be performed
both at view (no volume selected) and volume level.

TView (mouse not selecting any volume):

 Click-and-drag rotates the view.

 Pressing some keys perform different actions:

 J/K – zoom / unzoom

 H, L, U, I – move the viewpoint

 Right click + SetParallel()/SetPerspective() – switch from parallel to perspective view.

 Right click + ShowAxis() – show coordinate axes.

 Right click + Centered/Left/Side/Top – change view direction.

TGeoVolume (mouse selecting a volume):

 Double click will focus the corresponding volume.

 Right click + CheckOverlaps() – run overlap checker on current volume.

 Right click + Draw() – draw that volume according current global visualization options

 Right click + DrawOnly() – draw only the selected volume.

 Right click + InspectShape/Material() – print info about shape or material.

 Right click + Raytrace() – initiate a ray tracing algorithm on current view.

 Right click + RandomPoints/Rays() – shoot random points or rays inside the bounding box of

the clicked volume and display only those inside visible volumes.

 Right click + Weight() – estimates the weight of a volume within a given precision.

Note that there are several additional methods for visibility and line attributes settings.

http://root.cern.ch/root/htmldoc/TGeoManager.html

302 The Geometry Package

Materials and Tracking Media
We have mentioned that volumes are the building blocks for geometry, but they describe real objects having
well defined properties. In fact, there are just two of them: the material they are made from and their geometrical

shape. These have to be created before creating the volume itself, so we will describe the bits and pieces

needed for making the geometry before moving to an architectural point of view.

As far as materials are concerned, they represent the physical properties of the solid from which a volume is
made. Materials are just a support for the data that has to be provided to the tracking engine that uses this
geometry package. Due to this fact, the TGeoMaterial class is more like a thin data structure needed for

building the corresponding native materials of the Monte-Carlo tracking code that uses TGeo.

Elements, Materials and Mixtures

In order to make easier material and mixture creation, one can use the pre-built table of elements owned by
TGeoManager class:

TGeoElementTable *table = gGeoManager->GetElementTable();

TGeoElement *element1 = table->GetElement(Int_t Z);

TGeoElement *element2 = table->FindElement(“Copper”);

Materials made of single elements can be defined by their atomic mass (A), charge (Z) and density (rho). One

can also create a material by specifying the element that it is made of. Optionally the radiation and absorption

lengths can be also provided; otherwise they can be computed on-demand [G3]. The class representing them is

TGeoMaterial:

TGeoMaterial(const char *name,Double_t a,Double_t z,Double_t density,

 Double_t radlen=0,Double_t intlen=0);

TGeoMaterial(const char *name, TGeoElement *elem, Double_t density);

TGeoMaterial(const char* name, Double_t a, Double_t z, Double_t rho,

 TGeoMaterial::EGeoMaterialState state,

 Double_t temperature = STP_temperature,

 Double_t pressure = STP_pressure)

Any material or derived class is automatically indexed after creation. The assigned index is corresponding to the
last entry in the list of materials owned by TGeoManager class. This can be changed using the

TGeoMaterial::SetIndex() method, however it is not recommended while using the geometry package

interfaced with a transport MC. Radiation and absorption lengths can be set using:

TGeoMaterial::SetRadLen(Double_t radlen, Double_t intlen);

 radlen: radiation length. If radlen<=0 the value is computed using GSMATE algorithm in

GEANT3

 intlen: absorption length

Material state, temperature and pressure can be changed via setters. Another material property is transparency.
It can be defined and used while viewing the geometry with OpenGL.

void SetTransparency(Char_t transparency = 0)

 transparency: between 0 (opaque default) to 100 (fully transparent)

One can attach to a material a user-defined object storing Cerenkov properties. Another hook for material
shading properties is currently not in use. Mixtures are materials made of several elements. They are
represented by the class TGeoMixture, deriving from TGeoMaterial and defined by their number of

components and the density:

TGeoMixture(const char *name,Int_t nel,Double_t rho);

 Elements have to be further defined one by one:

void TGeoMixture::DefineElement(Int_t iel,Double_t a,Double_t z,Double_t weigth);

void TGeoMixture::DefineElement(Int_t iel, TGeoElement *elem, Double_t weight);

void TGeoMixture ::DefineElement(Int_t iel, Int_t z, Int_t natoms);

or:

void AddElement(TGeoMaterial* mat, Double_t weight);

void AddElement(TGeoElement* elem, Double_t weight);

void AddElement(TGeoElement* elem, Int_t natoms);

void AddElement(Double_t a, Double_t z, Double_t weight)

 iel: index of the element [0,nel-1]

 a and z: the atomic mass and charge

 weight: proportion by mass of the elements

 natoms: number of atoms of the element in the molecule making the mixture

http://root.cern.ch/root/html/ListOfTypes.html#void
http://root.cern.ch/root/html/TGeoMaterial.html#TGeoMaterial:SetTransparency
http://root.cern.ch/root/html/ListOfTypes.html#Char_t

 The Geometry Package 303

The radiation length is automatically computed when all elements are defined. Since tracking MC provide
several other ways to create materials/mixtures, the materials classes are likely to evolve as the interfaces to
these engines are being developed. Generally in the process of tracking material properties are not enough and
more specific media properties have to be defined. These highly depend on the MC performing tracking and
sometimes allow the definition of different media properties (e.g. energy or range cuts) for the same material.

Radionuclides

A new class TGeoElementRN was introduced in this version to provide support for radioactive nuclides and

their decays. A database of 3162 radionuclides can be loaded on demand via the table of elements
(TGeoElementTable class). One can make then materials/mixtures based on these radionuclides and use

them in a geometry

root[] TGeoManager *geom = new TGeoManager("geom", "radionuclides");

root[] TGeoElementTable *table = geom->GetElementTable();

root[] TGeoElementRN *c14 = table->GetElementRN(14,6); // A,Z

root[] c14->Print();

6-C-014 ENDF=60140; A=14; Z=6; Iso=0; Level=0[MeV]; Dmass=3.0199[MeV];

Hlife=1.81e+11[s] J/P=0+; Abund=0; Htox=5.8e-10; Itox=5.8e-10; Stat=0

Decay modes:

BetaMinus Diso: 0 BR: 100.000% Qval: 0.1565

One can make materials or mixtures from radionuclides:

root[] TGeoMaterial *mat = new TGeoMaterial("C14", c14, 2.0);

The following properties of radionulides can be currently accessed via getters in the TGeoElementRN class:

Atomic number and charge (from the base class TGeoElement)

 Isomeric number (ISO)

 ENDF code - following the convention: ENDF=10000*Z+100*A+ISO

 Isomeric energy level [MeV]

 Mass excess [MeV]

 Half life [s]

 Spin/Parity - can be retrieved with: TGeoElementRN::GetTitle()

 Hynalation and ingestion toxicities

 List of decays - TGeoElementRN::GetDecays()

The radioactive decays of a radionuclide are represented by the class TGeoDecayChannel and they are

stored in a TObjArray. Decay provides:

 Decay mode

 Variation of isomeric number

 Q value for the decay [GeV]

 Parent element

 Daughter element

Radionuclides are linked one to each other via their decays, until the last element in the decay chain which must
be stable. One can iterate decay chains using the iterator TGeoElemIter:

root[] TGeoElemIter next(c14);

root[] TGeoElementRN *elem;

root[] while ((elem=next())) next.Print();

6-C-014 (100% BetaMinus) T1/2=1.81e+11

7-N-014 stable

To create a radioactive material based on a radionuclide, one should use the constructor:

TGeoMaterial(const char *name, TGeoElement *elem, Double_t density)

To create a radioactive mixture, one can use radionuclides as well as stable elements:

TGeoMixture(const char *name, Int_t nelements, Double_t density);

TGeoMixture::AddElement(TGeoElement *elem, Double_t weight_fraction);

Once defined, one can retrieve the time evolution for the radioactive materials/mixtures by using one of the next
two methods:

1. TGeoMaterial::FillMaterialEvolution(TObjArray *population,

 Double_t precision=0.001)

To use this method, one has to provide an empty TObjArray object that will be filled with all elements coming

from the decay chain of the initial radionuclides contained by the material/mixture. The precision represent the
cumulative branching ratio for which decay products are still considered.

304 The Geometry Package

Figure 18-1Concentration of C14 derived elements

The population list may contain stable elements as well as radionuclides, depending on the initial elements. To
test if an element is a radionuclide:

Bool_t TGeoElement::IsRadioNuclide() const

All radionuclides in the output population list have attached objects that represent the time evolution of their
fraction of nuclei with respect to the top radionuclide in the decay chain. These objects (Bateman solutions) can
be retrieved and drawn:

TGeoBatemanSol *TGeoElementRN::Ratio();

void TGeoBatemanSol::Draw();

Another method allows to create the evolution of a given radioactive material/mixture at a given moment in time:

2. TGeoMaterial::DecayMaterial(Double_t time, Double_t precision=0.001)

The method will create the mixture that result from the decay of a initial material/mixture at time, while all
resulting elements having a fractional weight less than precision are excluded.

A demo macro for radioactive material features is $ROOTSYS/tutorials/geom/RadioNuclides.C It

demonstrates also the decay of a mixture made of radionuclides.

Figure 18-2 Concentracion of elements derived fromCa53+Sr78

Tracking Media

The class TGeoMedium describes tracking media properties. This has a pointer to a material and the additional

data members representing the properties related to tracking.

TGeoMedium(const char *name,Int_t numed,TGeoMaterial *mat,Double_t *params=0);

 name: name assigned to the medium

 mat: pointer to a material

 params: array of additional parameters

 The Geometry Package 305

Another constructor allows effectively defining tracking parameters in GEANT3 style:

TGeoMedium(const char *name,Int_t numed,Int_t imat,Int_t ifield,

 Double_t fieldm,Double_t tmaxfd,Double_t stemax,

 Double_t deemax,Double_t epsil,Double_t stmin);

This constructor is reserved for creating tracking media from the VMC interface [...]:

 numed: user-defined medium index

 imat: unique ID of the material

 others: see G3 documentation

Looking at our simple world example, one can see that for creating volumes one needs to create tracking media
before. The way to proceed for those not interested in performing tracking with external MC's is to define and

use only one dummy tracking medium as in the example (or a NULL pointer).

User Interface for Handling Materials and Media

The TGeoManager class contains the API for accessing and handling defined materials:

TGeoManager::GetMaterial(name);

Shapes
Shapes are geometrical objects that provide the basic modeling functionality. They provide the definition of the

local coordinate system of the volume. Any volume must have a shape. Any shape recognized by the

modeller has to derive from the base TGeoShape class, providing methods for:

 Finding out if a point defined in their local frame is contained or not by the shape;

 Computing the distance to enter/exit the shape from a local point, given a known direction;

 Computing the maximum distance in any direction from a local point that does NOT result in a
boundary crossing of the shape (safe distance);

 Computing the cosines of the normal vector to the crossed shape surface, given a starting local
point and an ongoing direction.

All the features above are globally managed by the modeller in order to provide navigation functionality. In
addition to those, shapes have also to implement additional specific abstract methods:

 Computation of the minimal box bounding the shape, given that this box have to be aligned with
the local coordinates;

 Algorithms for dividing the shape along a given axis.

The modeller currently provides a set of 20 basic shapes, which we will call primitives. It also provides a

special class allowing the creation of shapes as a result of Boolean operations between primitives. These are

called composite shapes and the composition operation can be recursive (combined composites). This

allows the creation of a quite large number of different shape topologies and combinations. You can have a look
and run the tutorial: http://root.cern.ch/root/html/examples/geodemo.C.html

Figure 18-3 Primitive Shapes - the general inheritance scheme

Shapes are named objects and all primitives have constructors like:

TGeoXXX(const char *name,<type> param1,<type> param2, …);

TGeoXXX(<type> param1,<type> param2, …);

Naming shape primitive is mandatory only for the primitives used in Boolean composites (see ―Composite
Shapes‖). For the sake of simplicity, we will describe only the constructors in the second form.

http://root.cern.ch/root/html/examples/geodemo.C.html

306 The Geometry Package

Units

The length units used in the geometry are arbitrary. However, there are certain functionalities that work with
the assumption that the used lengths are expressed in centimeters. This is the case for shape capacity or
volume weight computation. The same is valid when using the ROOT geometry as navigator for an external
transport MC package (e.g. GEANT) via the VMC interface.

Other units in use: All angles used for defining rotation matrices or some shape parameters are expressed in
degrees. Material density is expressed in [g/cm

3
].

Primitive Shapes

Boxes – TGeoBBox Class

Normally a box has to be build only with 3 parameters: DX,DY,DZ representing the half-lengths on X, Y and Z-

axes. In this case, the origin of the box will match the one of its reference frame and the box will range from: -

DX to DX on X-axis, from -DY to DY on Y and from -DZ to DZ on Z. On the other hand, any other shape needs to

compute and store the parameters of their minimal bounding box. The bounding boxes are essential to optimize
navigation algorithms. Therefore all other primitives derive from TGeoBBox. Since the minimal bounding box is

not necessary centered in the origin, any box allows an origin translation (Ox,Oy,Oz). All primitive constructors

automatically compute the bounding box parameters. Users should be aware that building a translated box that
will represent a primitive shape by itself would affect any further positioning of other shapes inside. Therefore it
is highly recommendable to build non-translated boxes as primitives and translate/rotate their corresponding
volumes only during positioning stage.

TGeoBBox(Double_t dx,Double_t dy,Double_t dz,Double_t *origin=0);

Figure 18-4 TGeoBBox class

TGeoBBox – box class

 fDx = 20.00 => half length in X

 fDy = 20.00 => half length in Y

 fDz = 20.00 => half length in Z

 fOrigin[0] = 0.00 => box origin on X

 fOrigin[1] = 0.00 => box origin on Y

 fOrigin[2] = 0.00 => box origin on Z

Parallelepiped – TGeoPara class

A parallelepiped is a shape having 3 pairs of parallel faces out of which one is parallel with the XY plane (Z
faces). All faces are parallelograms in the general case. The Z faces have 2 edges parallel with the X-axis.

Figure 18-5 TGeoPara class

TGeoPara – parallelepiped class

 fDx = 20.00 => half length of X edges

 fDy = 30.00 => half length of Y edges

 fDz = 40.00 => half length of Z edges

 fAlpha = 20.00 => alpha angle

 fTheta = 30.00 => theta angle

 fPhi = 45.00 => phi angle

The shape has the center in the origin and it is defined by:

 dX, dY, dZ: half-lengths of the projections of the edges on X, Y and Z. The lower Z face is

positioned at -dZ, while the upper at +dZ.

 alpha: angle between the segment defined by the centers of the X-parallel edges and Y axis [-

90,90] in degrees

 theta: theta angle of the segment defined by the centers of the Z faces;

 phi: phi angle of the same segment

TGeoPara(dX,dY,dZ,alpha,theta,phi);

A box is a particular parallelepiped having the parameters: (dX,dY,dZ,0.,0.,0.).

 The Geometry Package 307

Trapezoids

In general, we will call trapezoidal shapes having 8 vertices and up to 6 trapezoid faces. Besides that, two of the

opposite faces are parallel to XY plane and are positioned at dZ. Since general trapezoids are seldom used

in detector geometry descriptions, there are several primitives implemented in the modeller for particular cases.

Trd1 is a trapezoid with only X varying with Z. It is defined by the half-length in Z, the half-length in X at the

lowest and highest Z planes and the half-length in Y:

TGeoTrd1(Double_t dx1,Double_t dx2,Double_t dy,Double_t dz);

Figure 18-6 TGeoTrd1 class

TGeoTrd1 – Trd1 class

 fDx1 = 10.00 => half length in X at -Dz

 fDx2 = 20.00 => half length in X at +Dz

 fDy = 30.00 => half length in Y

 fDz = 40.00 => half length in Z

Trd2 is a trapezoid with both X and Y varying with Z. It is defined by the half-length in Z, the half-length in X at

the lowest and highest Z planes and the half-length in Y at these planes:

TGeoTrd2(Double_t dx1,Double_t dx2,Double_t dy1,Double_t dy2, Double_t dz);

Figure 18-7 TGeoTrd2 class

TGeoTrd2 – Trd2 class

 fDx1 = 10.00 => half length in X at -Dz

 fDx2 = 20.00 => half length in X at +Dz

 fDy1 = 30.00 => half length in Y at -Dz

 fDy2 = 10.00 => half length in Y at +Dz

 fDz = 40.00 => half length in Z

General Trapezoid – TGeoTrap Class

A general trapezoid is one for which the faces perpendicular to z are trapezes but their centers are not
necessary at the same x, y coordinates.

Figure 18-8 TGeoTrap Class

It has eleven parameters: the half length in z, the polar angles from the center of the face at low z to that at high

z, H1 the half length in y at low z, LB1 the half length in x at low z and y low edge, LB2 the half length in x at low

z and y high edge, TH1 the angle with respect to the y axis from the center of low y edge to the center of the

high y edge, and H2,LB2,LH2,TH2, the corresponding quantities at high z.

TGeo Trap – Tr apezoid class

fDz

 = 30.00 => half length in Z

fTheta
 = 15.00 => theta angle of center axis

fPhi

 = 30.00 => phi angle of center axis

fH1
 = 20.00 => half length in Y at z = - fDz

fBl1

 = 10.00 => half length in x at z = - fDz and
 y = - fH1

fTl1

 = 15.00 => half length in x at z = - fDz and
 y = fH1

fAlpha1

 = 00.00 => phi angle of segment between
 Bl1 and Tl1 mid points on lower Z

fH2

 = 20.00 => half length in Y at z = fDz

fBl2
 = 10.00 => half length in x at z = fDz and

 y = - fH2

fTl2
 = 15.00 => half length in x at z = fDz and

 y = fH2

fAlpha2
 = 00.00 => phi angle of segment between

 Bl2 and Tl2 mid points on upper Z

308 The Geometry Package

TGeoTrap(Double_t dz,Double_t theta,Double_t phi,

 Double_t h1,Double_t bl1,Double_t tl1,Double_t alpha1,

 Double_t h2,Double_t bl2,Double_t tl2,Double_t alpha2);

Twisted Trapezoid – TGeoGtra class

A twisted trapezoid is a general trapezoid defined in the same way but that is twisted along the Z-axis. The twist
is defined as the rotation angle between the lower and the higher Z faces.

TGeoGtra(Double_t dz,Double_t theta,Double_t phi,Double_t twist,

 Double_t h1,Double_t bl1,Double_t tl1,Double_t alpha1,

 Double_t h2,Double_t bl2,Double_t tl2,Double_t alpha2);

Figure 18-9 TGeoGtra class

TGeoGtra – Trapezoid class

fDz = 30.00 => half length in Z
fTheta = 15.00 => theta angle of center axis
fPhi = 30.00 => phi angle of center axis

fTwist = 30.00 => twist angle
fH1 = 20.00 => half length in Y at z = -fDz
fBl1 = 10.00 => half length in x at z = -fDz and
 y = -fH1
fTl1 = 15.00 => half length in x at z = -fDz and
 y = fH1
fAlpha1 = 00.00 => phi angle of segment between
 Bl1 and Tl1 mid points on lower Z
fH2 = 20.00 => half length in Y at z = fDz
fBl2 = 10.00 => half length in x at z = fDz and
 y = -fH2
fTl2 = 15.00 => half length in x at z = fDz and
 y = fH2
fAlpha2 = 00.00 => phi angle of segment between
 Bl2 and Tl2 mid points on upper Z

Arbitrary 8 vertices shapes - TGeoArb8 class

An Arb8 is defined by two quadrilaterals sitting on parallel planes, at dZ. These are defined each by 4 vertices

having the coordinates (Xi,Yi,+/-dZ), i=0, 3. The lateral surface of the Arb8 is defined by the 4 pairs of

edges corresponding to vertices (i,i+1) on both -dZ and +dZ. If M and M' are the middles of the segments

(i,i+1) at -dZ and +dZ, a lateral surface is obtained by sweeping the edge at -dZ along MM' so that it will

match the corresponding one at +dZ. Since the points defining the edges are arbitrary, the lateral surfaces are

not necessary planes – but twisted planes having a twist angle linear-dependent on Z.

TGeoArb8::TGeoArb8(Double_t dz,Double_t ivert);

 dz: half-length in Z;

 ivert = [0,7]

Vertices have to be defined clockwise in the XY pane, both at +dz and –dz. The quadrilateral at -dz is defined

by indices [0,3], whereas the one at +dz by vertices [4,7]. The vertex with index=7 has to be defined last,

since it triggers the computation of the bounding box of the shape. Any two or more vertices in each Z plane can
have the same (X,Y) coordinates. It this case, the top and bottom quadrilaterals become triangles, segments or
points. The lateral surfaces are not necessary defined by a pair of segments, but by pair segment-point (making
a triangle) or point-point (making a line). Any choice is valid as long as at one of the end-caps is at least a
triangle.

Figure 18-10 TGeoArb8 class

 The Geometry Package 309

Tubes – TGeoTube Class

Tubes have Z as their symmetry axis. They have a range in Z, a minimum and a maximum radius:

TGeoTube(Double_t rmin,Double_t rmax,Double_t dz);

The full Z range is from -dz to +dz.

Figure 18-11 TGeoTube Class

TGeoTube – tube class

 fRmin = 20.00 => minimum radius

 fRmax = 30.00 => maximum radius

 fDz = 40.00 => half length in Z

Tube Segments – TGeoTubeSeg Class

A tube segment is a tube having a range in phi. The tube segment class derives from TGeoTube, having 2 extra

parameters: phi1 and phi2.

TGeoTubeSeg(Double_t rmin,Double_t rmax,Double_t dz,Double_t phi1,Double_t phi2);

Here phi1 and phi2 are the starting and ending phi values in degrees. The general phi convention is

that the shape ranges from phi1 to phi2 going counterclockwise. The angles can be defined with either

negative or positive values. They are stored such that phi1 is converted to [0,360] and phi2 > phi1.

Figure 18-12 TGeoTubeSeg Class

TGeoTubeSeg – tube segment class

 fRmin = 20.00 => minimum radius

 fRmax = 30.00 => maximum radius

 fDz = 40.00 => half length in Z

 fPhi1 = 330.00 => first phi limit

 fPhi2 = 610.00 => second phi limit

Cut Tubes – TGeoCtub Class

The cut tubes constructor has the form:

TGeoCtub(Double_t rmin,Double_t rmax,Double_t dz,Double_t phi1,Double_t phi2,

 Double_t nxlow,Double_t nylow,Double_t nzlow, Double_t nxhi,

 Double_t nyhi,Double_t nzhi);

Figure 18-13 TGeoCtub Class

TGeoCtub – cut tube segment class

fRmin = 20.00 => minimum radius
fRmax = 30.00 => maximum radius

fDz = 60.49 => half length in Z
fPhi1 = 330.00 => first phi limit

fPhi2 = 610.00 => second phi limit
Nlow: = 0.00 => normal at lower Z plane
 = 0.64 =>
 = -0.77 =>
Nhigh: = 0.00 => normal at upper Z plane

 = 0.09 =>
 = 0.87 =>

A cut tube is a tube segment cut with two planes. The centers of the 2 sections are positioned at dZ. Each cut

plane is therefore defined by a point (0,0, dZ) and its normal unit vector pointing outside the shape:

Nlow=(Nx,Ny,Nz<0), Nhigh=(Nx‟,Ny‟,Nz‟>0).

310 The Geometry Package

Elliptical Tubes – TGeoEltu Class

An elliptical tube is defined by the two semi-axes A and B. It ranges from –dZ to +dZ as all other tubes:

TGeoEltu(Double_t a,Double_t b,Double_t dz);

Figure 18-14 TGeoEltu Class

TGeoEltu – eltu class

 fA = 10.00 => semi-axis along X

 fB = 30.00 => semi-axis along Y

 fDz = 40.00 => half length in Z

Hyperboloids – TGeoHype Class

A hyperboloid is represented as a solid limited by two planes perpendicular to the Z axis (top and bottom
planes) and two hyperbolic surfaces of revolution about Z axis (inner and outer surfaces). The class describing
hyperboloids is TGeoHype has 5 input parameters:

TGeoHype(Double_t rin,Double_t stin,Double_t rout,Double_t stout,Double_t dz);

Figure 18-15 TGeoHype Class

TGeoHype – hyperboloid class

fRmin = 10.00 => minimum radius of inner

surface
fStin = 45.00 => stereo angle for the inner

surface

fRmax = 20.00 => minimum radius of outer
surface

fStout = 45.00 => stereo angle for the outer
surface

A hyperbolic surface is defined by:
 R2 – z2 tan2 = R2

min

The hyperbolic surface equation is taken in the form:

r
2
 – z

2
tan

2
() = r

2
min

 r,z: cylindrical coordinates for a point on the surface

 : stereo angle between the hyperbola asymptotic lines and Z axis

 r
2
min: minimum distance between hyperbola and Z axis (at z=0)

The input parameters represent:

 rin, stin: minimum radius and tangent of stereo angle for inner surface

 rout, stout: minimum radius and tangent of stereo angle for outer surface

 dz: half length in Z (bounding planes positions at +/-dz)

The following conditions are mandatory in order to avoid intersections between the inner and outer hyperbolic

surfaces in the range +/-dz:

 rin<rout

 rout>0

 rin
2
 + dz

2
*stin

2
 > rout

2
 + dz

2
*stout

2

Particular cases:

 rin=0, stin 0: the inner surface is conical

 stin=0 / stout=0: cylindrical surface(s)

Cones – TGeoCone Class

The cones are defined by 5 parameters:

TGeoCone(Double_t dz,Double_t rmin1,Double_t rmax1,Double_t rmin2,

 Double_t rmax2);

 The Geometry Package 311

 rmin1: internal radius at Z is -dz

 rmax1: external radius at Z is -dz

 rmin2: internal radius at Z is +dz

 rmax2: external radius at Z is +dz

 dz: half length in Z (a cone ranges from –dz to +dz)

A cone has Z-axis as its symmetry axis.

Figure 18-16 TGeoCone Class

TGeoCone – cone class

 fDz = 40.00 => half length in Z

 fRmin1= 30.00 => inner radius at -Dz

 fRmax1= 40.00 => outer radius at -Dz

 fRmin2= 10.00 => inner radius at +Dz

 fRmax2= 20.00 => outer radius at +Dz

Cone Segments – TGeoConeSeg Class

A cone segment is a cone having a range in phi. The cone segment class derives from TGeoCone, having two

extra parameters: phi1 and phi2.

TGeoConeSeg(Double_t dz,Double_t rmin1,Double_t rmax1,Double_t rmin2,

 Double_t rmax2,Double_t phi1,Double_t phi2);

Parameters phi1 and phi2 have the same meaning and convention as for tube segments.

Figure 18-17 TGeoConeSeg Class

TGeoConeSeg – coneseg class

 fDz = 40.00 => half length in Z

 fRmin1= 30.00 => inner radius at -Dz

 fRmax1= 40.00 => outer radius at -Dz

 fRmin2= 10.00 => inner radius at +Dz

 fRmax2= 20.00 => outer radius at +Dz

 fPhi1 = 0.00 => first phi limit

 fPhi2 = 270.00 => second phi limit

Sphere – TGeoSphere Class

Spheres in TGeo are not just balls having internal and external radii, but sectors of a sphere having defined

theta and phi ranges. The TGeoSphere class has the following constructor.

Figure 18-18 TGeoSphere Class

TGeoSphere – sphere class

 fRmin = 30.00 => inner radius

 fRmax = 40.00 => outer radius

 fTheta1 = 60.00 => lower theta limit

 fTheta2 = 120.00 => higher theta limit

 fPhi1 = 30.00 => lower phi limit

 fPhi2 = 240.00 => higher phi limit

TGeoSphere(Double_t rmin,Double_t rmax,Double_t theta1, Double_t theta2,

 Double_t phi1, Double_t phi2);

 rmin: internal radius of the spherical sector

 rmax: external radius

 theta1: starting theta value [0, 180) in degrees

 theta2: ending theta value (0, 180] in degrees (theta1<theta2)

312 The Geometry Package

Torus : TGeoTorus Class

The torus is defined by its axial radius, its inner and outer radius.

Figure 18-19 TGeoTorus Class

TGeoTorus – torus class

 fR = 40.00 => radius of the ring

 fRmin = 20.00 => minimum radius

 fRmax = 25.00 => maximum radius

 fPhi1 = 0.00 => lower phi limit

 fDphi = 270.00 => phi range

It may have a phi range:

TGeoTorus(Double_t R,Double_t Rmin,Double_t Rmax,Double_t Phi1,Double_t Dphi);

 R: axial radius of the torus

 Rmin: inner radius

 Rmax: outer radius

 Phi1: starting phi angle

 Dphi: total phi range

Paraboloid : TGeoParaboloid Class

A paraboloid is defined by the revolution surface generated by a parabola and is bounded by two planes

perpendicular to Z axis. The parabola equation is taken in the form: z = a·r2 + b, where: r2 = x2 + y2.

Note the missing linear term (parabola symmetric with respect to Z axis).

The coefficients a and b are computed from the input values which are the radii of the circular sections cut by

the planes at +/-dz:

 -dz = a*r
2
low + b

 dz = a*r
2
high + b

TGeoParaboloid(Double_t rlo,Double_t rhi,Double_t dz);

Figure 18-20 TGeoParaboloid Class

TGeoParaboloid – paraboloid class

 fRlo = 0.00 => radius at -dz

 fRhi = 40.00 => radius at +dz

 fDz = 50.00 => half length on Z

 z = a*r2 + b

Polycone : TGeoPcon Class

A polycone is represented by a sequence of tubes/cones, glued together at defined Z planes. The polycone
might have a phi segmentation, which globally applies to all the pieces. It has to be defined in two steps:

1. First call the TGeoPcon constructor to define a polycone:

TGeoPcon(Double_t phi1,Double_t dphi,Int_t nz

 phi1: starting phi angle in degrees

 dphi: total phi range

 nz: number of Z planes defining polycone sections (minimum 2)

 2. Define one by one all sections [0, nz-1]

void TGeoPcon::DefineSection(Int_t i,Double_t z,Double_t rmin, Double_t rmax);

 The Geometry Package 313

 i: section index [0, nz-1]

 z: z coordinate of the section

 rmin: minimum radius corresponding too this section

 rmax: maximum radius.

The first section (i=0) has to be positioned always the lowest Z coordinate. It defines the radii of the first

cone/tube segment at its lower Z. The next section defines the end-cap of the first segment, but it can represent
also the beginning of the next one. Any discontinuity in the radius has to be represented by a section defined at
the same Z coordinate as the previous one. The Z coordinates of all sections must be sorted in increasing
order. Any radius or Z coordinate of a given plane have corresponding getters:

Double_t TGeoPcon::GetRmin(Int_t i);

Double_t TGeoPcon::GetRmax(Int_t i);

Double_t TGeoPcon::GetZ(Int_t i);

Note that the last section should be defined last, since it triggers the computation of the bounding box of the
polycone.

Figure 18-21 TGeoPcon Class

TGeoPcon – pcon class

 fPhi1 = 330.00 => lower phi limit

 fDphi = 300.00 => phi range

 fNz = 4 => number of Z planes

 fZ[0] = 0.00 fRmin[0] = 15.00 fRmax[0] = 20.00

 fZ[1] = 20.00 fRmin[1] = 15.00 fRmax[1] = 20.00

 fZ[2] = 20.00 fRmin[2] = 15.00 fRmax[2] = 25.00

 fZ[3] = 50.00 fRmin[3] = 15.00 fRmax[3] = 20.00

Polygon: TGeoPgon Class

Polygons are defined in the same way as polycones, the difference being just that the segments between
consecutive Z planes are regular polygons. The phi segmentation is preserved and the shape is defined in a

similar manner, just that rmin and rmax represent the radii of the circles inscribed in the inner/outer polygon.

Figure 18-22 TGeoPgon Class

TGeoPgon – pgon class

 fPhi1 = 0.00 => lower phi limit

 fDphi = 270.00 => phi range

 fNedes = 5 => number of edges

 fNedges = 8 => number of Z planes

 fZ[0] = -30.00 fRmin[0] = 15.00 fRmax[0] = 20.00

 fZ[1] = -20.00 fRmin[1] = 8.00 fRmax[1] = 15.00

 fZ[2] = -20.00 fRmin[2] = 10.00 fRmax[2] = 20.00

 fZ[3] = -10.00 fRmin[3] = 15.00 fRmax[3] = 20.00

 fZ[4] = 10.00 fRmin[4] = 15.00 fRmax[4] = 20.00

 fZ[5] = 20.00 fRmin[5] = 10.00 fRmax[5] = 15.00

 fZ[6] = 20.00 fRmin[6] = 15.00 fRmax[6] = 20.00

 fZ[7] = 30.00 fRmin[7] = 10.00 fRmax[7] = 20.00

The constructor of a polygon has the form:

TGeoPgon(Double_t phi1,Double_t dphi,Int_t nedges,Int_t nz);

The extra parameter nedges represent the number of equal edges of the polygons, between phi1 and
phi1+dphi.

Polygonal extrusion: TGeoXtru Class

A TGeoXtru shape is represented by the extrusion of an arbitrary polygon with fixed outline between several Z

sections. Each Z section is a scaled version of the same ―blueprint‖ polygon. Different global XY translations are
allowed from section to section. Corresponding polygon vertices from consecutive sections are connected.

An extruded polygon can be created using the constructor:

TGeoXtru::TGeoXtru(Int_t nplanes) ;

 nplanes: number of Z sections (minimum 2)

314 The Geometry Package

Figure 18-23 TGeoXtru Class

The lists of X and Y positions for all vertices have to be provided for the ―blueprint‖ polygon:

TGeoXtru::DefinePolygon (Int_t nvertices, Double_t *xv, Double_t *yv) ;

 nvertices: number of vertices of the polygon

 xv,yv: arrays of X and Y coordinates for polygon vertices

The method creates an object of the class TGeoPolygon for which the convexity is automatically determined .

The polygon is decomposed into convex polygons if needed.

Next step is to define the Z positions for each section plane as well as the XY offset and scaling for the
corresponding polygons.

TGeoXtru::DefineSection(Int_t snum,Double_t zsection,Double_t x0,Double_t y0,

 Double_t scale);

 snum: Z section index (0, nplanes-1). The section with snum = nplanes-1 must be defined

last and triggers the computation of the bounding box for the whole shape

 zsection: Z position of section snum. Sections must be defined in increasing order of Z (e.g.

snum=0 correspond to the minimum Z and snum=nplanes-1 to the maximum one).

 x0,y0: offset of section snum with respect to the local shape reference frame T

 scale: factor that multiplies the X/Y coordinates of each vertex of the polygon at section snum:

 x[ivert] = x0 + scale*xv[ivert]

 y[ivert] = y0 + scale*yv[ivert]

Half Spaces: TGeoHalfSpace Class

 A half space is limited just by a plane, defined by a point and the normal direction. The point lies
on the plane and the normal vector points outside the half space. The half space is the only
shape which is infinite and can be used only in Boolean operations that result in non-infinite
composite shapes (see also ―Composite Shapes‖ below). A half space has to be defined using
the constructor:

TGeoHalfSpace (const char *name, Double_t *point[3], Double_t *norm[3]);

Composite Shapes

Composite shapes are Boolean combinations of two or more shape components. The supported Boolean
operations are union (+), intersection (*) and subtraction(-). Composite shapes derive from the base
TGeoShape class, therefore providing all shape features: computation of bounding box, finding if a given point

is inside or outside the combination, as well as computing the distance to entering/exiting. They can be directly
used for creating volumes or used in the definition of other composite shapes.

Composite shapes are provided in order to complement and extend the set of basic shape primitives. They
have a binary tree internal structure, therefore all shape-related geometry queries are signals propagated from
top level down to the final leaves, while the provided answers are assembled and interpreted back at top. This

CSG (composite solid geometry) hierarchy is effective for small number of components, while

performance drops dramatically for large structures. Building a complete geometry in this style is virtually
possible but highly not recommended.

 The Geometry Package 315

The Structure of Composite Shapes

 A composite shape can always be looked as the result of a Boolean operation between only two shape
components. All information identifying these two components as well as their positions with respect to the
frame of the composite is represented by an object called Boolean node. A composite shape has a pointer to
such a Boolean node. Since the shape components may also be composites, they will also contain binary
Boolean nodes branching out other two shapes in the hierarchy. Any such branch ends-up when the final leaves
are no longer composite shapes, but basic primitives. The figure shows the composite shapes structure.

Figure 18-24 The composite shapes structure

TGeoShape

TGeoCompositeShape

TGeoBoolNode

TGeoMatrix TGeoMatrix

TGeo[Composite]Shape TGeo[Composite]Shape

fLeftMat fRightMat

fLeft fRight

Suppose that A, B, C and D represent basic shapes, we will illustrate how the internal representation of few
combinations look like. We do this only for understanding how to create them in a proper way, since the user
interface for this purpose is in fact very simple. We will ignore for the time being the positioning of components.
The definition of a composite shape takes an expression where the identifiers are shape names. The
expression is parsed and decomposed in 2 sub-expressions and the top-level Boolean operator.

1. Union: A+B+C

Just to illustrate the Boolean expression parsing and the composite shape structure, let‘s take a simple
example. We will describe the union of A, B and C. Both union operators are at the same level. Since:

A+B+C = (A+B)+C = A+(B+C)

The first (+) is taken as separator, hence the expression split in: A and (B+C). A Boolean node of type

TGeoUnion("A","B+C") is created. This tries to replace the 2 expressions by actual pointers to

corresponding shapes. The first expression (A) contains no operators therefore is interpreted as representing a
shape. The shape named "A" is searched into the list of shapes handled by the manager class and stored as
the "left" shape in the Boolean union node. Since the second expression is not yet fully decomposed, the "right"
shape in the combination is created as a new composite shape. This will split at its turn B+C into B and C and
create a TGeoUnion("B","C"). The B and C identifiers will be looked for and replaced by the pointers to the

actual shapes into the new node. Finally, the composite "A+B+C" will be represented as shown in Fig.17-23.

Figure 18-25 Representation of A+B+C

A+B+C

TGeoUnion

B+C A

TGeoUnion

B C

TGeoIdentity

TGeoIdentity TGeoIdentity

To build this composite shape:

TGeoCompositeShape *cs1 = new TGeoCompositeShape("CS1","A+B+C");

Any shape entering a Boolean combination can be prior positioned. In order to do so, one has to attach a matrix
name to the shape name by using a colon (:). As for shapes, the named matrix has to be prior defined:

TGeoMatrix *mat;

// … code creating some geometrical transformation

mat->SetName(“mat1”);

mat->RegisterYourself(); // see Geometrical transformations

An identifier shape:matrix have the meaning: shape is translated or rotated with matrix with respect to the

Boolean combination it enters as operand. Note that in the expression A+B+C no matrix identifier was provided,

316 The Geometry Package

therefore the identity matrix was used for positioning the shape components. The next example will illustrate a
more complex case.

2. (A:m1+B):m2-(C:m3*D:m4):m5

Let‘s try to understand the expression above. This expression means: subtract the intersection of C and D from
the union of A and B. The usage of parenthesis to force the desired precedence is always recommended. One
can see that not only the primitive shapes have some geometrical transformations, but also their intermediate
compositions.

Figure 18-26 Internal representation for composite shapes

(A:m1+B):m2-(C:m3*D:m4):m5

TGeoSubtraction

C:m3*D:m4 A:m1+B

TGeoIntersection

C D

m2 m5

TGeoUnion

A B

m1 id m3 m4

TGeoCompositeShape *cs2 = new TGeoCompositeShape("CS2",

 "(A:m1+B):m2-(C:m3*D:m4):m5");

Building composite shapes as in the first example is not always quite useful since we were using un-positioned
shapes. When supplying just shape names as identifiers, the created Boolean nodes will assume that the
shapes are positioned with an identity transformation with respect to the frame of the created composite. In
order to provide some positioning of the combination components, we have to attach after each shape identifier
the name of an existing transformation, separated by a colon. Obviously all transformations created for this
purpose have to be objects with unique names in order to be properly substituted during parsing.

Composite Shape Example

One should have in mind that the same shape or matrix identifiers can be used many times in the same
expression, as in the following example:

const Double_t sq2 = TMath::Sqrt(2.);

gSystem->Load("libGeom");

TGeoManager *mgr = new TGeoManager("Geom","composite shape example");

TGeoMedium *medium = 0;

TGeoVolume *top = mgr->MakeBox("TOP",medium,100,250,250);

mgr->SetTopVolume(top);

// make shape components

TGeoBBox *sbox = new TGeoBBox("B",100,125*sq2,125*sq2);

TGeoTube *stub = new TGeoTube("T",0,100,250);

TGeoPgon *spgon = new TGeoPgon("P",0.,360.,6,2);

spgon->DefineSection(0,-250,0,80);

spgon->DefineSection(1,250,0,80);

// define some rotations

TGeoRotation *r1 = new TGeoRotation("r1",90,0,0,180,90,90);

r1->RegisterYourself();

TGeoRotation *r2 = new TGeoRotation("r2",90,0,45,90,45,270);

r2->RegisterYourself();

// create a composite

TGeoCompositeShape *cs = new TGeoCompositeShape("cs",

 "((T+T:r1)-(P+P:r1))*B:r2");

TGeoVolume *comp = new TGeoVolume("COMP",cs);

comp->SetLineColor(5);

// put it in the top volume

top->AddNode(comp,1);

mgr->CloseGeometry();

// visualize it with ray tracing

top->Raytrace();

 The Geometry Package 317

Figure 18-27 A composite shape example

Composite shapes can be subsequently used for defining volumes. Moreover, these volumes contain other
volumes, following the general criteria. Volumes created based on composite shapes cannot be divided.

Navigation Methods Performed By Shapes

Shapes are named objects and register themselves to the manager class at creation time. This is

responsible for their final deletion. Shapes can be created without name if their retrieval by

name is no needed. Generally shapes are objects that are useful only at geometry creation stage. The pointer
to a shape is in fact needed only when referring to a given volume and it is always accessible at that level.
Several volumes may reference a single shape; therefore its deletion is not possible once volumes were defined
based on it.

The navigation features related for instance to tracking particles are performed in the following way: Each shape
implement its specific algorithms for all required tasks in its local reference system. Note that the manager class
handles global queries related to geometry. However, shape-related queries might be sometimes useful:

Bool_t TGeoShape::Contains(Double_t *point[3]);

The method above returns kTRUE if the point *point is actually inside the shape. The point has to be defined in

the local shape reference. For instance, for a box having DX,DY and DZ half-lengths a point will be considered

inside if:

-DX <= point[0] <= DX

-DY <= point[1] <= DY

-DZ <= point[2] <= DZ

Double_t TGeoShape::DistFromInside(Double_t *point[3],Double_t *dir[3],

 Int_t iact,Double_t step,Double_t *safe);

The method computes the distance to exiting a shape from a given point inside, along a given direction. This

direction is given by its director cosines with respect to the local shape coordinate system. This method

provides additional information according the value of iact input parameter:

 iact = 0 computes only safe distance and fill it at the location given by SAFE;

 iact = 1 a proposed STEP is supplied. The safe distance is computed first. If this is bigger

 than STEP than the proposed step is approved and returned by the method since it
 does not cross the shape boundaries. Otherwise, the distance to exiting the shape is
 computed and returned;

 iact = 2 computes both safe distance and distance to exiting, ignoring the proposed step;

 iact > 2 computes only the distance to exiting, ignoring anything else

Double_t TGeoShape::DistFromOutside(Double_t *point[3],Double_t *dir[3],

 Int_t iact,Double_t step,Double_t *safe);

This method computes the distance to entering a shape from a given point outside. It acts in the same way as

the previous method.

Double_t TGeoShape::Safety(Double_t *point[3],Bool_t inside);

This computes the maximum shift of a point in any direction that does not change its inside/outside state

(does not cross shape boundaries). The state of the point has to be properly supplied.

Double_t *TGeoShape::ComputeNormal(Double_t *point[3],Double_t *dir[3],

 Double_t *norm[3]);

318 The Geometry Package

The method above computes the director cosines of normal to the crossed shape surface from a given point

towards direction. This is filled into the norm array, supplied by the user. The normal vector is always chosen

such that its dot product with the direction is positive defined.

Creating Shapes

Shape objects embeds only the minimum set of parameters that are fully describing a valid physical shape. For
instance, the half-length, the minimum and maximum radius represent a tube. Shapes are used together with
media in order to create volumes, which in their turn are the main components of the geometrical tree. A
specific shape can be created stand-alone:

TGeoBBox *box = new TGeoBBox("s_box",halfX,halfY,halfZ); // named

TGeoTube *tub = new TGeoTube(rmin,rmax,halfZ); // no name

//... (See all specific shape constructors)

Sometimes it is much easier to create a volume having a given shape in one step, since shapes are not directly
linked in the geometrical tree but volumes are:

TGeoVolume *vol_box = gGeoManager->MakeBox("BOX_VOL",pmed,halfX,halfY,halfZ);

TGeoVolume *vol_tub = gGeoManager->MakeTube("TUB_VOL",pmed,rmin,rmax,halfZ);

// ...(See MakeXXX() utilities in TGeoManager class)

Dividing Shapes

Shapes can generally be divided along a given axis. Supported axes are: X, Y, Z, Rxy, Phi, Rxyz. A given

shape cannot be divided however on any axis. The general rule is that that divisions are possible on whatever
axis that produces still known shapes as slices. The division of shapes are performed by the call
TGeoShape::Divide(), but this operation can be done only via TGeoVolume::Divide() method. In other

words, the algorithm for dividing a specific shape is known by the shape object, but is always invoked in a
generic way from the volume level. Details on how to do that can be found in the paragraph ‗Dividing volumes‘.
One can see how all division options are interpreted and which their result inside specific shape classes is.

Parametric Shapes

Shapes generally have a set of parameters that is well defined at build time. In fact, when the final geometrical

hierarchy is assembled and the geometry is closed, all constituent shapes MUST have well defined and valid

parameters. In order to ease-up geometry creation, some parameterizations are however allowed.

For instance let‘s suppose that we need to define several volumes having exactly the same properties but
different sizes. A way to do this would be to create as many different volumes and shapes. The modeller allows
however the definition of a single volume having undefined shape parameters.

TGeoManager::Volume(const char *name,const char *shape,Int_t nmed);

 name: the name of the newly created volume;

 shape: the type of the associated shape. This has to contain the case-insensitive first 4

 letters of the corresponding class name (e.g. ―tubs‖ will match TGeoTubeSeg,

 ―bbox‖ will match TGeoBBox)

 nmed: the medium number.

This will create a special volume that will not be directly used in the geometry, but whenever positioned will
require a list of actual parameters for the current shape that will be created in this process. Such volumes
having shape parameters known only when used have to be positioned only with TGeoManager::Node()

method (see ‗Creating and Positioning Volumes‘).

Other case when shape parameterizations are quite useful is scaling geometry structures. Imagine that we
would like to enlarge/shrink a detector structure on one or more axes. This happens quite often in real life and is
handled by ―fitting mother‖ parameters. This is accomplished by defining shapes with one or more invalid

(negative) parameters. For instance, defining a box having dx=10., dy=10., and dz=-1 will not generate an

error but will be interpreted in a different way: A special volume TGeoVolumeMulti will be created. Whenever

positioned inside a mother volume, this will create a normal TGeoVolume object having as shape a box with dz

fitting the corresponding dz of the mother shape. Generally, this type of parameterization is used when

positioning volumes in containers having a matching shape, but it works also for most reasonable combinations.

Geometry Creation
A given geometry can be built in various ways, but one has to follow some mandatory steps. Even if we might
use some terms that will be explained later, here are few general rules:

 Volumes need media and shapes in order to be created.

 Both containers and contained volumes must be created before linking them together, and the
relative transformation matrix must be provided.

 The Geometry Package 319

 Any volume have to be positioned somewhere otherwise it will not be considered as part of the
geometry.

 Visibility or tracking properties of volumes can be provided both at build time or after geometry is
closed, but global visualization settings (see section: ―The Drawing Package‖) should not be
provided at build time, otherwise the drawing package will be loaded.

There is also a list of specific rules:

 Positioned volumes should not extrude their container or intersect with others within this unless it
is specified (see section: Overlapping Volumes).

 The top volume (containing all geometry trees) must be specified before closing the geometry
and must not be positioned - it represents the global reference frame.

 After building the full geometry tree, the geometry must be closed (see the method
TGeoManager::CloseGeometry()). Voxelization can be redone per volume after this process.

The list is much bigger and we will describe in more detail the geometry creation procedure in the following
sections. Provided that geometry was successfully built and closed, the TGeoManager class will register itself

to ROOT and the logical/physical structures will become immediately browsable.

The Volume Hierarchy

The basic components used for building the logical hierarchy of the geometry are the positioned volumes called

nodes. Volumes are fully defined geometrical objects having a given shape and medium and possibly

containing a list of nodes. Nodes represent just positioned instances of volumes inside a container volume but
users do not directly create them. They are automatically created as a result of adding one volume inside other
or dividing a volume. The geometrical transformation held by nodes is always defined with respect to their
mother (relative positioning). Reflection matrices are allowed.

A hierarchical element is not fully defined by a node since nodes are not directly linked to each other, but
through volumes (a node points to a volume, which at its turn points to a list of nodes):

NodeTop VolTop NodeA VolA …

One can therefore talk about ―the node or volume hierarchy‖, but in fact, an element is made by a pair volume-
node. In the line above is represented just a single branch, but of course from any volume other branches can

also emerge. The index of a node in such a branch (counting only nodes) is called depth. The top node have

always depth=0.

Volumes need to have their daughter nodes defined when the geometry is closed. They will build additional

structures (called voxels) in order to fasten-up the search algorithms. Finally, nodes can be regarded as bi-

directional links between containers and contained volumes.

The structure defined in this way is a graph structure since volumes are replicable (same volume can become
daughter node of several other volumes), every volume becoming a branch in this graph. Any volume in the
logical graph can become the actual top volume at run time (see TGeoManager::SetTopVolume()). All

functionalities of the modeller will behave in this case as if only the corresponding branch starting from this
volume is the active geometry.

Figure 18-28 A geometry hierarchy in memory

Nodes are never instantiated directly by users, but created as a result of volume operations. Adding a volume

named A with a given user id inside a volume B will create a node named A_id. This will be added to the list

of nodes stored by B. In addition, when applying a division operation in N slices to a volume A, a list of nodes

B_1, B_2, ... , B_N is also created. A node B_i does not represent a unique object in the geometry because its

320 The Geometry Package

container A might be at its turn positioned as node inside several other volumes. Only when a complete branch

of nodes is fully defined up to the top node in the geometry, a given path: /TOP_1/.../A_3/B_7 will represent

a unique object. Its global transformation matrix can be computed as the pile-up of all local transformations in its

branch. We will therefore call logical graph the hierarchy defined by nodes and volumes. The expansion of

the logical graph by all possible paths defines a tree structure where all nodes are unique "touchable" objects.
We will call this the "physical tree". Unlike the logical graph, the physical tree can become a huge structure with
several millions of nodes in case of complex geometries; therefore, it is not always a good idea to keep it
transient in memory. Since the logical and physical structures are correlated, the modeller rather keeps track
only of the current branch, updating the current global matrix at each change of the level in geometry. The
current physical node is not an object that can be asked for at a given moment, but rather represented by the
combination: current node/current global matrix. However, physical nodes have unique ID's that can be
retrieved for a given modeller state. These can be fed back to the modeller in order to force a physical node to
become current. The advantage of this comes from the fact that all navigation queries check first the current
node; therefore the location of a point in the geometry can be saved as a starting state for later use.

Nodes can be declared as overlapping in case they do overlap with other nodes inside the same container or

extrude this container (see also ‗Checking the Geometry‘). Non-overlapping nodes can be created with:

TGeoVolume::AddNode(TGeoVolume *daughter,Int_t copy_No,TGeoMatrix *matr);

The creation of overlapping nodes can be done with a similar prototype:

TGeoVolume::AddNodeOverlap(/*same arguments*/);

When closing the geometry, overlapping nodes perform a check of possible overlaps with their neighbors.
These are stored and checked all the time during navigation; therefore, navigation is slower when embedding
such nodes into geometry. Nodes have visualization attributes as the volume has. When undefined by users,
painting a node on a pad will take the corresponding volume attributes.

Creating and Positioning Volumes

Making Volumes

As mentioned before, volumes are the basic objects used in building the geometrical hierarchy. They represent
objects that are not positioned, but store all information about the placement of the other volumes they may
contain. Therefore a volume can be replicated several times in the geometry. As it was explained, in order to
create a volume, one has to put together a shape and a medium, which are already defined.

Volumes have to be named by users at creation time. Every different name may represent a unique volume
object, but may also represent more general a family (class) of volume objects having the same shape type and
medium, but possibly different shape parameters. It is the user's task to provide different names for different
volume families in order to avoid ambiguities at tracking time.

A generic family rather than a single volume is created only in two cases: when a parametric shape is used or
when a division operation is applied. Each volume in the geometry stores a unique ID corresponding to its
family. In order to ease-up their creation, the manager class is providing an API that allows making a shape and
a volume in a single step.

Example of Volume Creation

// Making a volume out of a shape and a medium.

TGeoVolume *vol = new TGeoVolume(“VNAME”,ptrShape,ptrMed);

// Making a volume out of a shape but without a defined medium.

TGeoVolume *vol = new TGeoVolume(“VNAME”,ptrShape);

// Making a volume with a given shape in one step

TGeoVolume *vol = gGeoManager->MakeBox(“VNAME”,ptrMed,dx,dy,dz);

TGeoVolume *vol = gGeoManager->MakeTubs(“VNAME”,ptrMed,rmin,rmax,dz,phi1,phi2);

// See class TGeoManager for the rest of shapes.

// Making a volume with a given shape with a unique prototype

TGeoVolume *vol = gGeoManager->Volume(“VNAME”,“XXXX”,nmed,upar,npar);

// Where XXXX stands for the first 4 letters of the specific shape

// classes, nmed is the medium number, upar is an Double_t * array of

// the shape parameters and npar is the number of parameters. This

// prototype allows (npar = 0) to define volumes with shape defined only

// at positioning time (volumes defined in this way need to be

// positioned using TGeoManager::Node() method)

 The Geometry Package 321

Positioned Volumes (Nodes)

Geometrical modeling is a difficult task when the number of different geometrical objects is 10
6
-10

8
. This is more

or less the case for detector geometries of complex experiments, where a ‗flat‘ CSG model description cannot
scale with the current CPU performances. This is the reason why models like GEANT [1] introduced an
additional dimension (depth) in order to reduce the complexity of the problem. This concept is also preserved by
the ROOT modeller and introduces a pure geometrical constraint between objects (volumes in our case) –
containment. This means in fact that any positioned volume has to be contained by another. Now what means
contained and positioned?

 We will say that a volume contains a point if this is inside the shape associated to the volume.

For instance, a volume having a box shape will contain all points P=(X,Y,Z) verifying the

conditions: Abs(Pi) dXi. The points on the shape boundaries are considered as inside the

volume. The volume contains a daughter if it contains all the points contained by the daughter.

 The definition of containment works of course only with points defined in the local coordinate

system of the considered volume. Positioning a volume inside another have to introduce a

geometrical transformation between the two. If M defines this transformation, any point in the

daughter reference can be converted to the mother reference by: Pmother = M Pdaughter

When creating a volume one does not specify if this will contain or not other volumes. Adding daughters to a
volume implies creating those and adding them one by one to the list of daughters. Since the volume has to
know the position of all its daughters, we will have to supply at the same time a geometrical transformation with
respect to its local reference frame for each of them.

TGeoVolume::AddNode(TGeoVolume *daughter,Int_t usernumber,

 TGeoMatrix *matrix=gGeoIdentity)

The objects referencing a volume and a transformation are called NODES and their creation is fully handled by

the modeller. They represent the link elements in the hierarchy of volumes. Nodes are unique and distinct
geometrical objects ONLY from their container point of view. Since volumes can be replicated in the geometry,
the same node may be found on different branches.

In order to provide navigation features, volumes have to be able to find the proper container of any point defined
in the local reference frame. This can be the volume itself, one of its positioned daughter volumes or none if the
point is actually outside. On the other hand, volumes have to provide also other navigation methods such as
finding the distances to its shape boundaries or which daughter will be crossed first. The implementation of
these features is done at shape level, but the local mother-daughters management is handled by volumes.
These build additional optimization structures upon geometry closure. In order to have navigation features
properly working one has to follow some rules for building a valid geometry.

 The daughter volume(s) must not extrude the mother shape. They are allowed however to have a
common boundaries.

 The volumes positioned in the same container must not overlap with each other. They may touch
on one boundaries or shape vertex.

The daughter nodes of a volume can be also removed or replaced with other nodes:

void RemoveNode(TGeoNode* node)

TGeoNode*ReplaceNode(TGeoNode* nodeorig, TGeoShape* newshape = 0,

 TGeoMatrix* newpos = 0, TGeoMedium* newmed = 0)

The last method allows replacing an existing daughter of a volume with another one. Providing only the node to
be replaced will just create a new volume for the node but having exactly the same parameters as the old one.
This helps in case of divisions for decoupling a node from the logical hierarchy so getting new
content/properties. For non-divided volumes, one can change the shape and/or the position of the daughter.

Virtual Containers and Assemblies of Volumes

Virtual containers are volumes that do not represent real objects, but they are needed for grouping and
positioning together other volumes. Such grouping helps not only geometry creation, but also optimizes tracking
performance; therefore, it is highly recommended. Virtual volumes need to inherit material/medium properties
from the volume they are placed into in order to be ―invisible‖ at tracking time.

Let us suppose that we need to group together two volumes A and B into a structure and position this into

several other volumes D,E, and F. What we need to do is to create a virtual container volume C holding A and

B, then position C in the other volumes.

Note that C is a volume having a determined medium. Since it is not a real volume, we need to manually set its

medium the same as that of D,E or F in order to make it ‗invisible‘ (same physics properties). In other words,

the limitation in proceeding this way is that D,E, and F must point to the same medium. If this was not the case,

we would have to define different virtual volumes for each placement: C, C‟ and C”, having the same shape but

different media matching the corresponding containers. This might not happen so often, but when it does, it
forces the creation of several extra virtual volumes. Other limitation comes from the fact that any container is
directly used by navigation algorithms to optimize tracking. These must geometrically contain their belongings
(positioned volumes) so that these do not extrude its shape boundaries. Not respecting this rule generally leads

322 The Geometry Package

to unpredictable results. Therefore A and B together must fit into C that has to fit also into D,E, and F. This is

not always straightforward to accomplish, especially when instead of A and B we have many more volumes.

In order to avoid these problems, one can use for the difficult cases the class TGeoVolumeAssembly,

representing an assembly of volumes. This behaves like a normal container volume supporting other volumes
positioned inside, but it has neither shape nor medium. It cannot be used directly as a piece of the geometry,
but just as a temporary structure helping temporary assembling and positioning volumes.

If we define now C as an assembly containing A and B, positioning the assembly into D,E and F will actually

position only A and B directly into these volumes, taking into account their combined transformations A/B to C

and C to D/E/F. This looks much nicer, is it? In fact, it is and it is not. Of course, we managed to get rid of the

‗unnecessary‘ volume C in our geometry, but we end-up with a more flat structure for D,E and F (more

daughters inside). This can get much worse when extensively used, as in the case: assemblies of assemblies.

For deciding what to choose between using virtual containers or assemblies for a specific case, one can use for
both cases, after the geometry was closed:

gGeoManager->SetTopVolume(ptr_D);

gGeoManager->Test();

gGeoManager->RestoreMasterVolume();

The ptr_D is a pointer to volume D containing the interesting structure. The test will provide the timing for

classifying 1 million random points inside D.

Examples of Volume Positioning

Now let us make a simple volume representing a copper wire. We suppose that a medium is already created
(see TGeoMedium class on how to create media).

We will create a TUBE shape for our wire, having Rmin=0cm, Rmax=0.01cm and a half-length dZ=1cm:

TGeoTube *tube = new TGeoTube("wire_tube",0,0.01,1);

One may omit the name for the shape wire_tube, if no retrieving by name is further needed during geometry

building. Different volumes having different names and materials can share the same shape.

Now let's make the volume for our wire:

TGeoVolume *wire_co = new TGeoVolume("WIRE_CO",tube,ptrCOPPER); //(*)

(*)Do not bother to delete the media, shapes or volumes that you have created since all will be automatically
cleaned on exit by the manager class.

If we would have taken a look inside TGeoManager::MakeTube() method, we would have been able to

create our wire with a single line:

TGeoVolume *wire_co = gGeoManager->MakeTube("WIRE_CO",ptrCOPPER,0,0.01,1); //(*)

(*)The same applies for all primitive shapes, for which there can be found corresponding MakeSHAPE()

methods. Their usage is much more convenient unless a shape has to be shared between more volumes.

Let us make now an aluminum wire having the same shape, supposing that we have created the copper wire
with the line above:

TGeoVolume *wire_al = new TGeoVolume("WIRE_AL",wire_co>GetShape(),ptrAL);

We would like now to position our wire in the middle of a gas chamber. We need first to define the gas chamber:

TGeoVolume *chamber = gGeoManager->MakeTube("CHAMBER",ptrGAS,0,1,1);

Now we can put the wire inside:

chamber->AddNode(wire_co,1);

If we inspect now the chamber volume in a browser, we will notice that it has one daughter. Of course, the gas
has some container also, but let us keeps it like that for the sake of simplicity. Since we did not supply the third
argument, the wire will be positioned with an identity transformation inside the chamber.

Overlapping Volumes

Positioning volumes that does not overlap their neighbors nor extrude their container is sometimes quite strong
constraint. Having a limited set of geometric shapes might force sometimes overlaps. Since overlapping is
contradictory to containment, a point belonging to an overlapping region will naturally belong to all overlapping
partners. The answer provided by the modeller to ―Where am I?‖ is no longer deterministic if there is no priority
assigned.

There are two ways out provided by the modeller in such cases and we will illustrate them by examples.

 Suppose we have 2 crossing tubes that we have to describe. Such a structure cannot be
decomposed in a containment schema. This is a typical example of simple structure that can be
handled by using composite shapes. What we have to do is to define as shapes the inner and

outer parts of the tubes (tubes having Rmin=0, Rmax=inner/outer radius), then to make a

composite:

 The Geometry Package 323

 C = (Tub1out+Tub2out)-(Tub1in+Tub2in)

 On the other hand, if we have an EM calorimeter having a honeycomb structure, Boolean
combinations do not help anymore. Here the problem is that we usually have a very large number
of cells that are naturally belonging to the same container. This result in a very flat and slow
structure for that particular container, which we would very much want to avoid by introducing
additional levels in depth. We can describe the basic cell as a hexahedron that we can represent
by using a polygon primitive shape. Instead of putting one by one all cells in the same container,
we can define rows of such elements, fitting in box-shaped containers. Then we can put row-
beside-row inside the container, making life much easier for its navigation algorithms. The
problem is that in order to reproduce the honeycomb structure out of rows of cells, we have to
overlap row containers. Woops – we have not obeyed rule No. 2 in positioning. The way out is to
position our rows with a special prototype:

ptrCAL->AddNodeOverlap(“ROW”,nRow,matrixRow);

This will instruct the modeller that the daughter ROW inside CAL overlaps with something else. The modeller
will check this at closure time and build a list of possibly overlapping candidates. This option is equivalent with
the option MANY in GEANT3.

The modeller supports such cases only if user declares the overlapping nodes. In order to do that, one should
use TGeoVolume::AddNodeOverlap() instead of TGeoVolume::AddNode(). When two or more

positioned volumes are overlapping, not all of them have to be declared so, but at least one. A point inside an
overlapping region equally belongs to all overlapping nodes, but the way these are defined can enforce the
modeller to give priorities.

The general rule is that the deepest node in the hierarchy containing a point has the highest priority. For the
same geometry level, non-overlapping is prioritized over overlapping. In order to illustrate this, we will consider
few examples. We will designate non-overlapping nodes as ONLY and the others MANY as in GEANT3, where
this concept was introduced:

1. The part of a MANY node B extruding its container A will never be "seen" during navigation, as if B was in
fact the result of the intersection of A and B.

2. If we have two nodes A (ONLY) and B (MANY) inside the same container, all points in the overlapping region
of A and B will be designated as belonging to A.

3. If A an B in the above case were both MANY, points in the overlapping part will be designated to the one
defined first. Both nodes must have the same medium.

4. The slices of a divided MANY will be as well MANY.

One needs to know that navigation inside geometry parts MANY nodes is much slower. Any overlapping part
can be defined based on composite shapes – might be in some cases a better way out.

Replicating Volumes

What can we do if our chamber contains two identical wires instead of one? What if then we would need 1000
chambers in our detector? Should we create 2000 wires and 1000 chamber volumes? No, we will just need to
replicate the ones that we have already created.

chamber->AddNode(wire_co,1,new TGeoTranslation(0.2,0,0));

chamber->AddNode(wire_co,2,new TGeoTranslation(0.2,0,0));

The 2 nodes that we have created inside chamber will both point to a wire_co object, but will be completely

distinct: WIRE_CO_1 and WIRE_CO_2. We will want now to place symmetrically 1000 chambers on a pad,

following a pattern of 20 rows and 50 columns. One way to do this will be to replicate our chamber by
positioning it 1000 times in different positions of the pad. Unfortunately, this is far from being the optimal way of
doing what we want. Imagine that we would like to find out which of the 1000 chambers is containing a

(x,y,z) point defined in the pad reference. You will never have to do that, since the modeller will take care of

it for you, but let's guess what it has to do. The most simple algorithm will just loop over all daughters, convert
the point from mother to local reference and check if the current chamber contains the point or not. This might
be efficient for pads with few chambers, but definitely not for 1000. Fortunately the modeller is smarter than that

and creates for each volume some optimization structures called voxels to minimize the penalty having too

many daughters, but if you have 100 pads like this in your geometry you will anyway loose a lot in your tracking
performance. The way out when volumes can be arranged according to simple patterns is the usage of
divisions. We will describe them in detail later on. Let's think now at a different situation: instead of 1000
chambers of the same type, we may have several types of chambers. Let's say all chambers are cylindrical and
have a wire inside, but their dimensions are different. However, we would like all to be represented by a single
volume family, since they have the same properties.

Volume Families

A volume family is represented by the class TGeoVolumeMulti. It represents a class of volumes having the

same shape type and each member will be identified by the same name and volume ID. Any operation applied
to a TGeoVolumeMulti equally affects all volumes in that family. The creation of a family is generally not a

user task, but can be forced in particular cases:

324 The Geometry Package

TGeoManager::Volume(const char *vname,const char *shape,Int_t nmed);

Where: vname is the family name, nmed is the medium number and shape is the shape type that can be:

 box for TGeoBBox

 trd1 for TGeoTrd1

 trd2 for TGeoTrd2

 trap for TGeoTrap

 gtra for TGeoGtra

 para for TGeoPara

 tube, tubs for TGeoTube, TGeoTubeSeg

 cone, cons for TGeoCone, TGeoCons

 eltu for TGeoEltu

 ctub for TGeoCtub

 pcon for TGeoPcon

 pgon for TGeoPgon

Volumes are then added to a given family upon adding the generic name as node inside other volume:

TGeoVolume *box_family = gGeoManager->Volume("BOXES","box",nmed);

// ...

gGeoManager->Node("BOXES",Int_t copy_no,"mother_name",Double_t x,Double_t y,

 Double_t z,Int_t rot_index,Bool_t is_only,

 Double_t *upar,Int_t npar);

 BOXES - name of the family of boxes

 copy_no - user node number for the created node

 mother_name - name of the volume to which we want to add the node

 x,y,z - translation components

 rot_index - index of a rotation matrix in the list of matrices

 upar - array of actual shape parameters

 npar - number of parameters

The parameters order and number are the same as in the corresponding shape constructors. Another particular
case where volume families are used is when we want that a volume positioned inside a container to match one
ore more container limits. Suppose we want to position the same box inside 2 different volumes and we want
the Z size to match the one of each container:

TGeoVolume *container1 = gGeoManager->MakeBox("C1",imed,10,10,30);

TGeoVolume *container2 = gGeoManager->MakeBox("C2",imed,10,10,20);

TGeoVolume *pvol = gGeoManager->MakeBox("PVOL",jmed,3,3,-1);

container1->AddNode(pvol,1);

container2->AddNode(pvol,1);

Note that the third parameter of PVOL is negative, which does not make sense as half-length on Z. This is

interpreted as: when positioned, create a box replacing all invalid parameters with the corresponding
dimensions of the container. This is also internally handled by the TGeoVolumeMulti class, which does not

need to be instantiated by users.

Dividing Volumes

Volumes can be divided according a pattern. The simplest division can be done along one axis that can be:

X,Y,Z,Phi,Rxy or Rxyz. Let's take a simple case: we would like to divide a box in N equal slices along X

coordinate, representing a new volume family. Supposing we already have created the initial box, this can be
done like:

TGeoVolume *slicex = box->Divide("SLICEX",1,N);

Here SLICEX is the name of the new family representing all slices and 1 is the slicing axis. The meaning of the

axis index is the following: for all volumes having shapes like box, trd1, trd2, trap, gtra or para - 1, 2,

3 mean X, Y, Z; for tube, tubs, cone, cons - 1 means Rxy, 2 means phi and 3 means Z; for pcon and

pgon - 2 means phi and 3 means Z; for spheres 1 means R and 2 means phi.

In fact, the division operation has the same effect as positioning volumes in a given order inside the divided
container - the advantage being that the navigation in such a structure is much faster. When a volume is
divided, a volume family corresponding to the slices is created. In case all slices can be represented by a single
shape, only one volume is added to the family and positioned N times inside the divided volume, otherwise,
each slice will be represented by a distinct volume in the family.

Divisions can be also performed in a given range of one axis. For that, one has to specify also the starting
coordinate value and the step:

TGeoVolume *slicex = box->Divide("SLICEX",1,N,start,step);

 The Geometry Package 325

A check is always done on the resulting division range: if not fitting into the container limits, an error message is
posted. If we will browse the divided volume we will notice that it will contain N nodes starting with index 1 up to

N. The first one has the lower X limit at START position, while the last one will have the upper X limit at

START+N*STEP. The resulting slices cannot be positioned inside another volume (they are by default

positioned inside the divided one) but can be further divided and may contain other volumes:

TGeoVolume *slicey = slicex->Divide("SLICEY",2,N1);

slicey->AddNode(other_vol,index,some_matrix);

When doing that, we have to remember that SLICEY represents a family, therefore all members of the family

will be divided on Y and the other volume will be added as node inside all.

In the example above all the resulting slices had the same shape as the divided volume (box). This is not

always the case. For instance, dividing a volume with TUBE shape on PHI axis will create equal slices having

TUBESEG shape. Other divisions can also create slices having shapes with different dimensions, e.g. the

division of a TRD1 volume on Z.

When positioning volumes inside slices, one can do it using the generic volume family (e.g. slicey). This

should be done as if the coordinate system of the generic slice was the same as the one of the divided volume.

The generic slice in case of PHI division is centered with respect to X-axis. If the family contains slices of

different sizes, any volume positioned inside should fit into the smallest one.

Examples for specific divisions according to shape types can be found inside shape classes.

TGeoVolume::Divide(N,Xmin,Xmax,"X");

Create a new volume by dividing an existing one (GEANT3 like).

Divides MOTHER into NDIV divisions called NAME along axis IAXIS starting at coordinate value START and

having size STEP. The created volumes will have tracking media ID=NUMED (if NUMED=0 -> same media as

MOTHER).

The behavior of the division operation can be triggered using OPTION (case insensitive):

 N divide all range in NDIV cells (same effect as STEP<=0) (GSDVN in G3)

 NX divide range starting with START in NDIV cells (GSDVN2 in G3)

 S divide all range with given STEP; NDIV is computed and divisions will be centered

 in full range (same effect as NDIV<=0) (GSDVS, GSDVT in G3)

 SX same as DVS, but from START position (GSDVS2, GSDVT2 in G3)

Volume Assemblies

In general, geometry contains structures of positioned volumes that have to be grouped and handled together,
for different possible reasons. One of these is that the structure has to be replicated in several parts of the
geometry, or it may simply happen that they really represent a single object, too complex to be described by a
primitive shape.

Usually handling structures like these can be easily done by positioning all components in the same container
volume, then positioning the container itself. However, there are many practical cases when defining such a
container is not straightforward or even possible without generating overlaps with the rest of the geometry.
There are few ways out of this:

 Defining the container for the structure as ―overlapping‖ (see also ―Overlapping Volumes”)

 Representing the container as a composite shape – the Boolean union of all components (see
also ―Composite Shapes‖)

 Using an assembly volume – this will be described in the following.

The first two approaches have the disadvantage of penalizing the navigation performance with a factor
increasing more than linear of the number of components in the structure. The best solution is the third one
because it uses all volume-related navigation optimizations. The class TGeoVolumeAssembly represents an

assembly volume. Its shape is represented by TGeoShapeAssembly class that is the union of all components.

It uses volume voxelization to perform navigation tasks.

An assembly volume creates a hierarchical level and it geometrically insulates the structure from the rest (as a
normal volume). Physically, a point that is INSIDE a TGeoShapeAssembly is always inside one of the

components, so a TGeoVolumeAssembly does not need to have a medium. Due to the self-containment of

assemblies, they are very practical to use when a container is hard to define due to possible overlaps during
positioning. For instance, it is very easy creating honeycomb structures. A very useful example for creating and
using assemblies can be found at: http://root.cern.ch/root/html/examples/assembly.C.html.

Creation of an assembly is very easy: one has just to create a TGeoVolumeAssembly object and position the

components inside as for any volume:

TGeoVolume *vol = new TGeoVolumeAssembly(name);

vol->AddNode(vdaughter1, cpy1, matrix1);

vol->AddNode(vdaughter2, cpy2, matrix2);

Note that components cannot be declared as ―overlapping‖ and that a component can be an assembly volume.
For existing flat volume structures, one can define assemblies to force a hierarchical structure therefore

http://root.cern.ch/root/html/examples/assembly.C.html

326 The Geometry Package

optimizing the performance. Usage of assemblies does NOT imply penalties in performance, but in some cases,
it can be observed that it is not as performing as bounding the structure in a container volume with a simple
shape. Choosing a normal container is therefore recommended whenever possible.

Figure 18-29 Assemblies of volumes

Geometrical Transformations

All geometrical transformations handled by the modeller are provided as a built-in package. This was designed
to minimize memory requirements and optimize performance of point/vector master-to-local and local-to-master
computation. We need to have in mind that a transformation in TGeo has two major use-cases. The first one is

for defining the placement of a volume with respect to its container reference frame. This frame will be called

'master' and the frame of the positioned volume - 'local'. If T is a transformation used for positioning volume

daughters, then: MASTER = T * LOCAL

Therefore T is used to perform a local to master conversion, while T-1 for a master to local conversion. The

second use case is the computation of the global transformation of a given object in the geometry. Since the
geometry is built as 'volumes-inside-volumes', the global transformation represents the pile-up of all local
transformations in the corresponding branch. Once a given object in the hierarchy becomes the current one, the
conversion from master to local coordinates or the other way around can be done from the manager class.

A general homogenous transformation is defined as a 4x4 matrix embedding a rotation, a translation and a
scale. The advantage of this description is that each basic transformation can be represented as a homogenous
matrix, composition being performed as simple matrix multiplication.

Rotation: Translation: Scale

1000

0

0

0

333231

232221

131211

rrr

rrr

rrr

1

0100

0010

0001

zyx ttt

1000

000

000

000

z

y

x

s

s

s

Inverse rotation: Inverse translation: Inverse scale:

1000

0

0

0

332313

322212

312111

rrr

rrr

rrr

1

0100

0010

0001

zyx ttt

1000

0/100

00/10

000/1

z

y

x

s

s

s

 rij are the 3x3 rotation matrix components

 tx,ty,tz are the translation components

 sx,sy,sz are arbitrary scale constants on each axis

The disadvantage in using this approach is that computation for 4x4 matrices is expensive. Even combining two
translations would become a multiplication of their corresponding matrices, which is quite an undesired effect.
On the other hand, it is not a good idea to store a translation as a block of 16 numbers. We have therefore
chosen to implement each basic transformation type as a class deriving from the same basic abstract class and
handling its specific data and point/vector transformation algorithms.

The base class TGeoMatrix defines abstract methods for:

 Translation, rotation and scale getters. Every derived class stores only its specific data, e.g. a
translation stores an array of 3 doubles and a rotation an array of 9. However, getting the

 The Geometry Package 327

TGeoTranslation rotation array through the base TGeoMatrix interface is a legal operation.

The answer in this case is a pointer to a global constant array representing an identity rotation.

Double_t *TGeoMatrix::GetTranslation() const;

Double_t *TGeoMatrix::GetRotation() const;

Double_t *TGeoMatrix::GetScale() const;

 Master-to-local and local-to-master point and vector transformations :

void TGeoMatrix::MasterToLocal(const Double_t *master,Double_t *local)

void TGeoMatrix::LocalToMaster(const Double_t *local,Double_t *master)

void TGeoMatrix::MasterToLocalVect(const Double_t *master,Double_t *local)

void TGeoMatrix::LocalToMasterVect(const Double_t *local,Double_t *master)

Here master and local are arrays of size 3. These methods allow correct conversion also for reflections.

 Transformation type finding:

Bool_t TGeoMatrix::IsIdentity() const;

Bool_t TGeoMatrix::IsTranslation() const;

Bool_t TGeoMatrix::IsRotation() const;

Bool_t TGeoMatrix::IsScale() const;

Bool_t TGeoMatrix::IsCombi() const; // (tr. + rot.)

Bool_t TGeoMatrix::IsGeneral() const; // (tr. + rot. + scale)

Specific classes deriving from TGeoMatrix represent combinations of basic transformations. In order to define

a matrix as a combination of several others, a special class TGeoHMatrix is provided. Here is an example of

matrix creation:

Matrix Creation Example

TGeoRotation r1,r2;

r1.SetAngles(90,0,30); //rotation defined by Euler angles

r2.SetAngles(90,90,90,180,0,0); //rotation defined by GEANT3 angles

TGeoTranslation t1(-10,10,0);

TGeoTranslation t2(10,-10,5);

TGeoCombiTrans c1(t1,r1);

TGeoCombiTrans c2(t2,r2);

TGeoHMatrix h = c1 * c2; // composition is done via TGeoHMatrix class

TGeoHMatrix *ph = new TGeoHMatrix(hm); // it is what we want to use for

 // positioning a volume

ph->Print();

...

pVolume->AddNode(pVolDaughter,id,ph) // now ph is owned by the manager

Rule for Creation of Transformations

Unless explicitly used for positioning nodes (TGeoVolume::AddNode()) all matrices deletion have to be

managed by users. Matrices passed to geometry have to be created by using new() operator and

TGeoManager class is responsible for their deletion. Matrices that are used for the creation of composite

shapes have to be named and registered to the manager class:

transf->SetName(name); // if not already named in the constructor

transf->RegisterYourself();

Generally, it is advisable to create all intermediate transformations used for making the final combined one on
the heap:

TGeoRotation r1(…);

TGeoRotation r2(…);

TGeoHMatrix *mat = new TGeoHMatrix(“name”); // we want to use only this

 // one in geometry

*mat = r1 * r2;

Available Geometrical Transformations

 Translations (TGeoTranslation class) represent a (dx,dy,dz) translation. The only data

member is: Double_t fTranslation[3]. Translations can be added or subtracted.

TGeoTranslation t1;

t1->SetTranslation(-5,10,4);

TGeoTranslation *t2 = new TGeoTranslation(4,3,10);

t2->Subtract(&t1);

328 The Geometry Package

 Rotations (TGeoRotation class) represent a pure rotation. Data members are Double_t

fRotationMatrix[3*3]. Rotations can be defined either by Euler angles, either, by GEANT3

angles:

TGeoRotation *r1 = new TGeoRotation();

r1->SetAngles(phi,theta,psi); // all angles in degrees

This represents the composition of: first a rotation about Z axis with angle phi, then a rotation with theta about

the rotated X axis, and finally a rotation with psi about the new Z axis.

r1->SetAngles(th1,phi1,th2,phi2,th3,phi3)

This is a rotation defined in GEANT3 style. Theta and phi are the spherical angles of each axis of the rotated
coordinate system with respect to the initial one. This construction allows definition of malformed rotations, e.g.
not orthogonal. A check is performed and an error message is issued in this case.

Specific utilities: determinant, inverse.

 Scale transformations (TGeoScale class) - represent a scaled shrinking/enlargement, possibly

different on all axes. Data members: Double_t fScale[3]. Not implemented yet.

 Combined transformations - represent a rotation followed by a translation. Data members:
Double_t fTranslation[3], TGeoRotation *fRotation.

TGeoRotation *rot = new TGeoRotation("rot",10,20,30);

TGeoTranslation trans;

...

TGeoCombiTrans *c1 = new TGeoCombiTrans(trans,rot);

TGeoCombiTrans *c2 = new TGeoCombiTrans("somename",10,20,30,rot)

 General transformations: (TGeoHMatrix class) represent combined transformations in any

order.

 Identity transformation: (TGeoIdentity class) is a generic identity transformation represented

by a singleton class object gGeoIdentity.

Ownership of Geometry Objects

The class TGeoManager class contains the entire API needed for building and tracking geometry. It defines a

global pointer gGeoManager in order to be fully accessible from external code. The manager class is the owner

of all geometry objects defined in a session; therefore, users must not try to control their deletion. It contains
lists of media, materials, transformations, shapes and volumes. A special case is the one of geometrical
transformations. When creating a matrix or a translation, this is by default owned by external objects. The
manager class becomes owner of all transformations used for positioning volumes. In order to force the
ownership for other transformations, one can use TGeoMatrix::RegisterYourself() method. Do not be

therefore surprised that some transformations cannot be found by name when creating a composite shape for
instance if you did not register them after creation.

Logical nodes (positioned volumes) are created and destroyed by the TGeoVolume class. Physical nodes and

their global transformations are subjected to a caching mechanism due to the sometimes very large memory
requirements of logical graph expansion. The total number of physical instances of volumes triggers the caching
mechanism and the cache manager is a client of TGeoManager. The manager class also controls the

drawing/checking package (TGeoPainter client). This is linked with ROOT graphical libraries loaded on

demand in order to control visualization actions.

Navigation and Tracking
Tracking is the feature allowing the transport of a given particle knowing its kinematics. A state is determined by

any combination of the position r

 and direction n

 with respect to the world reference frame. The direction n

must be a unit vector having as components the director cosines. The full classification of a given state will
provide the following information: the deepest physical node containing the position vector, the distance to the
closest boundary along the direction vector, the next physical node after propagating the current point with this
distance and the safety distance to the nearest boundary. This information allows the propagation of particles
inside a detector geometry by taking into account both geometrical and physical constraints.

We will hereby describe the user interface of TGeo to access tracking functionality. This allows either

developing a tracker for simple navigation within a given geometry, either interfacing to an external tracking

engine such as GEANT. Note that the abstract interface for external trackers can be found in $ROOTSYS/vmc

folder and it can be used to run GEANT3, GEANT4 and FLUKA-based simulations (*) by using directly a
geometry described with ROOT.

The interface methods related to tracking are incorporated into TGeoManager class and implemented in the

navigator class TGeoNavigator. In order to be able to start tracking, one has to define the initial state

providing the starting point 0r

 and direction 0n

. There are several ways of doing that.

 The Geometry Package 329

TGeoNavigator Class

One geometry may have several independent navigators to query to localize points or compute distances. The
geometry manager holds a list of active navigators accessible via:

TObjArray *navigators = gGeoManager->GetListOfNavigators();

Upon closing the geometry a default navigator is provided as first one in this list, but one may add its own via:

TGeoNavigator *navig = new TGeoNavigator(gGeoManager);

// Store the index of the user navigator

Int_t inav = gGeoManager->AddNavigator(navig);

// Make its own navigator the active one

gGeoManager->SetCurrentNavigator(inav);

// Switch between navigators

gGeoManager->SetCurrentNavigator(0);

A navigator holds several variables describing the current navigation state: current point position, current
direction distance to next boundary, isotropic safety, pointer to current and next nods as well as several tracking
flags related to volume boundary conditions or other properties required for track propagation in geometry. Each
geometry query affects these variables, so the only way in testing several navigation alternatives and
remembering the active navigation state is to use parallel navigation. The following paragraphs will describe the
usage of a single navigator. All setters/getters for navigation state parameters as well as navigation queries
provided by TGeoNavigator are interfaced by TGeoManager and will act on the current navigator.

Initializing the Starting Point

The current point (x,y,z) known by the modeller is stored as Double_t fCurrentPoint[3] by the

navigator class. This array of the three coordinates is defined in the current global reference system and can be
retrieved any time:

Const Double_t *cpoint = gGeoManager->GetCurrentPoint();

Initializing this point can be done like:

gGeoManager->SetCurrentPoint(x,y,z);

// or:

gGeoManager->SetCurrentPoint(Double_t *point[3]);

Initializing the Direction

In order to move inside geometry starting with the current point, the modeller needs to know the current

direction (nx,ny,nz). This direction is stored as Double_t fCurrentDirection[3] by the navigator and

it represents a direction in the global frame. It can be retrieved with:

Const Double_t *cdir = gGeoManager->GetCurrentDirection();

The direction can be initialized in a similar manner as the current point:

gGeoManager->SetCurrentDirection(nx,ny,nz);

// or:

gGeoManager->SetCurrentDirection(Double_t *dir);

Initializing the State

Setting the initial point and direction is not enough for initializing tracking. The modeller needs to find out where
the initial point is located in the geometrical hierarchy. Due to the containment based architecture of the model,
this is the deepest positioned object containing the point. For illustrating this, imagine that we have a simple

structure with a top volume A and another one B positioned inside. Since A is a top volume, its associated

node A_1 will define MARS and our simple hierarchy of nodes (positioned volumes) will be: /A_1/B_1. Suppose

now that the initial point is contained by B_1. This implies by default that the point is also contained by A_1,

since B_1 have to be fully contained by this. After searching the point location, the modeller will consider that

the point is located inside B_1, which will be considered as the representative object (node) for the current

state. This is stored as: TGeoNode *TGeoManager::fCurrentNode and can be asked from the manager

class only after the ‟Where am I?‟ was completed:

TGeoNode *current = gGeoManager->GetCurrentNode();

In order to find the location of the current point inside the hierarchy of nodes, after setting this point it is

mandatory to call the „Where am I?‟ method:

gGeoManager->FindNode();

In order to have more flexibility, there are in fact several alternative ways of initializing a modeller state:

// Setting the point and finding the state in one step:

gGeoManager->FindNode(Double_t x,Double_t y,Double_t z);

330 The Geometry Package

gGeoManager->FindNode(Double_t *point[3]);

// Setting both initial point and direction and finding the state:

gGeoManager->InitTrack(Double_t x,Double_t y,Double_t z,Double_t nx,

 Double_t ny,Double_t nz);

gGeoManager->InitTrack(Double_t *point[3],Double_t *dir[3]);

Note that the current point coordinates can be changed and the state re-initialized at any time. This represents

the „Where am I?‟ geometrical query representing the basic navigation functionality provided by the

modeller.

Checking the Current State

The current state and all variables related to this are essential during tracking and have to be checked several
times. Besides the current point and direction, the following additional information can be retrieved from
TGeoManager interface:

 The current path. This represents a string containing the names and copy numbers of all

positioned objects in the current branch written in the /folder/folder/…/folder/file fashion. The

final node pointed by the path is the deepest object containing the current point and is

representative for the current state. All intermediate folders in the path are in fact also nodes

―touched‖ by the current point, but having some ―touched‖ containment. The current path can be
retrieved only after the state was initialized and is useful for getting an idea of the current point
location.

const char *path = gGeoManager->GetPath();

cout << “Current path is: “ << path << endl;

/A_1/B_34/C_3/D_1

 The current node, volume and material. In order to take decisions on post-step or

further stepping actions, one has to know these. In order to get a pointer to the current node one
can do:

TGeoNode *cnode = gGeoManager->GetCurrentNode();

// then:

TGeoVolume *cvol = gGeoManager->GetCurrentVolume();

// or:

cvol = cnode->GetVolume(); // (*)

// then:

TGeoMaterial *cmat = cvol->GetMedium()->GetMaterial();

(*) Note: If the current point is in fact outside the geometry, the current node pointer will not be NULL, but
pointing to the top node.

In order to take decisions in such case one needs always to test:

if (gGeoManager->IsOutside()) {

 // current point is actually outside

 … // corresponding action

}

Specific information related to the current volume/node like ID‘s or shape can be then retrieved from the
corresponding objects.

 Current state index. The number of possible different states of the modeller corresponds to the

number of different objects/paths in the geometry. This has nothing to do with the number of
nodes, since the same node can be found on different branches. In other words, the number of

states corresponds to the number of nodes in the expanded geometry tree. Since

unfortunately this expansion from logical to physical hierarchy cannot be stored on regular basis
due to the large size of the latter, one cannot directly assign state numbers. If the size of the
expansion proves however to be small enough (less than about 50 million objects), a parallel
structure storing these state indices is built and stored in memory. In such case each state
automatically gets an index that can be retrieved after any state initialization. These indices can
prove to be quite useful for being able to keep track of the navigation history and force certain
states. Let‘s illustrate how this works with a simple example:

 Suppose we have a simple geometry with a volume B positioned twice inside a container A. Then

A is positioned twice in a top container T. The complete list of logical nodes is: T_1, A_1, A_2,

B_1, B_2. On the other hand we will have more states than logical nodes:

 /T_1 - 1 state at level = 0

 /T_1/A_1,/T_1/A_2 - 2 states at level = 1

 /T_1/A_1/B_1,/T_1/A_1/B_2,/T_1/A_2/B_1,/T_1/A_2/B_2 - 4 states at level = 2

 All these states will get automatic numbers, starting with 0 corresponding to the top-level state
and ending with an integer corresponding to Ntotal_states-1. The mapping from a given logical node

 The Geometry Package 331

to a state number is generally not possible, as for the node B_1 that appears as current node for
2 different states. The numbering order of states is therefore not important, but it can be used as
in the following lines:

gGeoManager->InitTrack(pt,dir); // or anything to initialize a state

Int_t istate = gGeoManager->GetCurrentNodeId(); // in fact state Id

{

 //… code changing the current state

}

gGeoManager->CdNode(istate); // forces re-initialization of the state

 Current global transformation. This represents the transformation from MARS to the local

reference of the current node, being the product of all local mother-daughter transformations in
the branch. The global transformation can be referenced or copied:

const TGeoHMatrix *global = gGeoManager->GetCurrentMatrix();

TGeoHMatrix *copy = new TGeoHMatrix(*global);

 One often needs to perform master-to-local and local-to-master point and vector

conversions to get from MARS to the local node coordinates. This can be done by using the global

transformation or directly the TGeoManager corresponding interfaces:

Double_t *glob_pt = gGeoManager->GetCurrentPoint();

Double_t *glob_dir = gGeoManager->GetCurrentDirection();

Double_t loc_pt[3], loc_dir[3];

// Go from MARS to local coordinates:

gGeoManager->MasterToLocal(glob_pt,loc_pt); // or:

global->MasterToLocal(glob_pt,loc_pt); // will be omitted from now

// on, but can be done just the same for all other conversions

gGeoManager->MasterToLocalVect(glob_dir,loc_dir);

… // perform some local computation changing the local

 // point/direction then go back to MARS:

Double_t new_pt[3],new_dir[3];

gGeoManager->LocalToMaster(loc_pt,new_pt);

gGeoManager->LocalToMasterVect(loc_dir,new_dir);

Saving and Restoring the Current State

As we already described, saving and restoring modeller states can be quite useful during tracking and is a
feature extensively used by external tracking engines. We will call this navigation history management, which in
most of the cases can be performed by handling the state identifiers. For quite big geometries, state indexing is
not possible anymore and will be automatically disabled by the modeller. Fortunately there is a backup solution
working in any condition: the modeller maintains a stack of states that is internally used by its own navigation
algorithms, but user code is also allowed to access it. This works on any stack principle by using PUSH and
POP calls and user code is responsible for popping the pushed states in order to keep the stack clean.

// push the current state in the stack

Int_t index = gGeoManager->PushPath();

// push state and current point

Int_t index = gGeoManager->PushPoint();

// retrieves the last pushed state (decrements stack index)

gGeoManager->PopPath();

// the same but retrieves also the point location

gGeoManager->PopPoint();

// just decrement stack index without changing state

gGeoManager->PopDummy();

// retrieves a state at given index without changing the stack index

gGeoManager->PopPath(Int_t index);

Navigation Queries

After initializing the current state related to a given point and direction defined in MARS („Where am I?‟), one

can query for several geometrical quantities. All the related algorithms work in the assumption that the current
point has been localized inside the geometry (by the methods TGeoManager::FindNode() or

TGeoManager::InitTrack()) and the current node or path has not been changed by the user.

Finding If Current State Is Changed For a New Point

One can find fast if a point different from the current one has or not the same location inside the geometry tree.
To do that, the new point should not be introduced by using TGeoManager::SetCurrentPoint() method,

but rather by calling the specific method:

Bool_t TGeoManager::IsSameLocation(Double_t x,Double_t y,Double_t z,

332 The Geometry Package

 Bool_t change=kFALSE);

In the prototype above, x, y and z are the coordinates of the new point. The modeller will check whether the

current volume still contains the new point or its location has changed in the geometry hierarchy. If the new

location is different, two actions are possible according to the value of change:

 change = kFALSE (default) – the modeller does not change the current state but just inform the

caller about this change.

 change = kTRUE – the modeller will actually perform a new „Where am I?‟ search after

finding out that the location has changed. The current state will be actualized accordingly.

Note that even when performing a normal search on the current state after changing the current point

coordinates (e.g. gGeoManager->FindNode(newX,newY,newZ)), users can always query if the previous

state has changed by using a method having the same name but without parameters:

Bool_t TGeoManager::IsSameLocation();

Finding the Distance to the Next Boundary

All tracking engines need to compare the currently proposed physical step with the maximum allowed distance
in the current material. The modeller provides this information by computing the distance to the first boundary
starting from the current point along a straight line. The starting point and direction for this procedure are the
ones corresponding to the current state. The boundary search is initialized inside the current volume and the
crossed boundary can belong either to the current node or to one of its daughters. The full prototype of the
method is:

TGeoNode *TGeoManager::FindNextBoundary(Double_t step=kBig);

In the prototype above, besides the current point and direction that are supposed already initialized, the only

input parameter is step. This represents the maximum step allowed by the tracking algorithm or the physical

step. The modeller will search for a boundary crossing only up to a distance equal to this value. If a boundary

is found, a pointer to the object (node) having it is returned; otherwise the method returns NULL.

The computed value for the computed distance can be subsequently retrieved from the manager class:

Double_t snext = gGeoManager->GetStep();

Double_t safety = gGeoManager->GetSafeDistance();

 According the step value, two use cases are possible:

 step = TGeoShape::kBig (default behavior; kBig = 1030). In this case, there is no limitation

on the search algorithm, the first crossed node is returned and the corresponding distance
computed. If the current point is outside geometry and the top node is not crossed, the

corresponding distance will be set to kBig and a NULL pointer returned. No additional quantity

will be computed.

 step < kBig. In this case, the progressive search starting from the current point will be stopped

after a distance equal with the supplied step. In addition to the distance to the first crossed

boundary, the safety radius is also computed. Whenever the information regarding the

maximum required step is known it is recommended to be provided as input parameter in order to
speed-up the search.

In addition to the distance computation, the method sets an additional flag telling if the current track will enter
inside some daughter of the current volume or it will exit inside its container:

Bool_t TGeoManager::IsStepEntering() const;

A combined task is to first find the distance to the next boundary and then extrapolate the current point/direction
with this distance making sure that the boundary was crossed. Finally the goal would be to find the next state
after crossing the boundary. The problem can be solved in principle using FindNextBoundary, but the boundary
crossing can give unpredictable results due to numerical roundings. The manager class provides a method that
allows this combined task and ensures boundary crossing. This should be used instead of the method

FindNextBoundary() whenever the tracking is not imposed in association with an external MC transport

engine (which provide their own algorithms for boundary crossing).

TGeoNode *TGeoManager::FindNextBoundaryAndStep(Double_t stepmax,

 Bool_t comp_safe=kFALSE);

The meaning of the parameters here is the same as for FindNextBoundary, but the safety value is triggered by
an input flag. The output is the node after the boundary crossing.

Computing the Safe Radius

Other important navigation query for tracking is the computation of the safe distance. This represents the

maximum step that can be made from the current point in any direction that assures that no boundary will

be crossed. Knowing this value gives additional freedom to the stepping algorithm to propagate the current track

on the corresponding range without checking if the current state has changed. In other words, the modeller

insures that the current state does not change in any point within the safety radius around the current point.

 The Geometry Package 333

The computation of the safe radius is automatically computed any time when the next boundary is queried

within a limited step:

TGeoNode *crossed = gGeoManager->FindNextBoundary(pstep);

Double_t safety = gGeoManager->GetSafeDistance();

Otherwise, the computation of safety can always be forced:

Double_t safety = gGeoManager->Safety();

Making a Step

The modeller is able to make steps starting from the current point along the current direction and having the
current step length. The new point and its corresponding state will be automatically computed:

TGeoNode *TGeoManager::Step(Bool_t is_geom = kTRUE,Bool_t cross = kTRUE);

We will explain the method above by its use cases. The input flag is_geom allows specifying if the step is

limited by geometrical reasons (a boundary crossing) or is an arbitrary step. The flag cross can be used in case
the step is made on a boundary and specifies if user wants to cross or not the boundary. The returned node
represents the new current node after the step was made.

 Making a geometrically contained step with boundary crossing (is_geom=kTRUE,

cross=kTRUE) – This is the default method behavior. In this case, the step size is supposed to

be already set by a previous TGeoManager::FindNextBoundary() call. Due to floating-point

boundary uncertainties, making a step corresponding exactly to the distance to next boundary

does not insure boundary crossing. If the method is called with this purpose, an extra small step

will be made in order to make the crossing the most probable event (epsil=10-6cm). Even with

this extra small step cannot insure 100% boundary crossing for specific crossed shapes at big
incident angles. After such a step is made, additional cross-checks become available:

gGeoManager->FindNextBoundary(pstep);

Double_t snext = gGeoManager->GetStep(); // The geometrical step is taken

TGeoNode *newNode = gGeoManager->Step(); // The step=snext+epsil is made

Bool_t hasCrossed = gGeoManager->IsEntering(); // Is the boundary crossed or not?

Bool_t isOnBoundary = gGeoManager->IsOnBoundary(); // The proposed

// geometrically limited step to be made was smaller than epsil value.

Bool_t isOutside = gGeoManager->IsOutside(); //Did we exit geometry ?

In case the desired end-point of the step should be in the same starting volume, the input flag cross should be

set to kFALSE. In this case, the epsil value will be subtracted from the current step.

 Making a step of arbitrary value (is_geom=kFALSE, cross=no matter). In this case, the step to

be made can be either resulting from a next computation, either set by hand:

gGeoManager->SetStep(stepvalue);

gGeoManager->Step(kFALSE);

The step value in this case will exactly match the desired step. In case a boundary crossing failed after

geometrically limited stepping, one can force as many small steps as required to really cross the boundary. This
is not what generally happens during the stepping, but sometimes small rounding of boundary positions may
occur and cause problems. These have to be properly handled by the stepping code.

The Normal Vector to the Next Crossed Surface at Crossing Point

Supposing we have found out that a particle will cross a boundary during the next step, it is sometimes useful to

compute the normal to the crossed surface. The modeller uses the following convention: we define as normal

(n

) the unit vector perpendicular to a surface in the next crossing point, having the orientation such that:

0dn

. Here d

 represents the current direction. The next crossing point represents the point where a ray

shot from the current point along the current direction crosses the surface.

Double_t *TGeoManager::FindNormal(Bool_t forward=kTRUE);

The method above computes the normal to the next crossed surface in forward or backward direction (i.e. the
current one), assuming the state corresponding to a current arbitrary point is initialized. An example of usage of
normal computation is ray tracing.

The two most important features of the geometrical modeller concerning tracking are scalability and
performance as function of the total number of physical nodes. The first refers to the possibility to make use of
the available memory resources and at the same time be able to resolve any geometrical query, while the
second defines the capability of the modeller to respond quickly even for huge geometries. These parameters
can become critical when simulating big experiments like those at LHC.

334 The Geometry Package

Creating and Visualizing Tracks

In case the modeller is interfaced with a tracking engine, one might consider quite useful being able to store and
visualize at least a part of the tracks in the context of the geometry. The base class TVirtualGeoTrack

provides this functionality. It currently has one implementation inside the drawing package (TGeoTrack class).

A track can be defined like:

TVirtualGeoTrack(Int_t id,Int_t pdg,TVirtualGeoTrack *parent=0,

 TObject *particle=0);

Where: id is user-defined id of the track, pdg - pdg code, parent - a pointer to parent track, particle - a

pointer to an arbitrary particle object (may be a TParticle).

A track has a list of daughters that have to be filled using the following method:

TVirtualGeoTrack *TVirtualGeoTrack::AddDaughter(Int_t id,Int_t pdg,

 TObject *particle=0);

The method above is pure virtual and have to create a track daughter object. Tracks are fully customizable
objects when inheriting from TVirtualGeoTrack class. We will describe the structure and functionality

provided by the default implementation of these, which are TGeoTrack objects.

A TGeoTrack is storing a list of control points (x,y,z) belonging to the track, having also time

information (t). The painting algorithm of such tracks allows drawing them in any time interval after their

creation. The track position at a given time is computed by interpolation between control points.

myTrack->AddPoint(x,y,z,t);

The creation and management of tracks is in fact fully controlled by the TGeoManager class. This holds a list of

primary tracks that is also visible during browsing as Tracks folder. Primary tracks are tracks having no

parent in the tracking history (for instance the output of particle generators may be considered as primaries from
tracking point of view). The manager class holds in TGeoManager::fCurrentTrack a pointer to the current

track. When starting tracking a particle, one can create a track object like:

Int_t track_index = gGeoManager->AddTrack(id,pdg,ptrParticle);

Here track_index is the index of the newly created track in the array of primaries. One can get the pointer of

this track and make it known as current track by the manager class:

TVirtualGeoTrack *track = gGeoManager->GetTrack(track_index);

gGeoManager->SetCurrentTrack(track);

// or directly

gGeoManager->SetCurrentTrack(track_index);

TVirtualGeoTrack *current = gGeoManager->GetCurrentTrack();

One can also look for a track by user id or track index:

ptrTrack = gGeoManager->GetTrackOfId(user_id);

ptrParent = gGeoManager->GetParentTrackOfId(user_id);

ptrTrack = gGeoManager->GetTrack(index);

Supposing a particle represented by a primary track decays or interacts, one should not create new primaries
as described before, but rather add them as secondary:

TVirtualGeoTrack *secondary = ptrTrack->AddTrack(secondId,pdg,secondParticle);

At any step made by the current track, one is able to add control points to either primary or secondary:

track->AddPoint(x,y,z,t);

After tracks were defined and filled during tracking, one will be able to browse directly the list of tracks held by

the manager class. Any track can be drawn using its Draw() and Animate() methods, but there are also

global methods for drawing or animation that can be accessed from TGeoManager context menu:

TGeoManager::DrawTracks(Option_t *option);

TGeoManager::AnimateTracks(Double_t tmin=0.,Double_t tmax=1E-8,

 Int_t nframes=200,Option_t *option=””) ;

The drawing/animation time range is a global variable that can be directly set:

gGeoManager->SetTminTmax(tmin, tmax);

// without arguments resets the time range to the maximum value

Once set, the time range will be active both for individual or global track drawing. For animation, this range is
divided to the desired number of frames and will be automatically updated at each frame in order to get the
animation effect.

The option provided to all track-drawing methods can trigger different track selections:

default: A track (or all primary tracks) drawn without daughters

/D: Track and first level descendents only are drawn

/*: Track and all descendents are drawn

 The Geometry Package 335

/Ntype: All tracks having name=type are drawn

Generally several options can be concatenated in the same string (E.g. “/D /Npion-“).

For animating tracks, additional options can be added:

/G: Geometry animate. Generally when drawing or animating tracks, one has to first perform a normal

 drawing of the geometry as convenient. The tracks will be drawn over the geometry. The geometry
 itself will be animated (camera moving and rotating in order to ―catch‖ the majority of current track
 segments.)

/S: Save all frames in gif format in the current folder. This option allows creating a movie based on

 individual frames.

Checking the Geometry
Several checking methods are accessible from the context menu of volume objects or of the manager class.
They generally apply only to the visible parts of the drawn geometry in order to ease geometry checking, and
their implementation is in the TGeoChecker class. The checking package contains an overlap checker and

several utility methods that generally have visualization outputs.

The Overlap Checker

An overlap is any region in the Euclidian space being contained by more than one positioned volume. Due to
the containment scheme used by the modeller, all points inside a volume have to be also contained by the
mother therefore are overlapping in that sense. This category of overlaps is ignored due to the fact that any
such point is treated as belonging to the deepest node in the hierarchy.

Figure 18-30 Extruding volumes

A volume containment region is in fact the result of the subtraction of all daughters. On the other hand, there are
two other categories of overlaps that are considered illegal since they lead to unpredictable results during
tracking.

A) If a positioned volume contains points that are not also contained by its mother, we will call the

corresponding region as an extrusion. When navigating from outside to inside (trying to enter such a node)

these regions are invisible since the current track has not yet reached its mother. This is not the case when
going the other way since the track has first to exit the extruding node before checking the mother. In other
words, an extrusion behavior is dependent on the track parameters, which is a highly undesirable effect.

B) We will call overlaps only the regions in space contained by more than one node inside the same

container. The owner of such regions cannot be determined based on hierarchical considerations; therefore
they will be considered as belonging to the node from which the current track is coming from.

When coming from their container, the ownership is totally unpredictable. Again, the ownership of overlapping
regions highly depends on the current track parameters.

We must say that even the overlaps of type A) and B) are allowed in case the corresponding nodes are created
using TGeoVolume::AddNodeOverlap() method. Navigation is performed in such cases by giving priority

to the non-overlapping nodes. The modeller has to perform an additional search through the overlapping
candidates. These are detected automatically during the geometry closing procedure in order to optimize the
algorithm, but we will stress that extensive usage of this feature leads to a drastic deterioration of performance.
In the following we will focus on the non-declared overlaps of type A) and B) since this is the main source of
errors during tracking. These are generally non-intended overlaps due to coding mistakes or bad geometry
design. The checking package is loaded together with the painter classes and contains an automated overlap
checker.

336 The Geometry Package

Figure 18-31 Overlap checking

This can be activated both at volume level (checking for illegal overlaps only one level inside a given volume)
and from the geometry manager level (checking full geometry):

myVolume->CheckOverlaps(precision, option);

gGeoManager->CheckOverlaps(precision);

myNode->CheckOverlaps(precision);

Here precision represents the desired maximum accepted overlap value in centimeters (default value is 0.1).
This tool checks all possible significant pairs of candidates inside a given volume (not declared as overlapping
or division volumes). The check is performed by verifying the mesh representation of one candidate against the
shape of the other. This sort of check cannot identify all possible overlapping topologies, but it works for more
than 95% and is much faster than the usual shape-to-shape comparison. For a 100% reliability, one can

perform the check at the level of a single volume by using option="d" or option="d<number>" to perform

overlap checking by sampling the volume with <number> random points (default 1 million). This produces also

a picture showing in red the overlapping region and estimates the volume of the overlaps.

An extrusion A) is declared in any of the following cases:

 At least one of the vertices of the daughter mesh representation is outside the mother volume (in
fact its shape) and having a safety distance to the mother greater than the desired value;

 At least one of the mother vertices is contained also by one of its daughters, in the same
conditions.

An overlap B) is declared if:

 At least one vertex of a positioned volume mesh is contained (having a safety bigger than the
accepted maximum value) by other positioned volume inside the same container. The check is
performed also by inverting the candidates.

The code is highly optimized to avoid checking candidates that are far away in space by performing a fast check
on their bounding boxes. Once the checking tool is fired-up inside a volume or at top level, the list of overlaps
(visible as Illegal overlaps inside a TBrowser) held by the manager class will be filled with TGeoOverlap

objects containing a full description of the detected overlaps. The list is sorted in the decreasing order of the
overlapping distance, extrusions coming first. An overlap object name represents the full description of the
overlap, containing both candidate node names and a letter (x-extrusion, o-overlap) representing the type.
Double-clicking an overlap item in a TBrowser produces a picture of the overlap containing only the two

overlapping nodes (one in blue and one in green) and having the critical vertices represented by red points. The

picture can be rotated/zoomed or drawn in X3d as any other view. Calling gGeoManager->PrintOverlaps()

prints the list of overlaps.

Graphical Checking Methods

Figure 18-32 Safety computation checking

In order to check a given point, CheckPoint(x,y,z) method of

TGeoManager draws the daughters of the volume containing the

point one level down, printing the path to the deepest physical node
holding this point. It also computes the closest distance to any
boundary.

 The Geometry Package 337

Figure 18-33 Random points

A method to check the validity of a given geometry is shooting
random points. This can be called with the method
TGeoVolume::RandomPoints() and it draws a volume with the

current visualization settings. Random points are generated in the
bounding box of the drawn volume. The points are drawn with the
color of their deepest container. Only points inside visible nodes are
drawn.

Figure 18-34 Random rays

A ray tracing method can be called TGeoVolume::RandomRays().
This shoots rays from a given point in the local reference frame with
random directions. The intersections with displayed nodes appear as
segments having the color of the touched node.

The Drawing Package
The modeller provides a powerful drawing package,
supporting several different options of visualization. A library
separated from the main one provides all functionality being
linked with the underlying ROOT visualization system. This
library is dynamically loaded by the plug-in manager only
when drawing features are requested. The geometrical
structures that can be visualized are volumes and volume
hierarchies.

The main component of the visualization system is volume
primitive painting in a ROOT pad. Starting from this one,
several specific options or subsystems are available, like:
X3D viewing using hidden line and surface removal
algorithms, OpenGL viewing* or ray tracing.

The method TGeoManager::GetGeomPainter()loads the

painting library in memory.

This is generally not needed since it is called automatically by TGeoVolume::Draw() as well as by few other

methods setting visualization attributes.

Drawing Volumes and Hierarchies of Volumes

The first thing one would like to do after building some geometry is to visualize the volume tree. This provides
the fastest validation check for most common coding or design mistakes. As soon as the geometry is
successfully closed, one should draw it starting from the top-level volume:

//… code for geometry building

root[] gGeoManager->CloseGeometry();

root[] gGeoManager->GetMasterVolume()->Draw();

Doing this ensures that the original top-level volume of the geometry is drawn, even if another volume is

currently the geometry root. OK, I suppose you already did that with your simple geometry and immediately

noticed a new ROOT canvas popping-up and having some more or less strange picture inside. Here are few
questions that might come:

 Q: “The picture is strangely rotated; where are the coordinate axes?”

A: If drawn in a new canvas, any view has some default viewpoint, center of view and size. One can then

perform mouse/keyboard actions to change them:

 - Mouse left-click and drag will rotate the view;

338 The Geometry Package

 - Some keys can be pressed when the view canvas is selected: J/K zoom/un-zoom, U/I move up/down,
L/H move left/right. The coordinate axes display as well as changing top or side viewpoints can be activated
from the TView context menu: right-click on the picture when no object is selected;

 Q: ―Every line is black! I cannot figure out what is what…‖

A: Volumes can have different colors (those known by ROOT of course). Think at using them after each volume

creation: myvolume->SetLineColor(Int_t color); otherwise everything is by default black.

 Q: “The top volume of my geometry is a box but I see only its content.”

A: By default the drawn volume is not displayed just because we do not want to hide its content when changing

the view to HLR or solid mode. In order to see it in the default wire frame picture one has to call
TGeoManager::SetTopVisible().

 Q: “I do not see all volumes in my tree but just something inside.”

A: By default, TGeoVolume::Draw() paints the content of a given volume three levels down. You can change

this by using: gGeoManager::SetVisLevel(n);

Not only that, but none of the volumes at intermediate levels (0-2) are visible on the drawing unless they are
final ‗leaves‘ on their branch (e.g. have no other volumes positioned inside). This behavior is the default one and
corresponds to ‗leaves‘ global visualization mode (TGeoManager::fVisOption = 1). In order to see on the

screen the intermediate containers, one can change this mode: gGeoManager->SetVisOption(0).

 Q: “Volumes are highlighted when moving the mouse over their vertices.

What does it mean?”

A: Indeed, moving the mouse close to some volume vertices selects it. By checking the Event Status entry

in the root canvas Options menu, you will see exactly which is the selected node in the bottom right. Right-

clicking when a volume is selected will open its context menu where several actions can be performed (e.g.
drawing it).

 Q: “OK, but now I do not want to see all the geometry, but just a
particular volume and its content. How can I do this?”

A: Once you have set a convenient global visualization option and level, what you need is just call the Draw()

method of your interesting volume. You can do this either by interacting with the expanded tree of volumes in a
ROOT browser (where the context menu of any volume is available), either by getting a pointer to it (e.g. by

name): gGeoManager->GetVolume(“vol_name”)->Draw();

Visualization Settings and Attributes

Supposing you now understand the basic things to do for drawing the geometry or parts of it, you still might be
not happy and wishing to have more control on it. We will describe below how you can tune some fine settings.
Since the corresponding attributes are flags belonging to volume and node objects, you can change them at any
time (even when the picture is already drawn) and see immediately the result.

Colors and Line Styles

We have already described how to change the line colors for volumes. In fact, volume objects inherit from
TAttLine class so the line style or width can also be changed:

myVolume->SetLineColor(kRed);

myVolume->SetLineWith(2);

myVolume->SetLineStyle(kDotted);

When drawing in solid mode, the color of the drawn volume corresponds to the line color.

Visibility Settings

The way geometry is build forces the definition of several volumes that does not represent real objects, but just
virtual containers used for grouping and positioning volumes together. One would not want to see them in the
picture. Since every volume is by default visible, one has to do this sort of tuning by its own:

myVolumeContainer->SetVisibility(kFALSE);

As described before, the drawing package supports two main global options: 1 (default) – only final volume
leaves; 0 – all volumes down the drawn one appear on the screen. The global visible level put a limitation on the
maximum applied depth. Combined with visibility settings per volume, these can tune quite well what should
appear on the screen. However, there are situations when users want to see a volume branch displayed down
to the maximum depth, keeping at the same time a limitation or even suppressing others. In order to accomplish

that, one should use the volume attribute: Visible daughters. By default, all daughters of all volumes are

displayed if there is no limitation related with their level depth with respect to the top drawn volume.

 The Geometry Package 339

Ray Tracing

Ray tracing is a quite known drawing technique based on tracking rays from the eye position through all pixels
of a view port device. The pixel color is derived from the properties of the first crossed surface, according some
illumination model and material optical properties. While there are currently existing quite sophisticated ray
tracing models, TGeo is currently using a very simple approach where the light source is matching the eye

position (no shadows or back-tracing of the reflected ray). In future we are considering providing a base class in
order to be able to derive more complex models.

Due to the fact that the number of rays that have to be tracked matches the size in pixels of the pad, the time
required by this algorithm is proportional to the pad size. On the other hand, the speed is quite acceptable for
the default ROOT pad size and the images produced by using this technique have high quality. Since the
algorithm is practically using all navigation features, producing ray-traced pictures is also a geometry validation

check. Ray tracing can be activated at volume level as the normal Draw().

Figure 18-35 Ray-traced view in a pad

myVolume->Raytrace()

Once ray-tracing a view, this can be zoomed or rotated as a usual one. Objects on the screen are no longer
highlighted when picking the vertices but the corresponding volumes is still accessible.

Clipping Ray-traced Images

A ray-traced view can be clipped with any shape known by the modeller. This means that the region inside

the clipping shape is subtracted from the current drawn geometry (become invisible). In order to activate
clipping, one has to first define the clipping shape(s):

1. TGeoShape *clip1, *clip2, …

One might switch between several clipping shapes. Note that these shapes are considered defined in the

current MARS. Composite shapes may be used.

2. gGeoManager->SetClippingShape(clip1);

One can activate or deactivate clipping at any time: gGeoManager->SetClipping(flag);

3. Perform ray-tracing: gGeoManager->GetTopVolume()->Raytrace();

One can redo the steps 2-3 as many times as needed. Let us look how the rootgeom example looks clipped

with a tube.

Figure 18-36 Ray-tracing example with box-clipping

340 The Geometry Package

Representing Misalignments of the Ideal Geometry
The ideal positioning of a detector does not match its position in the experimental hall. This generally happens
not only for the detector modules, but also for their components. The accurate knowledge of the detector real
misalignments can be extremely important for getting close to its designed resolution and the expected tracking
efficiency. TGeo offers tools for representing positioning misalignments, applying them to the ideal geometry

and performing navigation under these conditions. Detector tracking algorithms can then directly query the
geometry for navigation purposes or for retrieving actual misalignment information.

Physical Nodes

Physical nodes are the actual ―touchable‖ objects in the geometry, representing actually a path of positioned

volumes starting witrh the top node: path=/TOP/A_1/B_4/C_3 , where A, B, C represent names of volumes.

The number of physical nodes is given by the total number of possible of branches in the geometry hierarchy. In
case of detector geometries and specially for calorimeters this number can be of the order 106-109, therefore it
is impossible to create all physical nodes as objects in memory. In TGeo, physical nodes are represented by the

class TGeoPhysicalNode and can be created on demand for alignment purposes:

TGeoPhysicalNode(const char* path)

The knowledge of the path to the objects that need to be misaligned is essential since there is no other way of
identifying them. One can however create ―symbolic links‖ to any complex path to make it more representable
for the object it designates:

TGeoPNEntry(const char* unique_name, const char* path)

void TGeoPNEntry::SetPhysicalNode(TGeoPhysicalNode *node)

Such a symbolic link hides the complexity of the path to the align object and replaces it with a more meaningful
name. In addition, TGeoPNEntry objects are faster to search by name and they may optionally store an

additional user matrix.

// Creating a symlink object.

TGeoPNEntry *TGeoManager::SetAlignableEntry(const char *unique_n,const char*path)

// Retrieving an existing alignable object.

TGeoPNEntry *TGeoManager::GetAlignableEntry(const char *name)

// Retrieving an existing alignable object at a given index.

TGeoPNEntry *GetAlignableEntry(Int_t index)

Physical nodes store internally the full list of logical nodes corresponding to the elements from the string path,
as well as the global transformation matrix for each of them. The top node corresponds to the level 0 in the

stored array, while the last node will correspond to level n. For each level, the node, volume and global matrix

can be retrieved using corresponding getters:

TGeoHMatrix *GetMatrix(Int_t level=-1) const

TGeoNode *GetNode(Int_t level=-1) const

TGeoShape *GetShape(Int_t level=-1) const

TGeoVolume *GetVolume(Int_t level=-1) const

By default the object at level n is retrieved (the alignable object).

Once created, a physical node can be misaligned, meaning that its positioning matrix or even the shape.:

void Align(TGeoMatrix* newmat=0, TGeoShape* newshape=0, Bool_t check=kFALSE)

The convention used is that newmat represents the new local matrix of the last node in the branch with respect

to its mother volume. The Align() method will actually duplicate the corresponding branch within the logical

hierarchy, creating new volumes and nodes. This is mandatory in order to avoid problems due to replicated
volumes and can create exhaustive memory consumption if used abusively.

Once aligned, a physical node is ready to be tracked. The operation can be done only after the geometry was
closed.

Important NOTE: Calling the Align() method for a physical node changes the node pointers for the stored

node branch in the active geometry, Due to this the other defined physical nodes containing elements of this
path will be invalid. Example:

TGeoPhysicalNode *pn1 = gGeoManager->MakePhysicalNode(“/A_1/B_1/C_2”);

TGeoPhysicalNode *pn2 = gGeoManager->MakePhysicalNode(“/A_1/B_1/C_3”);

…

pn1->Align(…);

The call to pn1->Align() will invalidate the pointer to the node B_1 in pn2 object.. The way out is to either

call pn1->Align() before the creation of pn2, eithr to use a global method that will correct all existing physical

nodes:

void RefreshPhysicalNodes(Bool_t lock = kTRUE)

The method above will optionally lock the possibility of doing any further misalignment.

 The Geometry Package 341

Geometry I/O
Once geometry is successfully built, it can be saved in a root file or as C++ macro by calling:

TGeoManager::Export(const char *filename,const char*keyname="",Option_t *opt="v")

 Filename is the name of the file to be written (mandatory). Depending on the

 extension of the file, the geometry is exported either as ,root file or .C(.cxx) macro.

 keyname is the name of the key in the file (default "")

 opt = "v" is an export voxelization (default), otherwise voxelization is recomputed after

 loading the geometry

Loading geometry from a root file can be done in the same way as for any other ROOT object, but a static
method is also provided:

TGeoManager::Import(const char *filename,const char *keyname="",Option_t *opt="")

Example:

// Writing to a file geometry definition ending with:

root[] gGeoManager->CloseGeometry();

// geometry is ready

root[] gGeoManager->Export("MyGeom.root"); // file MyGeom.root produced

root[] gGeoManager->Export(“MyGeom.C”); // C++ macro MyGeom.C produced

root[] myVolume->SaveAs(“MyVolume.C”); // C++ macro for the branch starting

 // with MyVolume

// Reading from a file

root[] gSystem->Load(“libGeom”);

root[] TGeoManager::Import("MyGeom.root"); // geometry is ready

Note that not all-current information held by the modeller is written on the file. For instance, the painter and
checker objects are not written, as well as the temporary current navigation properties: current node path, point
or direction. On the other hand, all objects belonging to the geometrical hierarchy will always be written. The
idea is to be able to retrieve the geometry in a ready state, ignoring what the state variables that can be always
re-initialized. When the code is generated for a given TGeoVolume in the geometry, just the branch starting with

that volume will be saved in the file. Executing the generated code will create a geometry that has MyVolume as

top volume. In this case, only the materials/media/matrices used effectively in the MyVolume branch are

exported to file.

Volumes can be made persistent in the same way the full geometry is. Exporting is straightforward (module1, 2
are pointers to TGeoVolume objects):

module1->Export("file.root"); // by default file is overwritten

module2->Export("file.root","","update"); // to the same file

Importing will append the volume to the current TGeoManager or will create one:

TGeoManager *geom = new TGeoManager("myGeom", "");

TGeoVolume *top = geom->MakeBox(...);

geom->SetTopVolume(top);

 //name of volume or key (depending on export usage)

TGeoVolume *module1 = TGeoVolume::Import("file.root", "MOD1");

TGeoVolume *module2 = TGeoVolume::Import("file.root", "MOD2");

top->AddNode(module1, 1, new TGeoTranslation(0,0,100));

top->AddNode(module2, 1, new TGeoTranslation(0,0,-100));

// One should close himself the geometry

geom->CloseGeometry();

Navigation Algorithms
This section will describe the main methods and algorithms used for implementing the navigation features within
the geometrical modeller. This includes navigation queries at shape level, global geometrical queries and
optimization mechanisms.

Finding the State Corresponding to a Location (x,y,z)

For reminder, a geometry state is a ‗touchable‘ object in the geometry hierarchy. It is represented by a path like:
/TOP_1/A_1/B_3/C_1, where B_3 for instance is a copy of volume B positioned inside volume A. A state is
always associated to a transformation matrix M of the touchable with respect to the global reference frame
(obtained by piling-up all local transformations of nodes in the branch with respect to their containers). The
current state and the corresponding global matrix are updated whenever the geometry depth is modified. The
global transformations corresponding to all nodes in the current branch are kept in an array: (MTOP_1, MA_1, MB_3,
…).

342 The Geometry Package

Figure 18-37 Navigation in the geometry hierarchy

0 1 2

1 2 3 0 0 1

0 1 0 1 0 1

TOP_1

B_3

A_1

C_1

TOP_1

A_1

B_3

C_1

-empty-

m1

m3

m2

Cd

Down

(0)

Cd

Up

MTOP_1 = identity

MA_1 = MTOP_1 * m1

or restored from

cache by CdUp()

MB_3 = MA_1 * m2

 Current node

LEVEL 0

 1

 2

 3

MC_1 = MB_3 * m3

computed by

CdDown(0)

PATH = /TOP_1/A_1/B_3
0,1,2,... = daughter index (in circles)

m1, m2, ... = transformation

 matrices w.r.t. mother volume TGeoNodeCache

The elementary operations for changing the state are:

TGeoManager::CdUp();

TGeoManager::CdDown(i);

TGeoManager::CdTop()

The current state accounting and global matrix handling after these operations are depicted in the figure below.
Now let us suppose that we have a particle at position P(x,y,z). The first thing needed for transporting it is the
current object our particle is into, so that we can retrieve its material properties. This task is done by:

TGeoNode *TGeoManager::FindNode(x,y,z)

Note that the current particle position can be set using SetCurrentPosition(x,y,z) method of the

manager class, in which case FindNode() can be called without arguments. The method returns a pointer to

the deepest node that geometrically contains P (in our case let us suppose it is B_3). Since a node is just a
positioned volume, we can then get a pointer to the volume, medium or material objects related to it. Deepest
means that B_3 still contains point P (as well as A_1 and TOP_1), but none of the daughters of volume B does.
After finding out the node containing the particle, one can check if the geometry state is different compared to
the last located point:

Bool_t *TGeoManager::IsSameLocation()

The algorithm for finding where a point is located in geometry is presented in the figure 17-36.

It always starts by checking if the last computed modeller state is the answer. This optimizes the search when
continuously tracking a particle. The main actions performed are:

 moving up and down in the logical node tree while updating the current node and its global
matrix

 converting the global position into the local frame of the current node/volume

 checking whether the local position lies within the geometrical shape of the current volume – if
this is the case continue the search downwards for the daughters of the current node, otherwise
search upwards its containers until the top level is reached.

 the number of candidate nodes to be checked at a given level is minimized by an additional
optimization structure: voxels. This is effective even in case there is only one daughter of the
current volume.

 in case the current node is declared as possibly overlapping, the method FindInCluster() is
invoked. This method checks all different possibilities within the cluster of overlapping candidates.
One of the candidates is prioritized if one of the following conditions id fulfilled (in order):

 Is declared as non-overlapping (these are anyway searched first)

 Has at least one daughter that contains the current point

 Was already declared as containing the point at a previous step

 The Geometry Package 343

Figure 18-38 Finding the location of a point in the geometry hierarchy

FindNode(x,y,z)
- Reset state f lags

- dow nw ards=F

- skipnode =0

SearchNode(downwards,skip)

Search upwards

- move up to the f irst

non-overlapping node

and make it current

- convert point to local

coordinates

Search downwards

- point already in

current node

- convert point to

local coordinates

Contains

local point

skipnode = current

top level ?

return top

node

NO

YES

NO

CdUp

current

has divided

volume?

YES
TGeoPatternFinder

::FindNode()

- return division node

containing point

YES

found

node ?

YES

CdDow n

to node

skipnode = node

dow nw ards = T

return

current

NO

TGeoVoxelFinder

::GetCheckList()

- return list of possible

candidates

- if no voxels, full list

node = next()

CdDow n

to node

overlapping

node ?
node = FindInCluster()

return

current

NO

YES

node = SearchNode(downwards,skip=0)

found

node ?

return

node

YES

CdUp

NO

NO

Finding the Distance to Next Crossed Boundary

The most important feature provided by the modeller related to track propagation is the computation of the
distance to the next boundary along a straight line.

The relevant state parameters used for this task are:

 Current particle position and direction (x,y,z,nx,ny,nz), where ni is the direction cosine with

axis (i).

 Current node (and path) in geometry must be set by calling TGeoManager::FindNode(x,y,z)

beforehand The method computing the distance to next boundary is:

TGeoNode *TGeoManager::FindNextBoundary(stepmax, path)

The output node returned by the method is the object which shape boundary will be crossed first. The distance
to the next crossing can be retrieved after the call:

Double_t TGeoManager::GetStep()

 The main input parameter is stepmax, which act as a trigger for different features. The absolute

value of this parameter represents the step value proposed by the user. The algorithm will never
try o search for boundaries further than this distance. In case no boundary is found the returned

node will be the current one and the computed step to boundary will be equal to abs (stepmax)

344 The Geometry Package

having the meaning “step approved”. The default value for stepmax is TGeoShape::Big with

the meaning that boundaries are looked for without limitation.

Figure 18-39 Finding the distance to the next crossed boundary

FindNextBoundary(stepmax, path)
- on boundary = F

- check if safety computation required

- check if global matrix computation required

Compute distance to a certain

node pointed by path

PushPath

 cd(path)

- current node pointing the

required one (fNextNode)

MasterToLocal

- convert point to local

coordinates
 - fStep = crt->DistFromOutside()

PopPath Flag starting point

on boundary if

fSafety < tolerance

fSafety >

stepmax?

fSafety = fLastSafety

comp_safe ?

return

current

node

NO

YES

NO

path != 0 ?

YES

YES

return

fNextNode

NO

fSafety = Safety()

same (x,y,z)

as before ?

fStep = stepmax

YES

outside

setup ?

Compute distance to

enter the top node
snext = top->DistFromOutside()

YES

snext<fStep ?

return

fTopNode

return

NULL

fStep = snext

fNextNode = fTopNode

YES

NO
Compute distance to exit current node

MasterToLocal

snext = crt_shape->DistFromInside()

- update fStep if needed

- exit if fStep<1E-6

NO

Compute distance to next daughter

- A daughter may be crossed before exiting

current volume

FindNextDaughterBoundary(lpoint, ldir)

- fStep, fNextNode updated

current node

overlapping ?

return

fNextNode

NO

Compute distance to all possible

overlapping nodes

- Move to ―safe‖ (non-overlapping) level

FindNextOvlpBoundary(lpoint, ldir)

- fStep, fNextNode updated

According the values of the input parameters the method will perform additional optional tasks:

|stepmax| < TGeoShape::Big()

The safe distance in the current volume is also computed. Moving the particle from its current location with this
distance in any direction is safe in the sense that will never change the current state.

stepmax < 0

The global matrix for the object that will have the next crossed boundary is also computed. This can be retrieved

for master local point or vector conversions: TGeoManager::GetNextMatrix()

In case the computation of the normal vector to the next crossed surface is required, using a negative stepmax
value is recommended. In this case one can subsequently call a method for fast normal computation:

 Double_t *TGeoManager::FindNormalFast()

path 0

In case a path to a given physical object is specified, the distance to its boundary is computed ignoring the rest
of the geometry

 The Geometry Package 345

Output Values

TGeoManager::GetStep(): distance to next boundary.

TGeoManager::GetSafeDistance(): safe distance (in case it was computed).

TGeoManager::IsOnBoundary(): the initial point (x,y,z) was (or was not) on a boundary within

TGeoShape::Tolerance().

The algorithm checks first if the computation of safety was required. If this is the case and the global point
coordinates did not change from the last query, the last computed safety is taken. Otherwise, the method
TGeoManager::Safety () is invoked. A safety value less than TGeoShape::Tolerance() will set the flag

IsOnBoundary to true. On the other hand, a safety value bigger than the proposed step will stop the
computation of the distance to next boundary, returning the current geometry location with the meaning that the
proposed step is safe.

The next stage is to check if computation of the distance to a give physical object specified by a path was
required. If this is the case, the modeller changes the state to point to the required object, converts the current
point and direction coordinates to the local frame of this object and computes the distance to its shape. The
node returned is the one pointed by the input path in case the shape is crossed; otherwise the returned value is
NULL. In case the distance to next crossed boundary is required, the current point has to be physically INSIDE
the shape pointed by the current volume. This is only insured in case a call to TGeoManager::FindNode()

was performed for the current point. Therefore, the first step is to convert the global current point and direction
in the local reference frame of the current volume and to compute the distance to exit its shape from inside. The
returned value is again compared to the maximum allowed step (the proposed one) and in case the distance is
safe no other action is performed and the proposed step is approved. In case the boundary is closer, the
computed distance is taken as maximum allowed step. For optimization purposed, for particles starting very
close to the current volume boundary (less than 0.01 microns) and exiting the algorithm stops here.

After computing the distance to exit the current node, the distance to the daughter of the current volume which
is crossed next is computed by TGeoManager::FindNextDaughterBoundary(). This computes the

distance to all daughter candidates that can be possibly crossed by using volume voxelization. The algorithm is
efficient in average only in case the number of daughters is greater than 4. For fewer nodes, a simple loop is
performed and the minimum distance (from a point outside each shape) is taken and compared to the maximum
allowed step. The step value is again updated if step<stepmax.

A special case is when the current node is declared as possibly overlapping with something else. If this is the
case, the distance is computed for all possibly overlapping candidates, taking into account the overlapping
priorities (see also: ―Overlapping volumes‖).

The global matrix describing the next crossed physical node is systematically computed in case the value of the
proposed step is negative. In this case, one can subsequently call TGeoManager::ComputeNormalFast()

to get the normal vector to the crossed surface, after propagating the current point with the
TGeoManager::GetStep() value. This propagation can be done like:

Double_t *current_point = gGeoManager->GetCurrentPoint();

Double_t *current_dir = gGeoManager->GetCurrentDirection() ;

for (Int_t i=0 ; i<3 ; i++) current_point[i] += step * current_dir[I];

Note: The method TGeoManager::FindNextBoundary() does not modify the current point/direction nor the

current volume/state. The returned node is the next crossed one, but the physical path (state) AFTER crossing
the boundary is not determined. In order to find out this new state, one has to propagate the point with a
distance slightly bigger that the computed step value (which is accurate within numerical precision). A method
that performs this task finding the next location is TGeoManager::Step(), described in ―Making a Step‖, but

users may implement more precise methods to insure post-step boundary crossing.

Geometry Graphical User Interface
The geombuilder package allows you to create and edit geometries. The package provides a library of all GUI
classes related to geometry. Each editable geometry class TGeoXXX have a correspondent editor

TGeoXXXEditor that provides a graphics user interface allowing to edit some (or all) parameters of a geometry

object. The editable objects are geometry manager, volumes, nodes, shapes, media, materials and matrices.
The interfaces provide also access to specific functionality of geometry objects. The editing mechanism is
based on ROOT GED (Graphics Editors) functionality and the library is loaded using the plug-in mechanism.

Editing a Geometry

There are two different use cases having different ways of invoking the geometry editors. The first one applies
when starting with geometry from scratch and using the builder functionality to create new geometry objects. In
this case, one should use the sequence:

root[] TGeoManager *geom = new TGeoManager(“MyGeom”, “Test builder”);

root[] geom->Edit(Option_t *option=””);

346 The Geometry Package

The lines above will create a new TGeoManager class, create an empty canvas and start the editor in the left-

sided editor frame attached to the canvas. To open the editor in a separate frame one should provide a non-

empty string as option to the Edit() method.

 Figure 18-40 The geometry manager editor

The Geometry Manager Editor

Figure 18-41 Accessing/creating different categories of editable objects

The second use case applies when starting to edit an existing geometry. Supposing the geometry was loaded
into memory, besides the first method that still applies one can also edit drawn geometry objects. For this, the
menu entry View/Editor of the canvas containing for instance a drawn volume must be activated. For starting
the volume editor one can click on a volume. The GUI of the TGeoManager class can be started by clicking on

the top-right 40x40 pixels corner of the pad with a drawn geometry.

This is the main entry point for editing the geometry or creating new objects. Once the interface is created
(using one of the methods described above), several categories can be accessed via a shutter GUI widget:

 General. This allows changing the name/title of the geometry, setting the top volume, closing the

geometry and saving the geometry in a file. The file name is formed by geometry_name.C or

.root depending if the geometry need to be saved as a C macro or a .root file.

 Shapes. The category provides buttons for creation of all supported shapes. The new shape
name is chosen by the interface, but can be changed from the shape editor GUI. Existing shapes
can be browsed and edited from the same category.

 Volumes. The category allows the creation of a new volume having a given name, shape and
medium. For creating a volume assembly only the name is relevant. Existing volumes can be
browsed or edited from this category.

 Materials. Allows creation of new materials/mixtures or editing existing ones.

 Media. The same for creation/editing of tracking media (materials having a set of properties
related to tracking)

 Matrices. Allows creation of translations, rotations or combined transformations. Existing
matrices can also be browser/edited.

 The Geometry Package 347

Editing Existing Objects

For editing an existing object from one of the categories described above, the interface imposes first a selection
among all objects of the corresponding type stored in the geometry. This can be done by clicking the button
next to the blue label Select <object>. The dialog interfaces are generally different for different types of objects.
The volume selection dialog offers the possibility to select either a volume already connected to the geometry
hierarchy or non-connected ones. Selection for shapes and matrices is split into categories represented by top-
level list tree items for: boxes, tubes, translations, rotations, etc.

Figure 18-42 Selection dialogs for different TGeo objects

Once a selection is made and the dialog is closed, the selected item name will appear in the corresponding
label and the button Edit will start the object editor in a transient frame. Closing these transient frames will not
delete, but just hide existing opened editors for later reuse. Their lifetime is determined by the canvas to which
the manager editor is attached to, since these will be destroyed together.

Figure 18-43 Editors for shapes, materials, media, matrices

For most editors, the functionalities Apply and Undo are provided.

For shapes, changing any of the shape parameters will activate the ―Apply‖ button only if the check button
―Delayed draw‖ is checked, otherwise the changes are immediately applied. Once the apply button is pressed,
the changes are applied to the edited shape and drawn. The ―Undo‖ button becomes active after the first
modification has been applied. It allows restoring the initial parameters of the shape.

NOTE: In this version the ―Undo‖ does not allow restoring an intermediate state of the parameters that was
applied – it will always restore the parameters at the moment the shape was edited.

All material properties changes are undoable. The mixture editor currently allows adding elements one by one in
the mixture composition. This can be done either by element weight fraction or by number of atoms. Once an
element was added using one method the other mehod is not selectable anymore. Summing component
fractions up to 1 in the final mixture is the user responsability. Adding materials as components of a mixture is
not supported in this version.

The elements that were added to the mixture appear in the bottom of the mixture editor. The operations
performed on mixture are not undoable.

348 The Geometry Package

Creation of New Objects

As described above, all geometry object creators are accessible within the geometry manager editor frame.
Generally, if the new object that needs to be created does not depend on other objects, it will be built with a set
of default parameters. This is the case for all shapes (except composite shapes) and matrices. For all the other
objects the interface forces the selection of components before creating the object.

Editing Volumes

Volumes are hierarchical components in the geometry, therefore their editor is more complex. It provides the
following functionalities:

 General. This category allows changing the name of the volume and selecting other shape or
medium among existing ones.

 Daughters. The category allows removing existing daughter nodes or adding new ones. The
button ―Position‖ allows editing the positioning matrix of a given node.

Figure 18-44 Setting volume properties and modifying volume hierarchy

 Visualization. This category allows changing the visibility of the edited volume or for its daughters,
as well as other visualization settings. The radio button ―All‖ allows viewing all volumes down to
the selected depth. ―Leaves‖ will draw only the deepest nodes that have the selected depth or
lower level ones that have no daughters inside. ―Only‖ will allow drawing only the edited volume.
The check button ―Raytrace‖ will just draw the current selection in solid mode using the ray-
tracing algorithm provided by TGeo.

Figure 18-45 Volume visualisation settings and division interface for volumes

 Division. Allows dividing the edited volume according a given pattern. The division axes that are
allowed are presented in a radio-button group. The number entries labeled ―From‖, ―Step‖ and
―Nslices‖ correspond to the divisioning parameters on the selected axis. The range of the division

is between start and start+ndiv*step values and its validity is checked upon changing one

of the values.

NOTE: When changing a value in a number entry by typing a number, press ENTER at the end to validate. This
applies for taking into account and validation of any number change in the geometry editors.

 The Geometry Package 349

How to Create a Valid Geometry with Geometry Editors

1. Create a new geometry manager and start the editor as described at the beginning.

2. Create at least one material from the "Materials" shutter item category. Generally, for creating objects, the
interface is always in the TGeoManagerEditor in different categories - one should just provide a name and

requested parameters.

3. Create a shape that will be used for the top volume within the "Shapes" category. For the moment, the
shapes that have editors are Box, Para, Trd1, Trd2, Tube, Tube segment, Cone, Cone segment, Hype, Pcon,
Torus and Sphere.

4. Create a medium from one of the existing materials from the "Medium" category. You will notice that some
categories as "Volume" and "Medium" are inactive at the beginning because at that time there is no material yet
(for making a medium) and no shape (for making a volume). These categories are dynamically activated once
all the required components are defined.

5. Create a volume from the "Volumes" category. You will notice that contrary to the other editors, the volume
editor is opened in a tab, not transient - this is because it is more complex.

6. Go back to "General" category and select the newly created volume as the top one (you can do it also from
the volume category). This is just for starting. To create some hierarchy, one has to create several other
volumes and the matrices to position them. Once this is done, use the volume editor interface to:

 add/remove daughters, change shape, edit position of daughters

 change visualization settings

 divide the volume (only if there are no daughters yet)

7. Close the geometry from the ―General‖ category.

 Python and Ruby Interfaces 351

19 Python and Ruby Interfaces

Python is a popular, open-source, dynamic programming language with an interactive interpreter. Its
interoperability with other programming languages, both for extending Python as well as embedding it, is
excellent and many existing third-party applications and libraries have therefore so-called "Python bindings."

PyROOT provides Python bindings for ROOT: it enables cross-calls from ROOT/CINT into Python and vice

versa, the intermingling of the two interpreters, and the transport of user-level objects from one interpreter to the

other. PyROOT enables access from ROOT to any application or library that itself has Python bindings, and it

makes all ROOT functionality directly available from the python interpreter.

PyROOT Overview
The Python scripting language is widely used for scientific programming, including high performance and
distributed parallel code (see http://www.scipy.org). It is the second most popular scripting language (after Perl)
and enjoys a wide-spread use as a "glue language": practically every library and application these days comes
with Python bindings (and if not, they can be easily written or generated).

PyROOT, a Python extension module, provides the bindings for the ROOT class library in a generic way using

the CINT dictionary. This way, it allows the use of any ROOT classes from the Python interpreter, and thus the
"glue-ing" of ROOT libraries with any non-ROOT library or applications that provide Python bindings. Further,

PyROOT can be loaded into the CINT interpreter to allow (as of now still rudimentary) access to Python classes.

The best way to understand the benefits of PyROOT is through a few examples.

Glue-ing Applications

The PyQt library, see http://www.riverbankcomputing.co.uk/pyqt, provides Python bindings for the Qt cross-

platform GUI framework (http://www.trolltech.com). With PyROOT and PyQt, adding ROOT application layer

code to a Qt GUI, becomes children play. The following example shows how a Python class can be used to
have ROOT code respond to a click on a Qt widget.

Glue-ing Qt and ROOT through Python

import sys, ROOT

from qt import *

theApp = QApplication(sys.argv)

box = QVBox()

box.resize(QSize(40,10).expandedTo(box.minimumSizeHint()))

class myButton(QPushButton):

 def __init__(self,label,master):

 QPushButton.__init__(self,label,master)

 self.setFont(QFont('Times',18,QFont.Bold))

 def browse(self):

 self.b = ROOT.TBrowser()

bb = myButton('browser',box)

QObject.connect(bb,SIGNAL('clicked()'),bb.browse)

theApp.setMainWidget(box)

box.show()

theApp.exec_loop()

When the example is run, a Qt button is displayed, and when the button is clicked, a TBrowser instance is

created and will appear on the screen. PyROOT takes care of feeding system events to ROOT widgets, so the

TBrowser instance and the button behave properly when users interact with them.

Access to ROOT from Python

There are several tools for scientific analysis that come with bindings that allow the use of these tools from the

Python interpreter. PyROOT provides this for users who want to do analysis in Python with ROOT classes. The

following example shows how to fill and display a ROOT histogram while working in Python. Of course, any
actual analysis code may come from somewhere else through other bindings, e.g. from a C++ program.

http://www.scipy.org/
http://www.riverbankcomputing.co.uk/pyqt
http://www.trolltech.com/

352 Python and Ruby Interfaces

When run, the next example will display a 1-dimensional histogram showing a Gaussian distribution. More

examples like the one above are distributed with ROOT under the $ROOTSYS/tutorials directory.

Example: displaying a ROOT histogram from Python

from ROOT import gRandom,TCanvas,TH1F

c1 = TCanvas('c1','Example',200,10,700,500)

hpx = TH1F('hpx','px',100,-4,4)

for i in xrange(25000):

 px = gRandom.Gaus()

 hpx.Fill(px)

hpx.Draw()

c1.Update()

Access to Python from ROOT

Access to Python objects from CINT is not completely fleshed out. Currently, ROOT objects and built-in types
can cross the boundary between the two interpreters, but other objects are much more restricted. For example,
for a Python object to cross, it has to be a class instance, and its class has to be known to CINT first (i.e. the
class has to cross first, before the instance can). All other cross-coding is based on strings that are run on the
Python interpreter and vise-versa.

With the ROOT v4.00/06 and later, the TPython class will be loaded automatically on use, for older editions,

the libPyROOT.so needs to be loaded first before use. It is possible to switch between interpreters by calling

TPython::Prompt() on the ROOT side, while returning with ^D (EOF). State is preserved between

successive switches, and string based cross calls can nest as long as shared resources are properly handled.

// Example: accessing the Python interpreter from ROOT

// either load PyROOT explicitly or rely on auto-loading

root[] gSystem->Load("libPyROOT");

root[] TPython::Exec("print1+1");

2

// create a TBrowser on the Python side, and transfer it back and forth

root[] TBrowser* b = (void*)TPython::Eval("ROOT.TBrowser()");

(class TObject*)0x8d1daa0

root[] TPython::Bind(b,"b");

// builtin variables can cross-over (after the call i==2)

root[] int i = TPython::Eval(“1+1”);

root[] i

(int)2

Installation

There are several ways of obtaining PyROOT, and which is best depends on your specific situation. If you work

at CERN, you can use the installation available on afs. Otherwise, you will want to build from source, as

PyROOT is not build by default in the binaries distributed from the ROOT project site. If you download the ROOT

binaries, take care to download and install the Python distribution from http://www.python.org/ against which
they were built.

Environment Settings

ROOT installations with the build of PyROOT enabled are available from the CERN afs cell

/afs/cern.ch/sw/root/<version>/<platform>. To use them, simply modify your shell environment

accordingly. For Unix:

export PATH=$ROOTSYS/bin:$PYTHONDIR/bin:$PATH

export LD_LIBRARY_PATH=$ROOTSYS/lib:$PYTHONDIR/lib:$LD_LIBRARY_PATH

export PYTHONPATH=$ROOTSYS/lib:$PYTHONPATH

For Windows:

set PATH=%ROOTSYS%/bin;%PYTHONDIR%/bin;%PATH%

set PYTHONPATH=%ROOTSYS%/bin;%PYTHONPATH%

where $ROOTSYS should be set to /afs/cern.ch/sw/root/<version>/<platform>, and PYTHONDIR to

/afs/cern.ch/sw/lcg/external/Python/2.3.4/<platform> with <version> and <platform> as

appropriate. Note that the latest version of Python is 2.4.1.

http://www.python.org/

 Python and Ruby Interfaces 353

Building from Source

The standard installation instructions for building ROOT from source apply, with the addition that the build of

PyROOT needs to be enabled at the configuration step. First, follow the instructions for obtaining and unpacking

the source, and setting up the build environment.

Then, use the following command to configure the build process (of course, feel free to add any additional flags
you may need):

$./configure <arch> [--with-python-incdir=<dir>][--with-python-libdir=>dir>]

For details on <arch> see the official build pages, the Python include directory should point to the directory that

contains Python.h and the library directory should point to the directory containing libpythonx.y.so, where

'x' and 'y' are the major and minor version number, respectively. If you do not specify include and library

directories explicitly, the configuration process will try the PYTHONDIR environment variable or, alternatively, the

standard locations.

A recent distribution of Python is required: version 2.4.3 is preferred, but the older 2.2.x and 2.3.x versions
suffice and are supported as well. Versions older than 2.2 are not supported and will not work. Note that one

problem with 2.2 is that the shared library of the Python interpreter core is not build by default and the '--

enable-shared' flag should thus be used when building Python from source. If the Python interpreter that is

installed on your system is too old, please obtain a new version from http://www.python.org.

Once configured, you continue the build process the normal way:

$ make

$ make cintdlls

$ make install

After some time, a library called libPyROOT.so (or libPyROOT.dll, on Windows) will be created in the

$ROOTSYS/lib ($ROOTSYS/bin on Windows) directory and a top Python module, ROOT.py, will be copied

into the same place. The final step is to setup the shell environment, which is similar to what is described in the

chapter ‗Environment Settings‘. Note that the $ROOTSYS entries are probably already there if you followed the

standard instructions, and that the PYTHONDIR entries should be replaced as appropriate by your choice at

configuration time, or be left out if you had the configuration script pick up them up from a default location.

Using PyROOT

Since it is an extension module, the usage of PyROOT probably comes naturally if you're used to Python. In

general, PyROOT attempts to allow working in both Python and ROOT style, and although it is succeeding, it

isn't perfect: there are edges. The following sections explain in some detail what you can expect, and what you
need to watch out for.

Access to ROOT Classes

Before a ROOT class can be used from Python, its dictionary needs to be loaded into the current process.
Starting with ROOT version 4.00/06, this happens automatically for all classes that are declared to the auto-

loading mechanism through so-called rootmap files. Effectively, this means that all classes in the ROOT

distributions are directly available for import. For example:

from ROOT import TCanvas # available at startup

c = TCanvas()

from ROOT import TLorentzVector # triggers auto-load of libPhysics

l = TLorentzVector()

Although it is not recommended, a simple way of working with PyROOT is doing a global import:

from ROOT import *

c = TCanvas()

l = TLorentzVector()

Keeping the ROOT namespace ("import ROOT"), or only importing from ROOT those classes that you will

actually use (see above), however, will always be cleaner and clearer:

import ROOT

c = ROOT.TCanvas()

l = ROOT.TLorentzVector()

Since it is foreseen that most people will use the simple approach anyway, the request to copy all from module
ROOT will not actually result in copying all ROOT classes into the current namespace. Instead, classes will still
be bound (and possibly loaded) on an as-needed basis. Note carefully how this is different from other Python

(extension) modules, and what to expect if you use the normal inspection tools (such as e.g. 'dir()'). This

http://www.python.org/

354 Python and Ruby Interfaces

feature prevents the inspection tools from being swamped by an enormous amount of classes, but they can no
longer be used to explore unknown parts of the system (e.g. to find out which classes are available).

Furthermore, because of this approach, <tab>-completion will usually not be available until after the first use

(and hence creation) of a class.

Access to class static functions, public data members, enums, etc. is as expected. Many more example uses of
ROOT classes from Python can be found in the tutorials directory in the ROOT distribution. The recipes section
contains a description on working with your own classes (see ―Using Your Own Classes‖).

Access to STL Classes

Before STL classes can be used, you have to make sure that the CINT extension dlls are build (the "cintdlls"

make target). Note that they do not compile on as many platforms as ROOT itself. Further, if you want to use
template instantiations of STL classes with any of your own classes, make sure that a dictionary is available,
e.g. by using ACLiC.

The STL classes live in the ROOT.std namespace (or, if you prefer to get them from there, in the ROOT module
directly, but doing so makes the code less clear, of course). Be careful in their use, because Python already has

types called "string" and "list."

In order to understand how to get access to a templated class, think of the general template as a meta class. By
instantiating the meta class with the proper parameters, you get an actual class, which can then be used to
create object instances. An example usage:

>>> from ROOT import std

>>> v = std.vector(int)()

>>> for i in range(0,10):

... v.push_back(i)

...

>>> for i in v:

... print i,

1 2 3 4 5 6 7 8 9

>>>

>>> list(v)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>>

The parameters to the template instantiation can either be an actual type or value (as is used here, "int"), or a

string representation of the parameters (e.g. "'double'"), or a mixture of both (e.g. "'TCanvas, 0'" or

"'double', 0"). The "std::vector<int>" class is one of the classes builtin by default into the CINT

extension dlls. You will get a non-functional class (instances of which can still be passed around to C++) if the
corresponding dictionary doesn't exist.

Access to ROOT Globals

Most globals and global functions can be imported directly from the ROOT.py module, but some common ones
(most notably gMinuit, although that variable now exists at startup from release 5.08 onward) do not exist yet

at program startup, as they exist in modules that are loaded later (e.g. through the auto-loading mechanims). An
example session should make this clear:

>>> from ROOT import *

>>> gROOT # directly available

<ROOT.TROOT object at 0x399c30>

>>> gMinuit # library not yet loaded: not available

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

NameError: name 'gMinuit' is not defined

>>> TMinuit # use of TMinuit class forces auto-loading

<class '__main__.TMinuit'>

>>> gMinuit # now gMinuit is available

<__main__.TMinuit object at 0x1458c70>

>>> not not gMinuit # but it is the null pointer, until set

False

>>> g = TMinuit()

>>> not not gMinuit

True

It is also possible to create globals interactively, either by executing a CINT macro, or by a call to

gROOT.ProcessLine(). These globals are made available in the same way: either use them directly after

creation in 'from ROOT import *' more, or get them from the ROOT namespace after an 'import ROOT'.

As of 5.08, the behaviour of ROOT globals is the same as python globals, which is sometimes counterintuitive:
since they are references, they can be changed only if done so directly through their containing module. The
following session shows that in detail:

 Python and Ruby Interfaces 355

>>> from ROOT import *

>>> print gDebug

0

>>> gROOT.ProcessLine('gDebug = 7;')

>>> print gDebug

0 # local gDebug is unchanged

>>> gDebug = 5 # changes _local_ reference only

>>> print gDebug

5 # locally correct, but ...

>>> gROOT.ProcessLine('cout << gDebug << endl;')

7 # ... ROOT global unchanged

>>> import ROOT

>>> print ROOT.gDebug

7 # still the old value (not '5')

>>> ROOT.gDebug = 3 # changes ROOT module reference

>>> gROOT.ProcessLine('cout << gDebug << endl;')

3 # ROOT global properly changed

>>>

The above is another good reason to prefer 'import ROOT' over 'from ROOT import *'.

Access to Python

The access to Python from CINT goes through the TPython class, or directly if a Python object or class has

crossed the border. The TPython class, which looks approximately like this:

class TPython {

public:

 // load a Python script as if it were a macro

 static void LoadMacro(const char* name);

 // execute a Python statement (e.g. "import ROOT")

 static void Exec(const char* cmd);

 // evaluate a Python expression (e.g. "1+1")

 static const TPyReturn& Eval(const char* expr);

 // bind a ROOT object with, at the Python side, the name "label"

 static bool Bind(TObject* obj,const char* label);

 // enter an interactive Python session (exit with ^D)

 static void Prompt();

};

LoadMacro(const char* name) - the argument is a name of a Python file that is to be executed

('execfile'), after which any new classes are automatically made available to CINT. Since it is non-selective,

use with care.

ExecScript(const char* name,int argc=0,const char** argv=0) - the argument is a name of a

python file that is to be executed ('execfile') in a private namespace to minimize side-effects. Optionally, you

can add CLI-style arguments which are handed to the script through 'sys.argv' in the normal way.

Exec(const char* cmd) - the argument is a string of Python code that is executed as a statement. There is

no return value, but an error message will be printed if there are problems such as syntax errors.

Eval(const char* expr) - the argument is a string of Python code that is evaluated as an expression. The

result of the expression is returned, if it is either a builtin type (int, long, float, double, and const char* are

supported), a Python type that can cross, or a ROOT type. If a ROOT type is returned, an explicit cast to void*
is needed to assign the return value to a local pointer (which may have a different type), whereas builtin types
will be cast implicitly, if possible, to the type of the local variable to which they are assigned.

Bind(TObject* obj,const char* label) - transfer a ROOT object from the CINT to the Python

interpreter, where it will be referenced with a variable called "label".

Prompt() – Transfer the interactive prompt to Python.

With the ROOT v4.00/06 and later, the TPython class will be loaded automatically on use, for older editions,

the libPyROOT.so needs to be loaded first with gSystem->Load() before use. Refer back to the other

example of the use of TPython that was given in ―Access to Python from ROOT‖.

To show in detail how Python access can be used, an example Python module is needed, as follows:

print 'creating class MyPyClass ... '

class MyPyClass:

 def __init__(self):

356 Python and Ruby Interfaces

 print 'in MyPyClass.__init__'

 self._browser = None

 def gime(self,what):

 return what

This module can now be loaded into a CINT session, the class used to instantiate objects, and their member
functions called for showing how different types can cross:

root[] TPython::LoadMacro("MyPyClass.py");

creating class MyPyClass ...

root[] MyPyClass m;

in MyPyClass.__init__

root[] char* s = m.gime("aap");

root[] s

(char* 0x41ee7754)"aap"

Note that the LoadMacro() call makes the class automatically available, such that it can be used directly.

Otherwise, a gROOT->GetClass() call is required first.

Callbacks

The simplest way of setting a callback to Python from CINT, e.g. for a button, is by providing the execution

string. See for example tutorials/pyroot/demo.py that comes with the ROOT installation:

[..]

bar = ROOT.TControlBar('vertical','Demos')

bar.AddButton('Help on Demos',

 r'TPython::Exec("execfile(\'demoshelp.py\')");',

 'Click Here For Help on Running the Demos')

bar.AddButton('browser',

 r'TPython::Exec("b = Tbrowser()");',

 'Start the ROOT browser')

[..]

Here, the callback is a string that will be interpreted by CINT to call TPython::Exec(), which will, in turn,

interpret and execute the string given to it. Note the use of raw strings (the 'r' in front of the second argument

string), in order to remove the need of escaping the backslashes.

CINT Commands

In interactive mode, the Python exception hook is used to mimic some of the CINT commands available. These
are: .q, .!, .x, .L, .cd, .ls, .pwd, .? and .help. Note that .x translates to Python 'execfile()' and thus

accepts only Python files, not CINT macros.

Memory Handling

The Python interpreter handles memory for the user by employing reference counting and a garbage collector

(for new-style objects, which includes PyROOT objects). In C++, however, memory handling is done either by

hand, or by an application specific, customized mechanism (as is done in ROOT). Although PyROOT is made

aware of ROOT memory management, there are still a few boundary conditions that need to be dealt with by

hand. Also, the heuristics that PyROOT employs to deal with memory management are not infallible. An

understanding in some detail of the choices that are made is thus important.

Automatic Memory Management

There are two global policies that can be set: heuristics and strict. By default, the heuristic policy is used, in
which the following rules are observed:

 A ROOT object created on the Python interpreter side is owned by Python and will be deleted
once the last Python reference to it goes away. If, however, such an object is passed by non-
const address as a parameter to a C++ function (with the exception of the use as "self" to a
member function), ownership is relinquished.

 A ROOT object coming from a ROOT call is not owned, but before it passes to the Python
interpreter, its "must cleanup" bit is set if its type is a class derived from TObject. When the

object goes out of scope on the C++ side, the Python object will change type into an object that
largely behaves like None.

The strict policy differs in that it will never relinquish ownership when passing an object as a parameter to a
function. It is then up to the developer to prevent double deletes. Choosing one or the other policy is done by:

ROOT.SetMemoryPolicy(ROOT.kMemoryStrict)

for the strict policy, or for the heuristic policy:

 Python and Ruby Interfaces 357

ROOT.SetMemoryPolicy(ROOT.kMemoryHeuristics)

Care must be taken in the case of graphic objects: when drawn on the current pad, a reference to the graphics

is kept that PyROOT isn't currently aware of, and it is up to the developer to keep at lease one Python reference

alive. See $ROOTSYS/tutorials/pyroot/zdemo.py (available in the latest release) for an example.

Alternatively, one can tell python to give up ownership for individual instances:

o = ROOT.TObject()

ROOT.SetOwnership(o, False) # True to own, False to release

Memory Management by Hand

If needed, you can explicitly destroy a ROOT object that you own through its associated TClass:

myobject.IsA().Destructor(myobject)

which will send out the deletion notification to the system (thus you do not need to care anymore at this point
about Python reference counting, the object will go, even if it's reference count it non-zero), and free the
memory.

Performance

The performance of PyROOT when programming with ROOT in Python is similar to that of CINT. Differences

occur mainly because of differences in the respective languages: C++ is much harder to parse, but once

parsed, it is much easier to optimize. Consequently, individual calls to ROOT are typically faster from PyROOT,

whereas loops are typically slower.

When programming in Python, the modus operandi is to consider performance generally "good enough" on the
outset, and when it turns out that, it is not good enough; the performance critical part is converted into C/C++ in
an extension module. The school of thought where pre-mature optimization is the root of all evil should find this
way of working very satisfying. In addition, if you look at their history, you will see that many of the standard
Python modules have followed this path.

Your code should always make maximum use of ROOT facilities; such that most of the time is spending in
compiled code. This goes even for very simple things: e.g. do not compute invariant masses in Python, use
TLorentzVector instead. Moreover, before you start optimizing, make sure that you have run a profiler to find

out where the bottlenecks are. Some performance, without cost in terms of programmer effort, may be gained

by using psyco, see the next link: http://psyco.sourceforge.net, a Python just in time compiler (JIT). Note,

however, that psyco is limited to Intel i386 CPUs. Since psyco optimizes Python, not PyROOT calls; it generally

does not improve performance that much if most of your code consists of ROOT API calls. Mathematical
computations in Python, on the other hand, benefit a lot.

Every call to a Python member function results in a lookup of that member function and an association of this

method with 'self'. Furthermore, a temporary object is created during this process that is discarded after the

method call. In inner loops, it may be worth your while (up to 30%), to short-cut this process by looking up and
binding the method before the loop, and discarding it afterwards. Here is an example:

hpx = TH1F('hpx','px',100,-4,4)

hpxFill = hpx.Fill # cache bound method

for i in xrange(25000):

 px = gRandom.Gaus()

 hpxFill(px) # use bound method: no lookup needed

del hpxFill # done with cached method

Note that if you do not discard the bound method, a reference to the histogram will remain outstanding, and it
will not be deleted when it should be. It is therefore important to delete the method when you're done with it.

Use of Python Functions

It is possible to mix Python functions with ROOT and perform such operations as plotting and fitting of
histograms with them. In all cases, the procedure consists of instantiating a ROOT TF1, TF2, or TF3 with the

Python function and working with that ROOT object. There are some memory issues, so it is for example not
yet possible to delete a TF1 instance and then create another one with the same name. In addition, the Python

function, once used for instantiating the TF1, is never deleted.

Instead of a Python function, you can also use callable instances (e.g., an instance of a class that has

implemented the __call__ member function). The signature of the Python callable should provide for one or

two arrays. The first array, which must always be present, shall contain the x, y, z, and t values for the call. The

second array, which is optional and its size depends on the number given to the TF1 constructor, contains the

values that parameterize the function. For more details, see the TF1 documentation and the examples below.

Plotting Python Function

This is an example of a parameter less Python function that is plotted on a default canvas:

http://psyco.sourceforge.net/

358 Python and Ruby Interfaces

from ROOT import TF1, TCanvas

def identity(x):

 return x[0]

create an identity function

f = TF1('pyf1',identity,-1.,1.)

plot the function

c = TCanvas()

f.Draw()

Because no number of parameters is given to the TF1 constructor, '0' (the default) is assumed. This way, the

'identity' function need not handle a second argument, which would normally be used to pass the function

parameters. Note that the argument 'x' is an array of size 4. The following is an example of a parameterized

Python callable instance that is plotted on a default canvas:

from ROOT import TF1, TCanvas

class Linear:

 def __call__(self, x, par):

 return par[0] + x[0]*par[1]

create a linear function with offset 5, and pitch 2

f = TF1('pyf2',Linear(),-1.,1.,2)

f.SetParameters(5.,2.)

plot the function

c = TCanvas()

f.Draw()

Note that this time the constructor is told that there are two parameters, and note in particular how these
parameters are set. It is, of course, also possible (and preferable if you only use the function for plotting) to keep
the parameters as data members of the callable instance and use and set them directly from Python.

Fitting Histograms

Fitting a histogram with a Python function is no more difficult than plotting: instantiate a TF1 with the Python

callable and supply that TF1 as a parameter to the Fit() member function of the histogram. After the fit, you

can retrieve the fit parameters from the TF1 instance. For example:

from ROOT import TF1, TH1F, TCanvas

class Linear:

 def __call__(self, x, par):

 return par[0] + x[0]*par[1]

create a linear function for fitting

f = TF1('pyf3',Linear(),-1.,1.,2)

create and fill a histogram

h = TH1F('h','test',100,-1.,1.)

f2 = TF1('cf2','6.+x*4.5',-1.,1.)

h.FillRandom('cf2',10000)

fit the histo with the python 'linear' function

h.Fit(f)

print results

par = f.GetParameters()

print 'fit results: const =',par[0],',pitch =',par[1]

Working with Trees

Next to making histograms, working with trees is probably the most common part of any analysis. The TTree

implementation uses pointers and dedicated buffers to reduce the memory usage and to speed up access.
Consequently, mapping TTree functionality to Python is not straightforward, and most of the following features

are implemented in ROOT release 4.01/04 and later only, whereas you will need 5.02 if you require all of them.

 Python and Ruby Interfaces 359

Accessing an Existing Tree

Let us assume that you have a file containing TTrees, TChains, or TNtuples and want to read the contents

for use in your analysis code. This is commonly the case when you work with the result of the reconstruction
software of your experiment (e.g. the combined ntuple in ATLAS). The following example code outlines the main

steps (you can run it on the result of the tree1.C macro):

from ROOT import TFile

from ROOT import gDirectory

open the file

myfile = TFile('tree1.root')

retrieve the ntuple of interest

mychain = gDirectory.Get('t1')

entries = mychain.GetEntriesFast()

for jentry in xrange(entries):

get the next tree in the chain and verify

 ientry = mychain.LoadTree(jentry)

 if ientry < 0:

 break

copy next entry into memory and verify

 nb = mychain.GetEntry(jentry)

 if nb<=0:

 continue

use the values directly from the tree

 nEvent = int(mychain.ev)

 if nEvent<0:

 continue

 print mychain.pz, '=', mychain.px*mychain.px, '+', mychain.py*mychain.py

Access to arrays works the same way as access to single value tree elements, where the size of the array is
determined by the number of values actually read from the file. For example:

loop over array tree element

for d in mychain.mydoubles:

 print d

direct access into an array tree element

i5 = mychain.myints[5]

Writing a Tree

Writing a ROOT TTree in a Python session is a little convoluted, if only because you will need a C++ class to

make sure that data members can be mapped, unless you are working with built-in types. Here is an example
for working with the latter only:

from ROOT import TFile, TTree

from array import array

h = TH1F('h1','test',100,-10.,10.)

f = TFile('test.root','recreate')

t = TTree('t1','tree with histos')

maxn = 10

n = array('i',[0])

d = array('f',maxn*[0.])

t.Branch('mynum',n,'mynum/I')

t.Branch('myval',d,'myval[mynum]/F')

for i in range(25):

 n[0] = min(i,maxn)

 for j in range(n[0]):

 d[j] = i*0.1+j

 t.Fill()

f.Write()

f.Close()

360 Python and Ruby Interfaces

The use of arrays is needed, because the pointer to the address of the object that is used for filling must be
given to the TTree::Branch() call, even though the formal argument is declared a 'void*'. In the case of

ROOT objects, similar pointer manipulation is unnecessary, because the full type information is available, and
TTree::Branch() has been Pythonized to take care of the call details. However, data members of such

objects that are of built-in types, still require something extra since they are normally translated to Python
primitive types on access and hence their address cannot be taken. For that purpose, there is the

AddressOf() function. As an example:

from ROOT import TFile, TTree

from ROOT import gROOT, AddressOf

gROOT.ProcessLine(

"struct MyStruct {\

 Int_t fMyInt1;\

 Int_t fMyInt2;\

 Int_t fMyInt3;\

 Char_t fMyCode[4];\

};");

from ROOT import MyStruct

mystruct = MyStruct()

f = TFile('mytree.root','RECREATE')

tree = TTree('T','Just A Tree')

tree.Branch('myints',mystruct,'MyInt1/I:MyInt2:MyInt3')

tree.Branch('mycode',AddressOf(mystruct,'fMyCode'),'MyCode/C')

for i in range(0,10):

 mystruct.fMyInt1 = i

 mystruct.fMyInt2 = i*i

 mystruct.fMyInt3 = i*i*i

 mystruct.fMyCode = "%03d" % i # note string assignment

 tree.Fill()

f.Write()

f.Close()

The C++ class is defined through the gROOT.ProcessLine() call, and note how the AddressOf() function

is used for data members of built-in type. Most of the above is for ROOT version 5.02 and later only. For older
releases, and without further support, here is an example as to how you can get hold of a pointer-to-pointer to a
ROOT object:

h = TH1F()

addressofobject = array('i',[h.IsA().DynamicCast(h.IsA(),h)])

Using Your Own Classes

A user's own classes can be accessed after loading, either directly or indirectly, the library that contains the
dictionary. One easy way of obtaining such a library, is by using ACLiC:

$ cat MyClass.C

class MyClass {

public:

MyClass(int value = 0) {

 m_value = value;

}

void SetValue(int value) {

 m_value = value;

}

int GetValue() {

 return m_value;

}

private:

 int m_value;

};

$ echo .L MyClass.C+ | root.exe -b

[...]

Info in <TUnixSystem::ACLiC>: creating shared library [..]/./MyClass_C.so

$

 Python and Ruby Interfaces 361

Then you can use it, for example, like so:

from ROOT import gSystem

load library with MyClass dictionary

gSystem.Load('MyClass_C')

get MyClass from ROOT

from ROOT import MyClass

use MyClass

m = MyClass(42)

print m.GetValue()

You can also load a macro directly, but if you do not use ACLiC, you will be restricted to use the default
constructor of your class, which is otherwise fully functional. For example:

from ROOT import gROOT

load MyClass definition macro (append '+' to use ACLiC)

gROOT.LoadMacro('MyClass.C')

get MyClass from ROOT

from ROOT import MyClass

use MyClass

m = MyClass()

m.SetValue(42)

print m.GetValue()

362 Python and Ruby Interfaces

How to Use ROOT with Ruby
Ruby ROOT is a Ruby extension module that allows the user to interact with any ROOT class from the Ruby
scripting language. The Ruby module resolves ROOT Classes and Methods at run-time using the CINT API, so
there is no need for wrapping specific Classes to be used in Ruby. The Ruby module, also, contains a TRuby

class to execute Ruby statements via CINT and export C++ Objects to Ruby objects, interactively.

Building and Installing the Ruby Module

The Ruby extension module is not built by default when building ROOT from sources. The user should follow
the standard installation instructions and enable the build of the Ruby module. Ruby version >= 1.8 is required.

./configure <arch> --enable-ruby --enable-explicitlink

[--with-ruby-incdir=<dir>] [--with-ruby-libdir=<dir>]

gmake

If you do not specify include and library directories configure will use Ruby to grab the directories where Ruby's

headers and library are located. A library called libRuby.so [libRuby.dll] will be created in the

$ROOTSYS/lib [$ROOTSYS/bin].

Setting up the Environment

For working with the Ruby module, the LD_LIBRARY_PATH [PATH] and RUBYLIB, need to be set in addition

to the standard $ROOTSYS.

For UNIX Platforms:

export LD_LIBRARY_PATH=$ROOTSYS/lib:$LD_LIBRARY_PATH

export RUBYLIB=$ROOTSYS/lib:$RUBYLIB

For Windows:

set PATH=%ROOTSYS%/bin;%PATH%

set RUBYLIB=%ROOTSYS%/bin;%RUBYLIB%

Running ROOT scripts from Ruby

The user should make sure that the ruby command is the one of the installation that has been used to build the
Ruby extension module. If the RUBYLIB environment variable is set correctly, the user can execute a Ruby
script with ROOT functionality in the following way:

ruby -rlibRuby foo.rb

Another way is to start the Ruby script with the Ruby require command:

require 'libRuby'

An example is as follows:

require 'libRuby'

gROOT.Reset

c1 = TCanvas.new('c1','Example with Formula',200,10,700,500)

Create a one dimensional function and draw it

fun1 = TF1.new('fun1','abs(sin(x)/x)',0,10)

c1.SetGridx

c1.SetGridy

fun1.Draw

c1.Update

The user can find a number of examples in the $ROOTSYS/tutorials. To run them you need to execute the

command:

cd $ROOTSYS/tutorials

ruby demo.rb

Invoking the Ruby Module from CINT Interpreter

A ROOT user can run any Ruby command and eventually to run IRB, the Interactive Ruby Shell. The

commands to execute are:

root[] TRuby::Exec("require '/usr/local/lib/root/libRuby'");

root[] TRuby::Exec("c1 = TBrowser.new");

root[] TRuby::Eval("c1.GetName");

 Python and Ruby Interfaces 363

root[] TRuby::Eval("puts c1.GetName");

Browser

root[] TCanvas *c2 = new TCanvas("ruby test", "test", 10, 10, 100, 100);

root[] TRuby::Bind(c2, "$c");

root[] TRuby::Eval("puts $c.GetTitle");

test

root[] TRuby::Prompt();

root[] TRuby::Prompt();

irb(main):001:0> print 1

1=> nil

irb(main):002:0>

Notice that whenever you bind a ROOT Object in the Ruby side, you need to use a global Ruby variable, that is

a variable with a leading "$".

 The Tutorials and Tests 365

20 The Tutorials and Tests

This chapter is a guide to the examples that come with the installation of ROOT. They are located in two

directories: $ROOTSYS/tutorials and $ROOTSYS/test.

$ROOTSYS/tutorials
The tutorials directory contains many example scripts. To have all examples working you must

have write permission and you will need to execute hsimple.C first. If you do not have write

permission in the directory $ROOTSYS/tutorials, copy the entire directory to your area.

The script hsimple.C displays a histogram as it is being filled, and creates a ROOT file used

by the other examples.

To execute it type:

> cd $ROOTSYS/tutorials

> root

 * *

 * W E L C O M E to R O O T *

 * *

 * Version 5.16/00 27 June 2006 *

 * *

 * You are welcome to visit our Web site *

 * http://root.cern.ch *

 * *

FreeType Engine v2.1.9 used to render TrueType fonts.

Compiled on 28 June 2007 for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.16.21, June 22, 2007

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root[0] .x hsimple.C

Now execute demos.C, which brings up the button bar shown on the left. You can click on any

button to execute another example. To see the source, open the corresponding source file (for

example fit1.C). Once you are done, and want to quit the ROOT session, you can do so by

typing .q.

root[] .x demos.C

root[] .q

$ROOTSYS/test
The test directory contains a set of examples that represent all areas of the framework. When a new release is
cut, the examples in this directory are compiled and run to test the new release's backward compatibility.

We see these source files:

Makefile Makefile to build all test programs.

hsimple.cxx Simple test program that creates and saves some histograms

MainEvent.cxx Simple test program that creates a ROOT Tree object and fills it with some
simple structures but also with complete histograms. This program uses

the files Event.cxx, EventCint.cxx and Event.h. An example of a

procedure to link this program is in bind_Event. Note that the Makefile

invokes the rootcint utility to generate the CINT interface
EventCint.cxx

Event.cxx Implementation for classes Event and Track

minexam.cxx Simple test program for data fitting

tcollex.cxx Example usage of the ROOT collection classes

366 The Tutorials and Tests

tcollbm.cxx Benchmarks of ROOT collection classes

ctorture.cxx Test program for the class TComplex

tstring.cxx Example usage of the ROOT string class

vmatrix.cxx Verification program for the TMatrix class

vvector.cxx Verification program for the TVector class

vlazy.cxx Verification program for lazy matrices

hworld.cxx Small program showing basic graphics

guitest.cxx Example usage of the ROOT GUI classes

guiviewer.cxx Another ROOT GUI example program

Hello.cxx Dancing text example

Aclock.cxx Analog clock (a la X11 xclock)

Tetris.cxx The known Tetris game based on the ROOT graphics

stress.cxx Important ROOT stress testing program

stress*.cxx Stress testing of different ROOT classes

bench.cxx STL and ROOT container test and benchmarking program

QpRandomDriver.cxx Verfication program for Quadratic programming classes in Quadp library

DrawTest.sh Entry script to extensive TTree query test suite

dt_* Scripts used by DrawTest.sh

The $ROOTSYS/test directory is a gold mine of root-wisdom nuggets, and we encourage you to explore and

exploit it. These instructions will compile all programs in $ROOTSYS/test:

If you do not have write permission in the $ROOTSYS/test directory, copy the entire $ROOTSYS/test

directory to your area. The Makefile is a useful example of how ROOT applications are linked and built. Edit

the Makefile to specify your architecture by changing the ARCH variable, for example, on an SGI machine

type: ARCH = sgikcc.

Now compile all programs:

% gmake

This will build several applications and shared libraries. We are especially interested in Event, stress, and

guitest.

Event – An Example of a ROOT Application

Event is created by compiling MainEvent.cxx, and Event.cxx. It creates a ROOT file with a tree and two

histograms. When running Event we have four optional arguments with defaults:

 Argument Default

1 Number of Events (1 ... n) 400

2 Compression level:

0: no compression at all.

1: If the split level is set to zero, everything is compressed according to the

gzip level 1. If split level is set to 1, leaves that are not floating point numbers

are compressed using the gzip level 1.

2: If the split level is set to zero, everything is compressed according to the

gzip level 2. If split level is set to 1, all non floating point leaves are

compressed according to the gzip level 2 and the floating point leaves are

compressed according to the gzip level 1 (gzip level –1).

Floating point numbers are compressed differently because the gain when
compressing them is about 20 - 30%. For other data types it is generally better
and around 100%.

1

3 Split or not Split

0: only one single branch is created and the complete event is serialized in one
single buffer

1: a branch per variable is created.

1

(Split)

 The Tutorials and Tests 367

4 Fill

0: read the file

1: write the file, but don't fill the histograms

2: don't write, don‘t fill the histograms

10: fill the histograms, don't write the file

11: fill the histograms, write the file

20: read the file sequentially

25: read the file at random

1

(Write, no fill)

Effect of Compression on File Size and Write Times

You may have noticed that a ROOT file has up to nine compression level, but here only levels 0, 1, and 2 are
described. Compression levels above 2 are not competitive. They take up to much write time compared to the

gain in file space. Below are three runs of Event on a Pentium III 650 MHz and the resulting file size and write

and read times.

No Compression:

> Event 400 0 1 1

400 events and 19153182 bytes processed.

RealTime=6.840000 seconds, CpuTime=3.560000 seconds

compression level=0, split=1, arg4=1

You write 2.800173 Mbytes/Realtime seconds

You write 5.380107 Mbytes/Cputime seconds

> ls -l Event.root

… 19752171 Feb 23 18:26 Event.root

> Event 400 0 1 20

400 events and 19153182 bytes processed.

RealTime=0.790000 seconds, CpuTime=0.790000 seconds

You read 24.244533 Mbytes/Realtime seconds

You read 24.244533 Mbytes/Cputime seconds

We see the file size without compression is 19.75 MB, the write time is 6.84 seconds and the read time is 0.79
seconds.

Compression = 1: event is compressed:

> Event 400 1 1 1

400 events and 19153182 bytes processed.

RealTime=6.440000 seconds, CpuTime=4.020000 seconds

compression level=1, split=1, arg4=1

You write 2.974096 Mbytes/Realtime seconds

You write 4.764473 Mbytes/Cputime seconds

> ls -l Event.root

… 17728188 Feb 23 18:28 Event.root

> Event 400 1 1 20

400 events and 19153182 bytes processed.

RealTime=0.900000 seconds, CpuTime=0.900000 seconds

You read 21.281312 Mbytes/Realtime seconds

You read 21.281312 Mbytes/Cputime seconds

We see the file size 17.73, the write time was 6.44 seconds and the read time was 0.9 seconds.

Compression = 2: Floating point numbers are compressed with level 1:

> Event 400 2 1 1

400 events and 19153182 bytes processed.

RealTime=11.340000 seconds, CpuTime=9.510000 seconds

compression level=2, split=1, arg4=1

You write 1.688993 Mbytes/Realtime seconds

You write 2.014004 Mbytes/Cputime seconds

> ls -l Event.root

… 13783799 Feb 23 18:29 Event.root

> Event 400 2 1 20

400 events and 19153182 bytes processed.

RealTime=2.170000 seconds, CpuTime=2.170000 seconds

368 The Tutorials and Tests

You read 8.826351 Mbytes/Realtime seconds

You read 8.826351 Mbytes/Cputime seconds

The file size is 13.78 MB, the write time is 11.34 seconds and the read time is 2.17 seconds.

This table summarizes the findings on the impact of compressions:

Compression File Size Write Times Read Times

0 19.75 MB 6.84 sec. 0.79 sec.

1 17.73 MB 6.44 sec. 0.90 sec.

2 13.78 MB 11.34 sec. 2.17 sec.

Setting the Split Level

Split Level = 0:

Now we execute Event with the split parameter set to 0:

> Event 400 1 0 1

> root

root[] TFile f("Event.root")

root[] TBrowser T

We notice that only one branch is visible (event). The individual data

members of the Event object are no longer visible in the browser. They

are contained in the event object on the event branch, because we
specified no splitting. Split Level = 1:

Setting the split level to 1 will create a branch for each data member in

the Event object. First we execute Event and set the split level to 1 and

start the browser to examine the split tree:

> Event 400 1 1 1

> root

root[] TFile f("Event.root")

root[] TBrowser browser

 The Tutorials and Tests 369

stress - Test and Benchmark

The executable stress is created by compiling stress.cxx. It completes sixteen tests covering the following

capabilities of the ROOT framework.

 Functions, Random Numbers, Histogram Fits

 Size & compression factor of a ROOT file

 Purge, Reuse of gaps in TFile

 2D Histograms, Functions, 2D Fits

 Graphics & PostScript

 Subdirectories in a ROOT file

 TNtuple, Selections, TCutG, TEventList

 Split and Compression modes for Trees

 Analyze Event.root file of stress 8

 Create 10 files starting from Event.root

 Test chains of Trees using the 10 files

 Compare histograms of test 9 and 11

 Merging files of a chain

 Check correct rebuilt of Event.root in test 13

 Divert Tree branches to separate files

 CINT test (3 nested loops) with LHCb trigger

The program stress takes one argument, the number of events to process. The default is 1000 events. Be

aware that executing stress with 1000 events will create several files consuming about 100 MB of disk space;

running stress with 30 events will consume about 20 MB. The disk space is released once stress is done.

There are two ways to run stress:

From the system prompt or from the ROOT prompt using the interpreter.

> cd $ROOTSYS/test

> stress // default 1000 events

> stress 30 // test with 30 events

Start ROOT with the batch mode option (-b) to suppress the graphic output.

> root -b

root[] .L stress.cxx

root[] stress(1000) // test with 1000 events

root[] stress(30) // test with 30 events

The output of stress includes a pass/fail conclusion for each test, the total number of bytes read and written,
and the elapsed real and CPU time. It also calculates a performance index for your machine relative to a
reference machine a DELL Inspiron 7500 (Pentium III 600 MHz) with 256 MB of memory and 18GB IDE disk in
ROOTMARKS. Higher ROOTMARKS means better performance. The reference machine has 200
ROOTMARKS, so the sample run below with 53.7 ROOTMARKS is about four times slower than the reference
machine.

Here is a sample run:

% root –b

root[] .x stress.cxx(30)

Test 1 : Functions, Random Numbers, Histogram Fits............. OK

Test 2 : Check size & compression factor of a Root file........ OK

Test 3 : Purge, Reuse of gaps in TFile......................... OK

Test 4 : Test of 2-d histograms, functions, 2-d fits........... OK

Test 5 : Test graphics & PostScriptOK

Test 6 : Test subdirectories in a Root file.................... OK

Test 7 : TNtuple, selections, TCutG, TEventList.......... OK

Test 8 : Trees split and compression modes..................... OK

Test 9 : Analyze Event.root file of stress 8................... OK

Test 10 : Create 10 files starting from Event.root.............. OK

Test 11 : Test chains of Trees using the 10 files............... OK

Test 12 : Compare histograms of test 9 and 11................... OK

Test 13 : Test merging files of a chain......................... OK

Test 14 : Check correct rebuilt of Event.root in test 13........ OK

Test 15 : Divert Tree branches to separate files................ OK

Test 16 : CINT test (3 nested loops) with LHCb trigger.......... OK

**

* IRIX64 fnpat1 6.5 01221553 IP27

**

stress : Total I/O = 75.3 Mbytes, I = 59.2, O = 16.1

370 The Tutorials and Tests

stress : Compr I/O = 75.7 Mbytes, I = 60.0, O = 15.7

stress : Real Time = 307.61 seconds Cpu Time = 292.82 seconds

**

* ROOTMARKS = 53.7 * Root2.25/00 20000710/1022

guitest – A Graphical User Interface

The guitest example, created by compiling guitest.cxx, tests and illustrates the use of the native GUI

widgets such as cascading menus, dialog boxes, sliders and tab panels. It is a very useful example to study

when designing a GUI. Some examples of the output of guitest are shown next. To run it type guitest at

the system prompt in the $ROOTSYS/test directory. We have included an entire chapter on this subject where

we explore guitest in detail and use it to explain how to build our own ROOT application with a GUI. See

―Writing a Graphical User Interface‖.

Figure 20-1 Native GUI widgets

 Example Analysis 371

21 Example Analysis

This chapter is an example of a typical physics analysis. Large data files are chained together and analyzed
using the TSelector class.

Explanation
This script uses four large data sets from the H1 collaboration at DESY Hamburg. One can access these data
sets (277 Mbytes) from the ROOT web site at: ftp://root.cern.ch/root/h1analysis/

The physics plots generated by this example cannot be produced using smaller data sets.

There are several ways to analyze data stored in a ROOT Tree

 Using TTree::Draw:

 This is very convenient and efficient for small tasks. A TTree::Draw call produces one

histogram at the time. The histogram is automatically generated. The selection expression may
be specified in the command line.

 Using the TTreeViewer:

 This is a graphical interface to TTree::Draw with the same functionality.

 Using the code generated by TTree::MakeClass:

 In this case, the user creates an instance of the analysis class. He has the control over the event
loop and he can generate an unlimited number of histograms.

 Using the code generated by TTree::MakeSelector: Like for the code generated by

TTree::MakeClass, the user can do complex analysis. However, he cannot control the event

loop. The event loop is controlled by TTree::Process called by the user. This solution is

illustrated by the code below. The advantage of this method is that it can be run in a parallel
environment using PROOF (the Parallel Root Facility).

A chain of four files (originally converted from PAW ntuples) is used to illustrate the various ways to loop on

ROOT data sets. Each contains a ROOT Tree named "h42". The class definition in h1analysis.h has been

generated automatically by the ROOT utility TTree::MakeSelector using one of the files with:

h42->MakeSelector("h1analysis");

This produces two files: h1analysis.h and h1analysis.C. A skeleton of h1analysis.C file is made for

you to customize. The h1analysis class is derived from the ROOT class TSelector. The following members

functions of h1analyhsis (i.e. TSelector) are called by the TTree::Process method.

 Begin: This function is called every time a loop over the tree starts. This is a convenient place to

create your histograms.

 Notify(): This function is called at the first entry of a new tree in a chain.

 ProcessCut: This function is called at the beginning of each entry to return a flag true if the

entry must be analyzed.

 ProcessFill: This function is called in the entry loop for all entries accepted by Select.

 Terminate: This function is called at the end of a loop on a TTree. This is a convenient place to

draw and fit your histograms.

To use this program, try the following session.

First, turn the timer on to show the real and CPU time per command.

root[] gROOT->Time();

Step A: create a TChain with the four H1 data files. The chain can be created by executed this short script

h1chain.C below. $H1 is a system symbol pointing to the H1 data directory.

{

 TChain chain("h42");

 chain.Add("$H1/dstarmb.root");

 //21330730 bytes, 21920 events

 chain.Add("$H1/dstarp1a.root");

 //71464503 bytes, 73243 events

 chain.Add("$H1/dstarp1b.root");

 //83827959 bytes, 85597 events

 chain.Add("$H1/dstarp2.root");

//100675234 bytes, 103053 events

}

ftp://root.cern.ch/root/h1analysis/

372 Example Analysis

Run the above script from the command line:

root[] .x h1chain.C

Step B: Now we have a directory containing the four data files. Since a TChain is a descendent of TTree we

can call TChain::Process to loop on all events in the chain. The parameter to the TChain::Process

method is the name of the file containing the created TSelector class (h1analysis.C).

root[] chain.Process("h1analysis.C")

Step C: Same as step B, but in addition fill the event list with selected entries. The event list is saved to a file
"elist.root" by the TSelector::Terminate method. To see the list of selected events, you can do

elist->Print("all"). The selection function has selected 7525 events out of the 283813 events in the

chain of files. (2.65 per cent)

root[] chain.Process("h1analysis.C","fillList")

Step D: Process only entries in the event list. The event list is read from the file in elist.root generated by

step C.

root[] chain.Process("h1analysis.C","useList")

Step E: The above steps have been executed with the interpreter. You can repeat the steps B, C, and D using

ACLiC by replacing "h1analysis.C" by "h1analysis.C+" or "h1analysis.C++".

Step F: If you want to see the differences between the interpreter speed and ACLiC speed start a new session,
create the chain as in step 1, then execute

 root[] chain.Process("h1analysis.C+","useList")

The commands executed with the four different methods B, C, D and E produce two canvases shown below:

 Example Analysis 373

Script
This is the h1analsysis.C file that was generated by TTree::MakeSelector and then modified to perform

the analysis.

#include "h1analysis.h"

#include "TH2.h"

#include "TF1.h"

#include "TStyle.h"

#include "TCanvas.h"

#include "TLine.h"

#include "TEventList.h"

const Double_t dxbin = (0.17-0.13)/40; // Bin-width

const Double_t sigma = 0.0012;

TEventList *elist = 0;

Bool_t useList, fillList;

TH1F *hdmd;

TH2F *h2;

//___

Double_t fdm5(Double_t *xx, Double_t *par)

{

 Double_t x = xx[0];

 if (x <= 0.13957) return 0;

 Double_t xp3 = (x-par[3])*(x-par[3]);

 Double_t res = dxbin*(par[0]*TMath::Power(x-0.13957,par[1])

 + par[2]/2.5066/par[4]*TMath::Exp(xp3/2/par[4]/par[4]));

 return res;

}

//___

Double_t fdm2(Double_t *xx, Double_t *par)

{

 Double_t x = xx[0];

 if (x <= 0.13957) return 0;

 Double_t xp3 = (x-0.1454)*(x-0.1454);

 Double_t res = dxbin*(par[0]*TMath::Power(x-0.13957,0.25)

 + par[1]/2.5066/sigma*TMath::Exp(xp3/2/sigma/sigma));

 return res;

}

//___

void h1analysis::Begin(TTree *tree)

{

// function called before starting the event loop

// -it performs some cleanup

// -it creates histograms

// -it sets some initialization for the event list

 //initialize the Tree branch addresses

 Init(tree);

 //print the option specified in the Process function

 TString option = GetOption();

 printf("Starting h1analysis with process option: %sn",option.Data());

 //Some cleanup in case this function had already been executed

 //Delete any previously generated histograms or functions

 gDirectory->Delete("hdmd");

 gDirectory->Delete("h2*");

 delete gROOT->GetFunction("f5");

 delete gROOT->GetFunction("f2");

 //create histograms

 hdmd = new TH1F("hdmd","dm_d",40,0.13,0.17);

 h2 = new TH2F("h2","ptD0 vs dm_d",30,0.135,0.165,30,-3,6);

 //process cases with event list

 fillList = kFALSE;

 useList = kFALSE;

374 Example Analysis

 fChain->SetEventList(0);

 delete gDirectory->GetList()->FindObject("elist");

 // case when one creates/fills the event list

 if (option.Contains("fillList")) {

 fillList = kTRUE;

 elist = new TEventList("elist","selection from Cut",5000);

 }

 // case when one uses the event list generated in a previous call

 if (option.Contains("useList")) {

 useList = kTRUE;

 TFile f("elist.root");

 elist = (TEventList*)f.Get("elist");

 if (elist) elist->SetDirectory(0);

 //otherwise the file destructor will delete elist

 fChain->SetEventList(elist);

 }

}

//___

Bool_t h1analysis::ProcessCut(Int_t entry)

{ // Selection function to select D* and D0.

 //in case one event list is given in input,

 //the selection has already been done.

 if (useList) return kTRUE;

 // Read only the necessary branches to select entries.

 // return as soon as a bad entry is detected

 b_md0_d->GetEntry(entry);

 if (TMath::Abs(md0_d-1.8646) >= 0.04) return kFALSE;

 b_ptds_d->GetEntry(entry);

 if (ptds_d <= 2.5) return kFALSE;

 b_etads_d->GetEntry(entry);

 if (TMath::Abs(etads_d) >= 1.5) return kFALSE;

 b_ik->GetEntry(entry); ik--;

 //original ik used f77 convention starting at 1

 b_ipi->GetEntry(entry);

 ipi--;

 b_ntracks->GetEntry(entry);

 b_nhitrp->GetEntry(entry);

 if (nhitrp[ik]*nhitrp[ipi] <= 1) return kFALSE;

 b_rend->GetEntry(entry);

 b_rstart->GetEntry(entry);

 if (rend[ik]-rstart[ik] <= 22) return kFALSE;

 if (rend[ipi]-rstart[ipi] <= 22) return kFALSE;

 b_nlhk->GetEntry(entry);

 if (nlhk[ik] <= 0.1) return kFALSE;

 b_nlhpi->GetEntry(entry);

 if (nlhpi[ipi] <= 0.1) return kFALSE;

 b_ipis->GetEntry(entry);

 ipis--;

 if (nlhpi[ipis] <= 0.1) return kFALSE;

 b_njets->GetEntry(entry);

 if (njets < 1) return kFALSE;

 // if option fillList, fill the event list

 if (fillList) elist->Enter(fChain->GetChainEntryNumber(entry));

 return kTRUE;

}

//___

void h1analysis::ProcessFill(Int_t entry)

{ // Function called for selected entries only

 // read branches not processed in ProcessCut

 b_dm_d->GetEntry(entry);

 //read branch holding dm_d

 b_rpd0_t->GetEntry(entry);

 //read branch holding rpd0_t

 b_ptd0_d->GetEntry(entry);

 //read branch holding ptd0_d //continued…

 Example Analysis 375

 //fill some histograms

 hdmd->Fill(dm_d);

 h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d);

}

//___

void h1analysis::Terminate()

{ // Function called at the end of the event loop

 //create the canvas for the h1analysis fit

 gStyle->SetOptFit();

 TCanvas *c1 = new TCanvas("c1","h1analysis analysis",10,10,800,600);

 c1->SetBottomMargin(0.15);

 hdmd->GetXaxis()->SetTitle("m_{K#pi#pi}-m_{K#pi}[GeV/c^{2}]");

 hdmd->GetXaxis()->SetTitleOffset(1.4);

 //fit histogram hdmd with function f5 using

 //the loglikelihood option

 TF1 *f5 = new TF1("f5",fdm5,0.139,0.17,5);

 f5->SetParameters(1000000,.25,2000,.1454,.001);

 hdmd->Fit("f5","lr");

 //create the canvas for tau d0

 gStyle->SetOptFit(0);

 gStyle->SetOptStat(1100);

 TCanvas *c2 = new TCanvas("c2","tauD0",100,100,800,600);

 c2->SetGrid();

 c2->SetBottomMargin(0.15);

 // Project slices of 2-d histogram h2 along X ,

 // then fit each slice with function f2 and make a

 // histogram for each fit parameter.

 // Note that the generated histograms are added

 // to the list of objects in the current directory.

 TF1 *f2 = new TF1("f2",fdm2,0.139,0.17,2);

 f2->SetParameters(10000,10);

 h2->FitSlicesX(f2,0,0,1,"qln");

 TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");

 h2_1->GetXaxis()->SetTitle("#tau[ps]");

 h2_1->SetMarkerStyle(21);

 h2_1->Draw();

 c2->Update();

 TLine *line = new TLine(0,0,0,c2->GetUymax());

 line->Draw();

 // save the event list to a Root file if one was

 // produced

 if (fillList) {

 TFile efile("elist.root","recreate");

 elist->Write();

 }

}

 Networking 377

22 Networking

In this chapter, you will learn how to send data over the network using the ROOT socket classes.

Setting-up a Connection
On the server side, we create a TServerSocket to wait for a connection request over the network. If the

request is accepted, it returns a full-duplex socket. Once the connection is accepted, we can communicate to
the client that we are ready to go by sending the string "go", and we can close the server socket.

{ // server

 TServerSocket *ss = new TServerSocket(9090,kTRUE);

 TSocket *socket = ss->Accept();

 socket->Send("go");

 ss->Close();

}

On the client side, we create a socket and ask the socket to receive input.

{ // client

 TSocket *socket = new TSocket("localhost",9090);

 Char str[32];

 socket->Recv(str,32);

}

Sending Objects over the Network
We have just established a connection and you just saw how to send and receive a string with the example
"go". Now let‘s send a histogram.

To send an object (in our case on the client side) it has to derive from TObject class because it uses the

Streamers to fill a buffer that is then sent over the connection. On the receiving side, the Streamers are used

to read the object from the message sent via the socket. For network communication, we have a specialized
TBuffer, a descendant of TBuffer called TMessage. In the following example, we create a TMessage with

the intention to store an object, hence the constant kMESS_OBJECT in the constructor. We create and fill the

histogram and write it into the message. Then we call TSocket::Send to send the message with the

histogram.

…

// create an object to be sent

TH1F *hpx = new TH1F("hpx","px distribution",100,-4,4);

hpx->FillRandom("gaus",1000);

// create a TMessage to send the object

TMessage message(kMESS_OBJECT);

// write the histogram into the message buffer

message.WriteObject(hpx);

// send the message

socket->Send(message);

…

On the receiving end (in our case the server side), we write a while loop to wait and receive a message with a
histogram. Once we have a message, we call TMessage::ReadObject, which returns a pointer to TObject.

We have to cast it to a TH1 pointer, and now we have a histogram. At the end of the loop, the message is

deleted, and another one is created at the beginning.

while (1) {

 TMessage *message;

 socket->Recv(message);

 TH1 *h = (TH1*)message->ReadObject(message->GetClass());

 delete message;

}

378 Networking

Closing the Connection
Once we are done sending objects, we close the connection by closing the sockets at both ends.

Socket->Close();

This diagram summarizes the steps we just covered:

Figure 22-1 Server - Client setting-up and closing the connection

{

TServerSocket *ss =

 new TServerSocket(9090, kTRUE);

TSocket *socket = ss->Accept();

socket->Send("go");

ss->Close();

while (1) {

 TMessage *message;

 socket->Recv(message);

 TH1 *h =

 (TH1*)mess->ReadObject

 (mess->GetClass());

 delete mess;

}

socket->Close();

}

{

 TSocket *socket =

 new TSocket("localhost", 9090);

 Char str[32];

 Socket->Recv(str,32);

 TH1F *hpx = new TH1F("hpx","px",100,-4,4);

 hpx->FillRandom("gaus",1000);

 // create a TMessage to send an object

 TMessage message(kMESS_OBJECT);

 // write the histogram into the message

 message.WriteObject(hpx);

 // send the message

 socket->Send(message)

 socket->Close();

}

connect

OK

send

Server Client

A Server with Multiple Sockets
Chances are that your server has to be able to receive data from multiple clients. The class we need for this is
TMonitor. It lets you add sockets and the TMonitor::Select method returns the socket with data waiting.

Sockets can be added, removed, or enabled and disabled. Here is an example of a server that has a TMonitor

to manage multiple sockets:

{

 TServerSocket *ss = new TServerSocket (9090, kTRUE);

 // Accept a connection and return a full-duplex communication socket.

 TSocket *s0 = ss->Accept();

 TSocket *s1 = ss->Accept();

 // tell the clients to start

 s0->Send("go 0");

 s1->Send("go 1");

 // Close the server socket (unless we will use it

 // later to wait for another connection).

 ss->Close();

 TMonitor *mon = new TMonitor;

 mon->Add(s0);

 mon->Add(s1);

 while (1) {

 TMessage *mess;

 TSocket *s;

 s = mon->Select();

 s->Recv(mess);

…

}

The full code for the example above is in $ROOTSYS/tutorials/net/hserv.C and

$ROOTSYS/tutorials/net/hclient.C.

 Threads 379

23 Threads

A thread is an independent flow of control that operates within the same address space as other independent
flows of controls within a process. In most UNIX systems, thread and process characteristics are grouped into a
single entity called a process. Sometimes, threads are called "lightweight processes''.

Note: This introduction is adapted from the AIX 4.3 Programmer's Manual.

Threads and Processes
In traditional single-threaded process systems, a process has a set of properties. In multi-threaded systems,
these properties are divided between processes and threads.

Process Properties

A process in a multi-threaded system is the changeable entity. It must be considered as an execution frame. It
has all traditional process attributes, such as:

 Process ID, process group ID, user ID, and group ID

 Environment

 Working directory

A process also provides a common address space and common system resources:

 File descriptors

 Signal actions

 Shared libraries

 Inter-process communication tools (such as message queues, pipes, semaphores, or shared
memory)

Thread Properties

A thread is the schedulable entity. It has only those properties that are required to ensure its independent flow
of control. These include the following properties:

 Stack

 Scheduling properties (such as policy or priority)

 Set of pending and blocked signals

 Some thread-specific data (TSD)

An example of thread-specific data is the error indicator, errno. In multi-threaded systems, errno is no longer

a global variable, but usually a subroutine returning a thread-specific errno value. Some other systems may

provide other implementations of errno. With respect to ROOT, a thread specific data is for example the gPad

pointer, which is treated in a different way, whether it is accessed from any thread or the main thread.

Threads within a process must not be considered as a group of processes (even though in Linux each thread
receives an own process id, so that it can be scheduled by the kernel scheduler). All threads share the same
address space. This means that two pointers having the same value in two threads refer to the same data. Also,
if any thread changes one of the shared system resources, all threads within the process are affected. For
example, if a thread closes a file, the file is closed for all threads.

The Initial Thread

When a process is created, one thread is automatically created. This thread is called the initial thread or the
main thread. The initial thread executes the main routine in multi-threaded programs.

Note: At the end of this chapter is a glossary of thread specific terms

Implementation of Threads in ROOT
The TThread class has been developed to provide a platform independent interface to threads for ROOT.

380 Threads

Installation

For the time being, it is still necessary to compile a threaded version of ROOT to enable some very special
treatments of the canvas operations. We hope that this will become the default later.

To compile ROOT, just do (for example on a debian Linux):

./configure linuxdeb2 --with-thread=/usr/lib/libpthread.so

gmake depend

gmake

This configures and builds ROOT using /usr/lib/libpthread.so as the Pthread library, and defines

R__THREAD.

This enables the thread specific treatment of gPad, and creates $ROOTSYS/lib/libThread.so.

Note: The parameter linuxdeb2 has to be replaced with the appropriate ROOT keyword for your platform.

Classes

TThread class implements threads. The platform dependent implementation is in the TThreadImp class and

its descendant classes (e.g. TPosixThread).

TMutex class implements mutex locks. A mutex is a mutually exclusive lock. The platform dependent

implementation is in the TMutexImp class and its descendant classes (e.g. TPosixMutex)

TCondition class implements a condition variable. Use a condition variable to signal threads. The platform

dependent implementation is in the TConditionImp and TPosixCondition classes .

TSemaphore class implements a counting semaphore. Use a semaphore to synchronize threads. The

platform dependent implementation is in the TMutexImp and TConditionImp classes.

TThread for Pedestrians

To run a thread in ROOT, follow these steps:

1. Initialization

Add these lines to your rootlogon.C:

{

 …

 // The next line may be unnecessary on some platforms

 gSystem->Load("/usr/lib/libpthread.so");

 gSystem->Load("$ROOTSYS/lib/libThread.so");

 …

}

This loads the library with the TThread class and the pthread specific implementation file for Posix threads.

2. Coding

Define a function (e.g. void* UserFun(void* UserArgs)) that should run as a thread. The code for the

examples is at the web site of the authors (Jörn Adamczewski, Marc Hemberger). After downloading the code
from this site, you can follow the example below:

http://www-linux.gsi.de/~go4/HOWTOthreads/howtothreadsbody.html

3. Loading

Start an interactive ROOT session. Load the shared library:

root[] gSystem->Load("mhs3.so"); // or

root[] gSystem->Load("CalcPiThread.so");

4. Creating

Create a thread instance (see also example RunMhs3.C or RunPi.C) with:

root[] TThread *th = new TThread(UserFun,UserArgs);

When called from the interpreter, this gives the name ―UserFun‖ to the thread. This name can be used to

retrieve the thread later. However, when called from compiled code, this method does not give any name to the
thread. So give a name to the thread in compiled use:

root[] TThread *th = new TThread("MyThread", UserFun, UserArgs);

You can pass arguments to the thread function using the UserArgs-pointer. When you want to start a method

of a class as a thread, you have to give the pointer to the class instance as UserArgs.

5. Running

root[] th->Run();

root[] TThread::Ps(); // like UNIX ps c.ommand;

http://www-linux.gsi.de/~go4/HOWTOthreads/howtothreadsbody.html

 Threads 381

With the mhs3 example, you should be able to see a canvas with two pads on it. Both pads keep histograms

updated and filled by three different threads. With the CalcPi example, you should be able to see two threads

calculating Pi with the given number of intervals as precision.

TThread in More Details

CINT is not thread safe yet, and it will block the execution of the threads until it has finished executing.

Asynchronous Actions

Different threads can work simultaneously with the same object. Some actions can be dangerous. For
example, when two threads create a histogram object, ROOT allocates memory and puts them to the same
collection. If it happens at the same time, the results are undetermined. To avoid this problem, the user has to
synchronize these actions with:

TThread::Lock() // Locking the following part of code

... // Create an object, etc...

TThread::UnLock() // Unlocking

The code between Lock() and UnLock() will be performed uninterrupted. No other threads can perform

actions or access objects/collections while it is being executed. The methods TThread::Lock() and

TThread::UnLock() internally use a global TMutex instance for locking.

The user may also define his own TMutex MyMutex instance and may locally protect his asynchronous actions

by calling MyMutex.Lock() and MyMutex.UnLock().

Synchronous Actions: TCondition

To synchronize the actions of different threads you can use the TCondition class, which provides a signaling

mechanism. The TCondition instance must be accessible by all threads that need to use it, i.e. it should be a

global object (or a member of the class which owns the threaded methods, see below). To create a
TCondition object, a TMutex instance is required for the Wait and TimedWait locking methods. One can

pass the address of an external mutex to the TCondition constructor:

TMutex MyMutex;

TCondition MyCondition(&MyMutex);

If zero is passed, TCondition creates and uses its own internal mutex:

TCondition MyCondition(0);

You can now use the following methods of synchronization:

 TCondition::Wait() waits until any thread sends a signal of the same condition instance:

MyCondition.Wait() reacts on MyCondition.Signal() or MyCondition.Broadcast().

MyOtherCondition.Signal() has no effect.

 If several threads wait for the signal from the same TCondition MyCondition, at

MyCondition.Signal() only one thread will react; to activate a further thread another

MyCondition.Signal() is required, etc.

 If several threads wait for the signal from the same TCondition MyCondition, at

MyCondition.Broadcast() all threads waiting for MyCondition are activated at once.

In some tests of MyCondition using an internal mutex, Broadcast() activated only one thread (probably

depending whether MyCondition had been signaled before).

 MyCondition.TimedWait(secs,nanosecs) waits for MyCondition until the absolute time

in seconds and nanoseconds since beginning of the epoch (January, 1st, 1970) is reached; to
use relative timeouts ‗‗delta'', it is required to calculate the absolute time at the beginning of
waiting ‗‗now''; for example:

Ulong_t now,then,delta; // seconds

TDatime myTime; // root daytime class

myTime.Set(); // myTime set to "now"

now=myTime.Convert(); // to seconds since 1970

then=now+delta; // absolute timeout

wait=MyCondition.TimedWait(then,0); // waiting

 Return value wait of MyCondition.TimedWait should be 0, if MyCondition.Signal() was

received, and should be nonzero, if timeout was reached.

The conditions example shows how three threaded functions are synchronized using TCondition: a ROOT

script condstart.C starts the threads, which are defined in a shared library (conditions.cxx,

conditions.h).

382 Threads

Xlib Connections

Usually Xlib is not thread safe. This means that calls to the X could fail, when it receives X-messages from

different threads. The actual result depends strongly on which version of Xlib has been installed on your

system. The only thing we can do here within ROOT is calling a special function XInitThreads() (which is

part of the Xlib), which should (!) prepare the Xlib for the usage with threads.

To avoid further problems within ROOT some redefinition of the gPad pointer was done (that's the main reason

for the recompilation). When a thread creates a TCanvas, this object is actually created in the main thread; this

should be transparent to the user. Actions on the canvas are controlled via a function, which returns a pointer
to either thread specific data (TSD) or the main thread pointer. This mechanism works currently only for gPad

and will be implemented soon for other global Objects as e.g. gVirtualX, gDirectory, gFile.

Canceling a TThread

Canceling of a thread is a rather dangerous action. In TThread canceling is forbidden by default. The user can

change this default by calling TThread::SetCancelOn(). There are two cancellation modes: deferred and

asynchronous.

Deferred

Set by TThread::SetCancelDeferred() (default): When the user knows safe places in his code where a

thread can be canceled without risk for the rest of the system, he can define these points by invoking
TThread::CancelPoint(). Then, if a thread is canceled, the cancellation is deferred up to the call of

TThread::CancelPoint() and then the thread is canceled safely. There are some default cancel points for

pthreads implementation, e.g. any call of the TCondition::Wait(), TCondition::TimedWait(),

TThread::Join().

Asynchronous

 Set by TThread::SetCancelAsynchronous(): If the user is sure that his application is cancel safe, he

could call:

TThread::SetCancelAsynchronous();

TThread::SetCancelOn();

// Now cancelation in any point is allowed.

...

// Return to default

TThread::SetCancelOff();

TThread::SetCancelDeferred();

To cancel a thread TThread* th call:

th Kill();

To cancel by thread name:

TThread::Kill(name);

To cancel a thread by ID:

TThread::Kill(tid);

To cancel a thread and delete th when cancel finished:

th Delete();

Deleting of the thread instance by the operator delete is dangerous. Use th->Delete() instead. C++ delete is

safe only if thread is not running. Often during the canceling, some clean up actions must be taken. To define
clean up functions use:

void UserCleanUp(void *arg){

 // here the user cleanup is done

 ...

}

TThread::CleanUpPush(&UserCleanUp,arg);

 // push user function into cleanup stack“last in, first out”

TThread::CleanUpPop(1); // pop user function out of stack and execute it,

 // thread resumes after this call

TThread::CleanUpPop(0); // pop user function out of stack

 // _without_ executing it

Note: CleanUpPush and CleanUpPop should be used as corresponding pairs like brackets; unlike pthreads

cleanup stack (which is not implemented here), TThread does not force this usage.

 Threads 383

Finishing thread

When a thread returns from a user function the thread is finished. It also can be finished by
TThread::Exit(). Then, in case of thread-detached mode, the thread vanishes completely. By default, on

finishing TThread executes the most recent cleanup function (CleanUpPop(1) is called automatically once).

Advanced TThread: Launching a Method in a Thread
Consider a class Myclass with a member function that shall be launched as a thread.

void* Myclass::Thread0((void* arg)

To start Thread0 as a TThread, class Myclass may provide a method:

Int_t Myclass::Threadstart(){

 if(!mTh){

 mTh= new TThread("memberfunction",(void(*)(void *))&Thread0,(void*) this);

 mTh->Run();

 return 0;

 }

 return 1;

}

Here mTh is a TThread* pointer which is member of Myclass and should be initialized to 0 in the constructor.

The TThread constructor is called as when we used a plain C function above, except for the following two

differences.

First, the member function Thread0 requires an explicit cast to (void(*) (void *)). This may cause an

annoying but harmless compiler warning:

Myclass.cxx:98: warning: converting from "void (Myclass::*)(void *)"to "void *")

Strictly speaking, Thread0 must be a static member function to be called from a thread. Some compilers, for

example gcc version 2.95.2, may not allow the (void(*) (void*))s cast and just stop if Thread0 is not

static. On the other hand, if Thread0 is static, no compiler warnings are generated at all. Because the 'this'

pointer is passed in 'arg' in the call to Thread0(void *arg), you have access to the instance of the class

even if Thread0 is static. Using the 'this' pointer, non static members can still be read and written from

Thread0, as long as you have provided Getter and Setter methods for these members. For example:

Bool_t state = arg->GetRunStatus();

arg->SetRunStatus(state);

Second, the pointer to the current instance of Myclass, i.e. (void*) this, has to be passed as first argument

of the threaded function Thread0 (C++ member functions internally expect this pointer as first argument to

have access to class members of the same instance). pthreads are made for simple C functions and do not

know about Thread0 being a member function of a class. Thus, you have to pass this information by hand, if

you want to access all members of the Myclass instance from the Thread0 function.

Note: Method Thread0 cannot be a virtual member function, since the cast of Thread0 to void(*) in the

TThread constructor may raise problems with C++ virtual function table. However, Thread0 may call another

virtual member function virtual void Myclass::Func0() which then can be overridden in a derived class

of Myclass. (See example TMhs3).

Class Myclass may also provide a method to stop the running thread:

Int_t Myclass::Threadstop(){

 if(mTh){

 TThread::Delete(mTh);

 delete mTh;

 mTh=0;

 return 0;

 }

 return 1;

}

Example TMhs3: Class TThreadframe (TThreadframe.h, TThreadframe.cxx) is a simple example of a

framework class managing up to four threaded methods. Class TMhs3 (TMhs3.h, TMhs3.cxx) inherits from

this base class, showing the mhs3 example 8.1 (mhs3.h, mhs3.cxx) within a class. The Makefile of this

example builds the shared libraries libTThreadframe.so and libTMhs3.so. These are either loaded or

executed by the ROOT script TMhs3demo.C, or are linked against an executable: TMhs3run.cxx.

384 Threads

Known Problems

Parts of the ROOT framework, like the interpreter, are not yet thread-safe. Therefore, you should use this
package with caution. If you restrict your threads to distinct and `simple' duties, you will able to benefit from
their use. The TThread class is available on all platforms, which provide a POSIX compliant thread

implementation. On Linux, Xavier Leroy's Linux Threads implementation is widely used, but the TThread

implementation should be usable on all platforms that provide pthread.

Linux Xlib on SMP machines is not yet thread-safe. This may cause crashes during threaded graphics
operations; this problem is independent of ROOT.

Object instantiation: there is no implicit locking mechanism for memory allocation and global ROOT lists. The
user has to explicitly protect his code when using them.

The Signals of ROOT
The list of default signals handled by ROOT is:

kSigChild kSigPipe

kSigBus kSigAlarm

kSigSegmentationViolation kSigUrgent

kSigIllegalInstruction kSigFloatingException

kSigSystem kSigWindowChanged

The signals kSigFloatingException, kSigSegmentationViolation, kSigIllegalInstruction, and

kSigBus cause the printing of the *** Break *** message and make a long jump back to the ROOT

prompt. No other custom TSignalHandler can be added to these signals.

The kSigAlarm signal handles asynchronous timers. The kSigWindowChanged signal handles the resizing of

the terminal window. The other signals have no other behavior then that to call any registered
TSignalHandler::Notify().

When building in interactive application the use of the TRint object handles the kSigInterrupt signal. It

causes the printing of the message: *** Break *** keyboard interrupt and makes a long jump back

to the ROOT command prompt. If no TRint object is created, there will be no kSigInterrupt handling. All

signals can be reset to their default UNIX behavior via the call of TSytem::ResetSignal(). All signals can

be ignored via TSytem::IgnoreSignal(). The TSytem::IgnoreInterrupt() is a method to toggle the

handling of the interrupt signal. Typically it is called to prevent a SIGINT to interrupt some important call (like

writing to a ROOT file).

If TRint is used and the default ROOT interrupt handler is not desired, you should use GetSignalHandler()

of TApplication to get the interrupt handler and to remove it by RemoveSignalHandler()of

TSystem .

Glossary
The following glossary is adapted from the description of the Rogue Wave Threads.h++ package.

A process is a program that is loaded into memory and prepared for execution. Each process has a private

address space. Processes begin with a single thread.

A thread is a sequence of instructions being executed in a program. A thread has a program counter and a

private stack to keep track of local variables and return addresses. A multithreaded process is associated with
one or more threads. Threads execute independently. All threads in a given process share the private address
space of that process.

Concurrency exists when at least two threads are in progress at the same time. A system with only a single

processor can support concurrency by switching execution contexts among multiple threads.

Parallelism arises when at least two threads are executing simultaneously. This requires a system with

multiple processors. Parallelism implies concurrency, but not vice-versa.

A function is reentrant if it will behave correctly even if a thread of execution enters the function while one or

more threads are already executing within the function. These could be the same thread, in the case of
recursion, or different threads, in the case of concurrency.

Thread-specific data (TSD) is also known as thread-local storage (TLS). Normally, any data that has

lifetime beyond the local variables on the thread's private stack are shared among all threads within the
process. Thread-specific data is a form of static or global data that is maintained on a per-thread basis. That is,
each thread gets its own private copy of the data.

Left to their own devices, threads execute independently. Synchronization is the work that must be done

when there are, in fact, interdependencies that require some form of communication among threads.
Synchronization tools include mutexes, semaphores, condition variables, and other variations on locking.

 Threads 385

A critical section is a section of code that accesses a non-sharable resource. To ensure correct code,

only one thread at a time may execute in a critical section. In other words, the section is not reentrant.

A mutex, or mutual exclusion lock, is a synchronization object with two states locked and unlocked. A mutex is

usually used to ensure that only one thread at a time executes some critical section of code. Before entering a
critical section, a thread will attempt to lock the mutex, which guards that section. If the mutex is already locked,
the thread will block until the mutex is unlocked, at which time it will lock the mutex, execute the critical section,
and unlock the mutex upon leaving the critical section.

A semaphore is a synchronization mechanism that starts out initialized to some positive value. A thread may

ask to wait on a semaphore in which case the thread blocks until the value of the semaphore is positive. At that
time the semaphore count is decremented and the thread continues. When a thread releases semaphore, the
semaphore count is incremented. Counting semaphores are useful for coordinating access to a limited pool of
some resource.

Readers/Writer Lock - a multiple-reader, single-writer lock is one that allows simultaneous read access by

many threads while restricting write access to only one thread at a time. When any thread holds the lock for
reading, other threads can also acquire the lock reading. If one thread holds the lock for writing, or is waiting to
acquire the lock for writing, other threads must wait to acquire the lock for either reading or writing.

Use a condition variable in conjunction with a mutex lock to automatically block threads until a particular

condition is true.

Multithread Safe Levels - a possible classification scheme to describe thread-safety of libraries:

 All public and protected functions are reentrant. The library provides protection against multiple
threads trying to modify static and global data used within a library. The developer must explicitly
lock access to objects shared between threads. No other thread can write to a locked object
unless it is unlocked. The developer needs to lock local objects. The spirit, if not the letter of this
definition, requires the user of the library only to be familiar with the semantic content of the
objects in use. Locking access to objects that are being shared due to extra-semantic details of
implementation (for example, copy-on-write) should remain the responsibility of the library.

 All public and protected functions are reentrant. The library provides protection against multiple
threads trying to modify static and global data used within the library. The preferred way of
providing this protection is to use mutex locks. The library also locks an object before writing to it.
The developer is not required to explicitly lock or unlock a class object (static, global or local) to
perform a single operation on the object. Note that even multithread safe level II hardly relieves
the user of the library from the burden of locking.

A thread suffers from deadlock if it is blocked waiting for a condition that will never occur. Typically, this occurs

when one thread needs to access a resource that is already locked by another thread, and that other thread is
trying to access a resource that has already been locked by the first thread. In this situation, neither thread is
able to progress; they are deadlocked.

A multiprocessor is a hardware system with multiple processors or multiple, simultaneous execution units.

 Examples can be found at http://www-linux.gsi.de/~go4/HOWTOthreads/howtothreadsbody.html
(the thread authors' web site - Jörn Adamczewski and Marc Hemberger).

http://www-linux.gsi.de/~go4/HOWTOthreads/howtothreadsbody.html

 PROOF: Parallel Processing 387

24 PROOF: Parallel Processing

The Parallel ROOT Facility, PROOF, is an extension of ROOT allowing transparent analysis of large sets of
ROOT files in parallel on remote computer clusters or multi-core computers. The main design goals for the
PROOF system are:

Transparency : there should be as little difference as possible between a local ROOT based analysis session
and a remote parallel PROOF session, both being interactive and giving the same results.

Scalability : the basic architecture should not put any implicit limitations on the number of computers that can be
used in parallel.

Adaptability : the system should be able to adapt itself to variations in the remote environment (changing load
on the cluster nodes, network interruptions, etc.).

Being an extension of the ROOT system, PROOF is designed to work on objects in ROOT data stores, though,
for the time being, it mainly addresses the case of TTree based object collections.

PROOF is primarily meant as an interactive alternative to batch systems for Central Analysis Facilities and
departmental workgroups (Tier-2‘s). However, thanks to a multi-tier architecture allowing multiple levels of
masters, it can be easily adapted to wide range virtual clusters distributed over geographically separated
domains and heterogeneous machines (GRIDs).

While pure interactivity might not always be possible when performing a complicated analysis on a very large
data set, PROOF still tries to give the user the interactive experience with something we call "interactive batch".
With "interactive batch" the user can start very long running queries, disconnect the client and at any time, any
location and from any computer reconnect to the query to monitor its progress or retrieve the results. This
feature gives it a distinct advantage over purely batch based solutions, that only provide an answer once all
sub-jobs have been finished.

Figure 24-1 The Multi-tier structure of a PROOF cluster

Details about the PROOF system and the way to use it can be found at PROOFWiki
1

The PROOF development is a joint effort between CERN and MIT

.

1 http://root.cern.ch/twiki/bin/view/ROOT/PROOF

http://root.cern.ch/twiki/bin/view/ROOT/PROOF

 Writing a Graphical User Interface 389

25 Writing a Graphical User
Interface

The ROOT GUI classes support an extensive and rich set of widgets with the Windows 95 look and feel. The
widget classes interface to the underlying graphics system via a single abstract class. Concrete versions of this
abstract class have been implemented for X11 and Win32, thereby making the ROOT GUI fully cross-platform.
Originally the GUI classes were based on Hector Peraza's Xclass'95 widget library http://xclass.sourceforge.net/

The ROOT GUI Classes
Features of the GUI classes in a nutshell:

 Originally based on the Xclass'95 widget library

 A rich and complete set of widgets

 Win'95 look and feel

 All machine dependent graphics calls abstracted via the TVirtualX "abstract" class

 Completely scriptable via the C++ interpreter (fast prototyping)

 Supports signal/slot event handling as pioneered by Trolltech‘s Qt

 Full class documentation is generated automatically (as for all ROOT classes)

 Code generation for variety of GUI‘s

Widgets and Frames
The ROOT GUI classes provide of set of components that allow an easy way to develop cross-platform GUI
applications with a Windows look and feel.

The main widgets are:

 Simple widgets: labels, icons, push buttons, either with text or pixmaps, check buttons, radio
buttons, menu bars and popup menus, scroll bars, list boxes, combo boxes, group frames, text
entry widgets, tab widgets, progress bars, sliders, tool tips

 Complex widgets: shutter, toolbar, status bar, list view, list tree

 Common dialogs: File Open/Save, File Properties, Font Selection, Color Selection, About

 The widgets are shown in frames:

 frame, composite frame, main frame, transient frame, group frame

 Arranged by layout managers:

 horizontal layout, vertical layout, row layout, list layout, tile layout, matrix layout

Using a combination of layout hints:

 left, right, center x, center y, top, bottom, expand x, expand y, fixed offsets

Event handling by signals/slots and messaging (as opposed to callbacks):

 in response to actions widgets send messages and emit signals

 associated frames process these messages or the slot methods connected to the signals are
executed

TVirtualX
The GUI classes interface to the platform dependent low level graphics system via the semi-abstract graphics
base class TVirtualX. Currently concrete implementations exist for X11 and Win32 (MacOS X is fully

supported via Apple‘s X11 implementation). Thanks to this single graphics interface, porting the ROOT GUI to a
new platform requires only the implementation of TVirtualX.

The TGQt interface is currently still under development.

http://xclass.sourceforge.net/

390 Writing a Graphical User Interface

A Simple Example
We will start with a simple example that builds a small application containing a canvas and two buttons: Draw
and Exit. Its functionality will be very simple: every time you click on Draw button, the graphics of the function

sin(x)/x will be drawn in randomly chosen interval in the canvas window, if you click on Exit - you close the

application. This example shows the basic concepts for almost any GUI-application in ROOT and it is important
to understand how it is constructed. The example program is written as a named script. See "CINT the C++
Interpreter". Remember that the named script can be executed via

root[] .x example.C

only if the filename (without extension) and the function entry point are both the same.

We need to say a few words about the parent-children relationship between the widgets before going through
the real code. The widgets' behaviors are based on this relationship. Every parent widget is responsible for
where the children are and it ensures all properties and behavior for them. For example, if you want to hide
several widgets, it will be enough to hide their parent widget. Later you can show the parent and the children will
appear too. Writing your code you have to specify the parent-child relationship. Usually in a child constructor the
address of the parent is passed as an argument. In general frames are parents of simple widgets. In this
example you will see how we organize the parent-children relationship by using frame widgets in addition to the
canvas window and button widgets.

Let‘s now go through the code of the example.C.

The first lines include ROOT header files. The header file names are almost always as the class names
(TApplication, TF1, TCanvas), but there are cases when similar classes are grouped together in one

header file: all frames are declared in TGFrame.h, all buttons – in TGButton.h, etc. Our small example is

based on an object of the class MyMainFrame.

new MyMainFrame(gClient->GetRoot(),200,200);

The first parameter gClient->GetRoot() makes the initial connection to the window server. It is a pointer to

the root window of the screen, which is obtained from gClient. The next two parameters initialize the width

and height of the application window in pixels. Let see what MyMainFrame is. The three arguments pass to the

TGMainFrame constructor when we create the fMain object.

The first thing to note is the inclusion of the RQ_OBJECT macro in the class declaration of MyMainFrame. It is

necessary to provide a standalone class signal/slot capability. The signal/slot communication mechanism is
described in a separate chapter. See ―Event Processing: Signals and Slots‖.

// example.C

#include <TGClient.h>

#include <TCanvas.h>

#include <TF1.h>

#include <TRandom.h>

#include <TGButton.h>

#include <TGFrame.h>

#include <TRootEmbeddedCanvas.h>

#include <RQ_OBJECT.h>

class MyMainFrame {

 RQ_OBJECT("MyMainFrame")

private:

 TGMainFrame *fMain;

 TRootEmbeddedCanvas *fEcanvas;

public:

 MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h);

 virtual ~MyMainFrame();

 void DoDraw();

};

 Writing a Graphical User Interface 391

MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h) {

 // Create a main frame

 fMain = new TGMainFrame(p,w,h);

 // Create canvas widget

 fEcanvas = new TRootEmbeddedCanvas("Ecanvas",fMain,200,200);

 fMain->AddFrame(fEcanvas, new TGLayoutHints(kLHintsExpandX| kLHintsExpandY,

 10,10,10,1));

 // Create a horizontal frame widget with buttons

 TGHorizontalFrame *hframe = new TGHorizontalFrame(fMain,200,40);

 TGTextButton *draw = new TGTextButton(hframe,"&Draw");

 draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");

 hframe->AddFrame(draw, new TGLayoutHints(kLHintsCenterX,5,5,3,4));

 TGTextButton *exit = new TGTextButton(hframe,"&Exit",

 "gApplication->Terminate(0)");

 hframe->AddFrame(exit, new TGLayoutHints(kLHintsCenterX,5,5,3,4));

 fMain->AddFrame(hframe, new TGLayoutHints(kLHintsCenterX,2,2,2,2));

 // Set a name to the main frame

 fMain->SetWindowName("Simple Example");

 // Map all subwindows of main frame

 fMain->MapSubwindows();

 // Initialize the layout algorithm

 fMain->Resize(fMain->GetDefaultSize());

 // Map main frame

 fMain->MapWindow();

}

void MyMainFrame::DoDraw() {

 // Draws function graphics in randomly choosen interval

 TF1 *f1 = new TF1("f1","sin(x)/x",0,gRandom->Rndm()*10);

 f1->SetFillColor(19);

 f1->SetFillStyle(1);

 f1->SetLineWidth(3);

 f1->Draw();

 TCanvas *fCanvas = fEcanvas->GetCanvas();

 fCanvas->cd();

 fCanvas->Update();

}

MyMainFrame::~MyMainFrame() {

 // Clean up used widgets: frames, buttons, layouthints

 fMain->Cleanup();

 delete fMain;

}

void example() {

 // Popup the GUI...

 new MyMainFrame(gClient->GetRoot(),200,200);

}

The TGMainFrame class defines a top level window that interacts with the system window manager. Its

method CloseWindow() is invoked when Alt+F4 are pressed or a window manager close/exit command is

used. To terminate the application when this happens you need to override the CloseWindow() method and

call gApplication->Terminate(0).

The main frame can be considered as a container where all widgets of the application are organized with

respect to their parent-child relationship. After the main frame we create fEcanvas – an object of class

TRootEmbeddedCanvas. It is a quite complex widget and we will explain it in detail later. For the moment keep

in mind only its main purpose – to create a TCanvas – the ROOT basic whiteboard for drawing and editing

different graphical objects.

fEcanvas = new TRootEmbeddedCanvas("Ecanvas",fMain,200,200);

In the TRootEmbeddedCanvas constructor we pass the address of the main frame widget fMain as a second

parameter. This pass is important because it makes fMain the parent of the canvas window. The first

parameter Ecanvas is the name of the TCanvas, the last two parameters give the width and height of canvas

window in pixels. Next step is to add fEcanvas to the parent frame defining its appearance inside the parent

window. We use the method AddFrame():

fMain->AddFrame(fEcanvas,new TGLayoutHints(kLHintsExpandX | kLHintsExpandY,

 10,10,10,1));

392 Writing a Graphical User Interface

It adds the fEcanvas into the list of children widgets of the main frame fMain. The specification of how it

should be placed inside the parent frame is made by the TGLayoutHints object. Setting its first parameter to

kLHintsExpandX|kLHintsExpandY we define the canvas window as expanded on x and y in the frame.

The next four parameters define amounts of padding in left, right, top and bottom in pixels. This means that the
canvas window will be expanded when the parent window expands, but it will keep around a frame of 10 pixels
on left, right, top and 1 pixel on bottom.

The laying out is always made with respect to the parent-children relationship. There is a special chapter
presenting the different layout managers, but we will quickly introduce the concept here. The layout process will
apply not to the embedded canvas window but to its parent – the main frame. A popular layout manager and the
one used in this case is the vertical layout manager which arranges its widgets vertically in a column.

The next widget we create as a child of the main frame is the horizontal frame hframe:

TGHorizontalFrame *hframe=new TGHorizontalFrame(fMain,200,40);

The first parameter of its constructor is again the address of its parent, fMain. The next ones define the frame

width and height in pixels. The name of the class TGHorizontalFrame gives a hint that a horizontal layout will

apply on its children widgets. The Draw and Exit buttons will be laid out horizontally. Here are their constructors:

TGTextButton *draw = new TGTextButton(hframe,"&Draw");

hframe ->AddFrame(draw, new TGLayoutHints(kLHintsCenterX,5,5,3,4));

TGTextButton *exit = new TGTextButton(hframe,"&Exit",

 "gApplication->Terminate(0)");

hframe ->AddFrame(exit,new TGLayoutHints(kLHintsCenterX,5,5,3,4));

They are created as objects of the TGTextButton class that represent the command buttons with a text label.

When you click on a command button it performs the action shown on its label. These buttons are well known

as ―push buttons‖ or just ―buttons‖. The parent address hframe is passed as first parameter. The second one

defines the button label and normally indicates the action to be taken when the button is clicked. It is possible to
define a hot key for the button at that point using the hot string for its label. A hot string is a string with a ―hot‖
character underlined. This character we call the button hot key. It shows the assigned keyboard mnemonic for

the button choice. Following our example, this means that you can use Alt+D to click on Draw button and

Alt+E to click on Exit. There is a possibility to specify a command string as third parameter of the button

constructor. We use it to assign the command gApplication->Terminate(0). The application will be

terminated when you click on the Exit button.

We call again AddFrame() to add the buttons to their parent widget giving layout hints for each of them. This

time we would like to have centered buttons with an amount of 5 pixels on the left, 5 on the right, 3 on the top
and 4 on the bottom. You can feel already that the same steps are repeated three times: to create a new widget
with passing a parent address as a parameter, to define layout hints for it and to add it in the parent list. The
next line is something new:

draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");

Here we connect a signal to a slot. Whenever the draw button is clicked, it emits a signal that something has
happened (it is clicked) to whom might be interesting in the outside world. The widget does not know who will
use this information. On the other side of the program world there is some code which should be executed when
the button is clicked. This code is called a slot. Think about slots as normal C++ functions or class methods.

The line above specifies that the slot MyMainFrame::DoDraw() will be executed when the draw button is

clicked. Our slot draws the graphics of sin(x)/x in randomly chosen interval every time the draw button sends

a signal ―I am clicked‖. The signal/slot communication mechanism originally featured in Qt by TrollTech(see
http://doc.trolltech.com/3.1/signalsandslots.html). ROOT supports its own version of signals/slots. We will return
to that point in details later. We specified all child widgets of the horizontal frame (the Draw and Exit buttons in
our case). Next, we need to add their parent frame to the main frame:

fMain->AddFrame(hframe,new TGLayoutHints(kLHintsCenterX,2,2,2,2));

The last thing to do is to set the main window title and to make all widgets visible. Commonly in all systems
windows are assigned by name to be identified by users. This name is displayed in the application‘s title bar and
can be set by:

fMain->SetWindowName("Simple Example");

http://doc.trolltech.com/3.1/signalsandslots.html

 Writing a Graphical User Interface 393

The next lines make the widgets visible. The first one maps all child frames of the top-level frame; the last one –
the main frame itself, i.e. makes it appear on the screen.

fMain->MapSubwindows();

fMain->Resize(fMain->GetDefaultSize());

fMain->MapWindow();

The line in between has an important mission – to execute all layout specifications for the widgets before the
top-level window itself is shown on the screen. We can run the named script via the CINT interpreter with the
command:

root[].x example.C

The event processing starts. If you change the state of a widget, it emits a signal and the corresponding slot is
executed ensuring the functionality we want for this small example.

The steps we passed can be generalized as follows:

 Opening of the connection to the system

 Definition of main frame (top level window)

 Creation of widgets as children of the top-level frame; assign them desired properties following
the steps:

 Create a new widget passing its parent in the constructor

 Connect widget‘s signals with desired slots to ensure desired functionality

 Define widget‘s layout and add it to the parent list of children

 Set main window attributes

 Map all sub windows

 Initialize the layout algorithm via Resize(GetDefaultSize()) method

 Map the main frame

 Execution of the even-processing loop

A Standalone Version

As usual a standalone program in C++ has to contain a main() function – the starting point for the application
execution. In this case it is better to separate the program code creating a program header file example2a.h

with the MyMainFrame class declaration and example2a.cxx – with the class methods implementation. To

run our simple example as a standalone application we need to create in addition an object of class
TApplication. It will make a correct initialization of the dictionaries if it is not yet done. It will be responsible

for holding everything together and to handle all events in the application. Its environment provides an interface

to the ROOT graphics system and by calling the Run() method the event loop starts and the application

program is waiting for the user action. The application exits only if the top level window is not closed. Two
header files are used in addition: TApplication.h – for the class TApplication and TGClient.h that is

used to make initial connection to the graphics system. The class TApplication must be instantiated only

once in any given application. The original list of argument options can be retrieved via the Argc() and

Argv() methods.

Note: to have signals/slots working we need to create a dictionary for the class MyMainFrame, i.e. we create

the file ex2aLinkDef.h containing the line:

#pragma link C++ class MyMainFrame;

We compile the example:

rootcint -f ex2aDict.cxx -c example2a.h ex2aLinkDef.h

g++ `root-config --cflags --glibs` -o example2a example2a.cxx ex2aDict.cxx

example2a.h

#include <TQObject.h>

#include <RQ_OBJECT.h>

class TGWindow;

class TGMainFrame;

class TRootEmbeddedCanvas;

class MyMainFrame {

 RQ_OBJECT("MyMainFrame")

private:

 TGMainFrame *fMain;

 TRootEmbeddedCanvas *fEcanvas;

public:

 MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h);

 virtual ~MyMainFrame();

 void DoDraw();

};

394 Writing a Graphical User Interface

example2a.cxx

#include <TApplication.h>

#include <TGClient.h>

#include <TCanvas.h>

#include <TF1.h>

#include <TRandom.h>

#include <TGButton.h>

#include <TRootEmbeddedCanvas.h>

#include "example2a.h"

MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h) { ... }

MyMainFrame::~MyMainFrame() { ... }

void MyMainFrame::DoDraw() { ... }

void example() { ... }

int main(int argc, char **argv) {

 TApplication theApp("App",&argc,argv);

 example();

 theApp.Run();

 return 0;

}

The class MyMainFrame could derive from TGMainFrame. In that case the RQ_OBJECT macro is not needed

anymore, since the functionality it provides is obtained now via inheritance from TGMainFrame. This will reflect

in the MyMainFrame class declaration and in the code of the MyMainFrame::MyMainFrame constructor as

follows:

example2b.h

#include <TGFrame.h>

class MyMainFrame : public TGMainFrame {

private:

 TRootEmbeddedCanvas *fEcanvas;

public:

 MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h);

 virtual ~MyMainFrame() { ... }

 void DoDraw(){ ... }

 ClassDef(MyMainFrame,0)

};

example2b.cxx

#include <TApplication.h>

#include <TGClient.h>

#include <TCanvas.h>

#include <TF1.h>

#include <TRandom.h>

#include <TGButton.h>

#include <TRootEmbeddedCanvas.h>

#include "example2b.h"

MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h)

 : TGMainFrame(p,w,h) {

 // Creates widgets of the example

 fEcanvas = new TRootEmbeddedCanvas ("Ecanvas",this,200,200);

 AddFrame(fEcanvas, new TGLayoutHints(kLHintsExpandX | kLHintsExpandY,

 10,10,10,1));

 TGHorizontalFrame *hframe=new TGHorizontalFrame(this, 200,40);

 TGTextButton *draw = new TGTextButton(hframe,"&Draw");

 draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");

 hframe->AddFrame(draw, new TGLayoutHints(kLHintsCenterX,5,5,3,4));

 TGTextButton *exit = new TGTextButton(hframe,"&Exit ",

 "gApplication->Terminate()");

 hframe->AddFrame(exit, new TGLayoutHints(kLHintsCenterX,5,5,3,4));

 AddFrame(hframe,new TGLayoutHints(kLHintsCenterX,2,2,2,2));

 // Sets window name and shows the main frame

 SetWindowName("Simple Example");

 MapSubwindows();

 Resize(GetDefaultSize());

 MapWindow();

}

 Writing a Graphical User Interface 395

Widgets Overview
The word widget is a contraction of windows and gadget. Almost all GUI elements are widgets. A button is a
widget, a menu item is a widget, a scrollbar is a widget, and a complete dialog box is a widget too. Some
widgets may have sub widgets. For example, a dialog box can contain buttons, text fields, a combo-box, etc.

On the screen widgets look like rectangular areas with special behaviors. In terms of the object-oriented
programming we can define a widget in ROOT as an object of a class deriving from TGObject.

This section presents all currently supported widgets in ROOT and their most useful methods. All of them can
be considered as building blocks for an application, and most of them can be found in dialogs. Provided
snippets of the code will give you practical guidelines where and how to use certain widgets. The macro

$ROOTSYS/tutorials/gui/guitest.C contains the complete source code.

Figure 25-1 Widgets created by ROOT GUI classes

Any custom widget can be created by sub classing existing widgets. To achieve a better understanding of the
widgets‘ properties they are separated by their type and their inheritance. As all of them inherit from TGObject

and most from TGWidget, these base classes are described first.

TGObject

TGObject is the base class for all ROOT GUI classes. It inherits from TObject. The two data members of this

class contain important information about X11/Win32 window identifier and the connection to the host‘s graphics
system. Every GUI element, which derives from TGObject has access to the TGClient via the data member

fClient of TGObject. TGClient creates the connection with the host‘s graphics system and sets up the

complete graphics system for all widgets.

TGWidget

The widgets base class TGWidget is typically used as a mix-in class via multiple inheritances. Its properties are

available for all deriving widgets: TGButton, TGComboBox, TGTab, TGColorPalette, TGColorPick,

TGDoubleSlider, TGListTree, TGNumberEntry, TGScrollBar, TGShutterItem, TGTextEntry,

TGSlider, TGListBox, TGView.

This class has four data members keeping information about the widget id – important for event processing, the
window which handles the widget‘s events, the widget status flags and the assigned command (if there is any).
The general properties of TGWidget are specified by SetFlags(Int_t flags) and ClearFlags(Int_t

flags) methods. The status flags are: kWidgetWantFocus, kWidgetHasFocus, and kWidgetIsEnabled.

The method Associate(const TGWindow* w) – sets the window which handles the widget events.

SetCommand(const char* command) – sets the command to be executed. The command string can be

gathering via GetCommand() method. For example, the third parameter in TGTextButton constructor can be

omitted and set later in your program, i.e. instead of:

TGTextButton *exit = new TGTextButton(hframe,"&Exit",

 "gApplication->Terminate()");

You will have the following the two lines:

396 Writing a Graphical User Interface

TGTextButton *exit = new TGTextButton(hframe,"&Exit");

exit->SetCommand("gApplication->Terminate()");

The method IsEnabled() – returns kTRUE if the widget has flag kWidgetIsEnabled and it accepts user

events. This method is very important for creating a good user interface because it allows you to disable or
enable a widget depending on the situation of your application. As a standard all disabled widgets are displayed

―grayed out‖. HasFocus() – returns kTRUE if the widget has the input focus (i.e. flag kWidgetHasFocus is

set). Remember that only one item in a complex widget as a dialog can have the value of HasFocus() sets as

true. WantFocus() – returns kTRUE if the flag kWidgetWantFocus is set.

TGWindow

TGWindow is a ROOT GUI window base class. It inherits from TGObject and TGFrame derives from it. The

application does not use it directly. It creates and registers a new window within the system. This window has
common characteristics: existing parent, location, size in height and width (it has a default minimum size 1, 1
under which it cannot shrink), border with particular view, state, specific attributes. If there are no specified
arguments their values will be taken from the parent. It receives events from the window system and can paint a
representation of itself on the screen.

Frames

Most of the frame classes are mainly created for arranging widgets in a window. The class TGFrame is a

subclass of TGWindow providing additional window characteristics and overriding some methods of TGWindow.

It is a base class for the simple widgets as buttons, labels, etc. Its only purpose is to draw a frame around
widgets that do not have a frame of their own. The main groups of TGFrame member functions are:

 Window‘s functions: DoRedraw(), DeleteWindow(), Activate(), etc.

 Geometry functions: Move(), Resize(), SetSize(), etc.

 Graphics handlers: ChangeBackground(), ChangeOptions(), etc.

 Mouse and keyboard functions: HandleButton(), HandleFocusChange(), HandleKey(),

HandleMotion(), etc.

 Event handlers: HandleEvent(), ProcessEvent(), GetSender(), SendMessage(),

ProcessMessage(), GetLastClick(), etc.

Figure 25-2 The GUI classes hierarchy

Ones of TGFrame member functions provide direct functionality; others – will be overridden by TGFrame

subclasses to ensure particular widget‘s functionality. There are two constructors provided in TGFrame class.

One creates a frame using an externally created window:

TGFrame(TGClient *c,Window_t id,const TGWindow *parent = 0);

 Writing a Graphical User Interface 397

For example, it can register the root window (called by TGClient), or a window created via

TVirtualX::InitWindow() (window id is obtained by TVirtualX::GetWindowID() method). The other

TGFrame constructor is:

TGFrame(const TGWindow *p,UInt_t w,UInt_t h,UInt_t options=0,

 ULong_t back = GetDefaultBackground());

The options parameter is the bitwise OR between defined frame types. Here is a short description of these
types:

Frame Type Description

kChildFrame a frame embedded in a parent

kMainFrame a main frame interacting with the system Window Manager

kTransientFrame a top level dialog‘s frame

kVerticalFrame a frame that layouts its children in a column

kHorizontalFrame a frame that layouts its children in a row

kSunkenFrame a frame with a sunken board appearance

kRaisedFrame a frame with a raised board appearance

kFitWidth a frame with dynamically scaled width

kFitHeight a frame with dynamically scaled height

kFixedWidth a frame with fixed width

kFixedHeight a frame with fixed height

kFixedSize = kFixedWidth | kFixedHeight

a frame with fixed width and height

kDoubleBorder a frame having a double line border

kOwnBackground a frame having own background

kTempFrame a temporary frame shown in certain circumstances; for example,
it is used for creation of tool tip widget

The method ChangeOpton(UInt_t options) allows you to change frame options. Next example shows you

how to change kVerticalFrame option to kHorizontalFrame:

frame->ChangeOptions((frame->GetOptions()& ~kVerticalFrame)| kHorizontalFrame);

The class TGCompositeFrame is the base class of all composite widgets as a menu bar, a list box, a combo

box, etc. It subclasses TGFrame and has in addition a layout manager and a list of child frames/widgets. There

are two steps to do the design using a composite frame widget. First you put all widgets you need within this

frame and assign them desired properties using AddFrame(), then you lay them out by the Layout() method

according to the assigned layout manager. The method AddFrame() creates an instance of TGFrameElement

class for every child widget of a composite frame. This class has three public data members: the child pointer,
its layout hints, and a status variable showing if the child is visible or hidden. If no hints are specified, the default
layout hints are used. Because the layout is very important part of any design we include a special section
about layout management and layout hints.

You can set a layout manager for the composite frame via:

compFrame->SetLayoutManager(TGLayoutManager *l);

The child widgets cannot be added to different composite frames.

Any child frame can be removed from the parent list by:

compFrame->RemoveFrame(TGFrame *f);

You can hide or show a child frame of a composite frame using the methods: HideFrame(TGFrame *f) or

ShowFrame(TGFrame *f). You should call, for example HideFrame(TGFrame *f), only after the frames

have been laid out and the sub windows of the composite frame have been mapped via method

MapSubwindows(), i.e.

frame->AddFrame(hFrame1,fLayout1);

frame->AddFrame(hFrame2,fLayout2);

frame->Resize(frame->GetDefaultSize()); // lays out frames

frame->MapSubwindows(); // maps subwindows

frame->HideFrame(hFrame2); // hides frame hFrame2

frame->MapWindow(); // maps main frame

The state information about a child frame can be obtained from the methods GetState(TGframe *f),

IsArranged(TGFrame *f), and IsVisible(TGFrame *f).

398 Writing a Graphical User Interface

The method Cleanup() deletes all objects of the composite frame added via AddFrame(). All

TGFrameElement objects (frames and layout hints) must be unique, i.e. cannot be shared.

We already mentioned that TGMainFrame class defines top level windows interacting with the system window

manager. It handles applications with a menu bar, toolbar, text entry fields and other widgets surrounding a
central area (e.g. a canvas widget). It lays out a set of related widgets and provides the typical application main
window behavior. As you can see from the Figure above, it inherits from TGCompositeFrame and is inherited

by TGTransientFrame and several ROOT interface classes: TViewerX3D, TRootBrowser, TRootCanvas,

TRootControlBar, TTreeViewer.

To fix the size of a top level window you have to use the method TGMainFrame::SetWMSize(). This call

tells the Window Manager that it should not resize the window. The option kFixedSize works only for

embedded frames like TGCompositeFrame and derived classes (in combination with layout hints).

The TGVerticalFrame and TGHorizontalFrame are composite frames that lay out their child frames in

vertical or horizontal way in the same order as they were added and according to their hints preferences.

The TGTransientFrame class defines transient windows that typically are used for dialogs. They extend and

complete an interaction within a limited context. Always transient frames are displayed from another window or
another dialog. They may appear because of a command button being activated or a menu item being selected.
They may also present automatically when an additional input and the user attention are required by a certain
condition.

The TGGroupFrame class presents a very convenient frame which surrounds visually a group of logically

connected widgets: radio buttons, related check boxes, two or more functionally related controls.

It is a composite frame with a border and a title. The title explains the purpose of the group and should be a

noun or noun phrase. Here is an example taken from guitest.C:

groupFrame = new TGGroupFrame(tf,"Options",kVerticalFrame);

groupFrame->SetTitlePos(TGGroupFrame::kLeft);

The second line sets the title position on the left. You can change it to be centered or right aligned if you use
TGGroupFrame::kCenter or TGGroupFrame::kRight as a parameter.

Be conservative in the use of borders because of the potential for clutter. Do not place them around single entry
fields, single combo boxes, list boxes and groups of command buttons. The design of these widgets provides
them with a border. The picture above provides kind of borders to avoid.

Layout Management
The layout process is an integral part of any GUI. When you create a simple message window, laying out its few
buttons and text widgets is quite simple. However, this process becomes increasingly difficult if you have to
implement large GUI‘s with many widgets that should behave properly when the GUI is resized or uses a
different font type or size. Layout management is the process of determining the size and position of every
widget in a container.

A layout manager is an object that performs layout management for the widgets within a container. You already
know that when adding a component (child widget) to a container (parent widget) you can provide alignment

 Writing a Graphical User Interface 399

hints (or rely on the default ones). These hints are used by the layout manager to correctly position the widgets
in the container. The TGLayoutManager is an abstract class providing the basic layout functionality.

Figure 25-3 The layout classes hierarchy

The base ―container‖ class is TGCmpositeFrame. You can easily change the layout manager using the

SetLayoutManager(TGLayoutManager *l) method. Setting the proper layout manager for each container

is the first step you have to do. The container uses that layout manager to position and size the components
before they are painted. ROOT currently provides the layout managers shown on the picture above.

The next important step is to provide hints about every widget in the container, i.e. to provide positions and right
amount of space between the components. The TGLayoutHints objects set hints by specifying the white

space in pixels around every widget.

Let‘s see an example with five buttons. First you put them in a container, assign them desired properties, and
then you lay them out according to the layout manager. This process can be repeated: you go back and add,
remove or change some of the widgets and lay them out again.

Once created, you can consider these widgets as elementary objects even though they are compound ones.
The pictures above present four different layouts of five buttons. The first one shows laid out vertically buttons.
Almost everywhere you can find this vertical orientation. Looking at dialogs you see that often they consist of
number of rows laid out below each other. Some of the rows could have an internal vertical structure as well.
The second picture shows the same buttons laid out horizontally – the next common orientation. The other two
show different layouts based on mixed use of the vertical and horizontal orientation. You might recognize their
pattern: two (third picture) and three (last picture) rows that are vertically laid out.

As we already explained the layout process is always applying to a container. It will be enough to define the
container frame with vertical or horizontal layout to have buttons as in the first and second pictures.

To design them in several rows we need to use additional frames as invisible containers: two horizontal frames,
children of a vertical parent frame; or one horizontal frame laid out vertically with the Draw and Exit buttons. For
widgets in a group it is obvious to use a vertical layout.

The layout hints data member of TGLayoutHints is the bit wise OR between the hints:

Hints Description

kLHintsNoHints no specified layout hints, the default ones will be used

kLHintsLeft specifies the frame position to the left of the container frame after other frames with
the same hint into the list

kLHintsCenterX specifies the frame position centered horizontally (with vertical containers only)

kLHintsRight specifies the frame position to the right of the container frame before any other laid
out frames with the same hint into the list

kLHintsTop specifies the frame position to the top of the container frame, below any laid out
frames with the same hint

kLHintsCenterY specifies the frame position centered vertically (with horizontal containers only)

kLHintsBottom specifies the frame position to the bottom of the container frame, above any laid out
frames with the same hint

400 Writing a Graphical User Interface

kLHintsExpandX specifies the frame to be expanded up to the width of the container frame. If the
container frame is a vertical frame – it will fit the whole width. If it is a horizontal
frame – after the positioning of all frames the available ―free‖ width space is shared
between the frames having this hint

kLHintsExpandY specifies the frame to be expanded up to the height of the container frame. If the
container frame is a horizontal frame – it will fit the whole height. If the container
frame is a vertical frame – after the arrangement of all frames the available ―free‖
height space is shared between the frames having this hint

kLHintsNormal = kLHintsLeft | kLHintsTop – default hints

Layout policy:

Child frames never modify their container frame. The container frame can (or cannot) adapt its size in the layout
process. It can show all or a part of its frames. Every TGFrame object has a default minimum size (1, 1) assured

by TGWindow.

Event Processing: Signals and Slots
Event handling covers the interaction between different objects and between the user and the objects in an
application. There are two general ways for the user to interact with an application: the keyboard and the
mouse. The Graphical User Interface is as a bridge between the user and the program - it provides methods to
detect the user actions and instruments that do something as a reaction of these actions. The user
communicates with an application through the window system. The window system reports interaction events to
the application. The application in turn forwards them to the currently active window. The objects/widgets
receive the events and react to them according to the application functionality.

The signals/slot communication mechanism is an advanced object communication concept; it largely replaces
the concept of callback functions to handle actions in GUI‘s. Signals and slots are just like any object-oriented
methods implemented in C++. The objects are the instances of classes that don‘t know anything about each
other. They interact and allow method calls of other object‘s methods. The idea is simple: any object can send
out (emit) a signal in certain situations saying that something happened. This is all it does to communicate and it
does not know whether anything is interested in this information. On the other side there might be an object
waiting for that signal and ready to react to it. This object disposes of special instruments to listen to the sent out
signals. To have a communication we need a message transmission between the objects. In this simple
example we use signals and slots. The code of the method TGButton::Clicked() is:

virtual void Clicked() { Emit("Clicked()"); } // *SIGNAL*

I.e. any button emits the signal Clicked() any time someone clicks on it. As you can see this method is virtual

and could be overridden if you need to. In our simple example we call the Connect() method to connect the

Clicked() signal of Draw button with MyMainFrame::DoDraw():

draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");

In the same way we can connect to the signal Clicked() of the Exit button with the system call

gApplication->Terminate(0). We declare a new slot DoExit(), implement it to invoke the termination

call and associate this slot with the signal Clicked() of the Exit button.

The code of example.C can be changed as follows:

 Writing a Graphical User Interface 401

public:

 ...

 void DoExit(); // a new slot is added

}

void MyMainFrame::DoExit() {

 gApplication->Terminate(0);

}

MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h) {

 ...

 TGTextButton *exit = new TGTextButton(hframe,"&Exit ");

 // connects signal Clicked() with slot DoExit()

 exit->Connect("Clicked()","MyMainFrame",this,"DoExit()");

 ...

}

Here is an abstract view of the signal/slots connections in example.C:

To benefit from this mechanism your classes must inherit from TQObject or otherwise the class definition must

start with RQ_OBJECT(“ClassName”) macro. This macro allows the signals/slots communication mechanism

to be applied between compiled and interpreted classes in an interactive ROOT session without having the
class derive from TQObject. Every signal method declaration is followed by a comment “*SIGNAL*”. Only

instances of a class that defines a signal or instances of its subclasses can emit the signal. The ROOT
implementation of a popular example presenting signals and slots is the next. Let‘s have a minimal class
declaration:

class MyClass {

private:

 Int_t fValue;

public:

 MyClass() { fValue=0; }

 Int_t GetValue() const { return fValue; }

 Void SetValue(Int_t);

};

It will become the following as interpreted:

class MyClass {

 RQ_OBJECT("MyClass")

private:

 Int_t fValue;

public:

 MyClass() { fValue=0; }

 Int_t GetValue() const { return fValue; }

 Void SetValue(Int_t); // *SIGNAL*

};

Both class declarations have the same data member and public methods to access the value. By placing the
RQ_OBJECT(“MyClass”) macro inside the MyClass body (MyClass is not inherited from TQObject) we

allow this class to use the signal/slot communication. Any instance of this class can tell the outside world that

the state of its data member has changed by emitting a signal SetValue(Int_t). A possible implementation

of MyClass::SetValue() can be:

void MyClass::SetValue(Int_t v) {

 if (v != fValue) {

 fValue = v;

 Emit("SetValue(Int_t)",v);

 }

}

402 Writing a Graphical User Interface

The line Emit("SetValue(Int_t)",v) activates the signal SetValue(Int_t) with argument v. You can

use any of the methods TQObject::Emit(“full_method_name”,arguments) to emit a signal. We create

two instances of MyClass and connect them together:

MyClass *objA = new MyClass();

MyClass *objB = new MyClass();

objA->Connect("SetValue(Int_t)","MyClass",b,"SetValue(Int_t)");

objB->SetValue(11);

objA->SetValue(79);

objB->GetValue(); // the value is 79

By calling the method objA->Connect(), objA connects its signal "SetValue(Int_t)" to the

"MyClass::SetValue(Int_t)" method (slot) of objB. Next, when you call objA->SetValue(79) object

objA emits a signal which objB receives and objB->SetValue(79) is invoked.

It is executed immediately, just like a normal function call. objB will emit the same signal in turn, but nobody is

interested in this signal, since no slot has been connected to it. Signals are currently implemented for all ROOT
GUI classes, event handlers (TFileHandler, TSignalHandler, etc.), timers (TTimer) and pads (TPad,

TCanvas, etc.). To find all defined signals you just do: grep „*SIGNAL*‟ $ROOTSYS/include/*.h

As a programmer you build the sender-receiver part of object connections using the TQObject::Connect()

method. You can connect one signal to many different slots. The slots will be activated in order they were

connected to the signal. You can change this order using the methods LowPriority() and

HightPriority() of TQObject. Also, many signals can be connected to one slot of a particular object or a

slot can be connected to a signal for all objects of a specific class. It is even possible to connect a signal directly
to another signal – this will emit the second signal immediately after the first one is emitted.

All signals and slots are normal class methods and can take any number of arguments of any type. The
common methods of TQObject that activate a signal with any number and type of parameters are:

Emit(signal_name,param);

With no parameters param the method will be:

ApplyButton->Emit("Clicked()");

param can be a single parameter or an array of Long_t parameters as it is shown below:

TQObject *processor; // data processor

TH1F *hist; // filled with processor results

...

processor->Connect("Evaluated(Float_t,Float_t)", "TH1F",hist,

 "Fill(Axis_t x,Axis_t y)");

...

Long_t args[2];

args[0]=(Long_t)processor->GetValue(1);

args[0]=(Long_t)processor->GetValue(2);

...

processor->Emit("Evaluated(Float_t,Float_t)",args);

...

To use signals and slot you need something that brings them together. The class TQObject has several

methods creating sender-receiver connections. Some of them are static and can be called without having an
instance of the class. The ROOT implementation of signals and slots allows connections to any known CINT

object. The class name parameter in the Connect() methods must be a class with a dictionary (interpreted

classes have an implicit dictionary).

TGButton *myButton;

TH2 *myHist;

...

TQObject::Connect(myButton, "Clicked()","TH2",MyHist, "Draw(Option_t*)");

You can replace it with 0 (zero) and in this case the slot string defines a global or interpreted function name.
The receiver parameter should be zero too. For example:

TQObject::Connect(myButton, "Clicked()",0,0, "hsimple()");

To make a single connection from all objects of a class you should write:

TQObject::Connect("Channel", "AllarmOn()","HandlerClass",handler,

 "HandleAllarm()");

The first argument specifies the class name Channel. The signal AllarmOn() of any object of the class

Channel is connected to the HandleAllarm() method of the handler object of the class HandlerClass.

In example.C we have used the not-static Connect() method:

Bool_t Connect(const char *signal,const char *receiver_class,void *receiver,

 const char *slot);

 Writing a Graphical User Interface 403

It needs to know four things: the signal that should be connected, the receiver class, the object that will receive
the signal, and the slot that will be connected to the signal. Because this method is non-static we can write this
as a receiver parameter.

In all methods you have to specify the signal and the slot with their names and parameter types. Do not write
values instead of types in that place. It is possible to pass a parameter by value to a slot method in the following
way:

Connect(myButton, "Pressed()","TH1",hist, "SetMaximum(=123) ");

Connect(myButton, "Pressed()","TH1",hist, "Draw(=\"LEGO\")");

As you see the parameter‘s value is preceded by the equation symbol (=).

You have the possibility to destroy a signal/slot connection by using Disconnect() methods. There are three

ways to do this:

1/ to destroy all connections to an object‘s signals;

2/ to destroy all connections to a particular object‘s signal; 3/ to detach an object from a specific receiver:

Disconnect(myObgect); // case 1

Disconnect(myObgect, "mySignal"); // case 2

Disconnect(myObgect,0,myReceiver,0); // case 3

Three parameters of these methods could be replaced by 0. The meaning in these cases would be ―any signal‖,
―any receiving object‖, ―any slot of the receiving object‖, i.e. 0 is used as a wildcard. The sender parameter
cannot be 0, because you can disconnect signals from one given object. If the signal parameter is 0, the
receiver and the slot are disconnected from any signal. Giving the name of the signal you disconnect this signal.

In addition to all Qt features the ROOT version of signals/slots gives you the possibility to connect slots to a
class. The slots will be executed every time the specified signal is emitted by any object of this class. A slot can
have default arguments and it can be either a class method or stand-alone function (compiled or interpreted).

The method TQObject::HasConnection(signale_name) checks if there is an object connected to this

signal and returns true if it is the case.

Using TQObject::NumberOfConnections(), TQObject::NumberOfSignals() you can check how

many signals or connections has the object.

The rules for using signals/slots mechanism in a standalone executable program do not differ from what was
described previously. Let‘s remind that

 a slot can be any class method with a generated CINT dictionary

 a slot can be a function with a dictionary

Detailed information how to generate a dictionary can be found on http://root.cern.ch/root/CintGenerator.html

The following example demonstrates how to use signals/slots mechanism in a standalone executable program

on linux platform with the gcc compiler.

tst.C

#include <TQObject.h>

#include <RQ_OBJECT.h>

class A {

 RQ_OBJECT("A")

private:

 Int_t fValue;

public:

 A():fValue(0) { }

 ~A() { }

 void SetValue(Int_t value); // *SIGNAL*

 void PrintValue() const { printf("value=%d\n",fValue); }

};

void A::SetValue(Int_t value) { // Set new value

 // Emit signal "SetValue(Int_t)" with a single parameter

 if(value!=fValue) {

 fValue=value;

 Emit("SetValue(Int_t)",fValue);

 }

}

// Main program

#ifdef STANDALONE

int main(int argc, char **argv) {

 A* a = new A();

 A* b = new A();

 a->Connect("SetValue(Int_t)","A",b,"SetValue(Int_t)");

 printf("\n******* Test of SetValue(Int_t) signal *******\n");

 b->SetValue(10);

 printf("\n\t***** b before ******\n");

http://root.cern.ch/root/CintGenerator.html

404 Writing a Graphical User Interface

 b->PrintValue();

 a->SetValue(20);

 printf("\t***** b after a->SetValue(20) ******\n");

 b->PrintValue();

 return 0;

}

#endif

ACLiC simplifies this procedure and allows the dictionary generation by:

root[] .L tst.C++

It will create the shared library tst_C.so.

The next line will create an executable:

g++ -o tst tst.C `root-config --cflags --libs` ./tst_C.so -DSTANDALONE

The library tst_C.so is a dynamically loaded library and should be located in $LD_LIBRARY_PATH. The

current working directory should be added to $LD_LIBRARY_PATH via:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./

To run it, you just do:

 ./tst

Widgets in Detail

Buttons

Buttons are a popular group of widgets designed to provide specific interfaces for user interaction. TGButton is

an abstract class defining the general button behavior: width, height, state, its group, tool tip text, etc.

There are two main groups of buttons: command buttons with a text or graphics inside that indicate the action to
be accomplished and option buttons well known as radio and check buttons that select or change properties.
The first group is presented in ROOT by TGPictureButton and TGTextButton classes. They yield an action

as soon as they are clicked. It can be opening/closing a dialog box or invoking a specific function in an
application. Remember the Draw button from the example. The radio and check buttons from the second group
are used to select an option. There is a visual difference between these two groups: the text buttons appear
―pressed in‖ only while they are clicked, while the radio and check buttons change their appearance when they
are selected and keep that appearance afterwards.

A text button is represented by the class TGTextButton. We already used its constructor in the example. The

button label indicates the action to be taken when the button is selected or pressed. The text can be a hot string
defining a hot key (known as shortcut key also) for this selection. The hot key is an underlined character in a
button label that shows the assigned keyboard mnemonic for its choice. A button that prompts more information
for users has the label generally followed by ellipsis (…).

As we saw the hot strings "&Draw" and "&Exit" define the text labels ―Draw‖ and ―Exit‖ and keyboard

mnemonics Alt+D, Alt+E for their selection. The letter D and E appear underlined on the screen. All text

buttons should have a unique shortcut key with the exception of OK and Cancel.

These buttons are usually placed within a window to provide fast access to frequently used or critical
commands. They help in situations where a command is not available through the menu bar. You already know
that a command string can be passed in the text button via the constructor:

TGTextButton(const TGWindow *p,const char *s,const char *cmd,

 Int_t id,GContext_t norm,FontStruct_t font,UInt_totions);

A button label can be changed by SetText(new_label). There are important guidelines to be followed

about a button label. The text has to provide a meaningful description of the performed action. The single-word
label should be used whenever possible, only two-three words for clarity, if necessary. Do not number labels.
Always follow all platform presentation and usage guidelines for standard button functions. Let‘s remember a
few standard names and definitions of well known buttons:

OK - any changed information in a window is accepted and the window is closed;

Cancel – closes window without implementing submitted changes;

Reset – resets defaults and cancels any changed information that has not be submitted;

Apply – any changed information is accepted and again displayed in the window that remains open;

Close – closes the window;

Help – opens online Help.

 Writing a Graphical User Interface 405

Below are examples of text buttons. Note the two placement methods. The first example should be used when
there are one to three command buttons; the second one when there are more than three buttons.

Picture buttons are usually rectangular in shape with an icon or graphics label. These buttons may appear alone
or placed in a group at the window‘s top or side. They are most frequently used to quickly access commands,
many of which are normally accessed through the tool bar. For example, the picture buttons below can be used
to provide different styles of a histogram drawing.

Here is the example how to create the first button:

TGPictureButton *fPicture = new TGPictureButton(parent,

 gClient->GetPicture("h1_s.xpm"),11);

The picture of file h1_s.xpm is used in the button. All .xpm files are located in the directory $ROOTSYS/icons.

You can assign a command directly as a parameter of the picture button constructor. The picture of
TGPictureButton can be changed by:

fPicture->SetPicture("h2_s.xpm");

The advantage of command buttons is that they are always visible, providing a reminder of their existence. They
can be inscribed with a meaningful description of what they do by TGToolTip(“Some describing text”).

Their activation is much easier and faster than using a two-step menu bar/pull-down sequence. The only
disadvantage of the text and picture buttons is that they consume considerable screen space if they are many.
Having no more than six command buttons per window or dialog box helps to appropriately balance the
application‘s effectiveness, its real efficiency, and the operational simplicity.

The classes TGRadioButton and TGCheckButton present the option buttons in ROOT. Like the text buttons,

they have text or hot string as a label. Radio buttons are grouped in logical sets of two or more and appear with
a text label to the right. The choices are mutually exclusive and only one setting is permitted at one time. They
represent visually all alternatives and it is easy to access and compare choices. They facilitate the situations
where all alternatives cannot be easily remembered or where displaying the alternatives together helps to
understand and select the proper choice. It is very useful to provide a default setting whenever it is possible.
When it is not possible to establish a default setting because of the nature of the information, it is better to leave
all radio buttons blank.

A columnar orientation is the preferred manner of radio buttons presentation. If the vertical space on the window
is limited, they can be oriented horizontally. Selection choices should be organized logically in groups. Here is
the example that produces the image above:

br = new TGButtonGroup(p,"Coordinate system",kVerticalFrame);

fR[0] = new TGRadioButton(bg,new TGHotString("&Pixel"));

fR[1] = new TGRadioButton(bg,new TGHotString("&NDC "));

fR[2] = new TGRadioButton(bg,new TGHotString("&User "));

fR[1]->SetState(kButtonDown);

br->Show();

It is enough to change kVerticalFrame to kHorizontalFrame in TGButtonGroup constructor and you will

have radio buttons aligned horizontally:

The class TGButtonGroup will help you to organize button widgets in a group. There is no need to call

AddFrame() since the buttons are added automatically with a default layout hint to their parent by

TGButtonGroup::Show() as shown in the previous example. The buttons in the group have assigned

identifiers. Any button in a group emits a Clicked() signal with this identifier when it is clicked. This giving an

ideal solution to connect several Clicked() signals to one slot.

406 Writing a Graphical User Interface

An exclusive button group switches off all toggle buttons except the selected one. The group is by default non-
exclusive but its entire radio buttons will be mutually exclusive.

TGHButtonGroup and TGVButtonGroup are convenience classes that offer you a thin layer on top of

TGButtonGroup. TGHButtonGroup organize button widgets in a group of one horizontal row,

TGVButtonGroup in a group of one column. You can also organize buttons in rows and columns using the

provided constructor and TGMatrixLayout.

Do not use a radio button to indicate the presence or absence of a state – use a check box instead.

To have the check button ―Event Status‖ and to set it as selected we need to write:

TGCheckButton *estat = new TGCheckButton(p, "Event Status",1);

estat->SetState(kButtonDown);

Check boxes show the selected choices and any number of them can be selected, including none. Their proper
usage is for setting attributes, properties or values; also for data or choices that are discrete, small and fixed in
number, not easily remembered. With check boxes all alternatives are visible: it is easy to access and compare
choices because they can all be seen together. Each option acts as a switch and can be either ―on‖ or ―off‖. It is
never changed in contents. Checkboxes differ from radio buttons in that they permit selection of more than one
alternative. Each box can be switched on or off independently. These buttons can be used alone or grouped in
sets. It is good practice to provide default settings for check boxes whenever it is possible.

This can be done by:

SetState(EButtonState state)

The parameter state can be one of kButtonUp, kButtonDown, kButtonEngaged, kButtonDisabled.

Check boxes can be used to affect other controls. The contents of a list can, for example, be filtered by setting a
check box. In any case, use a check box only when both states of a choice are clearly opposite and
unambiguous. If opposite states are not clear, it is better to use two radio buttons.

Choice description, i.e. check box label, must be clear, meaningful, fully spelled out, and displayed in mixed-
type text. Whenever the use of a given button is inappropriate, for whatever reason, that button should be
disabled:

button->SetState(kButtonDisabled);

Never make a button appear and disappear.

In general, option buttons should not offer more than eight choices. If the number of choices exceeds this
maximum, it is better to use a multiple selection list box.

The method IsToggleButton() gives the information whether a radio button or a check button is selected.

An option button can be set or unset via its method PSetState(EButtonState state).

The method HandleKey(event) is called when the defined hotkey is hit for any button. It sets the selected

option button or clicks the selected text button and invokes its defined action.

Text Entries

A TGTextEntry is a one-line text input widget. It contains text that is entered or modified through the

keyboard. This text may be displayed in different way according to the set echo mode. Users can control them

by SetEchoMode(), GetEchoMode() methods.

 kNormal - display characters as they are entered (default);

 kNoEcho - do not display anything;

 kPassword - display asterisks instead of the characters actually entered.

 Writing a Graphical User Interface 407

The way in which typed characters are inserted in the text entry is defined by TGTextEntry::EInsertMode

and can be toggled by the Insert key:

 kInsert - typed character are inserted (cursor has shape of short line)

 kReplace - entered characters substitute already typed ones (cursor has the shape of filled

rectangle).

There ate different text alignment modes defined by TGWidget::ETextJustification. They are valid until

text fits the frame width of the text entry field.

 kTextLeft - left-side text alignment

 kTextRight - right-side text alignment

 kTextCenterX - center text alignment along x direction

 kTextTop - top-side text alignment

 kTextBottom - bottom-side text alignment

 kTextCenterY - center text alignment along y direction

Number Entries

The TGNumberEntry class present number entry widgets. A number entry is a single-line field followed by two

small, vertically arranged up-down buttons. Its purpose is to make a selection by either scrolling through a small
set of meaningful predefined choices or typing numbers. The TGNumberFormat class contains enum types to

specify the numeric format. The number entry widget is based on TGTextEntry. It allows only numerical

input. The widget supports numerous formats including integers, hex numbers, real numbers, fixed fraction real
and time/date formats. It also allows to restrict input values to non-negative or positive numbers and to specify
explicit limits.

The following styles are supported:

 kNESInteger - integer number

 kNESRealOne - real number with one digit (no exponent)

 kNESRealTwo - real number with two digits (no exponent)

 kNESRealThree - real number with three digits (no exponent)

 kNESRealFour - real number with four digits (no exponent)

 kNESReal - arbitrary real number

 kNESDegree - angle in degree:minutes:seconds format

 kNESMinSec - time in minutes:seconds format

 kNESHourMin - time in hour:minutes format

 kNESHourMinSec - time in hour:minutes:seconds format

 kNESDayMYear - date in day/month/year format

 kNESMDayYear - date in month/day/year format

 kNESHex- hexadecimal number

408 Writing a Graphical User Interface

The following attributes can be specified:

 kNEAAnyNumber - any number is allowed

 kNEANonNegative - only non-negative numbers are allowed

 kNEAPositive - only positive numbers are allowed

Explicit limits can be specified individually:

 kNELNoLimits - no limits

 kNELLimitMin - lower limit only

 kNELLimitMax - upper limit only

 kNELLimitMinMax - both lower and upper limits

fN1 = new TGNumberEntry(parent, 0.005, 9, kENTRY1,

 TGNumberFormat::kNESRealThree, //style

 TGNumberFormat::kNEAAnyNumber, //input value filter

 TGNumberFormat::kNELLimitMinMax, //specify limits

 -1.,1.); //limit values

TGNumberEntryField is a number entry input widget.

Nent = new TGNumberEntryField(hgrunf2, kNENT_ID, 0.6,

 TGNumberFormat::kNESRealThree,

 TGNumberFormat::kNEAAnyNumber);

TGNumberEntryField is a plain vanilla entry field, whereas TGNumberEntry adds two small buttons to

increase and decrease the numerical value in the field. The number entry widgets also support using the up and
down cursor keys to change the numerical values. The step size can be selected with control and shift keys:

 -- small step (1 unit/factor of 3)

 Shift medium step (10 units/factor of 10)

 Control large step (100 units/factor of 30)

 Shift+Control huge step (1000 units/factor of 100)

The steps are either linear or logarithmic. The default behavior is set when the entry field is created, but it can
be changed by pressing the alt key at the same time.

Menus

Menus provide a list of commands or options helping the user to select and to perform a task. The menu system
classes are TGMenuBar, TGMenuTitle, TGPopupMenu, and TGMenuEntry.

The TGMenuBar class implements a menu bar widget. It is used to specify and provide access to common and

frequently used application actions described in menu titles, implemented by TGMenuTitle class. The menu

bar is the highest-level of the menu system and it is a starting point for all interactions. Also, it is always visible
and allows using the keyboard equivalents. The geometry of the menu bar is automatically set to the parent
widget, i.e. the menu bar automatically resizes itself so that it has the same width as its parent (typically
TGMainFrame).

The menu bar is as a container for its menus – objects of the type TGPopupMenu. Popup menus can appear in

a menu bar. They can be a sub-menu of another popup menu (cascading menus) or can be standalone (as a
context menu). They are made of one or more menu items choices. When displayed, the menu items are

arranged in a vertical list. Usually they correspond to actions (e.g. Open). These items can be labeled with text,

graphics or a combination of both. Each of them should have a character defined as its unique key for access.
Grouped logically by their functionality, they are separated visually by menu separators in groups. For example,

The File menu is a common menu title for tasks that apply to a file, as Open, Save, Close, Print…

// a popup menu

fMenuFile = new TGPopupMenu(gClient->GetRoot());

// adding menu entries

fMenuFile->AddEntry("&Open...",M_FILE_OPEN);

fMenuFile->AddEntry("&Save",M_FILE_SAVE);

fMenuFile->AddEntry("S&ave as...",M_FILE_SAVEAS);

fMenuFile->AddEntry("&Close", -1);

// adding separator

fMenuFile->AddSeparator();

// next group of menu entries

fMenuFile->AddEntry("&Print",M_FILE_PRINT);

fMenuFile->AddEntry("P&rint setup...",M_FILE_PRINTSETUP);

. . .

fMenuFile->AddSeparator();

fMenuFile->AddEntry("E&xit",M_FILE_EXIT);

 Writing a Graphical User Interface 409

First we create the File menu by creating an object of class TGPopupMenu and adding menu entries with

AddEntry method. Its first parameter is a hot string, the second – a menu ID. The ampersand character (&)

denotes shortcut for each menu entry; you can use the letter after it to manage the menu via keyboard. There
are three groups of menu entries separated visually by two separators.

You can add a sub-menu by using the method TGPopupMenu::AddPopup. Its first parameter is again a string,

the second one – a pointer to a TGPopupMenu object that will appear as a sub-menu when the menu entry will

be selected. The often used visual indicator of a sub- menu is a right-facing arrow to the right of the parent
menu item. Generally only one level of cascading menus is recommended and you should be careful in using

more. Next lines show how to create a menu bar with File, Test and Help menus:

// menu bar item layout hints

fMenuBarItemLayout = new TGLayoutHints(kLHintsTop | kLHintsLeft, 0, 4, 0, 0);

fMenuBarHelpLayout = new TGLayoutHints(kLHintsTop | kLHintsRight);

// menu bar

fMenuBar = new TGMenuBar(fMain,100,20,kHorizontalFrame);

// adding popup menus

fMenuBar->AddPopup("&File",fMenuFile,fMenuBarItemLayout);

fMenuBar->AddPopup("&Test",fMenuTest,fMenuBarItemLayout);

fMenuBar->AddPopup("&Help",fMenuHelp,fMenuBarHelpLayout);

Using the method TGMenuBar::AddPopup we add three TGPopupMenu objects to the menu bar fMenuBar.

The first parameter is a hot string used by TGMenuTitle object. When you add a popup menu to the menu bar,

a TGMenuTitle object is created by the menu bar. It is the name of the popup menu. A menu title should have

a one-word name that reflects the purpose of all items within the corresponding popup menu. It should also
have a defined character as its unique access key. The second parameter is the popup menu we would like to
add. The third one is an object of TGLayoutHints type that defines how the menu title will be laid out in the

menu bar. In our example the File and Test menus will be laid out to the left of the menu bar with 4 pixels

distance in between, the Help menu – will be laid out to the right.

The menu classes provide a very flexible menu system: you can enable, disable, add or remove menu items

dynamically. The method HideEntry(menuID) hides the menu entry (the entry will not be shown in the popup

menu). To enable a hidden entry you should call EnableEntry(menuID) method. By default all entries are

enabled. The method DisableEntry(menuID) helps you to disable a menu entry – it will appear in sunken

relieve. The DeleteEntry(menuID) method will delete the specified entry from the menu.

A few words about the menu design. A menu should be kept consistent and simple. All related items need to be
in a popup menu. The cascade menus should be used judiciously. Try to limit them to one, maximum two levels.

There are some rules for naming the menu objects:

 Define unique names within a menu

 Use capitalized one-word names allowing the quick scan of the menu

 Define unique access key for any menu item

 Indicate by ellipsis (…) after the title with no space when a menu item will pop-up a dialog box

The proper kind of graphical menus is a critical point to every application success and depends of three main
factors:

 number of presented items in the menu

 how often the menu is used

 how often the menu contents may change

Toolbar

A toolbar (TGToolBar) is a composite frame that contains TGPictureButton objects. It provides an easy

and fast access to most frequently used commands or options across multiple application screens. Also, it
invokes easily a sub application within an application. All its functions can be obtained by application menus. It
is located horizontally at the top of the main window just below the menu bar. All other subtask and sub-feature
bars are positioned along sides of window.

// toolbar icon files

const char *xpms[] = {

 "x_pic.xpm",

 "y_pic.xpm",

 "z_pic.xpm",

 0

};

// toolbar tool tip text

410 Writing a Graphical User Interface

const char *tips[] = {

 "X Settings",

 "Y Settings",

 "Z Settings",

 0

};

// toolbar button separator

int separator = 5;

// structure containing toolbar button information

ToolBarData_t t[3];

// creation of a toolbar object as a child of main frame

TGToolBar *tb = new TGToolBar(fMain,520,80);

for (int i = 0; i < 3; i++) {

 // filling the ToolBarData_t with information

 t[i].fPixmap = xpms[i]; // icon file

 t[i].fTipText = tips[i]; // tool tip text

 t[i].fStayDown = kFALSE; // button behavior if clicked

 t[i].fId = i+1; // button id

 t[i].fButton = NULL; // button pointer

 if (strlen(xpms[i]) == 0) {

 separator = 5;

 continue;

 }

 tb->AddButton(fMain,&t[i],separator);

 separator = 0;

}

// adding the tool bar to the main frame

fMain->AddFrame(tb, new TGLayoutHints(kLHintsTop | kLHintsExpandX));

// adding a horizontal line as a separator

TGHorizontal3DLine *lh = new TGHorizontal3DLine(fMain);

fMain->AddFrame(lh, new TGLayoutHints(kLHintsTop | kLHintsExpandX));

To have a tool bar in your application you do not need to do anything special – only to create objects: a tool bar
and its picture buttons. This sample code creates the following three toolbar buttons:

First we need to complete a ToolBarData_t structure for each tool bar button before adding it to the tool bar.

This structure contains:

 the icon file name ―filename.xpm‖

 the tool tip text – a short help message explaining the button purpose

 the Boolean variable defining the button behavior when is clicked

 kFALSE – do not stay down

 kTRUE – to stay down

 the button ID

 the button pointer (TGButton *) – should be NULL

We create an array *xpms[] containing the icon file names that will be used for a picture button creation. If you

write only the file names here ROOT will search these files in $ROOTSYS/icons directory. If the icon files are

not there, you should provide the full path name also. The array *tips[] contains the tool tip texts for buttons.

The integer variable separator is used to set the distance between two groups of toolbar buttons. It defines the
amount of pixels to the left for each button.

We create a tool bar object and add the buttons using the AddButton method. The variable separator helps us

to define no space between the buttons in a group (0), and 5 pixels extra-space before and after. All buttons
added via this method will be deleted by the toolbar. On return the TGButton field of the ToolBarData_t

structure is filled in (if the icon pixmap was valid). The first parameter is the window to which the button
messages will be sent. Lastly, we create an object of class TGHorizontal3DLine – a horizontal 3D line. It will

separate the toolbar from the menu bar because the layout hints we define as kLHintsTop |

kLHintsExpandX.

It is user friendly to allow the possibility for the tool bar to be turned on or off (via a menu). If you use a single
tool bar, it should fill the complete width of its parent. When using more than one, you should also think about
setting the bar size to the end of the most right button. This way other bars can be displayed in the same row
below the menu bar.

 Writing a Graphical User Interface 411

Tool bar buttons should have equal size, meaningful and unique icons, and short meaningful tool tip text. The
related buttons should be grouped together by frequency or sequence of use, or importance. Potentially
destructive buttons must be separated from them to avoid accidental activation and potentially catastrophic
results. Temporarily not available items should be displayed grayed out.

List Boxes

The purpose of a list box is to display a collection of items from which single or multiple selection can be made.
It is always visible, having a scroll bar when the displayed area is not enough to show all items. The choices
may be mutually exclusive (a list box with single selection) or not mutually exclusive (a list box with multiple
selection).

The proper usage of the list boxes is for selecting values, or objects, or setting attributes. You have to create
them to display 4 to 8 choices at one time (3 is a required minimum in case of lack of screen space). The list
should contain not more than 40 items accessible by scrolling view (vertical scroll bar). If more are required, you
should provide a method for using search criteria or scoping the options. The best list boxes use is for textual
data or choices. They should be wide enough to display fully all items. When it is not possible, break the long
items with ellipsis and provide tool tip that displays the full item text.

The list box widget is represented by TGListBox, TGLBContainer, TGLBEntry and TGTextLBEntry

classes. Currently entries are simple text strings (TGTextLBEntry). A TGListBox looks a lot like a

TGCanvas. It has a TGViewPort containing a TGLBContainer which contains the entries and it also has a

vertical scrollbar which becomes visible if there are more items than fit in the visible part of the container. The
TGListBox is user callable. The other classes are service classes of the list box. Here is a sample code

showing how to create a list box with ten entries:

// list box widget containing 10 entries

int fFirstEntry = 0, fLastEntry = 10;

char tmp[20];

TGListBox *fListBox = new TGListBox(parent, 90);

for (i = fFirstEntry; i < fLastEntry; i++) {

 sprintf(tmp, "Entry %i", i+1);

 fListBox->AddEntry(tmp, i);

}

fListBox->Resize(150, 80);

parent->AddFrame(fListBox,new TGLayoutHints(kLHintsTop | kLHintsLeft,5,5,5,5));

We create the list box widget passing the parent window pointer and giving an ID number. Next we add entries
with specified string and ID to the list box. Before adding the list box to its parent widget, it should be resized via

Resize(width, height) method. The list box width and height are in pixels. The default entry layout hints

are kLHintsExpandX | kLHintsTop. If you want to add entries using different ones, call the method:

TGListBox::AddEntry(TGLBEntry *lbe, TGLayoutHints *lhints);

It adds the specified TGLBEntry and TGLayoutHints to the list box. There are several methods providing a

flexible entry manipulation: you can insert, add or remove list box items dynamically. The list box entry IDs are
used in these methods and also in event processing routines. In our example the integer variables

fFirstEntry and fLastEntry contain the information about the first and last entry IDs. You can add or

remove a list box entry using them in the following way:

// adding an entry

fLastEntry++;

sprintf(tmp, "Entry %i", fLastEntry);

fListBox->AddEntry(tmp, fLastEntry);

fListBox->MapSubwindows();

fListBox->Layout();

. . .

// removing an entry

if (fFirstEntry < fLastEntry) {

 fListBox->RemoveEntry(fFirstEntry);

 fListBox->Layout();

 fFirstEntry++;

}

A single-selection list box is used for selecting only one item in a list.

A multiple-selection list box permits selection of more than one item. The selected choices should be visible –
you have several choices to do this:

412 Writing a Graphical User Interface

 to mark selected choices with a check mark or highlight them

 to provide a summary list box to the right of the list box, containing the selected choices

 to provide a display-only text control indicating the number of selected choices (its position should
be justified upper-right above the list box)

 if the actions Select All or Deselect All must be quickly or frequently performed, use

command buttons

Combo Boxes

A combo box is as single-selection list box that shows only the currently selected entry and a prompt button
displayed as a downward arrow. The prompt button provides a visual cue that a list box is hidden. Its main
advantage is consuming of quite a bit of screen space. When the user clicks on it, a list pops up, from which a
new choice can be made. After a new item is chosen the combo box folds again showing the new selection.

The combo box widget is represented by the user callable class TGComboBox. The class TGComboBoxPopup is

a service class. The combo box constructor is very similar to the list box one. The first parameter is a parent
widget pointer again, the second – an integer value that will be used as combo box ID. The method used for

adding entries is very similar to the list box method we used before. The method Select(entryID) sets the

current combo box entry.

char tmp[20];

// combo box layout hints

fLcombo = new TGLayoutHints(kLHintsTop | kLHintsLeft,5,5,5,5);

// combo box widget

TGComboBox *fCombo = new TGComboBox(parent,100);

for (i = 0; i < 10; i++) {

 sprintf(tmp, "Entry%i", i+1);

 fCombo->AddEntry(tmp, i+1);

}

fCombo->Resize(150, 20);

// Entry3 is selected as current

fCombo->Select(2);

parent->AddFrame(fCombo, fLcombo);

You have the same flexibility to add, insert or remove entries. As with list boxes you can retrieve the information

for currently selected item via GetSelected or GetSelectedEntry methods. The first one returns the entry

ID, the second – the current entry pointer (TGLBEntry *).

Sliders

A slider is a scale with an indicator (slider) that you can drag to choose a value from a predefined range. It may
be oriented horizontally or vertically. In both cases it provides an excellent indication of where a value exists
within a range of values.

The class TGHSlider represents the horizontal slider; TGVSlider – the vertical one. Both inherit from the

base class TGSlider that creates the main slider parameters: the range of values within a value can be

selected; the indicator type; the tick mark scale. Using its methods SetRange, SetPosition and SetScale

you can set these parameters. To retrieve the set slider value you can call GetPosition method.

Next sample code creates a horizontal slider hslider with a tick mark of type kSlider1. Its width is 150

pixels, and its scale is placed down (kScaleDownRight). The last parameter in the TGHSlider constructor is

the slider ID. It will be used for event processing. The methods SetRange and SetPosition set the range

and the current tick mark position of the slider.

hslider = new TGHSlider(parent,150,kSlider1 | kScaleDownRight,sID);

hslider->SetRange(0,50);

 Writing a Graphical User Interface 413

hslider->SetPosition(39);

Slider values can be set by using the mouse to drag the slider across the scale until the desired value is
reached. Another way is to click in the slider trough instead of dragging.

Double Slider

Double slider widgets allow easy selection of a min and a max value out of a range. They can be either

horizontal or vertical oriented. There is a choice of different types of tick marks: kDoubleScaleNo,

kScaleDownRight, kDoubleScaleBoth.

To change the min value you should press the left mouse button near to the left (TGDoubleHSlider) or

bottom (TGDoubleHSlider) edge of the slider. Alternatively, to change the max value you need to press the

mouse near to the right (TGDoubleHSlider) or top (TGDoubleHSlider) edge of the slider. To change both

values simultaneously you should press the left mouse button near to the center of the slider.

TGDoubleSlider is an abstract base class that creates the main slider parameters. The concrete class to use

for a vertical double slider is TGDoubleVSlider and TGDoubleHSlider for a horizontal one. The double

slider constructors are similar to those of the other sliders. If you set kDoubleScaleNo as a scale parameter

no scale will be drawn. Here is an example:

vDslider = new TGDoubleVSlider(p,100,kDoubleScaleNo,dsliderID);

vDslider->SetRange(-10,10);

Triple Slider

The new TGTripleHSlider and TGTripleVSlider classes inherit from the double slider widgets and allow

easy selection of a range and a pointer value. The pointer position can be constrained into the selected range or
can be relative to it.

To change the slider range value press the left mouse button near to the left/right (top/bottom) edges of the
slider. To change both values simultaneously press the mouse button near to the slider center. To change
pointer value press the mouse on the pointer and drag it to the desired position.

fSlider = new TGTripleHSlider(parent, 100, kDoubleScaleBoth, kSLD_ID,

 kHorizontalFrame);

parent->AddFrame(fSlider, new TGLayoutHints(kLHintsExpandX, 5, 5, 5, 5));

fSlider->SetConstrained(kTRUE);

fSlider->SetRange(rmin, rmax);

fSlider->SetPosition(pmin, pmax);

fSlider ->SetPointerPosition(pvalue);

Progress Bars

A progress bar is a widget that shows that an operation is in progress and how much time is left. It is a long
rectangular bar, initially empty, that fills with a color as a process is being performed. The filled-in area indicates

the percentage of the process that has been completed. You should use this widget for waits exceeding one

minute. For a very time consuming operation it is better to break the operation into subtasks and provide a

progress bar for each of them.

A progress bar may be oriented horizontally or vertically. The horizontally oriented progress bar fills with a color
from left to right; the vertically oriented – from bottom to top. A percent complete message provides an

414 Writing a Graphical User Interface

indication of the completed part of the process. It is a good practice to include some descriptive text of the
process to keep users informed and entertained while they are waiting for process completion.

The picture below shows the progress bars you can create using the classes TGProgressBar,

TGHProgressBar, and TGHProgressBar.

// vertical frame with three horizontal progressive bars

TGVerticalFrame *vframe = new TGVerticalFrame(fMain, 10, 10);

fHProg1 = new TGHProgressBar(vframe,TGProgressBar::kStandard,300);

fHProg1->ShowPosition();

fHProg1->SetBarColor("yellow");

fHProg2 = new TGHProgressBar(vframe,TGProgressBar::kFancy,300);

fHProg2->SetBarColor("lightblue");

fHProg2->ShowPosition(kTRUE,kFALSE,"%.0f events");

fHProg3 = new TGHProgressBar(vframe,TGProgressBar::kStandard,300);

fHProg3->SetFillType(TGProgressBar::kBlockFill);

vframe->AddFrame(fHProg1,new TGLayoutHints(kLHintsTop | kLHintsLeft |

 kLHintsExpandX,5,5,5,10));

vframe->AddFrame(fHProg2,new TGLayoutHints(kLHintsTop | kLHintsLeft |

 kLHintsExpandX,5,5,5,10));

vframe->AddFrame(fHProg3,new TGLayoutHints(kLHintsTop | kLHintsLeft |

 kLHintsExpandX,5,5,5,10));

vframe->Resize(200, 200);

Static Widgets

The classes TGLabel and TGIcon show some information - text or graphics. The line below creates a label

object. The syntax is very simple: you specify the parent widget and a string object holding the desired text.

TGLabel *label = new TGLabel(parentWidget, "Label‟s string");

Next sample creates an icon object. First we create an object of type TGPicture. The TGPicture objects are

never created directly by the application code. We call TGClient telling it the pixmap‘s file name to create a

TGPicture object and, in turn, it will return a pointer to the created object. If the pixmap file cannot be found

the returned pointer will be NULL. As usual, the first parameter of a TGIcon constructor is the parent frame. The

second one is the TGPicture object holding the pixmap we want to show. Last two parameters define the

width and height of pixmap in pixels. In the end we add the created icon object to its parent.

// icon widget

const TGPicture *ipic =(TGPicture *)gClient->GetPicture("leaf.xpm");

TGIcon *icon = new TGIcon(parent,ipic,40,40);

parent->AddFrame(icon,new TGLayoutHints(kLHintsLeft | kLHintsBottom,1,15,1,1));

The TGPicture objects are cached by TGClient in order to keep the resource usage low and to improve the

efficiency of the client-server windowing systems. TGClient will check whether a pixmap with the same name

was already loaded before to register a new picture object. If it finds it, it will return a pointer to the existing
object. Also, it will increase the usage counter for the object.

All TGPicture objects are managed by the class TGPicturePool. TGClient creates an object of this type

upon initialization. Normally your application program does not deal directly with this class because all
manipulations go through TGClient class.

Once you have finished with using of the TGPicture object, you should call the method

TGClient::FreePicture(const TGPicture *pic) to free it. The usage counter of the picture object will

be decreased and when it reaches zero – the TGPicture object will be deleted.

Status Bar

The status bar widget is used to display some information about the current application state: what is being
viewed in the window, a descriptive message about selected objects, or other no interactive information. It may
also be used to explain highlighted menu and tool bar items.

An application can only have one status bar at a time.

 Writing a Graphical User Interface 415

There is nothing special to create a status bar in your application. You should decide how many fields you need
to present the current application state to the user. By default a status bar consists of one part. Multiple parts

can be created by SetParts method. Its first parameter is an array of integers that give the percentage size of

each part. The second parameter gives the number of status bar parts. Using SetText method you can set a

text for any part.

// status bar

Int_t parts[] = {33, 10, 10, 47};

fStatusBar = new TGStatusBar(fMain,50,10,kHorizontalFrame);

fStatusbar->SetParts(parts,4);

fMain->AddFrame(fStatusBar,new TGLayoutHints(kLHintsBottom | kLHintsLeft |

 kLHintsExpandX,0,0,2,0));

. . .

// fill status bar fields with information; selected is the object

// below the cursor; atext contains pixel coordinates info

fStatusBar->SetText(selected->GetTitle(),0);

fStatusBar->SetText(selected->GetName(),1);

fStatusBar->SetText(atext,2);

fStatusBar->SetText(selected->GetObjectInfo(px,py),3);

Splitters

A window can be split into two parts (panes) by using a horizontal or a vertical splitter. A horizontal splitter
resizes the frames above and below of it; a vertical splitter resizes the frames left and right of it.

This widget is represented by TGSplitter, TGHSplitter, and TGVSplitter classes. Currently there is no

special graphics representation for splitter widgets; only the cursor changes when crossing a splitter.

There is nothing special to create a splitter – two lines of code only:

TGHSplitter *hsplitter = new TGHSplitter(fVf);

hsplitter->SetFrame(fH1,kTRUE);

You call a horizontal TGHSplitter or a vertical TGVSplitter splitter constructor and after you set the frame

to be resized via SetFrame method. In spite of that, there are rules to be followed when you create a splitter in

your application.

For a horizontal splitter they are:

 the parent of a horizontal splitter must inherit from TGCompoziteFrame and must have a vertical

layout

 the above resized frame must have kFixedHeight option set

 use layout hints kLHintsTop | kLHintsExpandX when adding the above resized frame to its

parent

 use layout hints kLHintsBottom | kLHintsExpandX | kLHintsExpandY when adding the

bottom resized frame to its parent

 set the above frame to be resized using SetFrame method; the second parameter should be
kTRUE

You can see these rules in the code below:

// Create horizontal splitter

fVf = new TGVerticalFrame(fMain,10,10);

fH1 = new TGHorizontalFrame(fVf,10,10, kFixedHeight);

fH2 = new TGHorizontalFrame(fVf,10,10);

fFtop = new TGCompositeFrame(fH1,10,10, kSunkenFrame);

fFbottom = new TGCompositeFrame(fH2,10,10,kSunkenFrame);

fLtop = new TGLabel(fFtop,"Top Frame");

fLbottom = new TGLabel(fFbottom,"Bottom Frame");

fFtop->AddFrame(fLtop,new TGLayoutHints(kLHintsLeft | kLHintsCenterY,3,0,0,0));

fFbottom->AddFrame(fLbottom,new TGLayoutHints(kLHintsLeft | kLHintsCenterY,

 3,0,0,0));

416 Writing a Graphical User Interface

fH1->AddFrame(fFtop,new TGLayoutHints(kLHintsTop | kLHintsExpandY |

 kLHintsExpandX,0,0,1,2));

fH2->AddFrame(fFbottom,new TGLayoutHints(kLHintsTop | kLHintsExpandY |

 kLHintsExpandX,0,0,1,2));

fH1->Resize(fFtop->GetDefaultWidth(),fH1->GetDefaultHeight()+20);

fH2->Resize(fFbottom->GetDefaultWidth(),fH2->GetDefaultHeight()+20);

fVf->AddFrame(fH1, new TGLayoutHints(kLHintsTop | kLHintsExpandX));

TGHSplitter *hsplitter = new TGHSplitter(fVf);

hsplitter->SetFrame(fH1,kTRUE);

fVf->AddFrame(hsplitter,new TGLayoutHints(kLHintsTop | kLHintsExpandX));

fVf->AddFrame(fH2,

new TGLayoutHints(kLHintsBottom | kLHintsExpandX | kLHintsExpandY));

For a vertical splitter the rules are:

 the parent of a vertical splitter must inherit from TGCompoziteFrame and must have a horizontal

layout

 the left resized frame must have kFixedWidth option set

 use layout hints kLHintsLeft | kLHintsExpandY when adding the left resized frame to

the parent

 use layout hints kLHintsRight|kLHintsExpandX |kLHintsExpandY when adding the right

resized frame to the parent

 set the left frame to be resized using SetFrame method; the second parameter should be
kTRUE

Next is a sample code for a vertical splitter:

// Create vertical splitter

fHf = new TGHorizontalFrame(fMain, 50, 50);

fV1 = new TGVerticalFrame(fHf, 10, 10, kFixedWidth);

fV2 = new TGVerticalFrame(fHf, 10, 10);

fFleft = new TGCompositeFrame(fV1, 10, 10, kSunkenFrame);

fFright = new TGCompositeFrame(fV2, 10, 10, kSunkenFrame);

fLleft = new TGLabel(fFleft, "Left Frame");

fLright = new TGLabel(fFright, "Right Frame");

fFleft->AddFrame(fLleft,new TGLayoutHints(kLHintsLeft | kLHintsCenterY,3,0,0,0));

fFright->AddFrame(fLright,new TGLayoutHints(kLHintsLeft | kLHintsCenterY,

 3,0,0,0));

fV1->AddFrame(fFleft,new TGLayoutHints(kLHintsTop | kLHintsExpandX |

 kLHintsExpandY,0,0,5,5));

fV2->AddFrame(fFright,new TGLayoutHints(kLHintsTop | kLHintsExpandX |

 kLHintsExpandY,0,0,5,5));

fV1->Resize(fFleft->GetDefaultWidth()+20, fV1->GetDefaultHeight());

fV2->Resize(fFright->GetDefaultWidth(), fV1->GetDefaultHeight());

fHf->AddFrame(fV1,new TGLayoutHints(kLHintsLeft | kLHintsExpandY));

splitter = new TGVSplitter(fHf,2,30);

splitter->SetFrame(fV1, kTRUE);

fHf->AddFrame(splitter,new TGLayoutHints(kLHintsLeft | kLHintsExpandY));

fHf->AddFrame(fV2,new TGLayoutHints(kLHintsRight|kLHintsExpandX|kLHintsExpandY));

TGCanvas, ViewPort and Container

When all display information cannot be presented in a window, the additional information must be found and
made visible. A TGCanvas is a frame containing two scrollbars (horizontal and vertical) and a viewport

(TGViewPort). The viewport acts as the window through which we look at the contents of the container frame.

A TGContainer frame manages a content area. It can display and control a hierarchy of multi-column items,

and provides the ability to add new items at any time. By default it doesn't map sub-windows, which are items of
the container. In this case sub-window must provide DrawCopy method, see for example TGLVEntry class. It

is also possible to use option which allows mapping sub-windows. This option has much slower drawing speed
in case of more than 1000 items placed in container. To activate this option the fMapSubwindows data member
must be set to kTRUE (for example TTVLVContainer class).

A scroll bar only is available when scrolling is necessary. It consists of three elements: a slider box and two
directional scroll arrows (buttons).

fCanvas = new TGCanvas(parent, w, h);

fContents = new TGListTree(fCanvas, kHorizontalFrame);

fContents->Associate(parent);

 Writing a Graphical User Interface 417

parent->AddFrame(fCanvas,new TGLayoutHints(kLHintsExpandX|kLHintsExpandY));

// or

fCanvas = new TGCanvas(parent, w, h);

fContents = new TGListTree(fCanvas->GetViewPort(),100,100,kHorizontalFrame);

fContents->SetCanvas(fCanvas);

fContents->Associate(parent);

fCanvas->SetContainer(fContents);

parent->AddFrame(fCanvas,new TGLayoutHints(kLHintsExpandX | kLHintsExpandY));

The TGContainer class can handle the following keys:

F7, Ctnrl-F activate a search dialog

F3, Ctnrl-G continue to search

End go to the last item in container

Home go to the first item in container

PageUp navigate up

PageDown navigate down

arrow keys navigate inside container

Return/Enter equivalent to double click of the mouse button

Contrl-A select all items

Space invert selection.

Embedded Canvas

This class creates a TGCanvas in which a well known ROOT TCanvas is embedded. A pointer to the TCanvas

can be obtained via the GetCanvas() member function.

fEc1 = new TRootEmbeddedCanvas("ec1",fParent,100,100);

fParent ->AddFrame(fEc1, new TGLayoutHints(kLHintsExpandX | kLHintsExpandY));

fEc2 = new TRootEmbeddedCanvas("ec2",fParent,100,100);

fParent ->AddFrame(fEc2, new TGLayoutHints(kLHintsExpandX | kLHintsExpandY));

fEc1->GetCanvas()->SetBorderMode(0);

fEc2->GetCanvas()->SetBorderMode(0);

fEc1->GetCanvas()->SetBit(kNoContextMenu);

fEc1->GetCanvas()->Connect("ProcessedEvent(Int_t,Int_t,Int_t,TObject*)",

 "MyClass", this,

 "HandleMyCanvases(Int_t,Int_t,Int_t,TObject*)");

To embed a canvas derived from a TCanvas do the following:

TRootEmbeddedCanvas *embedded = new TRootEmbeddedCanvas(0, p, w, h);

// note name must be 0, not null string ""

Int_t wid = embedded->GetCanvasWindowId();

TMyCanvas *myc = new TMyCanvas("myname", 10, 10, wid);

embedded->AdoptCanvas(myc);

// the MyCanvas is adopted by the embedded canvas and will be destroyed by it

418 Writing a Graphical User Interface

The ROOT Graphics Editor (GED)
Everything drawn in a ROOT canvas is an object. There are classes for all objects, and they fall into hierarchies.
In addition, the ROOT has fully cross-platform GUI classes and provides all standard components for an
application environment with common ‗look and feel‘. The object-oriented, event-driven programming model
supports the modern signals/slots communication mechanism. It handles user interface actions and allows total
independence of interacting objects and classes. This mechanism uses the ROOT dictionary information and
the CINT the C++ Interpreter to connect signals to slots methods.

Therefore, all necessary elements for an object-oriented editor design are in place. The editor complexity can

be reduced by splitting it into discrete units of so-called object editors. Any object editor provides an object

specific GUI. The main purpose of the ROOT graphics editor is the organization of the object editors‘
appearance and the task sequence between them.

Object Editors

Every object editor follows a simple naming convention: to have as a name the object class name concatenated
with ‗Editor‘ (e.g. for TGraph objects the object editor is TGraphEditor). Thanks to the signals/slots

communication mechanism and to the method DistanceToPrimitive() that computes a ‗‗distance‘‘ to an

object from the mouse position, it was possible to implement a signal method of the canvas that says which is
the selected object and to which pad it belongs. Having this information the graphics editor loads the
corresponding object editor and the user interface is ready for use. This way after a click on ‗axis‘—the axis
editor is active; a click on a ‗pad‘ activates the pad editor, etc.

The algorithm in use is simple and is based on the object-oriented relationship and communication. When the
user activates the editor, according to the selected object <obj> in the canvas it looks for a class name

<obj>Editor. For that reason, the correct naming is very important. If a class with this name is found, the

editor verifies that this class derives from the base editor class TGedFrame. If all checks are satisfied, the editor

makes an instance of the object editor. Then, it scans all object base classes searching the corresponding
object editors. When it finds one, it makes an instance of the base class editor too.

Once the object editor is in place, it sets the user interface elements according to the object‘s status. After that,
it is ready to interact with the object following the user actions.

The graphics editor gives an intuitive way to edit objects in a canvas with immediate feedback. Complexity of
some object editors is reduced by hiding GUI elements and revealing them only on users‘ requests.

An object in the canvas is selected by clicking on it with the left mouse button. Its name is displayed on the top
of the editor frame in red color. If the editor frame needs more space than the canvas window, a vertical scroll
bar appears for easy navigation.

Figure 25-4 Histogram, pad and axis editors

Editor Design Elements

The next rules describe the path to follow when creating your own object editor that will be recognized and
loaded by the graphics editor in ROOT, i.e. it will be included as a part of it.

(a) Derive the code of your object editor from the base editor class TGedFrame.

(b) Keep the correct naming convention: the name of the object editor should be the object class name

concatenated with the word „Editor‟.

(c) Provide a default constructor.

(d) Use the signals/slots communication mechanism for event processing.

(e) Implement the virtual method SetModel(TObject *obj) where all widgets are set with the current

object‘s attributes. This method is called when the editor receives a signal from the canvas saying that an object
is the selected.

 Writing a Graphical User Interface 419

(f) Implement all necessary slots and connect them to appropriate signals that GUI widgets send out. The GUI
classes in ROOT are developed to emit signals whenever they change a state that others might be interested.
As we noted already, the signals/slots communication mechanism allows total independence of the interacting
classes.

Creation and Destruction

GED-frames are constructed during traversal of class hierarchy of the selected object, executed from method
TGedEditor::SetModel(). When a new object of a different class is selected, the unneeded GED-frames

are cached in memory for potential reuse. The frames are deleted automatically when the editor is closed.

Note: A deep cleanup is assumed for all frames put into the editor. This implies:

 do not share the layout-hints among GUI components;

 do not delete child widgets in the destructor as this is done automatically.

Using Several Tabs

Sometimes you might need to use several tabs to organize properly your class-editor. Each editor tab is a
resource shared among all the class-editors. Tabs must be created from the constructor of your editor-class by
using the method:

TGVerticalFrame* TGedFrame::CreateEditorTabSubFrame(const Text_t *name),

It returns a pointer to a new tab container frame ready for use in your class. If you need to hide/show this frame
depending on the object‘s status, you should store it in a data member. See for examples: TH1Editor,

TH2Editor.

Base-Class Editors Control

Full control over base-class editors can be achieved by re-implementing virtual method void
TGedFrame::ActivateBaseClassEditors(TClass *cl). It is called during each compound editor

rebuild and the default implementation simply offers all base-classes to the publishing mechanism.

To prevent inclusion of a base-class into the compound editor, call:

void TGedEditor::ExcludeClassEditor(TClass* class, Bool_t recurse)

Pointer to the compound GED-editor is available in TGedFrame‗s data-member:

TGedEditor *fGedEditor

Ordering of base-class editor frames follows the order of the classes in the class hierarchy. This order can be
changed by modifying the value of TGedFrame‘s data member Int_t fPriority. The default value is 50;

smaller values move the frame towards to the top. This priority should be set in the editor constructor.

Drag and Drop
Drag and Drop support is introduced for Linux (via Xdnd - the drag and drop protocol for X window system) and
for Windows (via Clipboard). Users can selects something in ROOT with a mouse press, drags it (moves the
mouse while keeping the mouse button pressed) and releases the mouse button someplace else. When the
button is released the selected data is "dropped" at that location. This way, a histogram from an opened ROOT
file in the browser can be dragged to any TCanvas.

A script file from the browser can be dropped to a TGTextView or TGTextEdit widget in TGTextEditor.

On Linux, it is possible to drag objects between ROOT and an external application. For example to drag a
macro file from the ROOT browser to the Kate editor. On Windows, drag and drop works only within a single
ROOT application (for the time being), but works also from Windows Explorer to TCanvas ot to TGTextEdit.

420 Writing a Graphical User Interface

Drag and Drop Data Class

The Drag and Drop Cata class TDNDdata is used to describe and handle the transferred data during an drag

and drop operation. It consists of:

Atom_t fDataType : atom describing the data type.

Atom_t fAction : atom describing the action (copy, move, link); currently, only copy is used.

void *fData : actual data (buffer).

Int_t fDataLength : length (size) of data buffer.

Currently two types are recognized by ROOT: "application/root" for ROOT objects and "text/uri-list" for
path/filenames(uri comes from Unique Resource Identifier). A text/uri-list is a standard file listing format for drag

and drop that specifies a list of files (each file per line). Each line ends with a carriage return and newline \r\n.

File names have to be valid, url-encoded URIs as shown below:

file://localhost/usr/bin/opera[\r\n] or file://localhost/c:/programs/myfile.txt[\r\n]

file://server/data/software.xml[\r\n] or http://root.cern.ch/root/images/ftpstats.gif[\r\n]

The atoms and the drag and drop manager (TGDNDManager), are created at the main application creation time

(class TGMainFrame).

Setting a Drag Source - first, create and fill data:

TH1F *h = new TH1F("h","h",1000,-3,3);

h->FillRandom("gaus",50000);

TDNDdata data;

TBufferFile *buf = new TBufferFile(TBuffer::kWrite);

buf->WriteObject(h);

data.fData = buf->Buffer();

data.fDataLength = buf->Length();

data.fDataType = gVirtualX->InternAtom("application/root");

Then, set a GUI widget as DND Source, and associate the data. Source widget can be any class inheriting from
TGFrame.

SourceWidget = new TGIcon(this, gClient->GetPicture("f1_s.xpm"), 32, 32);

SourceWidget->SetDNDSource(kTRUE);

SourceWidget->SetDNDdata(&data);

Setting A Drop Target - set the widget as DND Target, and set the DND types it must be aware of: as
SourceWidget, TargetWidget can be any class inheriting from TGFrame.

TargetWidget = new TRootEmbeddedCanvas("Target", this, 700, 400);

TargetWidget->SetDNDTarget(kTRUE);

gVirtualX->SetDNDAware(TargetWidget->GetId(), gDNDManager->GetTypeList());

gDNDManager->GetTypeList() returns the list of types recognized by ROOT.

Note that the Widget may receive drag and drop messages with drop-data it does not understand, and thus it
should only accept drops of the proper type.

Handling Drag and Drop Events

Once a widget has been set as DND Target, it has to handle Drag and Drop events.

Atom_t HandleDNDenter(Atom_t *typelist) - this method is used to handle a drag operation entering

the widget. The typelist parameter is the list of types the data contains. If the list contains one type the widget
understands, it should return this type to notify the manager that the drop would be accepted, i.e. :

for (int i = 0; typelist[i] != kNone; ++i) {

 if (typelist[i] == gVirtualX->InternAtom("application/root"))

 // accept "application/root" DND type

 return typelist[i];

}

// other type not accepted

return kNone;

Atom_t HandleDNDposition(Int_t x,Int_t y,Atom_t action,Int_t xroot, Int_t yroot)-

this method should be used to handle the drag position in widget coordinates (x,y) or in root coordinates

(xroot,yroot).

// get the pad over which the cursor is

TPad *pad = fCanvas->Pick(x, y, 0);

if (pad) {

 pad->cd();

 gROOT->SetSelectedPad(pad);

}

return action;

/usr/bin/opera%5b/r/n
file://server/data/software.xml%5b/r/n

 Writing a Graphical User Interface 421

Bool_t HandleDNDdrop(TDNDdata *data) - this is the place where the widget actually receives the data.

First, check the data format (see description of TDNDData - Drag and Drop data class) and then use it

accordingly. In the case of ROOT object, here is an example of how to retrieve it:

if (data->fDataType == gVirtualX->InternAtom("application/root")) {

 TBufferFile buf(TBuffer::kRead, data->fDataLength, (void *)data->fData);

 buf.SetReadMode();

 TObject *obj = (TObject *)buf.ReadObjectAny(TObject::Class());

 if (obj->IsA()->GetMethodAllAny("Draw"))

 obj->Draw();

}

In the case of URI/list, the use is:

if (data->fDataType == gVirtualX->InternAtom("text/uri-list")) {

 TString sfname((char *)data->fData);

 TUrl uri(sfname.Data());

 if (sfname.EndsWith(".jpg")

 TImage *img = TImage::Open(uri.GetFile());

}

Bool_t HandleDNDleave() is used if a specific action has to be performed when the drag operation leaves

the widget.

 ROOT/Qt Integration Interfaces 423

26 ROOT/Qt Integration
Interfaces

Qt-ROOT Implementation of TVirtualX Interface (BNL)
Qt-ROOT implementation of TVirtualX (Qt-layer) is to provide a convenient way of creating the complex end-

user applications that require both Qt GUI and ROOT features. The primary goal is to allow ―embedding‖ the
ROOT classes like TCanvas and TPad into the arbitrary Qt widgets and using it seamlessly with other Qt-based

components and Qt-based third party libraries. TGQt ROOT class, a Qt-based implementation of TVirtualX

interface is an optional ROOT component. The implementation was developed and is supported by the STAR
collaboration at Brookhaven National Laboratory.

Installation

Qt Package Installation and Configuration

ROOT Qt-layer requires a ―good‖ properly configured Qt package version. To install it, one has to:

1. Make sure the adequate version of Qt system. Even though Qt ROOT implementation theoretically can work
with any Qt release version 3.xx, we found the earlier versions of the package not reliable and recommend
installing the Qt version 3.3 or higher. The package was tested against Qt 4.3 also (Qt 4.3 and higher versions
contain some features introduced by TrollTech to back the ROOT applications).

2. Check the Qt package configuration and its compilation options are consistent with those used to compile
and install ROOT alone. For Qt 3.x, we recommend configuring Qt as follows:

./configure –thread –no-xft –qt-gif –no-exeptions

I.e. one is required to build the Qt version with the "thread" support and with ―no exceptions". Generally,

you are free to select the remaining Qt options like the types of the different image formats provided etc. You
can check the Qt installation parameters by looking up the file:

more $QTDIR/config.status

No special flag for Qt 4.3 build and higher have been set yet to make QtRoot working.

3. Attention. The Qt port for 4.3 and above versions should be considered as an experimental one. Most
examples in this manual are for Qt version 3.3 and they need to be adjusted for Qt 4.3.x.

Qt-layer Installation

The Qt-layer is included into the ROOT distribution kit. To install it one has to configure ROOT. The installation
does not change any other components of the ROOT package. It produces several extra-shared libraries that
may be dynamically loaded into the ROOT session at start time with the regular ROOT plug-in mechanism to
replace the ―native‖ GUI interface. To install Qt-layer one should follow the ROOT installation procedure
providing the QTDIR environment variable points to the proper version of Qt system. Many Linux flavors come
with the pre-installed Qt. May sure you are not going to pick the obsolete version.

% cd root

% ./configure <target> --enable-qt

% gmake

% gmake install

Qt Main C++ Classes CINT Dictionary

The ROOT CINT dictionary allows to call the Qt main classes directly from the ROOT command prompt is an
optional component and it is not created during the ―Qt-layer installation‖. To build / re-build the Qt main classes
ROOT dictionary one can invoke the make

% cd root

% gmake qtcint

The dictionary contains so-called Qt main classes as defined by TrollTech on the Web page:
http://doc.trolltech.com/3.3/mainclasses.html. The dictionary is NOT loaded automatically and it should be
loaded by the user ROOT macro as needed.

http://www.star.bnl.gov/
http://www.bnl.gov/
http://doc.trolltech.com/3.3/mainclasses.html

424 ROOT/Qt Integration Interfaces

Qt-layer Configuration

Any ROOT-based application should be configured to use Qt-layer using ROOT ―Environment Setup‖. The
correct QTDIR environment variable to locate the proper version of Qt package should be provided as well.

There are several ways to customize the ROOT setup environment to activate Qt-layer.

Look up at $ROOTSYS/etc/system.rootrc. Find there the definition of Gui.Backend and Gui.Factory:

GUI specific settings

Gui.Backend: native

Gui.Factory: native

Now you can either edit the file $ROOTSYS/etc/system.rootrc or provide your own custom .rootrc

redefine the options:

GUI specific settings

Gui.Backend: qt

Gui.Factory: qt

If you need to switch often from native layer to qt one back and force you may find convenient to define the type
of GUI using some external environment variable defining options indirectly:

GUI specific settings

Gui.Backend: $(GUI)

Gui.Factory: $(GUI)

The last step is to make sure your LD_LIBRARY_PATH variable point to the $QTDIR/lib directory. Optionally,

you can define the Qt Widget ―look and feel‖ using the option Gui.Style option. The number of different styles

to choose from is defined by your local Qt installation. Usually you can choose from ―window‖, ―motif‖, ―cde‖,

―motifplus‖, ―platinum‖, ―sgi‖, ―compact‖, ―windowsxp‖, ―aqua‖ or ―macintosh‖. For example, the option

defined below will force the ―windows‖ look and feel on any platform.

Qt GUI style setting

Gui.Style: windows

The default style is so-called ―native‖ style. That is defined by the current application environment.

Applications

As soon as you customize ROOT ―Environment Setup‖ to use Qt-layer you can start any ROOT session or
stand-alone ROOT-based applications and … even though your applications will be using the Qt package you
should not see any difference. This merely means if the only thing you want to do is just use ROOT or some
ROOT-based stand-alone application ―as is‖ then you probably do not need to switch to Qt-layer and should
skip this section entirely. It is recommended you communicate the lower graphical layer via the generic
TVirtualX interface provided by the global gVirtualX.

Qt-based ROOT Applications

―ROOT application‖ is the application that either instantiates the ROOT TApplication / TRint class and

enters the ROOT event loop or is the shared library that can be loaded into the already running ROOT
application via TSystem::Load method or via ROOT plug-in mechanism. You must neither initialize Qt

QApplication nor enter the Qt event loop. Qt-layer takes care about these two steps. What you need is to

instantiate the Qt object of your choice and to keep playing ROOT rules.

#include <TRint.h>

#include <qpushbutton.h>

int main(int argc, char **argv) {

 // Create an interactive ROOT application

 TRint *theApp = new TRint("Rint", &argc, argv);

 // Create Qt object within ROOT application

 QPushButton hello("Hello world!", 0);

 hello.resize(100, 30);

 hello.show();

 // and enter the ROOT event loop...

 theApp->Run();

}

Under UNIX, you can build the stand-alone ROOT HelloWord Qt-based application with the command

g++ `root-config --cflags --glibs` -I$QTDIR/include -L$QTDIR/lib \

 -lqt-mt HelloWord.cxx -o HelloWord

ROOT-based Qt Applications

―Qt application‖ is the application that either instantiates the Qt QApplication and enters the Qt event loop or

is the shared library that can be loaded into the already running Qt application via Qt plug-in mechanism. You

 ROOT/Qt Integration Interfaces 425

must neither initialize ROOT TApplication / TRint nor enter the ROOT event loop. Qt-layer takes care

about both of these steps. What you need is just to instantiate the embedded and regular ROOT objects of your
choice and keep playing Qt rules. ROOT-based Qt applications treat the ―native‖ style of the ROOT
Gui.Backend and Gui.Factory parameters as ―qt‖. For example,

// Minimal ROOT based Qt example

#include <qapplication.h>

#include "TGraph.h"

#include "TQtWidget.h"

#include "TCanvas.h"

int main(int argc, char **argv) {

 QApplication *app = new QApplication(argc, argv);

 TQtWidget *MyWidget= new TQtWidget(0,"MyWidget");

 // Create any other Qt-widget here

 MyWidget->show();

 MyWidget->GetCanvas()->cd();

 TGraph *mygraph;

 float x[3] = {1,2,3};

 float y[3] = {1.5, 3.0, 4.5};

 mygraph = new TGraph(3,x,y);

 mygraph->SetMarkerStyle(20);

 mygraph->Draw("AP");

 MyWidget->GetCanvas()->Update();

 app->exec();

 return 0;

}

The code above can be converted into the running application using qmake, TrollTech provided, build utility. As

soon as you have qmake project file HelloCanvas.pro:

Automatically generated by qmake (1.07a) Sun Jun 26 02:03:47 2005

Adjusted by hand to include $ROOTSYS/include/rootcint.pri file

TEMPLATE = app thread

CONFIG -= moc

INCLUDEPATH += .

include "by hand" the qmake include file from

ROOT distribution to define

1. include path to the ROOT system header files

2. the list of the ROOT shared libraries to link

Qt application against of

3. qmake rules to generate ROOT/Cint dictionaries

include("$(ROOTSYS)/include/rootcint.pri")

Input

SOURCES += HelloCanvas.cxx

 You can get the running ROOT-based Qt application with the Unix shell commands:

qmake HelloCanvas.pro

make

HelloCanvas

Qt Project for Creation of ROOT Shared Libraries with Qt Components and
ROOT Dictionaries

 It is possible and desirable to create the ROOT-based Qt application with TrollTech provided qmake utility. To

do that one should include one qmake include file, namely, $ROOTSYS/include/rootcint.pri with one

extra line in the project file (as the example above has revealed). The include file defines all necessary
components one needs to compile and link the healthy Qt application against of the ROOT shared libraries. It
contains the qmake rules to create the ROOT/CINT dictionary from the list of the provided header files.

For example, we may convert the stand-alone Qt-based ROOT application above into C++ class with

RootCint dictionary, that one loads into the interactive ROOT session and invokes interactively. This task

requires four simple files.

1. Class dictionary definition file LinkDef.h:

#ifdef __CINT__

426 ROOT/Qt Integration Interfaces

#pragma link off all globals;

#pragma link off all classes;

#pragma link off all functions;

#pragma link C++ class TMyQButton;

#endif

2. Class header file TMyQButton.h:

#ifndef ROOT_TMyQButton

#define ROOT_TMyQButton

#include "Rtypes.h"

class QPushButton;

class TVirtualPad;

class TMyQButton {

private:

 QPushButton *fMyButton;

public:

 TMyQButton(const char*name="");

 virtual ~TMyQButton();

 void SetSize(UInt_t w, UInt_t h);

 void Show(Bool_t show=kTRUE);

 void SetText(const char *text);

 void SetOn(Bool_t on=kTRUE);

 void SetStyle(const char * style);

};

#endif

 3. Class implementation file TMyQButton.cxx:

#include "TMyQButton.h"

#include <qpushbutton.h>

// This class allow you to create and manipulate the QPushButton interactively

TMyQButton::TMyQButton(const char *name) {

 // Create Qt QPushButton interactively

 fMyButton = new QPushButton(name,0);

}

TMyQButton::~TMyQButton() { delete fMyButton; }

void TMyQButton::SetSize(UInt_t w, UInt_t h) { // Resize the Qt button

 fMyButton->resize(w,h);

}

void TMyQButton::Show(Bool_t show) { // Show / hide the button

 if (show) fMyButton->show();

 else fMyButton->hide();

}

void TMyQButton::SetText(const char *text) { // Set / change the button text

 fMyButton->setText(text);

}

void TMyQButton::SetOn(Bool_t on) {

 fMyButton->setOn(on);

}

void TMyQButton::SetStyle(const char * style) { // Set button‟s look and feel

 // The possible styles are defined by the local Qt inmstallation.

 // For example the possible style can be: "window", "motif", "cde", "sgi",

 // "motifplus", "platinum", "compact","windowsxp", "aqua", "macintosh

 fMyButton->setStyle(style);

}

4. qmake project file MyQButton.pro:

TEMPLATE = lib dll thread

Input

HEADERS += TMyQButton.h

SOURCES += TMyQButton.cxx

CREATE_ROOT_DICT_FOR_CLASSES = $$HEADERS LinkDef.h

include("$(ROOTSYS)/include/rootcint.pri")

 ROOT/Qt Integration Interfaces 427

At this point, you are ready to produce the class-shared library with the ROOT/CINT dictionary by invoking two
shell commands (as above):

qmake MyQButton.pro

make

In addition, get you class into the interactive Root session:

root[] gSystem->Load("libMyQButton.so")

root[] TMyQButton knopka;

root[] knopka.SetSize(100,60);

root[] knopka.SetText("Hello Cint");

root[] knopka.Show();

Please, pay your attention that class implementation does not contain any Qt system initialization call. Since the

above example is a ROOT application, do not forget, one needs the .rootrc file to assign ―qt‖ value for the

options Gui.Backend and Gui.Factory.

Note: Do not mix the ROOT GUI and Qt GUI API within the same class implementation.

Using Qt “Designer” to Create Qt GUI with Embedded ROOT Objects

Qt package is equipped with Qt designer – a powerful tool to create the high quality, robust GUI interfaces for
your applications. It is possible and desirable to use this utility to create the ROOT-based Qt GUI. To do that

one should add the $ROOTSYS/include/rootcint.pri in the project file generated by designer and

configure Qt designer to use the so-called ―custom widget‖ defined by $ROOTSYS/include/TQtWidget.cw.

The file defines the custom TQtWidget Qt widget to back the embedded TCanvas objects. To customize your

designer start designer and select ―Edit Custom Widget‖ menu:

Open ―Edit Custom Widget‖ dialog and load the TQtWidget (―embedded‖ TCanvas) widget definition into the

designer. One should do this at once. Designer will remember the last configuration and will be restoring it for all
subsequent designer sessions.

Now, you can create your shining GUI interface that contains TCanvas / TPad object with all features of these

famous ROOT classes.

http://doc.trolltech.com/3.3/designer-manual.html

428 ROOT/Qt Integration Interfaces

We strongly recommend you to read the ―Quick Start‖ section of the Qt designer manual
http://doc.trolltech.com/3.3/designer-manual.html. One can find further information, the examples of the working
ROOT-based Qt projects including all examples of this section as well as the list of the references and
publications on the Qt project Web site http://root.bnl.gov

Using Qt Class Library from the ROOT C++ Interpreter

Since the Qt package is a regular C++ class library to use it within ROOT C++ interpreter environment one
should either load the dedicated RootCint dictionary or apply ACLiC mode.

For example, the following ROOT interactive session is to popup the ―Open File‖ Qt dialog box and print out the
file name selected by the user via the dialog.

root[] gSystem->Load("qtcint");

root[] cout << QFileDialog::getOpenFileName() << endl;

The ROOT session:

root[] gSystem->Load("qtcint");

root[] QPrinter p;

root[] p.setup(); // Display the Qt “Setup printer” dialog box

root[] Int_t id = gPad->GetPixmapID();

root[] QPixmap *pix = (QPixmap *)(TGQt::iwid(id));

root[] QPainter pnt(&p);

root[] pnt.drawPixmap(0,0,*pix);

is to display the Qt ―Setup Printer‖ dialog and use QPrinter object to print the current TPad image to the

selected printer. To use the more complex Qt-related code one is advised to apply ―ACLiC – Automatic
Compiler of Libraries for CINT‖ (see CINT the C++ Interpreter). For example:

#ifndef __CINT__

include <qfiledialog.h>

include <qstringlist.h>

include <qstring.h>

#endif

void FileDialog() {

 // This is small AClIC wrapper to use Qt 3.3 QFileDialog class

 // See: http://doc.trolltech.com/3.3/qfiledialog.html#getOpenFileNames

 // To use, invoke ACLiC from the ROOT prompt:

 // root [] .x FileDialog .C++

 QStringList files = QFileDialog::getOpenFileNames ();

 QStringList::Iterator it = files.begin();

 while (it != files.end()) {

 printf ("Next file selected: %s\n", (const char *)(*it));

 ++it;

 }

}

http://doc.trolltech.com/3.3/designer-manual.html
http://root.bnl.gov/

 ROOT/Qt Integration Interfaces 429

With the ROOT ACLiC session:

root [0] .x FileDialog.C++

Info in <TUnixSystem::ACLiC>: creating shared library macros/./FileDialog_C.so

Next file selected: macros/QtFileDialog.C

Next file selected: macros/QtMultiFileDialog.C

Next file selected: macros/QtMultiFileDialog_C.so

Next file selected: macros/QtPrintDialog.C

Next file selected: macros/QtPrintDialog_C.so

the Qt generated ―Open File Dialog‖ pops up and prints out the list of the selected files.

TQtWidget Class, Qt Signals / Slots and TCanvas Interface

TQtWidget is a QWidget with the QPixmap double buffer. It is designed to back the ROOT TCanvasImp

class interface and it can be used as a regular Qt Widget to create Qt-based GUI with the embedded TCanvas

objects. It was mentioned the class can used as a ―custom widget‖ to create the advanced GUI with the
TrollTech ―designer‖ utility.

To do that TQtWidget class can emit the set of the ―Qt signals‖ and it is equipped with the collection of the

dedicated ―Qt slots‖.

TQtWidget Public Qt Slots

TQtWidget class inherits all slots of its base QWidget class (see: http://doc.trolltech.com/3.3/qwidget.html). In

addition, it is in possession of two groups of the dedicated slots.

virtual void cd();

virtual void cd(int subpadnumber);

Make the associated TCanvas/TPad the current one, the proxy interface to the embedded TCanvas::cd()

and TCanvas::cd(int subpadnumber) methods.

virtual bool Save(const QString &fileName) const

virtual bool Save(const char *fileName) const

virtual bool Save(const QString &fileName,const char *format,

 int quality=60) const

virtual bool Save(const char *fileName,const char *format,int quality=60) const

The slots are to save the double buffer of the TQtWidget object using the default or specified save format. The

default save format is defined either by the ―known‖ file extension or by the ―default‖ file format.

The default format can be changed by TQtWidget::SetSaveFormat method and it is set to be ―PNG‖ at the

class constructor.

TQtWidget Qt Signals

The class object emits the different signals that can be used to create the sophisticated GUI applications.

The signal CanvasPainted() is emitted to notify the GUI that the double buffer of the widget has been filled

and buffer has been painted onto the screen. In the other words, this signal means that all TObject objects of

the embedded TCanvas have been visualized on the screen. The signal:

Saved(bool ok)

is emitted to notify the GUI that a TCanvas has been saved into the file:

RootEventProcessed(TObject *selected, unsigned int event, TCanvas *c)

This signal notifies the Qt framework that the Qt mouse/keyboard event has been process by ROOT. The signal
is disabled by default, i.e. the connected slot is not called unless the signal is explicitly enabled with
TQtWidget::EnableSignalEvents method.

http://doc.trolltech.com/3.3/qwidget.html

430 ROOT/Qt Integration Interfaces

For example, to create a custom response to the mouse crossing of a TCanvas, you need to connect the

RootEventProsecced signal with your qt slot. The next piece of the code demonstrates that:

connect(tQtWidget,SIGNAL(RootEventProcessed(TObject *,unsigned int, TCanvas *)),

 this,SLOT(CanvasEvent(TObject *, unsigned int, TCanvas *)));

 . . .

void qtrootexample1::CanvasEvent(TObject *obj,unsigned int event,TCanvas *)

{

 TQtWidget *tipped = (TQtWidget *)sender();

 const char *objectInfo = obj->GetObjectInfo(tipped->GetEventX(),

 tipped->GetEventY());

 QString tipText ="You have ";

 if (tipped == tQtWidget1)

 tipText +="clicked";

 else

 tipText +="passed";

 tipText += " the object <";

 tipText += obj->GetName();

 tipText += "> of class ";

 tipText += obj->ClassName();

 tipText += " : ";

 tipText += objectInfo;

 QWhatsThis::display(tipText)

}

GSI QtROOT
The Qt Interface developed at Darmstadt GSI is a lightweight interface that enables the user to write a Qt 3
application, which can use ROOT. The Native Qt 4 support is planned and will be available in the near future.
Furthermore, existing Qt 3 Application can use this interface to have almost full access to the Root functionality
(see "Create the Main file for the project" below). Using this interface a full access to both ROOT and Qt widgets
is possible in one application.

An Embedded Root canvas can be set inside any Qt widget by C++ calls or using the Qt designer. To use the
Qt 3.x designer to make ROOT applications with Qt GUI's follow the steps described below:

1) Add the TQRootCanvas to the Qt Designer:

 Start the designer

 In the designer menu choose tools->custom->Edit Custom Widget

 In the Edit Custom Widget window choose "Load Description"

 From GSI Qt-Root interface directory load the file "TQRootCanvas.cw"

Now you will see the TQRootCanvas in the Class field, you will also see all other parameters, signals, slots and

properties of the TQRootCanvas.

 ROOT/Qt Integration Interfaces 431

Now we are ready use the TQRootCanvas within the Qt 3.x designer.

Create a New Project in the Designer

1). Choose "File->New"

2). Select C++ Project

3). Create the Project in a directory of your choice.

4). In the project settings (Project->Setting from the designer main window) select the C++ tab. Add ROOT and
GSI Qt-Root libraries into the Libs entry field. For example:

-L(ROOTSYS)/lib -lCore -lCint -lHist -lGraf -lGraf3d -lGpad -lTree -lRint

 -lPostscript -lMatrix -lPhysics -lnsl -lm -ldl -rdynamic -lqtgsi

Add $(ROOTSYS)/include into Includepath entry field.

These setting will be saved in project.pro file and qmake will generate the Makefile according to them.

Now you can create your own widgets in the designer and add them to the project.

432 ROOT/Qt Integration Interfaces

main()

The main file should look like:

#include "TQtApplication.h"

#include "TQtRootApplication.h"

#include "MyWidget1.h"

int main(int argc, char ** argv){

 TQRootApplication a(argc, argv, 0);

 TQApplication app("uno",&argc,argv);

 MyWidget1 *w = new Mywidget1;

 w->show();

 a.connect(&a, SIGNAL(lastWindowClosed()), &a, SLOT(quit()));

 return a.exec();

}

 Automatic HTML Documentation 433

27 Automatic HTML
Documentation

THtml is ROOT‘s documentation engine. It can be used to document your classes in a reference guide, and to

convert your text or source files to HTML.

Reference Guide
The Reference Guide for the ROOT classes at http://root.cern.ch/root/html/ has been generated by ROOT's
THtml class. Just as for ROOT's classes, it can generate (and update) a reference guide for your classes, too.

You document your classes using source code comments. All comments will be automatically put into a

<pre></pre> environment to keep the indentation and line length. You can write "raw" HTML by enclosing

comments in the keywords Begin_Html and End_Html.

To generate documentation for the class TObject you could run the following commands:

root[] THtml h

root[] h.SetInputDir("$(ROOTSYS)");

root[] h.MakeClass("TObject");

root[] h.CreateJavascript();

root[] h.CreateStylesheet();

The comments following the first comment of the form //____________________, before any method, is
assumed to be the class description. As with any other documentation part, it has to be a continuous block of
comments.

Any documented class will have an class index entry in the ClassIndex.html, showing their name with a

link to their documentation page and a miniature description. This description for e.g. the class MyClass has to

be given in MyClass‟s header file as documentation.

A method description block starts immediately after '{' and looks like this:

void TWorld::HelloWorldFunc(string *text)

{

 // This is a documentation example of the function TWorld::HelloWorldFunc

 helloWorld.Print(text);

}

Like in a class description block, everything until the first non-commented line is considered as a valid member
function description block.

Data members are documented by putting a C++ comment behind their declaration in the header file, e.g.

Int_t fIAmADataMember; // this is a data member

When documenting a class, THtml creates both a "beautified" version of the source file and a web page

containing the class documentation. The documentation also shows the author and a copyright statement.
This information is extracted from the source file. The author can be in the format

// Author: Enrico Fermi

for people that have an entry in CERN's XWho database, and for those who have not:

// Author: Enrico Fermi <mailto:enrico@fnal.gov>

The copyright statement is introduced by the string "* Copyright" inside a comment.

You should read the class reference page at http://root.cern.ch/root/html/THtml.html to learn about all of
THtml‘s features.

Product and Module Documentation

For THtml, a product like ROOT is a combination of several modules. It can include user-provided document

for both products and modules. The name of the product can be set by calling THtml::SetProductName().

By default, the documentation is searched for in the doc/ subdirectory of the source tree, and in the ../doc

directory, relative to the directory of first source file of a module. This can be set by calls to
THtml::SetProductDocDir() and THtml::SetModuleDocPath().

The documentation is generated as an index page with links to further files. This index page includes the file
index.txt converted to HTML (via THtml::Convert()) or the file index.html (without conversion to HTML,

http://root.cern.ch/root/html/
http://root.cern.ch/root/html/THtml.html

434 Automatic HTML Documentation

of course), if any of these files exist. The index page will also contain a list of links to all files in the directory that

end on .html or .txt. Files ending on .txt will be converted to HTML before they are copied to the output

directory. For each file, the link's text will be the file name without extension, with underscores replaced by
spaces.

You can see an example of the module documentation including links, the corresponding index.html, and the

module class index at http://root.cern.ch/root/html/HIST_Index.html.

Converting Sources (and Other Files) to HTML
THtml can take a file (C++ or text) and convert it to HTML. There are two main use cases:

The output of a macro converted to HTML will almost look like the beautified source file of a class reference.

The Begin_Html/End_Html keywords are supported; comments, strings, and keywords are colored like in

THtml's output for source code.

The macro Event.cxx in $ROOTSYS/test can be seen as an example of documented ROOT macros at

http://root.cern.ch/root/html/examples/Event.cxx.html

THtml::Convert()converts a single text file to HTML. For example, it can be run on a change log. Each

known class name will be linked to its documentation page. An example is ROOT‘s change log at
http://root.cern.ch/root/html/examples/V5.16.txt.html

To convert the source file MyCode.C to HTML, you can run

root[] THtml h

root[] h.Convert("MyCode.C", "Look At My Code", "htmlout/");

This will create the file htmlout/MyCode.C.html. The HTML page will have the title "Look At My Code".

Special Documentation Elements: Directives
A common documentation problem is the inclusion of images. They are usually generated externally, which
poses problems with where to keep the images, and how to keep them up to date. THtml solves this by offering

a few special documentation elements: macro and latex directives.

Latex Directive

Documentation surrounded by the keywords BEGIN_LATEX / END_LATEX will be passed to ROOT Latex

engine TLatex. The keywords can be written with small or capital letters (case insensitive). The output will be

stored to an image file, which gets automatically included in the documentation.

// This function calculates BEGIN_LATEX

// F(x_{#frac{1}{2}}) = #prod(x < x_{#frac{1}{2}}) = #frac{1}{2}

// END_LATEX

THtml will inject the following picture:

The image file name is generated from the formula and will be unique for all the documentation. It is stored
along-side the documentation, and it will be automatically regenerated when the documentation is updated. The
handling of the Latex directive is done by the class TDocLatexDirective.

The BEGIN_LATEX keyword can take the following parameters:

 fontsize: sets the TLatex font size. The default value is 16.

 separator: sets a list of characters for which a new column will be started. This allows aligned,

multi-line, multi-column layout, which can be useful for e.g. mathematical derivations. It is unset
by default, meaning the Latex directive will only generate one column.

 rseparator: like separator, but a regular expression. Columns start with a match of this regular

expression. Only one of separator or rseparator can be given.

 align: defines the alignment of the columns. Note that the column delimiter counts as a column

itself!

Example invocation, where the font size is set to 10, new columns are started by the characters '=' and ',', and

the two columns are left aligned with the separator column centered:

Begin_Latex(fontsize=10, separator='=,', align=lcl)

http://root.cern.ch/root/html/HIST_Index.html
http://root.cern.ch/root/html/examples/Event.cxx.html
http://root.cern.ch/root/html/examples/V5.16.txt.html

 Automatic HTML Documentation 435

Macro Directive

A more general approach is offered by the Macro directive, enclosed in the keywords BEGIN_MACRO /

END_MACRO. The keywords can be written with small or capital letters (case insensitive). If the text enclosed by

these keywords contains the character '{' the text is assumed to be source code. Otherwise it is assumed to be

a file name relative to the current file's path, and taking into account the paths specified by
THtml::AddMacroPath(). The macro file or the C++ source is executed when generating the

documentation. It is expected to return a TObject*, which will be saved to a GIF file, by calling the virtual

function TObject::SaveAs().

The BEGIN_MACRO keyword can take the following parameters:

 GUI: will end batch mode. This is needed e.g. for creating screen shots of GUI elements, where

the call to TObject::SaveAs() will invoke TGObject::SaveAs() which needs the graphics

system to be initialized.

 source: requests the source of the macro to be shown in a second tab on the HTML page. This

is useful e.g. for example macros, showing how the image was generated. Lines that should be

executed but not shown in the source tab can be hidden by ending them with *HIDE* (most

probably as a comment). Lines may be hidden because they are not needed for the
understanding of the macro or because they only make sense in the context of the
documentation, like the statement returning the TObject*.

Example invocation, with enabled ROOT graphics system and a source tab:

Begin_Macro(gui, source)

Customizing HTML
THtml allows a vast amount of customizations, from a custom style to custom links, to customized java scripts.

By default, the style sheet is taken from $ROOTSYS/etc/html/ROOT.css when the documentation is

generated. The path for ROOT.css can be changed by calling THtml::SetEtcDir(); it should contain the

same CSS classes and entity IDs as the original ROOT.css. This style sheet is an easy means of customizing

the layout and appearance of the documentation pages. Many of THtml setting can be customized by calls to

THtml member functions or by settings in .rootrc, as documented in the THtml class reference page

http://root.cern.ch/root/html/THtml. The following will enumerate some of the highlights.

Referencing Documentation for other Libraries

When THtml generates documentation for classes it recognizes all class names known to ROOT. If THtml

does not have sources for a class it determines the class's library name. This has to be set by means of
rootmap files, see Library Autoloading of this User's Guide. Given the library name, THtml searches for an

entry in its map of libraries to documentation URLs. If it finds it, it will create a link to the documentation at that

URL for all occurrences of a given class name. One can set the URL ../mylib/ for a library name MyLib by

setting Root.Html.MyLib: ../mylib/ or by calling THtml::SetLibURL("MyLib", "../mylib/").

Occurrences of class MyClass of MyLib will now be referenced as ../mylib/MyClass.html.

Search Engine

THtml can invoke external search engines. The ROOT reference guide sets Root.Html.Search to

http://www.google.com/search?q=%s+site%3A%u. Calling THtml::SetSearchStemURL() will set the same.

If this URL stem is set, THtml will create search fields in the index pages. It will send the words entered in

these search fields as %s in the URL; %u will be replaced by the current document's path, allowing a site- and
directory-specific search.

ViewCVS

Most code is managed in a version control system like CVS. ViewCVS is a WWW reader interface to the
versioning control system that allows e.g. tracking a file's changes. THtml will reference these pages

automatically if the .rootrc variable Root.Html.ViewCVS is set to the URL stem of the ViewCVS.

installation. Alternatively, one can call THtml::SetViewCVS().

Wiki Pages

In some contexts it might be desirable to let users comment on classes, e.g. for suggestions of use or
alternatives, details of behavior, and cross references to other relevant classes. A successful example of this is
the PHP.net documentation with its user annotations. THtml can include a link to a class's Wiki page by setting

the Wiki base URL via Root.Html.WikiURL or THtml::SetWikiURL().

http://root.cern.ch/root/html/THtml
http://www.google.com/search?q=%25s+site%3A%25u

436 Automatic HTML Documentation

Tutorial
You can run the tutorial htmlex.C to see how THtml converts a script to HTML and how it creates the

corresponding class reference:

root[] .x $(ROOTSYS)/tutorials/htmlex.C+

Have a look at the HTML version of the macro in htmldoc/htmlex.C.html (which should be the same as

the one at http://root.cern.ch/root/html/examples/htmlex.C.html).

It demonstrates how to generate documentation for your classes and for ROOT classes and how to "beautify" a
macro.

http://root.cern.ch/root/html/examples/htmlex.C.html

 Appendix A: Install and Build ROOT 437

28 Appendix A: Install and
Build ROOT

ROOT Copyright and Licensing Agreement:
This is a reprint of the copyright and licensing agreement of ROOT:

Copyright (C) 1995-2003, René Brun and Fons Rademakers.

All rights reserved.

ROOT Software Terms and Conditions

The authors hereby grant permission to use, copy, and distribute this software and its documentation for any
purpose, provided that existing copyright notices are retained in all copies and that this notice is included
verbatim in any distributions. Additionally, the authors grant permission to modify this software and its
documentation for any purpose, provided that such modifications are not distributed without the explicit consent
of the authors and that existing copyright notices are retained in all copies. Users of the software are asked to
feed back problems, benefits, and/or suggestions about the software to the ROOT Development Team:
rootdev@root.cern.ch Support for this software - fixing of bugs, incorporation of new features - is done on a best
effort basis. All bug fixes and enhancements will be made available under the same terms and conditions as the
original software.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE
AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Installing ROOT
To install ROOT you will need to go to the ROOT website at: http://root.cern.ch/root/Availability.html

You have a choice to download the binaries or the source. The source is quicker to transfer since it is only 3.4
MB, but you will need to compile and link it. The binaries range from 7.4 MB to 11 MB depending on the target
platform.

Choosing a Version
The ROOT developers follow the principle of "release early and release often", however a very large portion of a
user base requires a stable product therefore generally three versions of the system is available for download –
new, old and pro:

 The new version evolves quickly, with weekly or bi-weekly releases. Use this to get access to the
latest and greatest, but it may not be stable. By trying out the new version you can help us
converge quickly to a stable version that can then become the new pro version. If you are a new
user we would advice you to try the new version.

 The pro (production) version is a version we feel comfortable with to exposing to a large audience
for serious work. The change rate of this version is much lower than for the new version, it is
about 3 to 6 months.

 The old version is the previous pro version that people might need for some time before switching
the new pro version. The old change rate is the same as for pro.

mailto:rootdev@root.cern.ch
http://root.cern.ch/root/Availability.html

438 Appendix A: Install and Build ROOT

Installing Precompiled Binaries
The binaries are available for downloading from http://root.cern.ch/root/Availability.html. Once downloaded you
need to unzip and de-tar the file. For example, if you have downloaded ROOT v2.25 for HPUX:

% gunzip root_v2.25.00.HP-UX.B.10.20.tar.gz

% tar xvf root_v2.25.00.HP-UX.B.10.20.tar

This will create the directory root. Before getting started read the file README/README. Also, read the
Introduction chapter for an explanation of the directory structure.

Installing the Source
You have a choice to download a compressed (tar ball) file containing the source, or you can login to the source
code change control (CVS) system and check out the most recent source. The compressed file is a one time
only choice; every time you would like to upgrade you will need to download the entire new version. Choosing
the CVS option will allow you to get changes as they are submitted by the developers and you can stay up to
date.

Installing and Building the Source from a Compressed File

To install the ROOT source you can download the tar file containing all the source files from the ROOT website.
The first thing you should do is to get the latest version as a tar file. Unpack the source tar file, this creates
directory ‗root‘:

% tar zxvf root_v2.25.xx.source.tar.gz

Set ROOTSYS to the directory where you want root to be installed:

% export ROOTSYS=<path>/root

Now type the build commands:

% cd root

% ./configure --help

% ./configure <target>

% gmake

% gmake install

Add $ROOTSYS/bin to PATH and $ROOTSYS/lib to LD_LIBRARY_PATH:

% export PATH=$ROOTSYS/bin:$PATH

% export LD_LIBRARY_PATH=$ROOTSYS/lib:$LD_LIBRARY_PATH

Try running root:

% root

It is also possible to setup and build ROOT in a fixed location. Please check README/INSTALL for more a
detailed description of this procedure.

Target directory

By default, ROOT will be built in the $ROOTSYS directory. In that case the whole system (binaries, sources,

tutorials, etc.) will be located under the $ROOTSYS directory.

Makefile targets

The Makefile is documented in details in the README/BUILDSYSTEM file. It explains the build options and

targets.

More Build Options

To build the library providing thread support you need to define either the environment variable ‗THREAD=-

lpthread‟ or the configure flag „--with-thread=-lpthread‘ (it is the default for the linuxegcs

architecture). [Note: this is only tested on Linux for the time being.] To build the library providing CERN RFIO

(remote I/O) support you need to define either the environment variable „ RFIO=<path>/libshift.a‘ or the

configure flag „--with-rfio=<path>/libshift.a‟. For pre-built version of libshift.a see

ftp://root.cern.ch/root/shift/

To build the PAW and Geant3 conversion programs h2root and g2root you need to define either the

environment variable „CERNLIB=<cernlibpath>‘ or the configure flag „--with-cern-

libdir=<cernlibpath>‘.

http://root.cern.ch/root/Availability.html
ftp://root.cern.ch/root/shift/

 Appendix A: Install and Build ROOT 439

To build the MySQL interface library you need to install MySQL first. Visit http://www.mysql.com/ for the latest

versions.

To build the strong authentication module used by rootd, you first have to install the SRP (Secure Remote

Password) system. Visit http://srp.stanford.edu

To use the library you have to define either the environment variable ‗SRP=<srpdir>‘ or the configure flag
„--with-srp=<srpdir>‟.

To build the event generator interfaces for Pythia and Pythia6, you first have to get the Pythia libraries available
from ftp: ftp://root.cern.ch/root/pythia6.tar.gz.

To use the libraries you have to define either ‗PYTHIA=<pythiadir>‘ or the configure flag „--with-

pythia=<pythiadir>‘. The same applies for Pythia6.

Installing the Source from CVS

This paragraph describes how to checkout and build ROOT from CVS for UNIX systems. For description of a
checkout for other platforms, please see ROOT installation web page: http://root.cern.ch/root/CVS.html.

Note: The syntax is for ba(sh), if you use a t(csh) you have to substitute export with setenv.

% export CVSROOT=:pserver:cvs@root.cern.ch:/user/cvs

% cvs login

% (Logging in to cvs@root.cern.ch)

% CVS password: cvs

% cvs –z3 checkout root

U root/…

U …

% cd root

% ./configure –-help

% ./configure <platform>

% gmake

If you are a part of collaboration, you may need to use setup procedures specific to the particular development

environment prior to running gmake. You only need to run cvs login once. It will remember anonymous

password in your $HOME/.cvspass file. For more install instructions and options, see the file

README/INSTALL.

CVS for Windows

Although there exists a native version of CVS for Windows, we only support the build process under the Cygwin
environment. You must have CVS version 1.10 or newer. The checkout and build procedure is similar to that for
UNIX. For detailed install instructions, see the file REAMDE/INSTALL.

Converting a Tar Ball to a Working CVS Sandbox

You may want to consider downloading the source as a tar ball and converting it to CVS because it is faster to
download the tar ball than checking out the entire source with CVS. Our source tar ball contains CVS
information. If your tar ball is dated June 1, 2000 or later, it is already set up to talk to our public server
(root.cern.ch). You just need to download and unpack the tar ball and then run following commands:

% cd root

% cvs -z3 update -d -P

% ./configure <platform>

Staying up-to-date

To keep your local ROOT source up-to-date with the CVS repository you should regularly run the command:

% cvs -z3 update -d –P

File system.rootrc
ROOT Environment settings are handled via the class TEnv. gEnv->Print()shows which values are active.

Any settings can be obtained by TEnv::GetValue methods that return an integer, double or character value

for a named resource. If the resource is not found, the default value (given as the second parameter) is
returned.

fShowEventStatus = gEnv->GetValue("Canvas.ShowEventStatus",kFALSE);

Via the method TEnv::SetValue allows you can set the value of a resource or create a new resource:

gEnv->SetValue("Root.ObjectStat",1);

http://www.mysql.com/
http://srp.stanford.edu/
ftp://root.cern.ch/root/pythia6.tar.gz
http://root.cern.ch/root/CVS.html

440 Appendix A: Install and Build ROOT

Path used by dynamic loader to find shared libraries and macros. Paths are different for Unix and Windows. The
example shows the defaults for all ROOT applications for either Unix or Windows:

Unix.*.Root.DynamicPath: .:$(ROOTSYS)/lib

Unix.*.Root.MacroPath: .:$(ROOTSYS)/macros

WinNT.*.Root.DynamicPath: .;$(ROOTSYS)/bin;$(PATH)

WinNT.*.Root.MacroPath: .;$(ROOTSYS)/macros

Path where to look for TrueType fonts:

Unix.*.Root.UseTTFonts: true

..Root.TTFontPath: $(ROOTSYS)/fonts

Use Net* API functions:

WinNT.UseNetAPI: true

Use thread library (if exists).

Unix.*.Root.UseThreads: false

Select the compression algorithm (0=old zlib, 1=new zlib). Setting this to `0' may be a security vulnerability.

Root.ZipMode: 1

Show where item is found in the specified path:

Root.ShowPath: false

Activate memory statistics (size and cnt are used to trap allocation of blocks of a certain size after cnt

attempts).

Root.MemStat: 0

Root.MemStat.size: -1

Root.MemStat.cnt: -1

Root.ObjectStat: 0

Activate memory leak checker (use in conjunction with $ROOTSYS/bin/memprobe). Currently only works on

Linux with gcc.

Root.MemCheck: 0

Root.MemCheckFile: memcheck.out

Global debug mode. When >0 turns on progressively more details debugging.

Root.Debug: 0

Root.Stacktrace: yes

Settings for X11 behaviour.

X11.Sync: no

X11.FindBestVisual: yes

Default editor in use.

Unix.*.Editor: vi

WinNT.*.Editor: notepad

Default 3d Viewer. By default 3-D views are shown in the pad, if the next line is activated, the default viewer will
be OpenGL.

Viewer3D.DefaultDrawOption: ogl

Default Fitter (current choices are Minuit, Minuit2, Fumili and Fumili2).

Root.Fitter: Minuit

Specify list of file endings which TTabCom (TAB completion) should ignore.

TabCom.FileIgnore: .cpp:.h:.cmz

TCanvas Specific Settings

Opaque move and resize show full pad during the operation instead of only the outline. Especially for resize you

will need serious CPU power. UseScreenFactor=true means to size canvas according to size of screen, so

a canvas still looks good on a low resolution laptop screen without having to change canvas size in macros.

Canvas.MoveOpaque: false

Canvas.ResizeOpaque: false

Canvas.UseScreenFactor: true

Hight color 2 is the red one.

Canvas.HighLightColor: 2

Next three settings are related to different user interface parts of canvas window. If they are set to true, the
corresponding event status bar, tool bar, graphics editor to beactivated by default.

 Appendix A: Install and Build ROOT 441

Canvas.ShowEventStatus: false

Canvas.ShowToolBar: false

Canvas.ShowEditor: false

AutoExec allows TExec objects to be executed on mouse and key events.

Canvas.AutoExec: true

Canvas print directory is set to the current one by default:

Canvas.PrintDirectory .

Printer settings:

WinNT.*.Print.Command: AcroRd32.exe

#Unix.*.Print.Command: a2ps -P%p --landscape --columns=2 --margin=30 -rf8.0 %f

Print.Printer: 32-rb20-hp

Print.Directory: .

Print.FileType: pdf

Default histogram binnings used by TTree::Draw() method.

Hist.Binning.1D.x: 100

Hist.Binning.2D.x: 40

Hist.Binning.2D.y: 40

Hist.Binning.2D.Prof: 100

Hist.Binning.3D.x: 20

Hist.Binning.3D.y: 20

Hist.Binning.3D.z: 20

Hist.Binning.3D.Profx: 100

Hist.Binning.3D.Profy: 100

Default statistics names used for parameters in TPaveStats:

Hist.Stats.Entries Entries

Hist.Stats.Mean Mean

Hist.Stats.MeanX Mean x

Hist.Stats.MeanY Mean y

Hist.Stats.RMS RMS

Hist.Stats.RMSX RMS x

Hist.Stats.RMSY RMS y

Hist.Stats.Underflow Underflow

Hist.Stats.Overflow Overflow

Hist.Stats.Integral Integral

Hist.Stats.Skewness Skewness

Hist.Stats.SkewnessX Skewness x

Hist.Stats.SkewnessY Skewness y

Hist.Stats.Kurtosis Kurtosis

Hist.Stats.KurtosisX Kurtosis x

Hist.Stats.KurtosisY Kurtosis y

THtml Specific Settings

See the reference guide documentation of THtml class at http://root.cern.ch/root/htmldoc/THtml.html for more

details.

XHTML content charset (see http://www.w3.org/TR/2002/REC-xhtml1-20020801, default: ISO-8859-1) is set by:

Root.Html.Charset:

Stem of a search engine for the documentation, where %s is replaced by the term entered in the search text box

(example: http://www.google.com/search?q=%s+site%3Aroot.cern.ch%2Froot%2Fhtml, default is "")

Root.Html.Search:

Link to the site's search engine (default: "", example: http://root.cern.ch/root/Search.phtml)

Root.Html.SearchEngine:

String to prepend to TClass::GetImplFileName() names containing directories when looking for source

files (default: "", example: ../root)

Root.Html.SourcePrefix:

Link stem to ViewCVS entry for classes, where a class name is assumed to match a file name (default: "",

example: http://root.cern.ch/viewcvs).

Root.Html.ViewCVS:

Stem of the CERN XWho system (default: http://consult.cern.ch/xwho/people?)

Root.Html.XWho:

http://root.cern.ch/root/htmldoc/THtml.html
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.google.com/search?q=%25s+site%3Aroot.cern.ch%2Froot%2Fhtml

442 Appendix A: Install and Build ROOT

If set to Doc++, allow method documentation in front of method even for methods in the source file (default: "")

Root.Html.DescriptionStyle:

Search path for the source and header files with their default settings:

Unix.*.Root.Html.SourceDir: .:src:include

WinNT.*.Root.Html.SourceDir: .;src;include

URL stem for ROOT documentation pages (default is "").

Root.Html.Root: http://root.cern.ch/root/html

Filesystem output directory for generated web pages (default: htmldoc).

Root.Html.OutputDir: htmldoc/

Address of the package's home page (default: http://root.cern.ch):

Root.Html.HomePage:

Location of user defined header and footer files, see http://root.cern.ch/root/html/THtml#conf:header (defaults

are "", example: ../header.txt, ../footer.txt):

Root.Html.Header:

Root.Html.Footer:

Tag for detecting class description comments (default value is set below).

Root.Html.Description: //____________________

Tag for detecting "Author" comment (default value is set below).

Root.Html.Author: // Author:

Tag for detecting "last updated" comment. THtml uses the current date if this tag is not found in a class source

file (default value is set below).

Root.Html.LastUpdate: // @(#)

Tag for detecting "Copyright" comment (default value is set below).

Root.Html.Copyright: * Copyright

GUI Specific Settings

Set the ―native‖ ROOT GUI interface to be used in a ROOT session. If set to ―qt‖, the ―native‖ GUI interface

is replaced with one based on Qt by the regular ROOT plug-in mechanism.

Gui.Backend: native

Gui.Factory: native

GUI default fonts in use:

Gui.DefaultFont: -adobe-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-1

Gui.MenuFont: -adobe-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-1

Gui.MenuHiFont: -adobe-helvetica-bold-r-*-*-12-*-*-*-*-*-iso8859-1

Gui.DocFixedFont: -adobe-courier-medium-r-*-*-12-*-*-*-*-*-iso8859-1

Gui.DocPropFont: -adobe-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-1

Gui.IconFont: -adobe-helvetica-medium-r-*-*-10-*-*-*-*-*-iso8859-1

Gui.StatusFont: -adobe-helvetica-medium-r-*-*-10-*-*-*-*-*-iso8859-1

Regular background and foreground colors in use:

Gui.BackgroundColor: #c0c0c0

Gui.ForegroundColor: black

Selection background and foreground colors in use:

Gui.SelectBackgroundColor: #000080

Gui.SelectForegroundColor: white

Document background and foreground colors in use:

Gui.DocumentBackgroundColor: white

Gui.DocumentForegroundColor: black

Tooltip background and foreground colors in use:

Gui.TooltipBackgroundColor: LightYellow

Gui.TooltipForegroundColor: black

Path where all GUI icons in use can be found:

Gui.IconPath: $(HOME)/icons:$(ROOTSYS)/icons:.

Mime type file setting:

Gui.MimeTypeFile: $(HOME)/.root.mimes

http://root.cern.ch/
http://root.cern.ch/root/html/THtml#conf:header

 Appendix A: Install and Build ROOT 443

If $(HOME)/.root.mimes does not exists, defaults to this:

#Gui.MimeTypeFile: $(ROOTSYS)/etc/root.mimes

TBrowser Settings

Current icon style selection - can be either small, big, list, details:

Browser.IconStyle: small

Current sorting rule applied on the browser objects - can be name, type, size, date:

Browser.SortBy: name

Number of items in a group view:

Browser.GroupView: 10000

Show or not hidden items:

Browser.ShowHidden: no

Create a thumbnail view after executing the macro (default is yes).

Browser.AutoThumbnail: yes

TRint Specific Settings

Rint (interactive ROOT executable) specific alias, logon and logoff macros.

Rint.Load: rootalias.C

Rint.Logon: rootlogon.C

Rint.Logoff: rootlogoff.C

Record ROOT session commands in a given history file (default is $(HOME)/.root_hist). If set to "-", it turn

off the command recording.

Rint.History: $(HOME)/.root_hist

Next two lines set the history file size handling. Once HistSize is reached, the last HistSave entries are

removed. If HistSize is set to 0, it turns off command recording. Both values can be overridden by

environment variable ROOT_HIST=size[:save], where the ":save" part is optional.

Rint.HistSize: 500

Rint.HistSave: 400

ACLiC Specific Settings

ACLiC.Linkdef specifies the suffix that will be added to the script name to try to locate a custom linkdef file

when generating the dictionary.

ACLiC.Linkdef: _linkdef

The top directory for storing the libraries produced by ACLiC is set by:

ACLiC.BuildDir: /where/I/would/like/my/compiled/scripts

The additional include directives for ACLiC compilations are set by:

ACLiC.IncludePaths: -I/where/the/includes/are

PROOF Related Variables

PROOF debug options.

Proof.DebugLevel: 0

Proof.DebugMask: -1

PROOF GDB hooks allows a debugger to be attached early in the startup phase of proofserv: 0 - don't wait;

1 - master proofserv enters wait loop; 2 - slave proofserv enters wait loop; 3 - any proofserv enters wait loop

Proof.GdbHook: 0

On the master to enable the parallel startup of workers using threads set next to ―yes‖ (default is ―no‖):

Proof.ParallelStartup: no

Proof.StatsHist: no

Proof.StatsTrace: no

Proof.SlaveStatsTrace: no

444 Appendix A: Install and Build ROOT

Proof.CondorHome: /opt/condor

Proof.CondorConfig: /opt/condor/etc/condor_config

PEAC.GmUrl: http://somewhere:8080/clarens/

PEAC.LmUrl: http://elsewhere:8080/clarens/

Certificate and key

Clarens.CertFile: $(HOME)/.globus/usercert.pem

Clarens.KeyFile: $(HOME)/.globus/userkey.pem

Settings Related to Authentication for rootd and proofd

Default authentication method for rootd and proofd. These are supported for backward compatibility but have

a very low priority. System defaults are generated by configure as a list in system.rootauthrc in

$ROOTSYS/etc/ or /etc/root; the file $HOME/.rootauthrc can be used to override the system defaults.

The value meaning: 0=UsrPwd, 1=SRP, 2=Krb5, 3=Globus,4=SSH, 5=UidGid.

Rootd.Authentication: 0

Proofd.Authentication: 0

Connection is shutdown at timeout expiration. Timeout is in seconds. Negotiation cannot be attempted at low
level (i.e. inside TAuthenticate::Authenticate()) because of synchronization problems with the server. At higher
level, TAuthenticate::HasTimedOut() gives information about timeout: 0 = no timeout; 1 = timeout, no methods
left; 2 = timeout, still methods to be tried. Caller should decide about an additional attempt. Timeout is disabled
by default (< 0). It can be changed on-the-fly with the method TAuthenticate::SetTimeOut(to_value).

Auth.Timeout: -1

Password dialog box is set to 0 if you do not want a dialog box to be popped-up when a password is requested.
Default setting is 1.

 Auth.UsePasswdDialogBox: 0

Set the following to 1 if you want full SRP authentication in PROOF (Client-to-Master and Master-to-Slave).

Proofd.SendSRPPwd: 0

Set next to 1 to use SSH authentication in PROOF servers (Master-to-Slave or Slaves-to-DataServers). This is
switched off by default because credentials forwarding for SSH is not controlled by the system; however the
user may have other ways to guarantee it, so it may want to switch it on.

ProofServ.UseSSH: 0

Default login name (if not defined it is taken from $(HOME)).

UsrPwd.Login: qwerty

SRP.Login: qwerty

Krb5.Login: qwerty@LOCAL.DOM.AIN

Globus.Login: cd:~/.globus cf:usercert.pem kf:userkey.pem

 ad:/etc/grid-security/certificates

SSH.Login: qwerty

UidGid.Login: qwerty

To be prompted for login information.

UsrPwd.LoginPrompt: yes

SRP.LoginPrompt: yes

Krb5.LoginPrompt: yes

Globus.LoginPrompt: yes

SSH.LoginPrompt: yes

UidGid.LoginPrompt: yes

To reuse established security context.

UsrPwd.ReUse: yes

SRP.ReUse: no

Krb5.ReUse: no

Globus.ReUse: yes

SSH.ReUse: yes

Duration validity of the sec context for UsrPwd, SRP and SSH. Format: <hours>:<minutes> (default 24:00)

#UsrPwd.Valid: 24:00

#SRP.Valid: 24:00

#SSH.Valid: 24:00

 Appendix A: Install and Build ROOT 445

To control password encryption for UsrPwd authentication.

UsrPwd.Crypt: yes

Globus Miscellaneous - Globus Proxy duration: HH:MM (ex 12:15 for 12 hours and 15 min); 'default' for

system default.

Globus.ProxyDuration: default

#Globus.ProxyDuration: 12:15

Number of bits for the initial key.

Globus.ProxyKeyBits: 1024

Path to alternative 'ssh' (to override $PATH if ever needed).

SSH.ExecDir: /usr/bin

In case of error, SSH returns 1 (or 256=0x100). To trap those errors for which one should retry, error printouts

must be parsed; any substring found under the TEnv SSH.ErrorRetry triggers a retry condition; strings can

be added here in the form (including double quotes):

+SSH.ErrorRetry: "<error_string>"

This is what one usually gets if the server has reached the maximum number of sshd daemons (defined by

MaxStartups in sshd_config); this is a typical case in which one should retry.

SSH.ErrorRetry: "Connection closed by remote host"

Max number of retries for SSH in case of retry error (see above).

SSH.MaxRetry: 100

Type of key to be used for RSA encryption: 0=local; 1=SSL (default if openssl available).

RSA.KeyType: 1

In case of 'RSA.KeyType: 1' this specifies the number of bits to be used for the Blowfish key used to encrypt

the exchanged information: default - 256, minimum - 128, maximum - 15912.

SSL.BFBits: 256

Server Authentication in TServerSocket

General setting: file with server access rules

SrvAuth.DaemonRc: /etc/root/system.daemonrc

Check of host equivalence via /etc/hosts.equiv or $HOME/.rhosts.

SrvAuth.CheckHostsEquivalence: 1

SRP: pass file (default $HOME/.srootdpass).

SrvAuth.SRPpassfile: $HOME/.srootdpass

Globus/GSI: hostcert configuration file.

SrvAuth.HostCert: /etc/root/hostcert.conf

Globus/GSI: gridmap file.

SrvAuth.GridMap: /etc/grid-security/grid-mapfile

SSH: port for the sshd daemon.

SrvAuth.SshdPort: 22

Force file opening via TNetFile (TXNetFile) if a hostname is specified in the Url. By default, for local files

TFile::Open() invokes directly TFile.

TFile.ForceRemote: yes

Special cases for the TUrl parser, where the special cases are parsed in a protocol + file part, like

rfio:host:/path/file.root, castor:/path/file.root or /alien/path/file.root. In case the file namespace descriptor ends
with - the namespace is not a part of the filename. Extend in private .rootrc with a +Url.Special line.

Url.Special: file: rfio: hpss: castor: gfal: dcache:

+Url.Special: /alien/- /castor/

PROOF XRD Client Variables

Debug level (if <=0 : none, 1 : low, 2 : medium, 3 : high)

XProof.Debug: 0

Socket read timeout [in secs: default 10 secs]

446 Appendix A: Install and Build ROOT

XProof.ReadTimeout: 10

The following env vars are handled by TXNetFile and related classes (module netx, libNetx.so).

XNet.ConnectTimeout - maximum time to wait before server's response on a connect [10 s]

XNet.RequestTimeout - maximum time to wait before considering a read/write failure [60 s]

XNet.ConnectDomainAllowRE - sequence of TRegexp regular expressions separated by a |. A domain is

granted access to for the first connection if it matches one of these regexps. Example:

slac.stanford.edu|pd.infn.it|fe.infn.it

XNet.ConnectDomainDenyRE - sequence of TRegexp regular expressions separated by a |. A domain is

denied access to for the first connection if it matches one of these regexps.

XNet.RedirDomainAllowRE - sequence of TRegexp regular expressions separated by a |. A domain is

granted access to for a redirection if it matches one of these regexps. Example:

XNet.RedirDomainDenyRE - sequence of TRegexp regular expressions separated by a |. A domain is

granted access to for a redirection if it matches one of these regexps.

XNet.MaxRedirectCount - maximum number of redirections from server [default - 255]

XNet.Debug - log verbosity level (0=nothing,1=messages of interest to the user, 2=messages of interest to the

developers (includes also user messages), 3=dump of all sent/received data buffers (includes also user and
developers messages). [default - 0]

XNet.ReconnectTimeout - sleep-time before going back to the load balancer (or rebouncing to the same

failing host) after a read/write error [default - 10s]

XNet.StartGarbageCollectorThread - for test/development purposes. Normally nonzero (true), but as

workaround for external causes someone could be interested in not having the garbage collector thread around.
[experimental!]

XNet.GoAsynchronous - default is 0. When activated, XTNetFile works in async mode, allowing input

buffering and unsolicited responses [experimental!]

XNet.TryConnect - Number of tries connect to a single server before giving up.

XNet.TryConnectServersList - number of connect retries to the whole server list given [default - 240]

XNet.PrintTAG - Print a particular string the developers can choose to quickly recognize the version at run

time [default - 0]

Example of custom setting for the Rint application (root.exe). This overrides the default specified above for a
generic application. Color 5 is yellow.

Rint.Canvas.HighLightColor: 5

Documentation to Download

 The latest ROOT Users Guide

 http://root.cern.ch/root/doc/RootDoc.html

 ROOT Reference Guide

 http://root.cern.ch/root/Reference.html

http://root.cern.ch/root/doc/RootDoc.html
http://root.cern.ch/root/Reference.html

 Index 447

29 Index

A

Abs (TMatrixDBase) ... 262

AbsPixeltoX (TPad)... 111

AbsPixeltoXY (TPad) .. 111

AbsPixeltoY (TPad)... 111

accent symbols ... 118

Accept (TServerSocket) 377, 378

ACLiC .. 93, 95, 230, 282, 372

Activate (TGFrame) .. 396

active pad 10, 20, 105, 107, 135, 136

Add

TBrowser .. 103

TChain .. 231

TCollection ... 284

TFolder ... 103, 156

TH1 ... 26

THStack .. 41, 42

TList .. 169, 287

TMonitor ... 378

TMultiGraph ... 60

TObjArray ... 159

TTask .. 158

AddAfter (TList) .. 287

AddBefore (TList) ... 287

AddBinContent (TH1) ... 25

AddButton (TGToolBar) ... 410

AddDaughter (TVirtualGeoTrack) 334

AddDirectory (TH1) 24, 101, 168

AddElement (TGeoMixture).................................... 303

AddEntry

TGComboBox ... 412

TGListBox .. 411

TGPopupMenu ... 408

TLegend .. 137

AddFirst (TList) ... 287

AddFolder (TFolder) ... 156

AddFrame

TGHorizontalFrame 391, 392

TGMainFrame .. 391

AddFriend

TChain .. 232

TTree .. 206, 207

adding a class

ACLiC .. 282

shared library .. 277

AddLast (TList) ... 287

AddNode (TGeoVolume)316, 320, 321, 322

AddNodeOverlap (TGeoVolume) 320, 323, 335

AddPoint (TGeoTrack) .. 334

AddPopup

TGMenuBar .. 409

TGPopupMenu ... 409

AddSeparator (TGPopupMenu) 408

AddText (TPaveText) .. 120

AddTrack (TGeoManager) 334

Angle (TVector3) ... 292

AnimateTracks (TGeoManager) 334

AppendPad (TObject) 103, 108

arrow .. 13

AsSQLString (TDatime) .. 125

asymmetric errors in graphs 55

At

TList .. 31

TObjArray ... 176, 288

autoload .. 6

automatic schema evolution 180

Autosave (TTree) ... 194

axis

alphanumber bin labels ... 40

binning .. 125

labels ... 123

tick marks 27, 38, 122, 123, 124

time format .. 130

title .. 39, 106, 122

B

bar

chart .. 33

graph ... 52

batch mode ... 10

Begin (TSelector) ... 229, 371

Begin_Html .. 434

BEGIN_LATEX .. 434

BEGIN_MACRO ... 435

benchmark .. 369

Binomial (TRandom) ... 20

Boolean

expression ... 214, 315

nodes ... 315, 316

Boost

TLorentzRotation .. 297

TVector3 ... 296

bounding box 301, 306, 308, 313, 314, 337

box 306

branch .. 195

Branch (TTree) .. 190, 195, 198

BreitWigner (TRandom) .. 20

Broadcast (TCondition) ... 381

Browse (TBranch) .. 272

browser .. 85, 169, 368

BypassStreamer (TClonesArray) 174

byte count ... 196, 277

C

CancelPoint (TThread) ... 382

canvas .. 10, 15, 105, 108

dividing ... 16, 111

list of canvases .. 166

448 Index

modified .. 112

transparent ... 112

update .. 106, 112

cd

TCanvas .. 16, 42

TDirectory ... 165

TFile .. 170

TPad .. 16

CdNode (TGeoManager) ... 331

CenterTitle (TAxis) ... 63

chain 227, 229, 231, 369, 371, 372

change directory .. 101, 168

ChangeBackground (TGFrame) 396

ChangeOptions (TGFrame) 396, 397

check buttons ... 389

CheckOverlaps (TGeoVolume) 301

CheckPoint (TGeoManager) 336

CINT .. 85

commands ... 17

debugger ... 4, 91

dictionary .. 95, 274, 276

Cintex .. 99

class 81

class index ... 7

ClassDef 107, 171, 180, 273, 275, 277

version number ... 180

ClassImp .. 183

ClassName (TObject) .. 271

ClassVersionID .. 273

Cleanup

TGCompositeFrame .. 398

TGMainFrame .. 391

Clear

TCollection ... 284

TList .. 102

ClearFlags (TGWidget) ... 395

ClearSectionsValid (TBuffer3D) 151

Clicked (TGButton) ... 400

client .. 377

clipping .. 339

Clone

TH1F ... 39

TObject ... 271

Close

TFile .. 169

TPostScript ... 139

TSocket ... 378

CloseGeometry (TGeoManager) 299, 316, 319

coding conventions .. 18

collections .. 283

ordered .. 284

ColNorm (TMatrixDBase) 262

color palettes .. 134

colors 134

column-wise ntuples .. 22

combo boxes .. 389

command line .. 17, 86

history ... 21

multi-line command .. 17, 87

options .. 10

quit .. 10

short cuts ... 17

command line interface .. 86

Compare (TObject) .. 285

composite frame ... 389

composite shapes ... 305, 314

example ... 316

structure... 315

compression ... 183

ComputeNormal (TGeoShape) 317

Condition (TDecompBase) 265

cone . .. 310

segment ... 311

Connect (TQObject) ... 400, 402

containment 3, 299, 300, 319, 321, 322

Contains (TgeoShape) .. 317

context menu 15, 68, 106, 121, 334, 408

toggle .. 107

contour ... 27, 28, 30, 31, 32

Convert (TDatime) ... 381

CosTheta (TVector3) ... 292

CreateJavascript (THtml) ... 433

CreateStylesheet (THtml) .. 433

creating shapes ... 318

Cross (TVector3) ... 292

CSG . .. 314, 321

cumulative distribution functions 249

curly

arc . .. 13, 116

lines ... 13, 116

current

direction .. 329

directory 19, 88, 101, 170, 190, 222

point .. 329, 331

state ... 329

style ... 141

cursor ... 105

cut . .. 213

cut tube ... 309

CVS . .. 439

cycle number .. 165

cylindrical coordinates ... 295

D

debugging .. 91

DecayMaterial (TGeoMaterial) 304

Decompose (TDecompBase) 265

decomposition

Bunch-Kaufman .. 268

Cholesky ... 268

LU 268

QRH .. 268

sparse .. 258

SVD .. 269

DefineElement (TGeoMixture) 302

DefineSection

TGeoPcon ... 312

TGeoPgon ... 316

TGeoXtru .. 314

Delete

TCollection ... 285

TDirectory ... 170

TList .. 102

TThread ... 382, 383

DeleteEntry (TGPopupMenu) 409

 Index 449

DeleteWindow (TGFrame) 396

Derivative (TF1) .. 15

Det (TDecompBase) .. 265

diamond ... 13

DisableEntry (TGPopupMenu) 409

Disconnect (TQObject) .. 403

DistanceToPrimitive (TCanvas) 108

DistFromInside (TGeoShape) 317

DistFromOutside (TGeoShape) 317

Divide

TCanvas .. 16, 42

TGeoShape ... 318

TGeoVolume .. 318, 324, 325

TH1 ... 26

TPad .. 111, 112

dividing

shapes .. 318

volumes ... 324

DoRedraw (TGFrame) ... 396

Dot (TVector3) .. 292

Double32_t ... 172

drag and drop ... 419

draw

options for graphs ... 51

options for histograms .. 27

Draw

TArrow ... 82

TBox ... 115

TChain .. 231, 232

TEllipse ... 115

TF1 .. 15, 66, 71

TGaxis .. 37

TGeoBatemanSol .. 304

TGeoVolume .. 300, 301

TGraph .. 52

TGraphAsymmErrors ... 56

TH1 ... 26, 29, 108, 134

TH2F ... 63

THStack .. 42

TLine .. 81

TMarker .. 54

TMultiGraph ... 60

TObject ... 271

TPaveText ... 120

TProfile ... 43

TProfile2D .. 45

TTree 25, 27, 41, 202, 205, 207, 213, 215, 371

DrawClass (TObject) ... 271

DrawClone

TH1 ... 27, 136

TObject ... 135, 136, 271

DrawClonePad (TCanvas) 135

drawing objects .. 10, 105

DrawLatex (TLatex) .. 119

DrawLineNDC (TLine) ... 111

DrawNormalized (TH1) ... 27

DrawOnly (TGeoVolume) 301

DrawTracks (TGeoManager) 334

Dump (TObject) .. 271

E

E (TLorentzVector) ... 295

E2Norm (TMatrixDBase) .. 262

EErrorCode (TInterpreter) ... 89

element wise .. 261

division .. 261

multiplication .. 261

substraction ... 261

sum .. 261

ellipse ... 13, 114

elliptical tube .. 310

Emit (TQObject) .. 402

EnableEntry (TGPopupMenu) 409

End_Html ... 434

END_LATEX .. 434

END_MACRO ... 435

environment settings .. 20

errors in graphs .. 55

event list ... 222

example .. 6, 7, 365

analysis .. 371

axis .. 128

bar graph ... 52

creating

file .. 159

histogram .. 365

fitting ... 70

subranges .. 68

with user defined function 67

graph with continuous line 52

GUI application ... 370

latex ... 119, 120

MakeProject .. 181

mathematical expression 119

physics vector .. 298

PostScript .. 139, 140

remote access to a file ... 184

threads ... 383

tree

read/write ... 199

with a structure ... 202

with an event/entry list 222

with Event .. 209

with friends .. 206

TRef .. 177

ExecuteCommand (TVirtualFitter) 255

ExecuteEvent

TArrow .. 108

TButton ... 108

TLine ... 108

exit 10

Exit (TThread) ... 383

Exp (TRandom) ... 20

exponential ... 65

Export (TGeoManager) .. 341

extrusion .. 335

F

Feynman .. 116

file

access via web server .. 186

close .. 169

compression .. 183

current directory .. 165

450 Index

cycle numbers ... 165

free block .. 162

list of objects ... 101, 168

objects in memory ... 165

objects on disk .. 165

out of scope ... 169

physical layout .. 159, 169

read mode.. 165

recovery .. 162

retrieving objects... 169

saving

collections .. 169

histograms .. 167

objects .. 168

streamer .. 171

subdirectories .. 169

write .. 167, 169

Fill

TH1 ... 25, 40

TH2 ... 25

TH3 ... 25

TProfile ... 42, 43

TProfile2D .. 44, 45

TTree .. 193, 200, 203

fill attributes ... 133

FillMaterialEvolution (TGeoMaterial) 303

FillRandom (TH1F) 25, 39, 42

FindNextBoundary (TGeoManager) 332, 333

FindNode (TGeoManager) 329, 331

FindNormal (TGeoManager) 333

FindObject

TCollection ... 285

TList .. 168

TROOT ... 89

FindObjectAny (TROOT) 156

First (TList).. 31

Fit

TH1 ... 65, 67

TH1F ... 70

Fit Panel ... 68

fit statistics ... 72

FitSlicesX (TH2) ... 26

FitSlicesY (TH2) ... 26

FitSlicesZ (TH3) .. 26

Fitter (TVirtualFitter)... 255

fitting

draw options .. 65

exponential .. 65

function ... 65

gaussian .. 65

histogram .. 65

initial parameters... 66

landau .. 65

options .. 65

polynomial .. 65

predefined function ... 65

quiet .. 65

range ... 65

verbose .. 65

FixParameter (TF1) ... 67

folders .. 155

hierarchy ... 156

search .. 156

fonts 131

ForceStyle (TROOT) ... 27, 141

format characters

date .. 125

time ... 125

fractions ... 117

frame .. 389, 396

composite .. 389, 397

group ... 389, 398

horizontal .. 398

main .. 389, 398

transient ... 389, 398

types .. 397

vertical .. 398

framework .. 2

components ... 2

organization ... 3

FreePicture (TGClient) .. 414

function

derivative ... 15

integral .. 15

number of points ... 15

G

Gaus (TRandom) .. 20

Gaus (TRandom3) .. 235

Gaussian ... 25, 39, 65, 68, 159

gccxml .. 97

gDirectory .. 2, 19, 164, 382

current directory .. 101

deleting objects ... 373

finding objects ... 88, 374

getting objects 168, 214, 222

saving current directory .. 174

general phi convention ... 309

gEnv 18, 20, 132

GenVector .. 237

geometrical transformations 326, 327

available transformations 327

creation rule .. 327

inverse rotation .. 326

inverse translation ... 326

local ... 300

rotation .. 326

translation .. 326

geometry

checking .. 335

I/O 341

tree .. 319, 331

Get

TDirectory ... 88, 168, 170

TFile .. 39, 67, 163, 202

GetAngleAxis (TRotation) 294

GetAsymmetry (TH1) .. 40

GetBin (TH3) ... 24

GetBinCenter (TAxis) .. 24

GetBinContent

TH1 ... 25

TH1F ... 37

GetBinError (TH1)... 72

GetBranch (TTree) ... 201, 205

GetChisquare (TF1) ... 72

 Index 451

GetClass (TROOT) .. 181

GetClassName (TKey) ... 163

GetColIndexArray (TMatrixDSparse) 258

GetColLwb (TMatrixDBase) 258

GetColUpb (TMatrixDBase) 258

GetCurrentDirection (TGeoManager) 329

GetCurrentMatrix (TGeoManager) 331

GetCurrentNode (TGeoManager) 329, 330

GetCurrentNodeId (TGeoManager) 331

GetCurrentPath (TGeoManager) 330

GetCurrentPoint (TGeoManager) 329, 331

GetCurrentTrack (TGeoManager) 334

GetCurrentVolume (TGeoManager) 330

GetDecays (TGeoElementRN) 303

GetDefaultSize (TGMainFrame) 391, 394

GetDict (TClassTable) ... 210

GetDrawOption (TObject) 271

GetEigenValues

TMatrixDEigen ... 269

TMatrixDSymEigen .. 269

GetEigenValuesIm (TMatrixDEigen) 269

GetEigenValuesRe (TMatrixDEigen) 269

GetEigenVectors

TMatrixDEigen ... 269

TMatrixDSymEigen .. 269

GetElementRN (TGeoElementTable) 303

GetElementTable (TGeoManager) 303

GetEntries

TChain .. 232

TTree .. 202

GetEntries (TH1) ... 40

GetEntry

TBranch .. 202, 205

TTree .. 201, 202

GetEntryList (TEntryList) 222

GetEvent (TChain) .. 232

GetExec (TROOT) .. 177

GetFile (TDirectory) .. 170

GetFrame (TCanvas) ... 55

GetFunction (TH1) .. 72

GetGeomPainter (TGeoManager) 337

GetHistogram (TGraph) ... 112

GetLastClick (TGFrame) ... 396

GetList (TDirectory) 88, 101, 167, 168, 374

GetListOf... (TROOT) ... 19

GetListOfBrowsables (TROOT) 102, 158

GetListOfCanvases (TROOT) 102

GetListOfCleanUps (TROOT) 103

GetListOfColors (TROOT) 134

GetListOfFriends

TChain .. 232

TTree .. 207

GetListOfKeys (TFile) ... 163

GetListOfPrimitives (TPad) 109

GetListOfTasks (TROOT) 158

GetMaterial (TGeoManager) 299, 305

GetMaximum (TH1F) .. 37

GetMaxTreeSize (TTree) ... 194

GetMean (TH1) ... 40

GetName (TKey) ... 163

GetNcols (TMatrixDBase) 258

GetNoElements (TMatrixDBase) 258

GetNrows (TMatrixDBase) 258

GetObject (TRef) ... 176, 177

GetObjectCount (TProcessID) 176

GetObjectFit (TMinuit) .. 73

GetObjectWithID (TProcessID) 176

GetOption (TH1) .. 28

GetOptions (TGFrame) .. 397

GetParameter (TF1) ... 72

GetParameters (TF1) .. 70

GetParentTrackOfId (TGeoManager) 334

GetParError (TF1) .. 72

GetPicture (TGClient) .. 414

GetPlot (TMinuit) .. 73

GetPosition (TGSlider) .. 412

GetPrimitive (TPad) 13, 109, 112
GetRandom

TF1 .. 235

TH1 ... 235

GetRandom (TH1) ... 25

GetRmax (TGeoPcon) ... 313

GetRmin (TGeoPcon) .. 313

GetRMS (TH1) .. 40

GetRoot (TGClient) ... 391

GetRootFolder (TROOT) ... 156

GetRotation (TGeoMatrix) 327

GetRowIndexArray (TMatrixDSparse) 258

GetRowLwb (TMatrixDBase) 258

GetRowUpb (TMatrixDBase) 258

GetSafeDistance (TGeoManager) 332, 333

GetScale (TGeoMatrix) ... 327

GetSeekKey (TKey) ... 163

GetSelected (TGComboBox) 412

GetSelectedEntry (TGComboBox) 412

GetSender (TGFrame) ... 396

GetSignalHandler (TApplication) 384

GetSize

TCollection ... 284

TList .. 31

TObjArray ... 31

GetState (TGCompositeFrame) 397

GetStep (TGeoManager) 332, 333

GetStreamerInfo

TClass ... 179, 181

TH1 ... 179

GetStyle (TROOT) .. 141

GetTickx (TPad) .. 38

GetTicky (TPad) .. 38

GetTitle (TGeoElementRN) 303

GetTol (TMatrixDBase) ... 258

GetTrack (TGeoManager) 334

GetTrackOfId (TGeoManager) 334

GetTranslation (TGeoMatrix) 327

GetUymax (TPad) .. 37

GetViewer3D (TPad) ... 144

GetWebHistogram (TRef) 178

GetX (TGraph) ... 54

GetX1 (TLine) ... 105

GetXaxis

TGraph .. 63

TH1 ... 24, 39, 122

TH1F ... 130

GetY (TGraph) ... 54

GetYaxis

TGraph .. 63

452 Index

TH1 ... 39

GetZ (TGeoPcon) .. 313

gFile 20, 170, 382

GL viewer .. 143

clipping ... 146

draw styles .. 145

lighting .. 146

manipulators ... 147

global variables .. 19

print current settings ... 20

gRandom .. 20

graph .. 51

asymmetric errors ... 55

axis .. 52

axis titles ... 63

bar graph ... 52

collection... 60

draw options .. 51

errors ... 55

filling .. 53

fitting .. 63

markers ... 53

quantile-quantile ... 59

superimposing ... 54

zoom ... 63

graphical

checking methods ... 336

cut 13

editor ... 135

objects

adding events ... 107

coordinate system

conversion .. 111

global setting .. 110

pixel coordinates .. 110

moving ... 105, 106

resizing ... 105

selecting ... 106

greek font ... 117, 139

gROOT ... 19, 94, 103, 134, 166

GUI Application .. 370

H

H1FitChisquare (TMinuit) ... 73

H1FitLikelihood (TMinuit) 73

h2root ... 22, 438

HandleButton (TGFrame) .. 396

HandleEvent (TGFrame) ... 396

HandleFocusChange (TGFrame) 396

HandleInput (TCanvas) ... 108

HandleKey (TGFrame) .. 396

HandleMotion (TGFrame) 396

HasConnection (TOQbject) 403

HasFocus (TGWidget) ... 396

Hash (TObject) .. 285

HBOOK ... 22

heap . .. 83, 88, 89, 169

HepLorentzVector ... 239, 242

HepThreePoint ... 241

HepThreeVector .. 240

HideEntry (TGPopupMenu) 409

HideFrame (TGCompositeFrame) 397

hierarchy 24, 155, 156, 157, 158, 189, 283, 299, 300,

301, 314, 315, 320, 326, 329, 341

HightPriority (TQObject) ... 402

histogram ... 23

1-D histograms .. 23

2-D histograms .. 23

3-D histograms .. 23

addition ... 26

alphanumber bin labels ... 40

axis title ... 39

BAR .. 33

batch mode .. 214

change default directory 101, 168

clone .. 39

color palette ... 34, 134

contour .. 30

coordinate systems .. 31

division .. 26

draw options .. 26, 27

refreshing ... 26

setting default ... 28

superimpose ... 26

drawing sub-range ... 36

error bars ... 26

filling ... 25

with random numbers ... 25

first bin .. 24

Fit Panel .. 68

fitting ... 65

combining functions ... 70

errors .. 72

function .. 65

function list .. 70

initial parameters .. 66

options .. 65

parameter bounds ... 67

parameters .. 72

range ... 67

statistics .. 72

user defined function .. 66

last bin ... 24

legend .. 137

lego plot .. 31

list of functions ... 65

log scale .. 113

multiplication .. 26

profile histograms ... 23

projection .. 26

reading .. 39

re-binning .. 25

automatic re-binning .. 25

remove from directory 101, 168

saving to file .. 167

scatter plot ... 29

second bin ... 24

second to last bin ... 24

style ... 27

sub-range ... 36

superimpose .. 37

surface plot .. 32

variable bin sizes ... 24

writing ... 39

history file .. 21

 Index 453

home directory ... 165

homogenous matrix ... 326

horizontal splitter ... 415

I

I/O redirection .. 87

identity 293, 297, 316, 322, 327, 328

IgnoreInterrupt (TSystem) 384

IgnoreObjectStreamer (TObject) 174, 176, 272

IgnoreSignal (TSystem) ... 384

Import (TGeoManager) ... 341

in memory objects ... 167

include path.. 94

Inheritance ... 271

InheritsFrom (TClass) .. 271

InitTrack (TGeoManager) 330

input/output .. 159

Inspect

TFile .. 91

TObject ... 91, 271

inspecting ... 91

InspectMaterial (TGeoVolume) 301

Inspector (TInspectCanvas) 103

InspectShape (TGeoVolume) 301

install ROOT.. 3, 437

Integral

TF1 .. 15

TH1 ... 39, 40

interpreter .. 85

intersection... 314, 316

Introspection .. 271

Inverse (TRotation) .. 294

Invert

TMatrixD .. 263

TMatrixDSym ... 263

Invert (TDecompBase) .. 266

Invert (TRotation) .. 294

InvertFast

TMatrixD .. 263

TMatrixDSym ... 263

IsA (TClass) ... 271

IsBatch (TROOT) .. 202

IsCombi (TGeoMatrix) .. 327

IsEnabled (TGTextButton) 396

IsEntering (TGeoManager) 333

IsEqual (TObject) .. 285

IsFolder (TObject) ... 272

IsGeneral (TGeoMatrix) .. 327

IsIdentity (TGeoMatrix) .. 327

IsOnBoundary (TGeoManager) 333

IsOutside (TGeoManager) 333

IsRadioNuclide (TGeoElement) 304

IsRotation (TGeoMatrix) ... 327

IsSameLocation (TGeoManager) 332

IsScale (TGeoMatrix) .. 327

IsSortable (TObject) .. 285

IsStepEntering (TGeoManager) 332

IsTranslation (TGeoMatrix) 327

IsVisible (TGCompositeFrame) 397

iterators .. 284, 286

J

Join (TThread) ... 382

K

kCanDelete... 102, 103, 272

kCanRebin (TH1) .. 25

key 161, 163, 164, 167, 169, 174, 283

Kill (TThread) .. 382

kMustCleanup .. 102, 103, 272

KolmogorovTest (TH1) ... 39

kOverwrite ... 168

L

label . .. 13

LabelsDeflate (TH1) .. 41

LabelsOption (TH1) ... 41

landau ... 65

Landau (TRandom) .. 20

latex . .. 13, 116

layout

hints ... 399, 400

managers ... 389

Layout (TGCompositeFrame) 397

legends ... 137

lego plot ... 31

license .. 437

line 13

attributes .. 133

LinkDef .. 7, 173, 276, 277

options ... 277

list boxes .. 389

Load (TSystem) 94, 182, 191, 210, 299

local

frame ... 300, 305

geometrical transformation 300

point .. 305, 331

LocalToMaster (TGeoMatrix) 327

LocalToMasterVect (TGeoMatrix) 327

Lock (TThread) .. 381

logarithmic scale .. 113

Lorentz vector .. 294

LowPriority (TQObject) .. 402

ls

TDirectory ... 165, 170

TFile .. 92, 164, 165, 167

TList .. 166

TNamed... 167

TObject ... 103, 167

M

macro path.. 21

Mag (TVector3) ... 292

Mag2 (TVector3) ... 292

mailing list ... 1

main frame ... 389

MakeBox (TGeoManager) 316, 318, 320

MakeClass

THtml .. 433

TTree 213, 225, 226, 229, 371

454 Index

MakeIterator (TCollection) 285

MakeProject (TFile) .. 181, 182

MakeSelector (TTree) 213, 371

MakeTube (TGeoManager) 318, 322

MakeTubs (TGeoManager) 320

manual schema evolution .. 180

Map (TFile).. 163

MapSubwindows (TGMainFrame) 391

MapWindow (TGMainFrame) 391

marker .. 13, 53

MARS .. 299

MasterToLocal

TGeoManager ... 331

TGeoMatrix .. 327

MasterToLocalVect

TGeoManager ... 331

TGeoMatrix .. 327

materials .. 302

Math libraries ... 233

MathCore ... 237, 247

mathematical

expressions .. 116

symbols ... 118

MathMore .. 246, 247

matrix

add .. 261

condition number .. 267

creating ... 260

decompositions ... 265

Eigen analysis ... 269

eigenvalues ... 269

eigenvectors .. 269

filling .. 260, 274

inverse rotation ... 326

inverse translation ... 326

multiplication .. 261

norm .. 262

operators ... 260, 262

properties .. 258

rotation .. 326

scale constants .. 326

sparse map .. 259

subtraction... 261

translation ... 326

views ... 263

matrix slice

add .. 264

multiply ... 264

MatrixMultiplication (TLorentzRotation) 297

Max (TMatrixDBase) .. 262

memory

checker .. 21

leaks .. 21

menu bars ... 389

method overriding .. 82

Min (TMatrixDBase) ... 262

Minus (TLorentzVector) .. 296

mkdir (TDirectory) .. 169

mnplot (TMinuit) ... 73

modeller ... 299, 300, 318

current

direction ... 329

global transformation ... 331

material ... 330

node .. 330

path ... 330

state .. 329

state checking ... 330

state index .. 330

volume .. 330

navigation queries ... 331

normal vector .. 333

point and vector conversions 331

restoring current state .. 331

saving

current state .. 331

in a root file .. 341

state initialization .. 329

modelling

shapes .. 305

Modified (TPad) .. 112

Move (TGFrame) ... 396

multi-line command ... 17

multi-pad canvas .. 16

multiple sockets ... 378

Multiply (TH1) .. 26

MultiSolve (TDecompBase) 266

mutex ... 380, 381

N

named scripts ... 87

networking ... 377

NewPage (TPostScript) .. 140

Next

TIter .. 286

TIterator .. 285

Node (TGeoManager) 318, 324

NonZeros (TMatrixDBase) 262

Norm1 (TMatrixDBase) ... 262

normalized coordinate system (NDC) 110

NormByColumn (TMatrixDBase) 262

NormByRow (TMatrixDBase) 262

NormInf (TMatrixDBase) .. 262

Notify (TSelector) .. 229, 371

ntuple ... 189

NumberOfConnections (TOQbject) 403

NumberOfSignals (TOQbject) 403

O

OBJ . .. 164, 166

object

in memory ... 165

number .. 176

on disk ... 165

ownership .. 101

Open (TFile) .. 184, 186

OpenGL ... 143

operator() (TIter) .. 286

operator[] (TObjArray) .. 287

ordered collections ... 284

Orthogonal (TVector3) .. 292

Orthographic camera .. 144

overlap ... 335

 Index 455

P

pad

coordinate system ... 110

copy/paste ... 135

dividing ... 111

find an object .. 109

hide an object .. 109

modified .. 112

transparent ... 112

update .. 112

updating .. 26

Paint

TF1 .. 15

TObject ... 109, 271

PaintAxis (TGaxis) .. 124

palette .. 134

parallelepiped ... 306

parametric shapes .. 318

pave . .. 13

PAW .. 1, 22, 371, 438

Perp (TVector3) ... 292

Perp2 (TVector3) ... 292

persistent .. 179

Perspective camera .. 144

Phi (TVector3) ... 292

phi segmentation .. 312, 313

PhiX (TRotation) ... 294

PhiY (TRotation) ... 294

PhiZ (TRotation) .. 294

physics vector .. 291

pixel coordinate system ... 110

PixeltoX (TPad) ... 111

PixeltoXY (TPad) .. 111

PixeltoY (TPad) ... 111

plugin manager .. 6

Plus (TLorentzVector) ... 296

Poisson (TRandom) ... 20

Polar3DPoint ... 241

Polar3DVector ... 240

polycone .. 312

polygon .. 313

poly-line ... 13

polynomial ... 65

PopDummy (TGeoManager) 331

PopPath (TGeoManager) ... 331

PopPoint (TGeoManager) .. 331

popup menus .. 389

positioned volumes .. 321

positioning 300, 315, 316, 318, 326, 327, 400

relative .. 319

PostScript ... 138

primitive shapes 300, 316, 322

Print

TEnv ... 132

TGeoElementRN .. 303

TGeoHMatrix ... 327

TLine .. 86, 87

TTree .. 190

print .

active classes ... 21

current settings .. 20

probability density functions 249

Process

TChain .. 372

TTree ... 229, 371

Process ID .. 176

ProcessCut (TSelector) .. 371

ProcessEvent (TGFrame) ... 396

ProcessEvents (TSystem) ... 130

ProcessFill (TSelector) 229, 371

ProcessLine (TROOT) ... 89, 94

ProcessMessage (TGFrame) 396

profile histograms .. 42

2D . .. 44

from a tree ... 44

ProfileX (TH2) ... 44

ProfileY (TH2) ... 26, 44

Project (TTree) ... 225

Project3D (TH3) .. 26

ProjectionX

TH2 ... 26

TProfile ... 26, 44

ProjectionXY (TProfile2D) 26, 44

ProjectionZ (TH3) .. 26

PseudoRapidity (TVector3) 292

PtEtaPhiEVector .. 242, 243

PushPath (TGeoManager) .. 331

PutObjectWithID (TProcessID) 176

pwd

TDirectory ... 165

TFile .. 170

Px (TLorentzVector) .. 295

Py (TLorentzVector) .. 295

PyROOT

access to Python .. 355

access to ROOT classes 351, 353

access to ROOT globals .. 354

access to STL classes .. 354

building from source ... 353

environment settings ... 352

installation ... 352

Pz (TLorentzVector) .. 295

Q

QApplication .. 424

Qt interface

BNL .. 423

GSI .. 430

Qt-layer (Qt interface BNL) 423

quantile-quantile plots .. 59

R

radio buttons .. 389

ramdom numbers ... 20

Randomize (TMatrixDBase) 262

RandomizePD (TMatrixDSym) 263

RandomPoints (TGeoVolume) 301, 337

RandomRays (TGeoVolume) 337

Range

TPad .. 110

TPostScript .. 138

Rank1Update

TMatrixD .. 263

456 Index

TMatrixDSym ... 263

Rannor (TRandom) .. 43, 200

Ratio (TGeoElementRN) ... 304

ray tracing .. 301, 337, 339

clipped view .. 339

Rays (TGeoVolume) .. 301

Raytrace (TGeoVolume) 301, 316

Rebin (TH1) ... 25

Recover (TFile) .. 162

rectangles ... 115

Recv (TSocket) .. 377

RedrawAxis (TPad) ... 38

reference guide .. 7, 8

Reflection .. 96

Reflex .. 96

API .. 97

base ... 97

member ... 97

MemberTemplate .. 97

properties .. 97

scope ... 97

types .. 97

TypeTemplate ... 97

Refresh (TTree) ... 192

RegisterYourself

TGeoMatrix .. 315, 328

TGeoRotation ... 316

Remove

TCollection ... 285

TList .. 110

RemoveEntry (TGListBox) 411

RemoveFrame (TGCompositeFrame) 397

RemoveSignalHandler (TSystem) 384

ReOpen (TFile) .. 186

REPLICA .. 300

Reset

TH1 ... 40

TIter .. 286

TIterator .. 285

TROOT ... 84, 89

ResetBit (TObject) ... 102

ResetSignal (TSystem) .. 384

Resize

TGComboBox ... 412

TGFrame ... 396

TGListBox .. 411

TGMainFrame .. 391, 394

ResizeTo (TMatrixDBase) 259

RestoreMasterVolume (TGeoManager) 322

Rint . .. 165

Rndm (TRandom) .. 20

Rndm (TRandom3) .. 234

RndmArray (TRandom3) ... 234

ROOT

access to Python .. 352

ROOT::Math

assoc_legendre .. 247

beta .. 247

beta_pdf .. 249

binomial_pdf ... 249

breitwigner_pdf ... 249

cauchy_pdf .. 249

chisquared_pdf .. 249

comp_ellint_1 ... 247

comp_ellint_2 ... 247

comp_ellint_3 ... 247

conf_hyperg .. 247

cyl_bessel_i ... 248

cyl_bessel_j ... 248

cyl_bessel_k .. 248

cyl_neumann ... 248

ellint_1 .. 248

ellint_2 .. 248

ellint_3 .. 248

erf . .. 247

erfc .. 247

expint .. 249

exponential_pdf ... 249

fdistribution_pdf ... 249

gamma_pdf ... 249

gaussian_pdf ... 249

gaussian_prob ... 250

gaussian_quant .. 250

hyperg ... 249

legendre ... 249

lognormal_pdf ... 249

normal_pdf .. 249

poisson_pdf ... 249

riemann_zeta ... 249

sph_bessel ... 249

sph_neumann .. 249

tdistribution_pdf .. 249

tgamma .. 247

uniform_pdf .. 249

ROOT::Math:: DefaultCoordinateSystemTag 238

ROOT::Math:: DisplacementVector3D 238

ROOT::Math:: PositionVector3D 238

ROOT::Math::AxisAngle 238, 244

ROOT::Math::Boost .. 238, 244

ROOT::Math::BoostX 238, 244

ROOT::Math::BoostY 238, 244

ROOT::Math::BoostZ 238, 244

ROOT::Math::Cartesian2D 238

ROOT::Math::Cartesian3D 238

ROOT::Math::Cylindrical3D 238

ROOT::Math::CylindricalEta3D 238

ROOT::Math::DisplacementVector2D 237

ROOT::Math::DisplacementVector3D 237, 239, 240

ROOT::Math::EulerAngles 238, 244

ROOT::Math::IFunction .. 237

ROOT::Math::IParamFunction 237

ROOT::Math::LorentzRotation 238, 244

ROOT::Math::LorentzVector........................... 237, 242

ROOT::Math::MatRepStd .. 252

ROOT::Math::Polar2D .. 238

ROOT::Math::Polar3D .. 238

ROOT::Math::Polar3DPoint 241

ROOT::Math::Polar3DPointF 241

ROOT::Math::Polar3DVector 239

ROOT::Math::Polar3DVectorF 239

ROOT::Math::PositionVector2D 237

ROOT::Math::PositionVector3D 237, 241, 242

ROOT::Math::PtEtaPhiE4D 238

ROOT::Math::PtEtaPhiEVector 242

ROOT::Math::PtEtaPhiM4D 238

ROOT::Math::PtEtaPhiMVector 242

 Index 457

ROOT::Math::PxPyPzE4D 238

ROOT::Math::PxPyPzM4D 238

ROOT::Math::PxPyPzMVector 242

ROOT::Math::Quaternion 238, 244

ROOT::Math::RhoEtaPhiPoint 241

ROOT::Math::RhoEtaPhiPointF 241

ROOT::Math::RhoEtaPhiVector 239

ROOT::Math::RhoEtaPhiVectorF 239

ROOT::Math::RhoZPhiPoint 241

ROOT::Math::RhoZPhiPointF 241

ROOT::Math::RhoZPhiVector 239

ROOT::Math::RhoZPhiVectorF 239

ROOT::Math::Rotation3D 238, 244

ROOT::Math::RotationX 238, 244

ROOT::Math::RotationY 238, 244

ROOT::Math::RotationZ 238, 244

ROOT::Math::SMatrix .. 250

ROOT::Math::SVector .. 250

ROOT::Math::Transform3D 238, 244

ROOT::Math::VectorUtil .. 239

ROOT::Math::XYZPoint ... 241

ROOT::Math::XYZPointF 241

ROOT::Math::XYZTVector 242

ROOT::Math::XYZTVectorF 242

ROOT::Math::XYZVector 239

ROOT::Math::XYZVectorF 239

ROOT::Minuit2 ... 255

rootalias ... 21

rootcint 95, 107, 171, 173, 276, 277, 281, 282

rootd 4, 184, 185, 439

command line arguments 185

rootlogoff ... 21

rootlogon .. 21, 141

rootmap .. 6, 353

rootrc ...10, 20, 21, 87, 132

Rotate

TLorentzRotation .. 297

TLorentzVector ... 296

TRotation .. 293

TVector3 ... 292

RotateAxes (TRotation) ... 294

RotateUz

TLorentzVector ... 296

TVector3 ... 293

RotateX

TLorentzRotation .. 297

TLorentzVector ... 296

TRotation .. 293

TVector3 ... 292

RotateY

TLorentzVector ... 296

TVector3 ... 292

RotateZ

TLorentzVector ... 296

TVector3 ... 292

RowNorm (TMatrixDBase) 262

row-wise ntuples .. 22

RQ_OBJECT ... 401

RTTI ... 2, 85, 271, 273, 283

Run (TThread) ... 381

S

safe distance ... 317

Safety

TGeoManager ... 333

TGeoShape .. 317

saving collections to disk ... 169

Scale (TH1F) .. 37

Scan (TTree) .. 221

scatter plot .. 29

scope 87, 88, 89, 168, 169, 174

script .. 87

debugger .. 91

named .. 88, 89

path .. 21

un-named ... 87, 88, 89

scroll bars ... 389

SectionsValid (TBuffer3D) 151

Select

TGComboBox ... 412

TMonitor ... 378

selectors ... 229

semaphore .. 380

Send (TSocket) .. 377

SendMessage (TGFrame) .. 396

server .. 377

Set (TDatime) .. 381

SetAclicMode (TSystem) ... 94

SetAction (TExec) ... 177

SetActive (TTask) .. 158

SetAddress

TBranch... 201, 205

TChain .. 231

SetAngles (TGeoRotation) 327, 328

SetArrowSize (TArrow) ... 82

SetAutoDelete (TTree) ... 201

SetAutosave (TTree) .. 194

SetAxisColor (TAxis) .. 122

SetBarColor (TGHProgressBar) 414

SetBarOffset (TH1) .. 33

SetBarWidth (TH1) .. 33

SetBinContent

TH1 ... 25

TH1F ... 37, 69, 71, 130

SetBinError (TH1F) ... 71

SetBinLabel (Taxis) ... 40

SetBit (TObject) ... 25, 102

SetBorderSize (TPaveLabel) 121

SetBranchAddress

TChain .. 231, 232

TTree ... 201, 202

SetCancelAsynchronous (TThread) 382

SetCancelDeferred (TThread) 382

SetCancelOn (TThread) ... 382

SetCanvasBorderMode (TStyle) 141

SetCanvasColor (TStyle) ... 141

SetCircular (TTree) .. 194

SetClipping (TGeoManager) 339

SetClippingShape (TGeoManager) 339

SetClipState (TGLClipSet) 147

SetClipType (TGLClipSet) 147

SetColIndexArray (TMatrixDSparse) 259

SetCommand (TGWidget) 396

458 Index

SetCompressionLevel (TFile) 183

SetContour

TF2 .. 135

TH1 ... 28

SetCurrentCamera (TGLViewer) 144

SetCurrentPoint (TGeoManager) 329, 331

SetCurrentTrack (TGeoManager) 334

SetCursor (TPad) ... 108

SetData (TMultiLayerPerceptron) 77

SetDirectory

TH1 ... 101, 168

TTree .. 101

SetEditable (TPad) ... 113

SetEntryList (TChain) ... 224

SetEntryListFile (TChain) 224

SetEstimate (TTree) ... 225

SetEventList (TTree) ... 222

SetFCN (TMinuit) ... 72

SetFCN (TVirtualFitter) .. 255

SetFillColor

TArrow ... 114

TCanvas .. 55

TGraph .. 52

TH1F ... 42, 133

TPad .. 20, 109

SetFillColor (TAttFill) ... 133

SetFillStyle

TAttFill ... 133

TH1F ... 133

TPad .. 112

SetFillType (TGHProgressBar) 414

SetFlags (TGWidget) ... 395

SetFrame

TGHSplitter .. 416

TGVSplitter .. 416

SetGraphicsMode (TMinuit) 73

SetGrid (TCanvas) ... 55, 130

SetGuideState (TGLViewer) 148

SetHeader (TLegend) ... 137

SetHistFillColor (TStyle) ... 27

SetHistFillStyle (TStyle) ... 27

SetHistLineColor (TStyle) ... 27

SetHistLineStyle (TStyle) .. 27

SetHistLineWidth (TStyle) .. 27

SetIncludePath (TSystem) ... 94

SetIndiceSize (TLatex) .. 117

SetLabel (TPaveText) .. 120

SetLabelColor

TAxis .. 122

TGaxis .. 37

SetLabelFont

TAxis .. 122

TStyle .. 141

SetLabelOffset

TAxis .. 122

TGaxis .. 128

TStyle .. 141

SetLabelSize

TAxis .. 122, 126

TGaxis .. 127, 128, 129

SetLabelSize (TAxis) ... 34

SetLayoutManager (TGCompositeFrame) 397

SetLight (TGLLightSet) .. 146

SetLimitIndiceSize (TLatex).................................... 117

SetLineColor

TAttLine .. 133

TF1 .. 71

TGaxis ... 37

TGeoVolume ... 316

TGraph .. 54

TH1F ... 37, 130

TLine ... 133

SetLineStyle (TAttLine) .. 133

SetLineStyleString (TStyle) 142

SetLineWidth

TAttLine .. 133

TGraph .. 54, 58

TLine ... 133

SetLinkedLibs (TSystem) .. 94

SetLogx (TPad) .. 113

SetLogy (TPad) .. 113

SetLogz (TPad) .. 113

SetMag (TVector3) .. 292

SetMarkerColor

TGraph .. 63

TGraphAsymmErrors .. 56

TGraphErrors .. 55

TMarker .. 54

SetMarkerSize (TMarker) 54, 115

SetMarkerStyle

TGraph .. 53, 54, 63

TGraphAsymmErrors .. 56

TGraphErrors .. 55

TStyle .. 13

SetMaxDigits (TGaxis) .. 124

SetMaximum (TH1F)... 69, 130

SetMinimum (TH1F) ... 130

SetName

TGaxis ... 128

TGeoMatrix ... 315

TH1F ... 39

SetNDC (TText) .. 111

SetNdivisions (TAxis) 122, 130

SetNoEdges (TEllipse) ... 114

SetNoExponent

TAxis .. 122, 123

TGaxis ... 123

SetObject (TRef) .. 177

SetObjectCount (TProcessID) 176

SetObjectFit (TMinuit) .. 73

SetOptDate (TStyle)... 142

SetOptFit (TStyle) .. 72

SetOption (TH1) .. 28

SetOptStat (TStyle) 37, 38, 129, 142

SetOrthoCamera (TGLViewer) 145

SetOwner (TCollection) ... 103

SetPadBorderMode (TStyle) 141

SetPadColor (TStyle) ... 141

SetPalette (TStyle) 28, 29, 32, 34, 134, 135, 142

SetPaperSize (TStyle) .. 139

SetParallel (TView) ... 301

SetParameter (TF1) .. 67

SetParameter (TVirtualFitter) 255

SetParameters (TF1) .. 67, 71

SetParLimits (TF1) .. 67

SetParNames (TF1) .. 67

 Index 459

SetParts (TGStatusBar) .. 415

SetPasswd (TNetFile) .. 184

SetPerp (TVector3) .. 292

SetPerspective (TView) ... 301

SetPerspectiveCamera (TGLViewer) 145

SetPhi (TVector3) .. 292

SetPicture (TGPictureButton) 405

SetPosition

TGHSlider... 412

TGSlider ... 412

SetPxPyPzE (TVector3) .. 295

SetRange

TAxis .. 122

TF1 .. 15

TGDoubleVSlider ... 413

TGHSlider... 412

TGSlider ... 412

SetRangeUser (TAxis) ... 122

SetRGB (TColor) ... 134, 135

SetRightMargin (TPad) ... 34

SetRowIndexArray (TMatrixDSparse) 259

SetScale (TGSlider) ... 412

SetSectionsValid (TBuffer3D) 151

SetSize (TGFrame) .. 396

SetSourceDir (THtml) ... 433

SetSparseIndex (TMatrixDSparse) 259

SetSparseIndexAB (TMatrixDSparse) 259

SetStatColor (TStyle)... 141

SetState

TGCheckButton .. 406

TGRadioButton ... 405

SetStats

TH1 ... 37

TH1F ... 130

TH2F ... 63

SetStatW (TStyle) .. 141

SetStatX (TStyle) ... 141

SetStripDecimals (TStyle) 124

SetStyle (TGLViewer) ... 146

SetStyle (TROOT) ... 141

SetText (TGStatusBar) .. 415

SetTextAlign (TLatex) 119, 130

SetTextAngle (TLatex) .. 131

SetTextColor (TAttText) ... 131

SetTextFont

TAttText ... 131

TGaxis .. 128

SetTextSize

TAttText ... 132

TLatex ... 119

SetTheta (TVector3) .. 292

SetTickLength (TAxis) .. 122

SetTicks (TPad) ... 38

SetTimeDisplay (TAxis) 125, 126, 130

SetTimeFormat

TAxis .. 125, 126

TGaxis .. 127, 128

SetTimeOffset

TGaxis .. 127

TStyle .. 125

SetTitle

TAxis .. 39, 63, 106, 122

TGaxis .. 129

TGraphAsymmErrors .. 56

TGraphErrors .. 55

SetTitleColor (TStyle) ... 141

SetTitleH (TStyle) .. 126

SetTitleOffset

TAxis .. 122

TGaxis ... 129

TStyle .. 143

SetTitlePos (TGGroupFrame) 398

SetTitleSize

TAxis .. 122

TGaxis ... 129

SetTminTmax (TGeoManager) 334

SetTol (TMatrixDBase) ... 259

SetTopVisible (TGeoManager) 299

SetTopVolume (TGeoManager) 316, 319, 322

SetTranslation (TGeoTranslation) 327

SetUser (TNetFile) ... 184

SetVect (TVector3) .. 295

SetVisLevel (TGeoManager) 338

SetVisOption (TGeoManager) 338

SetWeight (TMultiLayerPerceptron) 77

SetWindowName (TGMainFrame) 391

SetWMSize (TGMainFrame) 398

SetX (TVector3) .. 291

SetX1 (TLine) .. 86, 87

SetX1NDC (TPaveStats) ... 38

SetX2NDC (TPaveStats) ... 38

SetXYZ (TVector3) ... 291

SetXYZM (TVector3) .. 295

SetXYZT (TVector3) ... 295

SetY (TVector3) .. 291

SetY1 (TLine) .. 86, 87

SetZ (TVector3) ... 291

shape axes .. 318

shapes ... 305

arbitrary 8 vertices .. 308

box .. 306

composite .. 305, 314

cone ... 310

cone segment ... 311

creating .. 318

cut tube .. 309

dividing ... 318

elliptical tube ... 310

general trapezoid ... 307

parallelepiped .. 306

parametric shapes .. 318

polycone .. 312

polygon ... 313

sphere .. 311

torus .. 312

trapezoid Trd1 ... 307

trapezoid Trd2 ... 307

tube .. 309

tube segment ... 309

twisted trapezoid ... 308

Show

TGButtonGroup .. 405

TTree ... 212

ShowAxis (TView) .. 301

ShowFrame (TGCompositeFrame) 397

ShowPosition (TGHProgressBar) 414

460 Index

ShowStreamerInfo (TFile) 161, 181

Signal (TCondition) ... 381

SMatrix .. 233

socket ... 377

Solve (TDecompBase) ... 265

special characters ... 139

sphere ... 311

spherical coordinates ... 295

split-level ... 197

Sqr (TMatrixDBase) ... 262

Sqrt (TMath) .. 71

Sqrt (TMatrixDBase) ... 262

square root symbol ... 117

stack 83, 88, 89, 121, 169, 384

StartViewer (TTree)... 191, 202

Step (TGeoManager) ... 333

STL . .. 289

Streamer (TObject) 174, 176, 276

StreamerInfo .. 161, 179

StreamerInfoElement ... 179

streamers .. 171, 173, 377

automatic... 171

custom ... 173

exclude TObject .. 174

pointers ... 175

prevent splitting .. 173

TClonesArray ... 174

transient data members ... 172

variable length arrays .. 172

writing objects .. 174

stub functions ... 107

style . .. 141

subdirectories ... 169

Subtract (TGeoTranslation) 327

subtraction ... 314

Sum (TMatrixDBase) .. 262

Sumw2 (TH1) .. 25, 26, 72

superimposing graphs .. 54, 115

superscripts .. 117

supported platforms ... 3

surface plot .. 32

T

T (TLorentzVector) ... 295

T (TMatrixDBase) ... 263

tab completion ... 17

TApplication .. 393, 424

GetSignalHandler.. 384

TArc 116

TArrayC ... 24

TArrayD .. 24

TArrayF ... 24

TArrayS ... 24

TArrow .. 81, 82, 114

tasks 157

TAttFill .. 38, 133, 141, 179

SetFillColor ... 133

SetFillStyle ... 133

TAttLine .. 38, 133, 141, 179

SetLineAttributes .. 107

SetLineColor ... 133

SetLineStyle .. 133

SetLineWidth .. 133

TAttMarker .. 38, 116, 141, 179

TAttText .. 38, 130, 141

SetTextAlign ... 130

SetTextAngle .. 131

SetTextColor ... 131

SetTextFont ... 131

SetTextSize ... 132

TAxis ... 24, 41, 122

CenterLabels ... 123

CenterTitle .. 63

SetAxisColor ... 122

SetBinLabel ... 40

SetLabelColor ... 122

SetLabelFont ... 122

SetLabelOffset .. 122

SetLabelSize ... 122, 126

SetNdivisions .. 122

SetNoExponent ... 122, 123

SetRange ... 122

SetRangeUser .. 122

SetTickLength ... 122

SetTimeDisplay ... 125, 126

SetTimeFormat ... 125, 126

SetTitle .. 39, 106

SetTitleOffset .. 122

SetTitleSize ... 122

TBox .. 115

TBranch ... 195, 200, 272

GetEntry .. 202, 205

SetAddress .. 201, 211

SetAutoDelete ... 201

TBranchElement .. 197

TBranchRef .. 193

TBrowser 17, 103, 158, 159, 202, 368

TBtree .. 284

TBuffer 173, 174, 180, 276, 277, 281, 377

TBuffer3D .. 151

ClearSectionsValid .. 151

SectionsValid .. 151

SetSectionsValid ... 151

TCanvas ... 382, 391

cd 16, 103, 205, 213

Clear .. 139

Divide 16, 103, 140, 205, 213

DrawClonePad .. 135

HandleInput ... 108

ls . .. 103

MakeDefCanvas 11, 105, 166

Modified .. 130

Range .. 128

SaveAs .. 272

SetBottomMargin .. 375

SetFillColor ... 130, 205

SetFrameFillColor ... 130

SetGrid .. 130, 375

Update ... 112, 130, 139

Write ... 168

TCanvasImp ... 429

TChain 102, 227, 231, 371, 372

AddFriend ... 232

Draw .. 231, 232

GetListOfFriends .. 232

 Index 461

Process .. 372

SetBranchAdress ... 231

SetBranchStatus .. 232

SetEntryList .. 224

SetEntryListFile .. 224

TClass .. 271

GetStreamerInfo ... 179

InheritsFrom ... 271

IsA .. 271

ReadBuffer .. 172

WriteBuffer ... 172, 174

TClonesArray 197, 201, 209, 230, 284, 288

BypassStreamer .. 174

TCollection169, 199, 284, 286

Add ... 284

Clear .. 284

Delete .. 284

FindObject .. 284

GetSize .. 284

Remove ... 284

Write ... 169

TColor

SetRGB ... 34, 134

TCondition ... 381

Broadcast .. 381

Signal .. 381

TimedWait .. 381, 382

Wait .. 381

TConditionImp .. 380

TCurlyArc .. 116

TCurlyLine .. 116

TCut 214

TCutG ... 13, 28, 36, 102, 369

TDatime

AsSQLString ... 125

TDecompBase ... 257

Condition .. 265

Decompose ... 265

Det .. 265

Invert ... 266

MultiSolve .. 266

Solve ... 265

TransSolve .. 265

TDecompBK .. 265

TDecompChol ... 265

TDecompLU .. 265

TDecompQRH ... 265

TDecompSVD ... 265

TDirectory ... 164

cd . .. 165

Delete .. 170

gDirectory ... 170

GetFile .. 170

GetList .. 101, 167, 168

ls . .. 165, 166

mkdir ... 169

TDNDdata ... 420

TEllipse .. 114

SetNoEdges ... 114

template support .. 273

TEntryList .. 222

Contains .. 223

Enter .. 223

GetEntryList .. 222

Remove ... 223

TEntryListBlock .. 222

TEnv .

Print ... 20

Terminate

TApplication ... 391, 392

Terminate (TSelector) 229, 371

Test

TGeoManager ... 322

TestBit (TObject) ... 102

TEventList 101, 166, 222, 369, 374

TExec ... 177

Text (TPostScript) .. 139

text attributes .. 130

TF1

GetRandom ... 235

Paint .. 15

SetRange ... 15

TFeldmanCousins .. 256

TFile ... 93, 159, 164, 169

Close ... 169

Get ... 163

global scope of .. 169

Inspect ... 91

ls 92, 165, 167, 168, 213, 226

MakeProject .. 181

Map ... 160, 162, 163

mkdir ... 169

Open .. 184, 186

Recover ... 162

ReOpen ... 186

SetCompressionLevel ... 183

ShowStreamerInfo .. 161, 181

Write ... 167, 169, 375

TFile .

pwd .. 170

TFitterFumili .. 255

TFitterMinuit ... 255

TFolder .. 155, 156

Add .. 103

AddFolder ... 156

find .. 157

SetOwner ... 157

TFormula ... 66, 214

TFractionFitter ... 256

TFrame ... 15, 166

TFree .. 174, 287

TGaxis .. 122, 123

Draw .. 128

PaintAxis ... 124

SetLabelColor ... 37

SetLabelOffset .. 128

SetLabelSize ... 127, 128, 129

SetLineColor ... 37

SetMaxDigits .. 124

SetName .. 128

SetNoExponent ... 123

SetTextFont ... 128

SetTimeFormat ... 127

SetTimeOffset ... 127

SetTitle .. 122, 129

SetTitleOffset .. 129

462 Index

SetTitleSize ... 129

time axis .. 127

TGButton ... 404, 410

Clicked .. 400

TGButtonGroup

Show ... 405

TGCanvas .. 416, 417

TGCheckButton ... 405

TGClient .. 395, 397

FreePicture .. 414

GetPicture ... 414

TGCmpositeFrame .. 399

TGComboBox ... 412

AddEntry... 412

Select .. 412

TGComboBoxPopup ... 412

TGCompositeFrame .. 397

Layout ... 397

RemoveFrame ... 397

SetLayoutManager .. 397

TGContainer .. 416

TGDNDManager ... 420

TGDoubleHSlider .. 413

TGDoubleVSlider

SetRange ... 413

TGeo

user interface ... 346

TGeoArb8 .. 308

TGeoBatemanSol

Draw ... 304

TGeoBBox ..306, 316, 318, 324

TGeoChecker ... 335

TGeoCombiTrans .. 327, 328

TGeoCompositeShape 315, 316

TGeoCone .. 310, 324

TGeoConeSeg .. 311

TGeoCons .. 324

TGeoCtub .. 309, 324

TGeoDecayChannel ... 303

TGeoElement

IsRadioNuclide ... 304

TGeoElementIter ... 303

TGeoElementRN ... 303

GetDecays ... 303

GetTitle ... 303

Print .. 303

Ratio .. 304

TGeoElemetTable

GetElementRN .. 303

TGeoEltu ... 310, 324

TGeoGtra ... 308, 324

TGeoHalfSpace ... 314

TGeoHMatrix .. 327, 331

Print .. 327

TGeoHype ... 310

TGeoIdentity .. 328

TGeoManager299, 316, 336, 346

AddTrack .. 334

AnimateTracks .. 334

CdNode ... 331

CloseGeometry299, 316, 319, 341

DrawTracks ... 334

Export ... 341

FindNextBoundary .. 332, 333

FindNode... 329, 331

FindNormal ... 333

GetCurrentDirection .. 329

GetCurrentMatrix .. 331

GetCurrentNode .. 329, 330

GetCurrentNodeId ... 331

GetCurrentPoint .. 329

GetCurrentVolume .. 330

GetElementTable .. 303

GetMaterial ... 299, 305

GetParentTrackId .. 334

GetSafeDistance .. 332, 333

GetStep .. 332, 333

GetTrackOfId .. 334

Import .. 341

InitTrack .. 330

IsEntering .. 333

IsOnBoundary ... 333

IsOutside ... 333

IsSameLocation ... 332

IsStepEntering ... 332

MakeBox 299, 316, 318, 320

MakeTube ... 318, 322

MakeTubs ... 320

MasterToLocal .. 331

MasterToLocalVect .. 331

Node .. 318

PopDummy ... 331

PopPath ... 331

PopPoint .. 331

PushPoint .. 331

RestoreMasterVolume .. 322

Safety .. 333

SetClipping ... 339

SetClippingShape .. 339

SetCurrentPoint ... 329, 331

SetTminTmax ... 334

SetTopVisible ... 299

SetTopVolume 299, 316, 319, 322

SetVisLevel ... 338

SetVisOption ... 338

Step ... 333

Test .. 322

Volume .. 318, 320, 324

TGeoManagerEditor .. 349

TGeoMaterial 299, 302, 303, 304

FillMaterialEvolution .. 303

TGeoMatrix ... 315, 326, 327

GetRotation ... 327

GetScale .. 327

GetTranslation ... 327

IsCombi ... 327

IsGeneral ... 327

IsIdentity ... 327

IsRotation .. 327

IsScale ... 327

IsTranslation ... 327

LocalToMaster .. 327

LocalToMasterVect .. 327

MasterToLocal .. 327

MasterToLocalVect .. 327

RegisterYourself ... 328

 Index 463

TGeoMedium ... 299, 304, 316

TGeoMixture ... 302, 303

AddElement .. 303

DefineElement .. 302

TGeoPainter ... 328

TGeoPara ... 306, 324

TGeoParaboloid ... 312

TGeoPcon .. 312, 324

DefineSection ... 312

GetRmax ... 313

GetRmin .. 313

GetZ .. 313

TGeoPgon .. 316, 324

DefineSection ... 316

TGeoRotation .. 316

SetAngles .. 327

TGeoShape

ComputeNormal ... 317

Contains .. 317

DistFromInside ... 317

DistFromOutside ... 317

Divide ... 318

Safety .. 317

TGeoSphere ... 311

TGeoTorus ... 312

TGeoTrack ... 334

AddPoint ... 334

TGeoTranslation .. 327

SetTranslation ... 327

Subtract ... 327

TGeoTrap .. 307, 308, 324

TGeoTrd1 .. 307, 324

TGeoTrd2 .. 307, 324

TGeoTube 309, 316, 318, 322, 324

TGeoTubeSeg .. 309, 318, 324

TGeoUnion .. 315

TGeoVolume 301, 316, 318, 320, 322, 323

AddNode ..316, 320, 321, 322

AddNodeOverlap .. 323, 335

CheckOverlaps .. 301

Divide ... 318, 324, 325

Draw ... 300, 301

DrawOnly ... 301

InspectMaterial ... 301

InspectShape ... 301

RandomPoints ... 301

RandomRays ... 337

Rays .. 301

Raytrace .. 301, 316

SetLineColor ... 316

Weight .. 301

TGeoVolumeAssembly ... 322

TGeoVolumeMulti 318, 323, 324

TGeoXtru

DefineSection ... 314

TGeoXtru ... 313

TGFrame .. 396

ChangeOptions ... 397

GetOptions .. 397

options .. 397

TGFrameElement .. 397, 398

TGGroupFrame ... 398

SetTitlePos .. 398

TGHButtonGroup .. 406

TGHorizontal3DLine ... 410

TGHorizontalFrame ... 392, 398

TGHProgressBar

SetBarColor ... 414

SetFillType .. 414

ShowPosition .. 414

TGHSlider .. 412

SetPosition .. 412

SetRange ... 412

TGHSplitter

SetFrame ... 415

TGIcon ... 414

TGLabel ... 414

TGLayoutHints .. 392, 399

TGLayoutManager ... 399

TGLBContainer ... 411

TGLBEntry .. 411

TGLClipSet

SetClipState ... 147

SetClipType .. 147

TGListBox

AddEntry ... 411

RemoveEntry .. 411

Resize .. 411

TGLLightSet

SetLight ... 146

TGLUtil ... 148

TGLVEntry .. 416

TGLViewer

SetCurrentCamera ... 144

SetGuideState .. 148

SetOrthoCamera .. 145

SetPerspectiveCamera ... 145

SetStyle ... 146

TGMainFrame ... 390, 398

SetWMSize ... 398

TGMatrixLayout .. 406

TGMenuBar ... 408

AddPopup ... 409

TGMenuTitle ... 408, 409

TGNumberEntry .. 407

TGNumberEntryField .. 408

TGNumberFormat ... 407

TGObject ... 395, 396

TGPicture ... 414

TGPictureButton .. 404

SetPicture .. 405

TGPicturePool ... 414

TGPopupMenu

AddEntry ... 408

AddPopup ... 409

AddSeparator .. 408

DeleteEntry ... 409

DisableEntry ... 409

EnableEntry ... 409

HideEntry .. 409

TGProgressBar ... 414

TGQt .. 389, 423

TGRadioButton .. 405

SetState ... 405

TGraph ... 28, 31, 51, 60

draw options .. 51

464 Index

exclusion zone .. 58

GetHistogram .. 112

SetLineWidth .. 58

TGraphAsymmErrors .. 51, 55

TGraphErrors ... 51, 55

TGraphQQ ... 59

TGSlider

GetPosition ... 412

SetRange ... 412

SetScale .. 412

TGStatusBar

SetParts ... 415

SetText .. 415

TGTextButton .. 395, 404

TGTextEntry .. 406

TGToolBar

AddButton... 410

TGToolTip ... 405

TGTransientFrame ... 398

TGTripleHSlider .. 413

SetConstrained .. 413

SetPointerPosition ... 413

SetPosition .. 413

SetRange ... 413

TGTripleVSlider .. 413

TGVButtonGroup .. 406

TGVerticalFrame ... 398

TGViewPort... 416

TGVSlider ... 412

TGVSplitter

SetFrame ... 416

TGWidget .. 395, 407

ClearFlags ... 395

SetFlags .. 395

TGWindow .. 396

TH1

GetRandom ... 235

TH1 . .. 24, 166

AddBinContent ... 25

AddDirectory .. 24, 101

Draw ... 26, 65, 108, 134

DrawClone .. 27, 136

DrawNormalized ... 27

FillRandom ... 25

Fit 63, 65, 67, 72, 101

GetAsymetry ... 40

GetAxis ... 122

GetBinContent .. 25

GetEntries ... 40

GetFunction .. 72

GetMean ... 40

GetOption ... 28

GetRandom ... 25

GetRMS .. 40

Integral .. 40

kCanRebin .. 25

KolmogorovTest ... 39

LabelsDeflate .. 41

LabelsOption ... 41

Rebin ... 25

Reset ... 40

SetBarOffset ... 33

SetBarWidth ... 33

SetBinContent ... 25

SetContour .. 28, 31

SetOption .. 28

SetStats .. 37

Smooth .. 40

StreamerInfo ... 179

Sumw2 .. 25, 26, 72

UseCurrentStyle .. 27

Write ... 167

TH1C ... 23, 25

TH1D ... 23, 44, 166, 375

TH1F 23, 24, 25, 37, 39, 67, 69, 71, 88

FillRandom ... 377

SetFillColor ... 133

SetFillStyle .. 133

TH1I ... 23

TH1S .. 23, 25

TH2

FitSlicesX .. 26

FitSlicesY .. 26

ProfileX ... 26, 44

ProfileY ... 26, 44

ProjectionX ... 26

ProjectionY ... 26

TH2C ... 23, 25

TH2D ... 23, 215

TH2F .. 23, 24

TH2I ... 23

TH2S .. 23, 25

TH3

FitSlicesZ .. 26

Project3D .. 26

ProjectionZ .. 26

TH3C ... 23, 25

TH3D ... 23

TH3F .. 23

TH3I ... 23

TH3S .. 23, 25

THashList .. 41, 284, 285

THashTable .. 284, 285

Theta (TVector3) ... 292

ThetaX (TRotation) .. 294

ThetaY (TRotation) .. 294

ThetaZ (TRotation) .. 294

THistPainter ... 26

threads .. 379

asynchronous action .. 381

initialization .. 380

installation ... 380

lock .. 385

THStack ... 41

Add .. 41

Draw .. 42

THtml ... 433

CreateJavascript .. 433

CreateStylesheet .. 433

MakeClass ... 433

SetSourceDir ... 433

TimedWait (TCondition) 381, 382

TInspectCanvas .. 103

TIter 163, 284, 286, 287

kIterBackward ... 287

Next ... 286

 Index 465

Reset ... 286

TIterator ... 286

Next .. 285

Reset ... 285

TKey .. 161, 163, 174

TLatex ... 13, 39, 116, 120, 130

fonts precision ... 131

mathematical symbols ... 118

SetTextFont ... 132

TLeaf ... 195

TLegend ... 137

AddEntry... 137

TLegendEntry .. 137

TLimit .. 256

TLimitDataSource ... 256

TLine ... 81, 113

ClassDef macro ... 273

ClassImp macro .. 273

Draw ... 81, 82, 105, 113

DrawLineNDC .. 111

InheritsFrom ... 271

method overriding ... 82

Print .. 86

SetLineColor ... 133

SetLineStyle .. 133

SetLineWidth .. 133

SetX1 .. 86

SetY1 .. 86

subclassing .. 81

TList .. 284

Add ... 169, 287

AddAfter ... 287

AddBefore ... 287

AddFirst .. 287

AddLast .. 287

After .. 287

Before ... 287

Clear .. 102

Delete .. 102

iterating over ... 287

Write ... 169

TListIter ... 284, 287

TLorentzRotation291, 296, 297, 298

TLorentzVector ... 294, 295

Beta ... 296

Gamma .. 296

operators ... 295

Rotate .. 296

RotateX ... 296

RotateY ... 296

RotateZ ... 296

Vect ... 295

VectorMultiplication ... 298

TMap ... 284, 285

TMapIter .. 284

TMarker ... 115

Draw ... 54

SetMarkerColor .. 54

SetMarkerSize ... 54, 115

TMath .. 233

TMatrix .. 239, 366

TMatrixD ... 257

Invert ... 263

InvertFast .. 263

Rank1Update ... 263

TMatrixDBase ... 257

Abs .. 262

ColNorm ... 262

E2Norm ... 262

GetColLwb .. 258

GetColUpb .. 258

GetNcols ... 258

GetNoElements ... 258

GetNrows .. 258

GetRowLwb .. 258

GetRowUpb .. 258

GetTol ... 258

Max ... 262

Min .. 262

NonZeros ... 262

Norm1 ... 262

NormByColumn .. 262

NormByRow ... 262

NormInf... 262

Randomize .. 262

ResizeTo ... 259

RowNorm .. 262

SetTol .. 259

Sqr 262

Sqrt .. 262

Sum ... 262

T . .. 263

Transpose .. 263

UnitMatrix ... 262

Zero ... 262

TMatrixDColumn .. 264

TMatrixDDiag ... 264

TMatrixDEigen .. 269

GetEigenValues .. 269

GetEigenValuesIm .. 269

GetEigenValuesRe .. 269

GetEigenVectors ... 269

TMatrixDRow .. 264

TMatrixDSparse ... 257

GetColIndexArray ... 258

GetRowIndexArray ... 258

SetColIndexArray ... 259

SetRowIndexArray .. 259

SetSparseIndex .. 259

SetSparseIndexAB .. 259

TMatrixDSub ... 264

TMatrixDSym .. 257

Invert ... 263

InvertFast .. 263

RandomizePD ... 263

Rank1Update ... 263

TMatrixDSymEigen ... 269

GetEigenValues .. 269

GetEigenVectors ... 269

TMessage ... 377

ReadObject .. 377

WriteObject ... 377

TMinuit .. 72, 255

GetObjectFit .. 73

GetPlot .. 73

mnplot ... 73

466 Index

SetFCN ... 72

SetGraphicsMode ... 73

SetObjectFit .. 73

TMinuitOld .. 73

TMonitor .. 378

Add ... 378

Select .. 378

TMultiDimFit .. 102, 256

TMultiGraph .. 51, 60

Add ... 60

TMultiLayerPerception .. 256

TMultiLayerPerceptron ... 77

learning methods ... 77

SetData .. 77

SetWeight ... 77

Train .. 77

TMutex .. 380, 381

TMutexImp .. 380

TMVA ... 256

TNamed 39, 109, 160, 179, 214

ls . .. 167

TNetFile ..159, 184, 185, 186

remote files access .. 185

rootd .. 185

SetPasswd ... 184

SetUser .. 184

URL's .. 184

TNtuple .. 189, 369

TObjArray 176, 178, 198, 286, 287

TObjArrayIter .. 286

TObject 19, 39, 90, 109, 156, 271, 283

AppendPad .. 103, 108

Clone ... 271

Compare .. 285

Draw ... 10, 105, 271

DrawClone .. 135, 271

Dump .. 209

fBits .. 102, 174, 272

fUniqueID ... 174

Hash .. 285

inheritance ... 209

Inspect ... 91

interpreted classes inheritance 90

IsEqual .. 285

IsFolder ... 272

IsSortable .. 285

kCanDelete ... 102, 272

kMustCleanup ... 102

kOverwrite .. 206

kSingleKey ... 169

ls . .. 103, 167

Paint .. 109, 271

ResetBit .. 102

Streamer .. 174, 176

Streamers .. 377

Write ... 174, 271

TObject (TestBit) ... 102

TObjLink ... 287

tolerance .. 266

ToolBarData_t ... 410

TOrdCollection .. 284

torus 312

TPad

cd 16, 106, 112

coordinate systems .. 110, 111

Draw .. 112

DrawClone .. 136

GetListOfPrimitives 109, 110

GetPrimitive 13, 109, 112, 214

GetTickx ... 38

GetTicky ... 38

getting current pad .. 136

GetUxmax ... 37

GetUymax ... 37

GetUymin .. 37

GetViewer3D .. 144

Modified .. 112

PaintPadFrame .. 103

Print ... 138

Range .. 110

RedrawAxis ... 38

SetCursor... 108

SetEditable .. 113

SetFillColor ... 20, 109, 205

SetFillStyle .. 112

SetLogx ... 113

SetLogz ... 113

SetRightMargin ... 34

SetTicks... 38

Update ... 26, 215

WaitPrimitive .. 113

x3d .. 206

TPaletteAxis ... 34

TParticle ... 334

TPave ... 134, 137

TPaveLabel .. 116, 120, 121

SetBorderSize ... 121

TPaves .. 120

TPaveStats ... 38, 166

TPavesText .. 121

TPaveText 13, 15, 107, 121, 134

AddText .. 120

TPie 46

TPolyLine .. 114

TPolyMarker .. 116

TPosixCondition .. 380

TPosixMutex .. 380

TPosixThread ... 380

TPostScript... 131, 138, 140

Close ... 140

format options ... 139

NewPage ... 140

special characters .. 139

Text ... 139

TPrincipal .. 102, 256

TProcessID... 176

GetObjectCount .. 176

SetObjectCount ... 176

TProfile .. 23

Draw .. 44

Fill 42, 43

ProjectionX ... 26, 44

redirected output ... 225

TProfile2D ... 23, 215

Fill 44

ProjectionXY .. 26, 44

 Index 467

TQApplication ... 432

TQObject ... 401

Connect ... 402

Disconnect .. 403

Emit .. 402

HasConnection .. 403

HightPriority ... 402

Load RQ_OBJECT ... 403

LowPriority ... 402

NumberOfConnections ... 403

NumberOfSignals ... 403

TQRootApplication ... 432

TQRootCanvas .. 430

TQtWidget ... 427, 429

SetSaveFormat .. 429

tracking media ... 304

Train

TMultiLayerPerceptron .. 77

TRandom

Binomial ... 20

BreitWigner .. 20

Exp .. 20

Gaus .. 20, 37, 130, 211

Landau .. 20

Poison ... 20

Rannor .. 43, 200

Rndm .. 20, 200

Uniform .. 20

TRandom2 ... 20

TRandom3 ... 20

Gaus .. 235

Rndm .. 234

RndmArray ... 234

Transform

TLorentzVector ... 296

TRotation .. 293

TVector3 ... 294

Transform3D ... 238, 245

transient data members .. 172

transient frame ... 389

translation ...291, 326, 327, 328

Transpose (TMatrixDBase) 263

TransSolve (TDecompBase) 265

trapezoid .. 307

Trd1 .. 307

Trd2 .. 307

trees

Autosave ... 194

branches .. 195

array of objects ... 198

array of variables .. 196

identical names... 198

list of variables ... 195

objects .. 196

split-level ... 197

creating ... 193

creating a profile histogram 225

creating histograms ... 224

cut 213

draw .. 213

draw options .. 214

profiles ... 44

event list .. 222

folders ... 193

friends ... 207

histogram style .. 213, 224

MakeClass 225, 226, 229, 371

selection .. 213

selectors... 229

Show ... 190

static class members .. 197

tree viewer ... 191

TRef 175, 176, 177, 178, 193

action ... 177

GetObject .. 176, 177

SetObject ... 177

TRefArray .. 178, 193

TRefTable .. 193

TRint .. 384, 424

TRobustEstimator .. 256

TRolke ... 256

TROOT

cd 165

collections ... 19, 101

fCleanups .. 103

finding object .. 31

FindObject ... 89, 93

FindObjectAny .. 156, 157

ForceStyle ... 27, 141

GetClass .. 181

GetColor .. 135

GetExec ... 177

GetFunction ... 373

GetListOf... methods 19, 102

GetListOfColors .. 134

GetRootFolder ... 156

GetStyle... 141

gROOT .. 19, 101

IsBatch .. 202

Macro .. 282

ProcessLine ... 89, 94, 158

Reset .. 89

SetStyle ... 141

Time .. 371

TRootEmbeddedCanvas 391, 417

TRotation ... 291, 293, 294, 297

Inverse ... 294

Invert ... 294

Transform .. 293

TRuby

Bind ... 363

Eval ... 362

Exec .. 362

Prompt ... 363

true type fonts .. 132

TSelector .. 229, 371, 372

Begin ... 229, 371

Notify .. 229, 371

ProcessCut ... 229, 371

ProcessFill ... 229, 371

Terminate .. 229, 371, 372

Version .. 229

TSemaphore ... 380

TServerSocket .. 377, 378

TSignalHandler .. 384

Notify .. 384

468 Index

TSocket .. 377, 378

Recv .. 378

Select .. 378

Send .. 377

TSortedList .. 164, 284

TSpectrum ... 256

TSpectrum2Painter .. 28

TStreamerElement ... 177

TStreamerInfo .. 161

TStyle .. 27, 141

changing histogram's style 27

constructor .. 141

current style .. 141

define parameters in rootlogon.C 141

font .. 30

forcing the current style .. 141

getting the current style ... 141

SetCanvasBorderMode ... 141

SetCanvasColor .. 141

SetLabelFont ... 141

SetLineStyleString .. 142

SetOptDate .. 142

SetOptFit ... 72

SetOptStat ... 38, 142

SetPadBorderMode ... 141

SetPadColor .. 141

SetPalette 28, 29, 32, 34, 134, 142

SetStatColor .. 141

SetStripDecimals .. 124

setting a style .. 141

SetTitleColor ... 141

SetTitleOffset .. 142

TSystem

AccessPathName .. 89

Exec .. 140, 141

IgnoreInterrupt .. 384

IgnoreSignal .. 384

Load 182, 191, 299, 380, 424

ProcessEvents ... 130

RemoveSignalHandler .. 384

ResetSignal ... 384

SetAclicMode ... 94

SetIncludePath .. 94

SetLinkedLibs ... 94

TTask ... 157, 158

Exec .. 157, 158

ExecuteTask .. 158

ExecuteTasks .. 158

SetActive... 158

TText ... 116, 130

SetNDC ... 111

TThread ... 380, 383, 384

CancelPoint ... 382

CleanUpPop .. 382

CleanUpPush .. 382

Delete .. 382

Exit .. 383

Join .. 382

Kill .. 382

Lock .. 381

Ps . .. 380

Run .. 380

SetCancelAsynchronous 382

SetCancelDeferred .. 382

SetCancelOff ... 382

SetCancelOn ... 382

Unlock ... 381

TThreadframe .. 383

TThreadImp ... 380

TTimer ... 402

TTree .. 189, 193

AddFriend ... 206, 207, 232

Branch 190, 195, 196, 199, 200, 208

Draw 27, 202, 205, 207, 213, 214, 215, 222, 371

Fill 193, 200, 203

GetBranch ... 211

GetEntries ... 225

GetEntry .. 201

GetListOfFriends .. 207

GetMaxTreeSize ... 194

GetV1 .. 225

GetV2 .. 225

GetV3 .. 225

GetW ... 225

MakeClass ... 213, 226, 371

MakeSelector 213, 229, 371, 373

Print ... 190, 226

Process .. 229, 371

Project ... 225

Refresh .. 192

Scan ... 191, 192

SetAutosave .. 194

SetBranchAddress ... 201

SetCircular .. 194

SetEstimate ... 225

SetSelectedRows ... 225

Show ... 190

StartViewer ... 191

tree viewer ... 191

UseCurrentStyle 27, 213, 224

Write ... 207

TTRee

Scan ... 221

TTreeViewer .. 191, 371

TTVLVContainer ... 416

tube segment .. 309

tubes 309

TUnuran ... 235

TUnuranContDist ... 235

SetDomain ... 235

TUnuranDiscrDist .. 236

TUnuranEmpDist ... 236

TUnuranMultiContDist .. 236

tutorials .. 6

TUUID ... 20, 176

TVector3 291, 292, 293, 294, 295

TView .. 301

changing view direction .. 301

TVirtualFitter

Fitter .. 255

SetDefaultFitter ... 255

TVirtualGeoTrack .. 334

AddDaughter ... 334

TVirtualX ... 389, 397, 423

GetWindowID ... 397

InitWindow ... 397

 Index 469

TVirtulaFitter

ExecuteCommand ... 255

SetFCN ... 255

SetParameter ... 255

TWbox ... 115, 134

TWebFile ... 159, 184, 186

twisted trapezoid .. 308

U

UnCheckedAt (TObjArray) 288

Uniform (TRandom) .. 20

union .. 314, 315, 316

Unit (TVector3) ... 292

UnitMatrix (TMatrixDBase) 262

UnLock (TThread) ... 381

UNURAN .. 235

Update

TCanvas .. 112

TPad .. 26

UseCurrentStyle

TH1 ... 27

TTree .. 27, 213, 224

user coordinate system ... 110

user interface

canvas menus .. 11

canvas toolbar ... 12

editor ... 13

TAttFillEditor ... 134

TAttLineEditor ... 133

TAttTextEditor ... 132

TAxisEditor .. 135

TGraphEditor .. 64

TH1Editor ... 47

TH2Editor ... 49

TPadEditor .. 135

UtoPixel (TPad) ... 111

V

variable length array .. 172

Vect (TLorentzVector) .. 295

VectorMultiplication (TLorentzVector) 298

Version (TSelector) ... 229

vertical splitter ... 416

ViewCVS ... 435

viewers 3D ... 143

GL Viewer .. 143

GL-in-pad Viewer ... 143

invoking .. 143

X3D Viewer .. 143

virtual containers ... 321

visualization

attributes ... 320, 337

colors .. 338

line styles .. 338

ray tracing ... 339

settings .. 338

visibility settings ... 338

Volume (TGeoManager) 318, 320, 324

volumes

assembly ... 322

dividing ... 324

drawing ... 337

example of creation ... 320

families .. 320, 323, 324

hierarchy ... 319, 337

making .. 320

node ... 330

overlapping ... 322

positioning ... 321

positioning example .. 322

replicating ... 323

virtual containers ... 321

visualization mode .. 338

voxels ... 319, 323

VtoPixel (TPad) ... 111

W

Wait (TCondition) .. 381, 382

WaitPrimitive (TPad) ... 113

WantFocus (TGWidget) ... 396

web

server ... 186

site 7

Weight (TGeoVolume) .. 301

widgets ... 389, 395

Wiki 435

world .. 299

Write

TCollection ... 169

TFile .. 39, 167

TH1F ... 39

TList .. 169

TObjArray ... 159

TObject ... 174, 271

TTree ... 200, 206

WriteBuffer (TClass) ... 174

WriteVersion (TBuffer) ... 180

X

X (TLorentzVector) ... 295

x3d (TPad) ... 206

X3D viewer .. 143, 149

Xclass'95 .. 389

XML interface .. 187

XtoAbsPixel (TPad) ... 111

XtoPixel (TPad) ... 111

XYtoAbsPixel (TPad) .. 111

XYtoPixel (TPad) .. 111

XYZPoint ... 241

XYZTVector .. 242

XYZVector .. 240

Y

Y (TLorentzVector) ... 295

YtoAbsPixel (TPad) ... 111

YtoPixel (TPad) ... 111

Z

Z (TLorentzVector) .. 295

Zero (TMatrixDBase) .. 262

470 Index

zoom .. 15, 63

	Preface
	Table of Contents
	Table of Figures
	Introduction
	The ROOT Mailing Lists
	Contact Information
	Conventions Used in This Book
	The Framework
	What Is a Framework?
	Advantages of Frameworks

	Why Object-Oriented?

	Installing ROOT
	The Organization of the ROOT Framework
	$ROOTSYS/bin
	$ROOTSYS/lib
	Library Dependencies
	Linktime Library Dependencies
	Plugins: Runtime Library Dependencies for Linking
	Library Autoloading

	$ROOTSYS/tutorials
	$ROOTSYS/test
	$ROOTSYS/<library>

	How to Find More Information
	Class Reference Guide

	Getting Started
	Setting the Environment Variables
	Start and Quit a ROOT Session
	Using the GUI
	Main Menus and Toolbar
	File Menu
	Edit Menu
	View Menu
	Options Menu
	Inspect Menu
	Classes Menu
	Help Menu
	Toolbar

	The Editor Frame
	Classes, Methods and Constructors
	User Interaction
	Building a Multi-pad Canvas
	Saving the Canvas
	Printing the Canvas

	The ROOT Command Line
	Multi-line Commands
	CINT Extensions
	Helpful Hints for Command Line Typing
	Regular Expression

	Conventions
	Coding Conventions
	Machine Independent Types
	TObject

	Global Variables
	gROOT
	gFile
	gDirectory
	gPad
	gRandom
	gEnv

	Environment Setup
	Logon and Logoff Scripts
	History File
	Tracking Memory Leaks
	Memory Checker

	Converting from PAW to ROOT
	Converting HBOOK/PAW Files

	Histograms
	The Histogram Classes
	Creating Histograms
	Fixed or Variable Bin Size
	Bin Numbering Convention
	Re-binning

	Filling Histograms
	Automatic Re-binning Option

	Random Numbers and Histograms
	Adding, Dividing, and Multiplying
	Projections
	Drawing Histograms
	Setting the Style

	Draw Options
	The SCATter Plot Option
	The ARRow Option
	The BOX Option
	The ERRor Bars Options
	The Color Option
	The TEXT Option
	The CONTour Options
	The LEGO Options
	The SURFace Options
	The BAR Options
	The Z Option: Display the Color Palette on the Pad
	Setting the Color Palette
	TPaletteAxis

	The SPEC Option
	3-D Histograms

	Drawing a Sub-range of a 2-D Histogram
	Superimposing Histograms with Different Scales
	Statistics Display
	Setting Line, Fill, Marker, and Text Attributes
	Setting Tick Marks on the Axis
	Giving Titles to the X, Y and Z Axis
	Making a Copy of an Histogram
	Normalizing Histograms
	Saving/Reading Histograms to/from a File
	Miscellaneous Operations
	Alphanumeric Bin Labels
	Option 1: SetBinLabel
	Option 2: Fill
	Option 3: TTree::Draw
	Sort Options

	Histogram Stacks
	Profile Histograms
	Build Options
	Drawing a Profile without Error Bars
	Create a Profile from a 2D Histogram
	Create a Histogram from a Profile
	Generating a Profile from a TTree
	2D Profiles

	Iso Surfaces
	3D Implicit Functions
	TPie
	The User Interface for Histograms
	TH1Editor
	TH2Editor

	Graphs
	TGraph
	Graph Draw Options
	Continuous Line, Axis and Stars (AC*)
	Bar Graphs (AB)
	Filled Graphs (AF)
	Marker Options

	Superimposing Two Graphs
	Graphs with Error Bars
	Graphs with Asymmetric Error Bars
	Graphs with Asymmetric Bent Errors
	TGraphPolar
	TGraph Exclusion Zone
	TGraphQQ
	Two Datasets
	One Dataset

	TMultiGraph
	TGraph2D
	TGraph2DErrors
	Fitting a Graph
	Setting the Graph's Axis Title
	Zooming a Graph
	The User Interface for Graphs

	Fitting Histograms
	The Fit Method
	Fit with a Predefined Function
	Fit with a User-Defined Function
	Creating a TF1 with a Formula
	Creating a TF1 with Parameters
	Creating a TF1 with a User Function

	Fixing and Setting Parameters’ Bounds
	Fitting Sub Ranges
	The Fit Panel
	Function Choice and Settings
	Fitter Settings
	Draw Options
	Print Options
	Command Buttons

	Fitting Multiple Sub Ranges
	Adding Functions to the List
	Combining Functions
	Associated Function
	Access to the Fit Parameters and Results
	Associated Errors
	Fit Statistics
	The Minimization Package
	Basic Concepts of Minuit
	The Transformation of Limited Parameters
	How to Get the Right Answer from Minuit
	Getting the Right Minimum with Limits
	Getting the Right Parameter Errors with Limits
	Interpretation of Parameter Errors
	Statistical Interpretation

	Reliability of Minuit Error Estimates
	A Non-physical Region
	An Underdetermined Problem
	Numerical Inaccuracies
	An Ill-posed Problem

	FUMILI Minimization Package
	Neural Networks
	Introduction
	The MLP
	Learning Methods
	Stochastic Minimization
	Steepest Descent With Fixed Step Size (Batch Learning)
	Steepest Descent Algorithm
	Conjugate Gradients With the Polak-Ribiere Updating Formula
	Conjugate Gradients With the Fletcher-Reeves Updating Formula
	The Broyden, Fletcher, Goldfarb, Shanno (BFGS) Method

	Using the Network
	Examples

	A Little C++
	Classes, Methods and Constructors
	Inheritance and Data Encapsulation
	Method Overriding
	Data Encapsulation

	Creating Objects on the Stack and Heap

	CINT the C++ Interpreter
	What is CINT?
	The ROOT Command Line Interface
	The ROOT Script Processor
	Un-named Scripts
	Named Scripts
	Executing a Script from a Script

	Resetting the Interpreter Environment
	A Script Containing a Class Definition
	Debugging Scripts
	Inspecting Objects
	ROOT/CINT Extensions to C++
	ACLiC - The Automatic Compiler of Libraries for CINT
	Usage
	Setting the Include Path
	Dictionary Generation
	Intermediate Steps and Files
	Moving between Interpreter and Compiler

	Reflex
	Overview
	GCCXML Installation
	Reflex API
	Cintex

	Object Ownership
	Ownership by Current Directory (gDirectory)
	Ownership by the Master TROOT Object (gROOT)
	The Collection of Specials
	Access to the Collection Contents

	Ownership by Other Objects
	Ownership by the User
	The kCanDelete Bit
	The kMustCleanup Bit

	Graphics and the Graphical User Interface
	Drawing Objects
	Interacting with Graphical Objects
	Moving, Resizing and Modifying Objects
	The Left Mouse Button
	With C++ Statements (Programmatically)

	Selecting Objects
	The Middle Mouse Button
	With C++ Statements (Programmatically)

	Context Menus: the Right Mouse Button
	Using Context Menus
	Structure of the Context Menus
	Adding Context Menus for a Class

	Executing Events when a Cursor Passes on Top of an Object

	Graphical Containers: Canvas and Pad
	The Global Pad: gPad
	Finding an Object in a Pad
	Hiding an Object

	The Coordinate Systems of a Pad
	The User Coordinate System
	The Normalized Coordinate System (NDC)
	The Pixel Coordinate System
	Using NDC for a particular Object

	Converting between Coordinate Systems
	Dividing a Pad into Sub-pads
	Creating a Single Sub-pad
	Dividing a Canvas into Sub-Pads

	Updating the Pad
	Making a Pad Transparent
	Setting the Log Scale
	WaitPrimitive method
	Locking the Pad

	Graphical Objects
	Lines, Arrows and Polylines
	Circles and Ellipses
	Rectangles
	Markers
	Curly and Wavy Lines for Feynman Diagrams
	Text and Latex Mathematical Expressions
	Subscripts and Superscripts
	Fractions
	Roots
	Delimiters
	Changing Style in Math Mode
	Line Splitting

	Greek Letters
	Mathematical Symbols
	Accents, Arrows and Bars
	Example 1
	Example 2
	Example 3

	Text in a Pad

	Axis
	Axis Title
	Axis Options and Characteristics
	Setting the Number of Divisions
	Zooming the Axis
	Drawing Axis Independently of Graphs or Histograms
	Orientation of Tick Marks on Axis
	Labels
	Position
	Orientation
	Labels for Exponents
	Number of Digits in Labels
	Tick Mark Positions
	Label Formatting
	Stripping Decimals
	Optional Grid
	Axis Binning Optimization

	Axis with Time Units
	Time Format
	Time Offset

	Axis Examples

	Graphical Objects Attributes
	Text Attributes
	Setting Text Alignment
	Setting Text Angle
	Setting Text Color
	Setting Text Font
	How to use True Type Fonts
	Setting Text Size

	Line Attributes
	Fill Attributes
	Color and Color Palettes
	Color Palette (for Histograms)

	The Graphics Editor
	TAxisEditor
	TPadEditor

	Copy and Paste
	Using the GUI
	Programmatically

	Legends
	The PostScript Interface
	Special Characters
	Writing Several Canvases to the Same PostScript File

	Create or Modify a Style
	3D Viewers
	Invoking a 3D viewer
	The GL Viewer
	Projections Modes (Cameras)
	Adjusting Cameras
	Draw Styles
	Lighting / Style
	Clipping
	Manipulators
	Guides
	Selecting Scene Shapes
	Editing Shapes
	Colors / Style
	Geometry
	Outputting Viewer Contents

	The X3D Viewer
	Common 3D Viewer Architecture
	Creating / Obtaining Viewer Handle
	Opening / Closing Scenes
	Describing Objects - Filling TBuffer3D
	Shape Specific TBuffer3D Derived Classes
	Master / Local Reference Frames
	Bounding Boxes
	Logical and Physical Objects
	Scene Rebuilds
	Physical IDs
	Child Objects
	Recycling TBuffer3D
	Examples

	Folders and Tasks
	Folders
	Why Use Folders?
	How to Use Folders
	Creating a Folder Hierarchy
	Posting Data to a Folder (Producer)
	Reading Data from a Folder (Consumer)

	Tasks
	Execute and Debug Tasks

	Input/Output
	The Physical Layout of ROOT Files
	The File Header
	The Top Directory Description
	The Histogram Records
	The Class Description List (StreamerInfo List)
	The List of Keys and the List of Free Blocks
	File Recovery

	The Logical ROOT File: TFile and TKey
	Viewing the Logical File Contents
	The Current Directory
	Objects in Memory and Objects on Disk
	Saving Histograms to Disk
	Histograms and the Current Directory
	Saving Objects to Disk
	Saving Collections to Disk
	A TFile Object Going Out of Scope
	Retrieving Objects from Disk
	Subdirectories and Navigation

	Streamers
	Automatically Generated Streamers
	Transient Data Members (//!)
	The Pointer to Objects (//->)
	Variable Length Array
	Double32_t
	Prevent Splitting (//||)
	Streamers with Special Additions
	Writing Objects
	Ignore Object Streamers
	Streaming a TClonesArray

	Pointers and References in Persistency
	Streaming C++ Pointers
	Motivation for the TRef Class
	Using TRef
	How Does It Work?
	TProccessID and TUUID
	Object Number

	Action on Demand
	How to Select This Option?

	Array of TRef

	Schema Evolution
	The TStreamerInfo Class
	The TStreamerElement Class
	Example: TH1 StreamerInfo
	Optimized StreamerInfo
	Automatic Schema Evolution
	Manual Schema Evolution
	Building Class Definitions with the StreamerInfo
	Example: MakeProject

	Migrating to ROOT 3
	Compression and Performance
	Remotely Access to ROOT Files via a rootd
	TNetFile URL
	Remote Authentication
	A Simple Session
	The rootd Daemon
	Starting rootd via inetd
	Command Line Arguments for rootd

	Reading ROOT Files via Apache Web Server
	Using the General Open Function of TFile

	XML Interface

	Trees
	Why Should You Use a Tree?
	A Simple TTree
	Show an Entry with TTree::Show
	Print the Tree Structure with TTree::Print
	Scan a Variable the Tree with TTree::Scan
	The Tree Viewer
	Creating and Saving Trees
	Creating a Tree from a Folder Hierarchy
	Tree and TRef Objects
	Autosave
	Trees with Circular Buffers
	Size of TTree in the File
	Indexing a Tree

	Branches
	Adding a Branch to Hold a List of Variables
	Adding a TBranch to Hold an Object
	Setting the Split-level
	Memory Considerations when Splitting a Branch
	Performance Considerations when Splitting a Branch
	Rules for Splitting

	Exempt a Data Member from Splitting
	Adding a Branch to Hold a TClonesArray
	Identical Branch Names

	Adding a Branch with a Folder
	Adding a Branch with a Collection
	Examples for Writing and Reading Trees
	Example 1: A Tree with Simple Variables
	Writing the Tree
	Creating Branches with A single Variable
	Filling the Tree

	Viewing the Tree
	Reading the Tree
	GetEntry

	Example 2: A Tree with a C Structure
	Writing the Tree
	Adding a Branch with a Fixed Length Array
	Adding a Branch with a Variable Length Array
	Filling the Tree

	Analysis

	Example 3: Adding Friends to Trees
	Adding a Branch to an Existing Tree
	TTree::AddFriend

	Example 4: A Tree with an Event Class
	The Event Class
	The EventHeader Class
	The Track Class
	Writing the Tree
	Reading the Tree

	Example 5: Import an ASCII File into a TTree
	Trees in Analysis
	Simple Analysis Using TTree::Draw
	Using Selection with TTree:Draw
	Using TCut Objects in TTree::Draw
	Accessing the Histogram in Batch Mode
	Using Draw Options in TTree::Draw
	Superimposing Two Histograms
	Setting the Range in TTree::Draw
	TTree::Draw Examples
	Explanations:

	Using TTree::Scan
	TEventList and TEntryList
	Main Differences between TEventList and TEntryList
	Using an Event List
	Operations on TEntryLists
	TEntryListFromFile

	Filling a Histogram
	Projecting a Histogram
	Making a Profile Histogram
	Tree Information

	Using TTree::MakeClass
	Creating a Class with MakeClass
	MyClass.h
	MyClass.C
	Modifying MyClass::Loop
	Loading MyClass

	Using TTree::MakeSelector
	Performance Benchmarks

	Impact of Compression on I/O
	Chains
	TChain::AddFriend

	Math Libraries in ROOT
	TMath
	Random Numbers
	TRandom
	TRandom1
	TRandom2
	TRandom3
	Seeding the Generators
	Examples of Using the Generators
	Random Number Distributions
	UNURAN
	Performances of Random Numbers

	MathCore Library
	Generic Vectors for 2, 3 and 4 Dimensions (GenVector)
	Optimal Runtime Performances
	Points and Vector Concept
	Generic Coordinate System
	Coordinate System Tag
	Transformations
	Minimal Vector Classes Interface
	Naming Convention
	Compatibility with CLHEP Vector Classes
	Connection to Linear Algebra Package
	Example: 3D Vector Classes
	Constructors and Assignment
	Coordinate Accessors
	Setter Methods
	Arithmetic Operations
	Comparison
	Dot and Cross Product
	Other Methods

	Example: 3D Point Classes
	Constructors and Assignment
	Coordinate Accessors and Setter Methods
	Point-Vector Operations
	Other Operations

	Example: LorentzVector Classes
	Constructors and Assignment
	Coordinate Accessors
	Setter Methods
	Arithmetic Operations
	Comparison
	Other Methods

	Example: Vector Transformations
	Constructors
	Operations
	Set/GetComponents Methods

	Example with External Packages
	Connection to Linear Algebra Classes
	Connection to Other Vector Classes

	MathMore Library
	Mathematical Functions
	Special Functions in MathCore
	Special Functions in MathMore
	Probability Density Functions (PDF)
	Cumulative Distribution Functions (CDF)
	Inverse of the Cumulative Distribution Functions(Quantiles)

	Linear Algebra: SMatrix Package
	Example: Vector Class (SVector)
	Creating a Vector
	Accessing and Setting Methods

	Example: Matrix Class (SMatrix)
	Creating a Matrix
	Accessing and Setting Methods
	Linear Algebra Matrix Functions (Inversion, Determinant)

	Example: Matrix and Vector Functions and Operators
	Matrix and Vector Operators

	Matrix and Vector Functions
	Matrix and Vector I/O

	Minuit2 Package
	ROOT Statistics Classes
	Classes for Computing Limits and Confidence Levels
	Specialized Classes for Fitting
	Multi-variate Analysis Classes

	Linear Algebra in ROOT
	Overview of Matrix Classes
	Matrix Properties
	Accessing Properties
	Setting Properties

	Creating and Filling a Matrix
	Matrix Operators and Methods
	Arithmetic Operations between Matrices
	Arithmetic Operations between Matrices and Real Numbers
	Comparisons and Boolean Operations
	Matrix Norms
	Miscellaneous Operators

	Matrix Views
	View Operators
	View Examples

	Matrix Decompositions
	Tolerances and Scaling
	Condition number
	LU
	Bunch-Kaufman
	Cholesky
	QRH
	SVD

	Matrix Eigen Analysis
	Speed Comparisons

	Adding a Class
	The Role of TObject
	Introspection, Reflection and Run Time Type Identification
	Collections
	Input/Output
	Paint/Draw
	Clone/DrawClone
	Browse
	SavePrimitive
	GetObjectInfo
	IsFolder
	Bit Masks and Unique ID

	Motivation
	Template Support

	The Default Constructor
	rootcint: The CINT Dictionary Generator
	Dictionaries for STL

	Adding a Class with a Shared Library
	The LinkDef.h File
	The Order Matters
	Other Useful Pragma Statements
	Compilation

	Adding a Class with ACLiC

	Collection Classes
	Understanding Collections
	General Characteristics
	Determining the Class of Contained Objects
	Types of Collections
	Ordered Collections (Sequences)

	Iterators: Processing a Collection
	Foundation Classes
	A Collectable Class
	The TIter Generic Iterator
	The TList Collection
	Iterating Over a TList

	The TObjArray Collection
	TClonesArray – An Array of Identical Objects
	The Idea Behind TClonesArray

	Template Containers and STL

	Physics Vectors
	The Physics Vector Classes
	TVector3
	Declaration / Access to the Components
	Other Coordinates
	Arithmetic / Comparison
	Related Vectors
	Scalar and Vector Products
	Angle between Two Vectors
	Rotation around Axes
	Rotation around a Vector
	Rotation by TRotation Class
	Transformation from Rotated Frame

	TRotation
	Declaration, Access, Comparisons
	Rotation around Axes
	Rotation around Arbitrary Axis
	Rotation of Local Axes
	Inverse Rotation
	Compound Rotations
	Rotation of TVector3

	TLorentzVector
	Declaration
	Access to Components
	Vector Components in Non-Cartesian Coordinates
	Arithmetic and Comparison Operators
	Magnitude/Invariant mass, beta, gamma, scalar product
	Lorentz Boost
	Rotations
	Miscellaneous

	TLorentzRotation
	Declaration
	Access to the Matrix Components/Comparisons
	Transformations of a Lorentz Rotation
	Transformation of a TLorentzVector
	Physics Vector Example

	The Geometry Package
	Quick Start: Creating the “world”
	Example 1: Creating the World
	Example 2: A Geometrical Hierarchy Look and Feel

	Materials and Tracking Media
	Elements, Materials and Mixtures
	Radionuclides
	Tracking Media
	User Interface for Handling Materials and Media

	Shapes
	Units
	Primitive Shapes
	Boxes – TGeoBBox Class
	Parallelepiped – TGeoPara class
	Trapezoids
	General Trapezoid – TGeoTrap Class
	Twisted Trapezoid – TGeoGtra class
	Arbitrary 8 vertices shapes - TGeoArb8 class
	Tubes – TGeoTube Class
	Tube Segments – TGeoTubeSeg Class
	Cut Tubes – TGeoCtub Class
	Elliptical Tubes – TGeoEltu Class
	Hyperboloids – TGeoHype Class
	Cones – TGeoCone Class
	Cone Segments – TGeoConeSeg Class
	Sphere – TGeoSphere Class
	Torus : TGeoTorus Class
	Paraboloid : TGeoParaboloid Class
	Polycone : TGeoPcon Class
	Polygon: TGeoPgon Class
	Polygonal extrusion: TGeoXtru Class
	Half Spaces: TGeoHalfSpace Class

	Composite Shapes
	The Structure of Composite Shapes
	Composite Shape Example

	Navigation Methods Performed By Shapes
	Creating Shapes
	Dividing Shapes
	Parametric Shapes

	Geometry Creation
	The Volume Hierarchy
	Creating and Positioning Volumes
	Making Volumes
	Example of Volume Creation
	Positioned Volumes (Nodes)
	Virtual Containers and Assemblies of Volumes
	Examples of Volume Positioning
	Overlapping Volumes
	Replicating Volumes
	Volume Families
	Dividing Volumes
	Volume Assemblies

	Geometrical Transformations
	Matrix Creation Example
	Rule for Creation of Transformations
	Available Geometrical Transformations

	Ownership of Geometry Objects

	Navigation and Tracking
	TGeoNavigator Class
	Initializing the Starting Point
	Initializing the Direction
	Initializing the State
	Checking the Current State
	Saving and Restoring the Current State
	Navigation Queries
	Finding If Current State Is Changed For a New Point
	Finding the Distance to the Next Boundary
	Computing the Safe Radius
	Making a Step
	The Normal Vector to the Next Crossed Surface at Crossing Point

	Creating and Visualizing Tracks

	Checking the Geometry
	The Overlap Checker
	Graphical Checking Methods

	The Drawing Package
	Drawing Volumes and Hierarchies of Volumes
	Visualization Settings and Attributes
	Colors and Line Styles
	Visibility Settings

	Ray Tracing
	Clipping Ray-traced Images

	Representing Misalignments of the Ideal Geometry
	Physical Nodes

	Geometry I/O
	Navigation Algorithms
	Finding the State Corresponding to a Location (x,y,z)
	Finding the Distance to Next Crossed Boundary
	Output Values

	Geometry Graphical User Interface
	Editing a Geometry
	The Geometry Manager Editor
	Editing Existing Objects
	Creation of New Objects
	Editing Volumes
	How to Create a Valid Geometry with Geometry Editors

	Python and Ruby Interfaces
	PyROOT Overview
	Glue-ing Applications
	Access to ROOT from Python
	Access to Python from ROOT
	Installation
	Environment Settings
	Building from Source

	Using PyROOT
	Access to ROOT Classes
	Access to STL Classes
	Access to ROOT Globals
	Access to Python
	Callbacks
	CINT Commands

	Memory Handling
	Automatic Memory Management
	Memory Management by Hand

	Performance
	Use of Python Functions
	Plotting Python Function
	Fitting Histograms

	Working with Trees
	Accessing an Existing Tree
	Writing a Tree

	Using Your Own Classes

	How to Use ROOT with Ruby
	Building and Installing the Ruby Module
	Setting up the Environment
	Running ROOT scripts from Ruby
	Invoking the Ruby Module from CINT Interpreter

	The Tutorials and Tests
	$ROOTSYS/tutorials
	$ROOTSYS/test
	Event – An Example of a ROOT Application
	Effect of Compression on File Size and Write Times
	Setting the Split Level

	stress - Test and Benchmark
	guitest – A Graphical User Interface

	Example Analysis
	Explanation
	Script

	Networking
	Setting-up a Connection
	Sending Objects over the Network
	Closing the Connection
	A Server with Multiple Sockets

	Threads
	Threads and Processes
	Process Properties
	Thread Properties
	The Initial Thread

	Implementation of Threads in ROOT
	Installation
	Classes
	TThread for Pedestrians
	TThread in More Details
	Asynchronous Actions
	Synchronous Actions: TCondition
	Xlib Connections
	Canceling a TThread
	Deferred
	Asynchronous
	Finishing thread

	Advanced TThread: Launching a Method in a Thread
	Known Problems

	The Signals of ROOT
	Glossary

	PROOF: Parallel Processing
	Writing a Graphical User Interface
	The ROOT GUI Classes
	Widgets and Frames
	TVirtualX
	A Simple Example
	A Standalone Version

	Widgets Overview
	TGObject
	TGWidget
	TGWindow
	Frames

	Layout Management
	Event Processing: Signals and Slots
	Widgets in Detail
	Buttons
	Text Entries
	Number Entries
	Menus
	Toolbar
	List Boxes
	Combo Boxes
	Sliders
	Double Slider

	Triple Slider
	Progress Bars
	Static Widgets
	Status Bar
	Splitters
	TGCanvas, ViewPort and Container
	Embedded Canvas

	The ROOT Graphics Editor (GED)
	Object Editors
	Editor Design Elements
	Creation and Destruction
	Using Several Tabs
	Base-Class Editors Control

	Drag and Drop
	Drag and Drop Data Class
	Handling Drag and Drop Events

	ROOT/Qt Integration Interfaces
	Qt-ROOT Implementation of TVirtualX Interface (BNL)
	Installation
	Qt Package Installation and Configuration
	Qt-layer Installation
	Qt Main C++ Classes CINT Dictionary
	Qt-layer Configuration

	Applications
	Qt-based ROOT Applications
	ROOT-based Qt Applications
	Qt Project for Creation of ROOT Shared Libraries with Qt Components and ROOT Dictionaries
	Using Qt “Designer” to Create Qt GUI with Embedded ROOT Objects
	Using Qt Class Library from the ROOT C++ Interpreter

	TQtWidget Class, Qt Signals / Slots and TCanvas Interface
	TQtWidget Public Qt Slots
	TQtWidget Qt Signals

	GSI QtROOT
	Create a New Project in the Designer
	main()

	Automatic HTML Documentation
	Reference Guide
	Product and Module Documentation

	Converting Sources (and Other Files) to HTML
	Special Documentation Elements: Directives
	Latex Directive
	Macro Directive

	Customizing HTML
	Referencing Documentation for other Libraries
	Search Engine
	ViewCVS
	Wiki Pages

	Tutorial

	Appendix A: Install and Build ROOT
	ROOT Copyright and Licensing Agreement:
	Installing ROOT
	Choosing a Version
	Installing Precompiled Binaries
	Installing the Source
	Installing and Building the Source from a Compressed File
	Target directory
	Makefile targets

	More Build Options
	Installing the Source from CVS
	CVS for Windows
	Converting a Tar Ball to a Working CVS Sandbox
	Staying up-to-date

	File system.rootrc
	TCanvas Specific Settings
	GUI Specific Settings
	TBrowser Settings
	TRint Specific Settings
	ACLiC Specific Settings
	PROOF Related Variables
	Settings Related to Authentication for rootd and proofd
	Server Authentication in TServerSocket
	PROOF XRD Client Variables

	Documentation to Download

	Index

