Introduction	Motivation	Experiment	Data Analysis	Results	Conclusions

Photoproduction of ω Mesons and $\pi^0 \omega$ Meson Pairs off the Free Proton

Andrew Wilson

Florida State University Physics Department

December 5, 2012 Dissertation Defense

1

Introduction Motivation Experiment Dat Nucleon (Protons / Neutrons)

- composite particle
- contains quarks and gluons

Results

- bound by the strong nuclear force, described by Quantum Chromodynamics (QCD)
- ontains 3 "valence" quarks
- contains a "sea" of quark anti-quark pairs and gluons.

What is the nature of the force that binds the proton?

The QCD Lagrangian has been shown to be correct at large interaction energies.(> 10 GeV)

3

- Perturbative QCD: Used to show the QCD Lagrangian is correct. Can not be used! → Non-perturbative at these energies.
- Numerical Solutions: Lattice QCD (not finished yet)
- \rightarrow No current way to solve the QCD Lagrangian at these energies.

Can we construct effective models to understand?

Introduction Motivation Experiment Data Analysis Results Conclusions Constituent Quark Model

Constituent Quark Model (CQM)

- Assume only 3 quarks with a fitted mass.
- Propose an interaction which respects the known properties of the strong force.
- Fit the mass of the quarks to recreate the nucleon (proton/neutron) mass.
- Generate the excited states.

Introduction Motivation Experiment Data Analysis Constituent Quark Model Predictions

Isospin 1/2, Strangeness 0 Baryon Predictions Instanton-based, relativistic solution (U. Loring *et. al.* Eur. Phys. J. A **10**, 395 (2001))

 Introduction
 Motivation
 Experiment
 Data Analysis
 Results
 Conclusion

 Constituent Quark Model Predictions
 Conclusion
 Conclusion

8

Introduction	Motivation	Experiment	Data Analysis	Results	Conclusions
Spectros	сору				

The pattern of excited states of a bound state depends directly on the binding force.

Using a historical example: Atomic Spectroscopy

- Map out the excited states of the atom
- Create Models to fit the spectrum
- Lead to Quantum Physics and Quantum Electrodynamics

Introduction Motivation Experiment Data Analysis
Baryon Spectroscopy Observables

Scattering Experiment Observables used in this analysis

Differential Cross Sections $(\frac{d\sigma}{dX_i})$

Conceptually:

A measurement proportional to the probability for a reaction to happen scattering into some final state kinematics (X_i). Total Cross Section: Integrate over final state kinematics.

Polarization Observables

Conceptually:

A relative measurement used to quantify how the differential cross section depends on the spin polarizations of the initial or final state particles.

 \rightarrow Spin-density Matrix Elements (ho)

(Cross section dependence on the spin polarization of a single final state particle)

Results

Conclusions

Introduction	Motivation	Experiment	Data Analysis	Results	Conclusions
Spectros	сору				

The pattern of excited states of a bound state depends directly on the binding force.

Using a historical example: Atomic Spectroscopy

Map out the excited states of

Is to fit the

tum Physics and ctrodynamics

Photoproduction of ω Mesons and $\pi^0 \omega$ Meson Pairs 1

Photoproduction of ω Mesons and $\pi^0 \omega$ Meson Pairs Andrew Wilson

- Quark model predictions suggest many of these "missing" baryon resonances couple significantly to $p\omega$ and intermediate decays in $p\pi^0\omega$.
- The first measurement of observables over the full kinematic range with characteristics useable for isolating baryon resonances.

Observables Measured

 $\gamma p \rightarrow p\omega$ Differential cross sections & Spin-density matrix elements $\gamma p \rightarrow p\pi^0 \omega$ Differential cross sections

Beam

Target

Stationary, unpolarized free protons. Liquid hydrogen.

Unpolarized or linearly polarized photons tagged with energy

6.6 m

and timing.

Introduction Motivation Experiment Data Analysis Results Conclusions

- Crystal Barrel Detector: 1290 Csl (Tl) crystals + photodiodes
- TAPS Detector: 528 BaF₂ crystals + photomultipliers tubes
- Excellent photon energy and position reconstruction characteristics.
- Only detect the presence of charged particles by scintillating materials between the target and crystals.

Introduction Motivation Experiment Data Analysis Results Conclusions
Data

Data recorded : October - November 2002 Beam: Unpolarized tagged photons Target: Unpolarized Liquid Hydrogen

Decay channel selected for:

 $\begin{array}{l} \gamma \boldsymbol{p} \rightarrow \boldsymbol{p}\omega \rightarrow \boldsymbol{p}\pi^{0}\gamma \rightarrow \boldsymbol{p}\gamma\gamma\gamma\\ \gamma \boldsymbol{p} \rightarrow \boldsymbol{p}\pi^{0}\omega \rightarrow \boldsymbol{p}\pi^{0}\pi^{0}\gamma \rightarrow \boldsymbol{p}\gamma\gamma\gamma\gamma\gamma\\ \text{(Branching Ratios : } \omega \rightarrow \pi^{0}\gamma = 8.9\%, \ \pi^{0} \rightarrow \gamma\gamma = 98\%\text{)} \end{array}$

Selected events with:

 $\gamma p \rightarrow p\omega$ 3 uncharged reconstructed particles & 0-1 charged reconstructed particles

 $\gamma p \rightarrow p \pi^0 \omega$ 5 uncharged reconstructed particles & 0-1 charged reconstructed particles

Monte Carlo Simulated Data

Detector Acceptance, Cut tuning.

- Multiplicity Cuts 3(5) photons and less than 2 protons
- Timing Cut Imposes causality between the initial photon and final state particles. Reduces the number of initial photon candidates.
- Coplanarity Cut cut away events where extra undetected particles could have been involved
- Trigger Cut cut away events where proton identification simulation could be wrong.

Introduction Motivation Experiment Data Analysis Results Conclusions
Kinematic Fitting

To evaluate the probability of an event being a desired final state.

Definition

- Varies the measured values within the quoted errors of the experiment
- Matches to an "ideally" measured event using Energy-Momentum conservation and invariant masses
- Returns a confidence level value between 0 1 for each event.
- Used to select initial photon.

Natural Mass Width of the ω meson \sim measurement error Natural Mass Width of the π^0 meson \sim 8 eV \rightarrow Negligible

Fit Hypothesis

$$egin{aligned} &\gamma m{p} o m{p} \omega \ : \ &\gamma m{p} o m{p}_{missing} \pi^0 \gamma \ &\gamma m{p} o m{p}_{missing} \pi^0 \pi^0 & \gamma \end{aligned}$$

Andrew Wilson Photoproduction of ω Mesons and $\pi^0 \omega$ Meson Pairs 20

Andrew Wilson

Photoproduction of ω Mesons and $\pi^0 \omega$ Meson Pairs

Andrew Wilson

Photoproduction of ω Mesons and $\pi^0 \omega$ Meson Pairs 22

Introduction Motivation Experiment Data Analysis Results Conclusions
Q-factor Background Subtraction

For each event left in the analysis.

- Find the nearest neighbors in the final state's kinematic phase space.
- Fit the invariant mass spectrum of a particle in the desired final state. (background & signal functions)
- Define a Q-factor from the fit. (Probability the event is the desired final state)
- Weight each event with the Q-factor.

Andrew Wilson

Photoproduction of ω Mesons and $\pi^0 \omega$ Meson Pairs

 $\frac{d\sigma}{dX_i} = \frac{N_{data}}{\mathcal{A} \mathcal{F} \rho_t^{\mathcal{A}} B_r \Delta X_i}$

N _{data}	# of observed events
	(timing background subtracted)
\mathcal{A}	detector acceptance
\mathcal{F}	Photon Flux
$ ho_t^{\mathcal{A}}$	Target Area Density
Br	Branching Ratio
Xi	Kinematic Variable
ΔX_i	Kinematic Bin Width

Introduction Motivation Experiment Data Analysis Results Conclusions Differential Cross Section Uncertianties

- Statistical Uncertainties Measurement Precision
- Systematic Uncertianties Measurement Accuracy
 - Possible Target Shift
 - Acceptance Correction ($\gamma p \rightarrow p \pi^0 \omega$ Only)
 - Q-factor Fit Uncertainties
 - Confidence Level Systematic Uncertianty
 - Monte Carlo Simulation Uncertianty
 - Background Contributions from other reactions

Votivation

Experiment

ata Analysi

Results

Conclusions

Differential Cross Section Interpretation

Name	Process	Meson Angular
		Distribution
	N N	
Resonance Production	p <u>time</u> p	symmetric
	? M	
Meson Exchange	ptime → p	forward angle peaked
	N N	
Baryon Exchange	p <u>time</u> M	backward angle peaked

Motivatio

Experiment

Data Analysis

Results

Conclusions

$\gamma \rho \rightarrow \rho \omega$ Differential Cross Sections

Labeled with incoming photon energy.

Motivation

Experiment

Data Analysis

Results

Conclusions

$\gamma \rho \rightarrow \rho \omega$ Differential Cross Sections

Introduction Motivation Experiment Data Analysis Results Conclusions $\gamma p
ightarrow p \omega$ Total Cross Section

Introduction Motivation Experiment Data Analysis Results Conclusions Unpolarized $\gamma p \rightarrow p \omega$ Spin Density Matrix Elements

Information in the spin of the ω meson can be extracted by analyzing the decay angular distribution.

$$ho_{ij} \sim M_i M_j^*$$

i and *j* is the spin polarization of the ω (-1,0,1)

Unpolarized Spin-density Matrix Element Fitting

$$W^{0}(\theta_{d}, \phi_{d}, \rho^{0}) = \frac{3}{8\pi} (\sin^{2}\theta_{d}\rho_{00}^{0} + (1 + \cos^{2}\theta_{d})\rho_{11}^{0} + \sin^{2}\theta_{d}\cos 2\phi_{d}\rho_{1-1}^{0} + \sqrt{2}\sin 2\theta_{d}\cos \phi_{d}Re\rho_{10}^{0})$$

 θ_d and ϕ_d angles of the γ in $\omega \to \pi^0 \gamma$ in ω rest frame. Binning used : 6 cos θ_d bins and 8 ϕ_d bins

Spin Density Matrix Element Reference Systems

Data Analysis

Results

- Helicity system *z*-axis $|| \vec{q}_{\omega}^{c.m.}$
- Adair system *z*-axis || $\vec{k}_{c.m.}$
- Gottfreid-Jackson system z-axis $|| \vec{k}_{\omega frame} |$.

Experiment

y-axis is defined to be $\hat{k} \times \hat{q}$ Extracted SDMEs in all three systems.

Introduction Motivation Experiment Data Analysis Results Conclusions Unpolarized $\gamma p ightarrow p \omega$ Spin Density Matrix Elements

Labeled with SDME and $\cos \theta_{c.m.}^{\omega}$

- Same Data used in differential cross sections
- Q-factors used to fill angular distributions
- Angular distributions were acceptance corrected
- Monte Carlo simulation uncertianty, Q-factor fit errors, and statistical errors propagated
- Extracted using a χ^2 minimization fit

Helicity System Gottfried-Jackson system Adair system

Introduction Motivation Experiment Data Analysis Results Conclusion Unpolarized $\gamma p ightarrow p \omega$ Spin Density Matrix Elements

Labeled with SDME and $\cos \theta_{c.m.}^{\omega}$

First $\gamma p \rightarrow p\omega$ Unpolarized SDMEs measured over the full kinematic range

Helicity System Gottfried-Jackson system Adair system

transversely polarized beam photons

Polarized Spin-density Matrix Element Fitting

$$W^{L}(\cos\theta_{d},\phi_{d},\Phi_{pol},\rho) = \frac{3}{8\pi}(\sin^{2}\theta_{d}\rho_{00}^{0} + (1+\cos^{2}\theta_{d})\rho_{11}^{0}) \\ -\frac{3}{8\pi}P_{\gamma}\cos 2\Phi_{pol}(\sin^{2}\theta_{d}\rho_{00}^{1}) \\ + (1+\cos^{2}\theta_{d})\rho_{11}^{1})$$

 θ_d and ϕ_d angles of the γ in $\omega \to \pi^0 \gamma$ in ω rest frame. Φ_{pol} is the angle between the production plane ($\omega + p_{final}$) and the polarization direction.

- March 2003 (1350 MeV Coherent Edge) (•)
- May 2003(1600 MeV Coherent Edge) (

Nearly the same reconstruction and reaction selection. No TAPS trigger cut due to a slightly different trigger.

$\begin{array}{cccc} \hline \textbf{Motivation} & \hline \textbf{Motivation} & \hline \textbf{Experiment} & \hline \textbf{Data Analysis} & \hline \textbf{Results} & \hline \textbf{C} \\ \hline \textbf{Polarized} & \gamma \textbf{\textit{p}} \rightarrow \textbf{\textit{p}} \omega & \textbf{Spin Density Matrix Elements} \end{array}$

March 2003 data

Integrated over ϕ_d before fitting.

First Measurement

Helicity system Labeled with SDME and $\cos \theta_{c.m.}^{\omega}$

May 2003 data

unpolarized data

Andrew Wilson Photoproduction of ω Mesons and $\pi^0 \omega$ Meson Pairs 3

37

- 5 Independent Kinematic Variables
- 3 different Kinematic Variable binning
- 12,500 Differential Cross Section data points per binning

Binning Name	а	<i>b</i> 1	<i>b</i> ₂
ω_{cms}	ω	π^{0}	р
π_{cms}^{0}	π^0	р	ω
p _{cms}	р	ω	π^{0}

Introduction Motivation Experiment Data Analysis Results Co $\gamma \rho
ightarrow \rho \pi^0 \omega \omega_{cms}$ Differential Cross Section

Results

$\gamma p \rightarrow p \pi^0 \omega \omega_{cms}$ Differential Cross Section

Introduction Motivation Experiment Data Analysis Results $\gamma p \rightarrow p \pi^0 \omega \omega_{cms}$ Differential Cross Section

Motivatio

Experiment

Data Analysis

Results

Conclusions

$\gamma \rho ightarrow ho \pi^0 \omega \omega_{cms}$ Differential Cross Section

Introduction Motivation Experiment Data Analysis Results $\gamma p \rightarrow p \pi^0 \omega \omega_{cms}$ Differential Cross Section

Motivati

Experiment

Data Analysis

Results

Conclusions

$\gamma p ightarrow p \pi^0 \omega \; \pi^0_{cms}$ Differential Cross Section

Experiment Data Analysis Results

$\gamma \rho \rightarrow \rho \pi^0 \omega \pi^0_{cms}$ Differential Cross Section

Motivatio

Experiment

Data Analysis

Results

Conclusions

$\gamma p ightarrow p \pi^0 \omega \; \pi^0_{cms}$ Differential Cross Section

Motivatio

xperiment

ata Analysis

Results

Conclusions

$\gamma \rho ightarrow ho \pi^0_{cms}$ Differential Cross Section

Motivatio

xperiment

ata Analysis

Results

Conclusions

$\gamma oldsymbol{p} ightarrow oldsymbol{p} \pi^0 \omega \; \pi^0_{cms}$ Differential Cross Section

Motivatio

Experiment

)ata Analysis

Results

Conclusions

$\gamma oldsymbol{ ho} o oldsymbol{ ho} \pi^0 \omega \ oldsymbol{ ho}_{cms}$ Differential Cross Section

Motivatior

Experiment

ata Analysis

Results

Conclusions

$\gamma \rho ightarrow ho \pi^0 \omega \ ho_{cms}$ Differential Cross Section

Motivatio

Experiment

)ata Analysis

Results

Conclusions

$\gamma oldsymbol{ ho} o oldsymbol{ ho} \pi^0 \omega \ oldsymbol{ ho}_{cms}$ Differential Cross Section

Motivatio

Experiment

ata Analysis

Results

Conclusions

$\gamma \rho \rightarrow \rho \pi^0 \omega \ \rho_{cms}$ Differential Cross Section

Motivatio

Experiment

ata Analysis

Results

Conclusions

$\gamma oldsymbol{ ho} o oldsymbol{ ho} \pi^0 \omega \ oldsymbol{ ho}_{cms}$ Differential Cross Section

Introduction Motivation Experiment Data Analysis Results Conclusions $\gamma p
ightarrow p \pi^0 \omega$ Total Cross Section

Introduction Motivation Experiment Data Analysis Results $\gamma p
ightarrow p \pi^0 \omega$ Total Cross Section

Introduction Motivation Experiment Data Analysis Results Conclusions
Summary and Future Work

First Time Measurements

- $\gamma p \rightarrow p\omega$ and $\gamma p \rightarrow p\pi^0 \omega$ differential cross sections, $\gamma p \rightarrow p\omega$ Spin-density Matrix Elements
 - have been measured over the full reaction kinematics
 - characteristics usable for isolating "missing" baryon resonances.
- $\gamma p \rightarrow p \omega$ polarized spin-density matrix elements
- *b*₁(1235) meson photoproduction measurements at these energies

Future Work

- $\gamma p \rightarrow p \omega$ and $\gamma p \rightarrow p \pi^0 \omega$ interpretation analysis
- $\gamma p \rightarrow p \pi^0 \omega$ spin-density matrix elements

Introduction Motivation Experiment Data Analysis Results Conclusions
Acknowledgements

Thank You!

- Committee Members
- Volker Crede
- My Wife
- My Parents