Update on the Polarization Observables Extraction in Double-Pion Production from g9a
Outline

• Introduction

• Analysis
 - Identification of the Double-Pion Reaction
 - Bound Nucleon Background
 - Asymmetry from Target Polarization Flip
 - Polarization Observables: $P_z P_z^s P_z^c$
 - Further Study on Observables
 - Comparison with Circularly Polarized data

• Conclusion and Future
Intro - Reaction

Research interest -- second resonance region

Three main independent reaction channels

Three main channels

\[\gamma p \rightarrow \begin{pmatrix} p \rho \\ \Delta^{++} \pi^- \\ \Delta^0 \pi^+ \end{pmatrix} \rightarrow p \pi^+ \pi^- \]
To extract observables, free protons in butanol are longitudinally polarized (positive and negative).

- Carbon target is necessary for extraction of unpolarized background.
- Photon beam is linearly polarized.
Intro - Reaction Plane

- **Scattering plane** - by incident photon and recoiling proton
- **π+π- plane** - by two π mesons

CMS Frame (Side view):

- ϕ - Azimuthal angle (between scattering and $\pi+\pi-$ plane)
- θ - Polar angle (between $\pi+$ vector and z' axis)
- θ_{CM} - CM Polar angle (between E_γ and recoiling proton)
Reaction Reconstruction

Particle ID:

- Time-difference cut (assumed and calculated time) for proton and pion meson
- Photon selection (1ns time difference cut)

Channel ID:

- Reconstruct the reaction channel by detected particles and incident photon
- 4 topologies with various missing mass distributions
- Cut on missing mass to make channel ID

1: None missing
2: Proton missing
3: π⁺ missing
4: π⁻ missing

All Units: (GeV²/c⁴)

Y. Mao Univ. of South Carolina Hadron Spectroscopy PWG, Jun 15, 2012
\[\gamma p \rightarrow p\pi^- (\pi^+) \]
(Channel Interested)

\[\gamma n \rightarrow p\pi^- \]
(Background)

- Neutron reaction in butanol target
- Larger mass of neutron caused the MM peak shifted to left
- Background peak is removed by cut on the 2D histogram
- 97% of the events from proton passed the cut
- The other 3 topologies have \(\pi^+ \) detected. Thus only in the topology 3, events off the neutron can enter the missing mass distribution.
Bound Nucleon Background

- **Scale Factor:**
 The ratio of bound-proton yields between butanol and carbon targets.

- **Procedure:**
 Fit butanol missing mass distribution with scaled carbon and gaussian peak, where scale factor is the fit parameter.

- **Free Proton:**
 Subtract the scaled carbon distribution from that of butanol.

- **Problem:**
 Low statistics of carbon target influenced the fit quality in some kinematic bins.

Y. Mao Univ. of South Carolina

Hadron Spectroscopy PWG, Jun 15, 2012
Asymmetry from Target Polarization Flip

Yields: Y^+ and Y^- from positively and negatively polarized target cannot be applied for asymmetry calculation directly, **NORMALIZATION** is necessary!

Definition of asymmetry:

$$Asy = \frac{I^+ - I^-}{I^+ + I^-}$$

Normalized yield with target positively polarized

$$I^+ = I_0 \left\{ (1 + \Lambda^+ \cdot P_z) + \delta^+ [\sin 2\beta(I_s + \Lambda^+ \cdot P_z^s) + \cos 2\beta(I_c + \Lambda^+ \cdot P_z^c)] \right\}$$

Normalized yield with target negatively polarized

$$I^- = I_0 \left\{ (1 - \Lambda^- \cdot P_z) + \delta^- [\sin 2\beta(I_s - \Lambda^- \cdot P_z^s) + \cos 2\beta(I_c - \Lambda^- \cdot P_z^c)] \right\}$$

Flux can be represented by event yields from unpolarized targets

- Carbon asymmetry
- From different runs
- After normalization
- Constant fit

Check the Normalization quality

Y. Mao Univ. of South Carolina

Hadron Spectroscopy PWG, Jun 15, 2012
Asymmetry from Target Polarization Flip

After the normalization, make the subtraction:

\[\Delta I = I_0 (\Lambda^+ + \Lambda^-) P_z \]
\[+ I_0 (\delta^+ \Lambda^+ + \delta^- \Lambda^-) (\sin 2\beta \cdot P^s_z + \cos 2\beta \cdot P^c_z) \]
\[+ I_0 (\delta^+ - \delta^-) (\sin 2\beta \cdot I^s + \cos 2\beta \cdot I^c) \]

- The Blue term contains two other observables
- Blue term could appear if beam polarizations are unequal for target positively and negatively polarized
- Right plot: check the equality
- Equality ranges from 0.986 – 1.014

How can we extract the observables?

\[\frac{\Delta I}{2I_0} = \Lambda_z (P_z) + \delta (\sin 2\beta \cdot P^s_z + \cos 2\beta \cdot P^c_z) \]

Asymmetry

Polarization Observables
Asymmetry calculated:
\[\frac{\Delta I}{2I_0} = \frac{N^+_B - N^-_B}{N^+_B + N^-_B - S.F \cdot N_C} \]

- \(N^+_B \) -- Yields from positively polarized, butanol target
- \(N^-_B \) -- Yields from negatively polarized, butanol target
- \(N_C \) -- Yields from carbon target
- \(S.F \) -- Scale Factor

1.56 < \(W \) < 1.62 (GeV)

- Bin: \(W(17) \) and \(\phi(8) \)
- Entries: 1000 - 35000 for each kinematic bin
- \(\chi^2 \): Close to 1

Y. Mao Univ. of South Carolina
Hadron Spectroscopy PWG, Jun 15, 2012
Fit the observables by Fourier series
Amplitudes of observables decrease as W increases

\[P_z = a \cdot \sin(\phi) + b \cdot \sin(2\phi) + c \cdot \sin(3\phi) \]
Observable: P_z^s

$P_z^s = a \cdot \cos(\phi) + b \cdot \cos(2\phi) + c \cdot \cos(3\phi)$

Y. Mao Univ. of South Carolina

13

Hadron Spectroscopy PWG, Jun 15, 2012
Observable: P_z^c

$P_z^c = a \cdot \sin(\phi) + b \cdot \sin(2\phi) + c \cdot \sin(3\phi)$
Observables - Further Study

Asymmetry of a certain kinematic bin:
W: 1.69 GeV
\(\phi \): 247 deg.

Bin on the 3rd variable -- Invariant mass of p\(\pi^+ \)
(1st - W, 2nd - \(\phi \) angle)

- In one W bin
- In one azimuthal angle bin
- Bin the Invariant Mass (6 bins, 1.1-2.4 GeV)
- Clear distinct asymmetries and observables for third level kinematic bins

Asymmetries of sub-kinematic bins with various Invariant mass of p\(\pi^+ \)

\begin{align*}
1.2 \text{ GeV}^2 & \quad 1.5 \text{ GeV}^2 & \quad 1.7 \text{ GeV}^2 & \quad 1.9 \text{ GeV}^2 \\
2.1 \text{ GeV}^2 & \quad 2.3 \text{ GeV}^2 & \quad & \\
\end{align*}

\(\text{Chi2/ndf: 1.36} \)
\(\text{Entries: 17,000} \)
Observables - Further Study

Observable-Sensibility on IM_{p\pi^+} peak cut
- In one W bin (1.74 GeV)
- In one Invariant Mass bin of p\pi^+ (1.4-1.6 GeV)
- Bin the Azimuthal angle

What we can find?
- Much larger amplitudes for all the 3 polarization observables
Comparison of the Pz

Yuqing (South Carolina): Linearly-Polarized beam of g9a

Sungkyun (Florida State): Circularly-Polarized beam of g9a

Y. Mao Univ. of South Carolina

Hadron Spectroscopy PWG, Jun 15, 2012
Conclusion & Future

Conclusion:

- Asymmetries are calculated by using normalized data.
- Observables have symmetric behavior for azimuthal angle bin.
- In addition to W and Phi bins, further kinematic bins showed more different asymmetries and observables.
- Yuqing vs. Sungkyun -- Qualitatively comparable observable Pz.

Future:

- Systematic uncertainty analysis.