CLAS collaboration, Summer 2012 Hadron Spectroscopy PWG

Update on the Polarization Observables Extraction in Double-Pion Production from g9a

Yuqing Mao Jun 15, 2012 University of South Carolina

Hadron Spectroscopy PWG, Jun 15, 2012

12年6月14日星期四

Y. Mao

Univ. of South Carolina

1

Outline

Introduction

- Analysis
 - Identification of the Double-Pion Reaction
 - Bound Nucleon Background
 - Asymmetry from Target Polarization Flip
 - Polarization Observables: $P_z P_z^s P_z^c$
 - Further Study on Observables
 - Comparison with Circularly Polarized data

Conclusion and Future

Intro - Reaction

З

Y. Mao

Intro - Experiment

4

Target

Photon Beam

Univ. of South Carolina

• To extract observables, free protons in butanol are longitudinally polarized (positive and negative)

- Carbon target is necessary for extraction of unpolarized background
- Photon beam is linearly polarized

Y. Mao

Intro - Reaction Plane

5

• θ_{CM} - CM Polar angle (between E_Y and recoiling proton)

Reaction Reconstruction

Particle ID:

- Time-difference cut (assumed and calculated time) for proton and pion meson
- Photon selection (1ns time difference cut)

 $\gamma p \to p \pi^- X$

0.15

0.05

Channel ID:

• Reconstruct the reaction channel by detected particles and incident photon

• 4 topologies with various missing mass distributions

	Cut	on	missing	mass	to	make
ch	anne	el I	D			

	$p \rightarrow p \pi \Lambda$	1:	None missing	2:	Proton missing
γ ^{φήθ} 0	0.05 0.1 0.15 0.2 GeV ²	3:	π+ missing	4:	π- missing
	All Units:(GeV ² /	/c ⁴)			

Y. Mao

Univ. of South Carolina

0.2 GeV

6

Hadron Spectroscopy PWG, Jun 15, 2012

12年6月14日星期四

Reaction Reconstruction

Bound Nucleon Background

8

•Scale Factor:

The ratio of bound-proton yields between butanol and carbon targets

•Procedure:

Fit butanol missing mass distribution with scaled carbon and gaussian peak, where scale factor is the fit parameter

•Free Proton:

Subtract the scaled carbon distribution from that of butanol

•Problem:

Low statistics of carbon target influenced the fit quality in some kinematic bins

Y. Mao Univ. of South Carolina

Hadron Spectroscopy PWG, Jun 15, 2012

Asymmetry from Target Polarization Flip

Yields: Y+ and Y- from positively and negatively polarized target cannot be applied for asymmetry calculation directly, NORMALIZATION is necessary!

Definition of asymmetry:

 $Asy = \frac{I^{+} - I^{-}}{I^{+} + I^{-}}$

Normalized yield with target positively polarized $I^{+} = I_{0} \left\{ (1 + \Lambda^{+} \cdot P_{z}) + \delta^{+} [\sin 2\beta (I_{s} + \Lambda^{+} \cdot P_{z}^{s}) + \cos 2\beta (I_{c} + \Lambda^{+} \cdot P_{z}^{c})] \right\}$ Normalized yield with target negatively polarized $I^{-} = I_{0} \left\{ (1 - \Lambda^{-} \cdot P_{z}) + \delta^{-} [\sin 2\beta (I_{s} - \Lambda^{-} \cdot P_{z}^{s}) + \cos 2\beta (I_{c} - \Lambda^{-} \cdot P_{z}^{c})] \right\}$

9

Asymmetry from Target Polarization Flip

After the normalization, make the subtraction:

•The Blue term contains two other observables

•Blue term could appear if beam polarizations are unequal for target positively and negatively polarized

•Right plot: check the equality

•Equality ranges from 0.986 - 1.014

 $\Delta I = I_0 (\Lambda^+ + \Lambda^-) P_z$ + $I_0 (\delta^+ \Lambda^+ + \delta^- \Lambda^-) (\sin 2\beta \cdot P_z^s + \cos 2\beta \cdot P_z^c)$ + $I_0 (\delta^+ - \delta^-) (\sin 2\beta \cdot I^s + \cos 2\beta \cdot I^c)$

How can we extract the observables?

$$\Delta I = \Lambda_z (P_z) + \delta(\sin 2\beta \cdot (P_z)^s) + \cos 2\beta \cdot (P_z)^c))$$
where: $\Lambda_z = \frac{|\Lambda^+| + |\Lambda^-|}{2}$
Y. Mao Univ. of South Carolina 10 Hadron Spectroscopy PWG, Jun 15, 2012

Asymmetry from Target Polarization Flip

12年6月14日星期四

Observable:

Fit the observables by Fourier series
Amplitudes of observables decrease
as W increases

 $P_z = a \cdot \sin(\phi) + b \cdot \sin(2\phi) + c \cdot \sin(3\phi)$

Observable:

 $P_z^s = a \cdot \cos(\phi) + b \cdot \cos(2\phi) + c \cdot \cos(3\phi)$

Y. Mao

Observable:

z

 $P_z^c = a \cdot \sin(\phi) + b \cdot \sin(2\phi) + c \cdot \sin(3\phi)$

Observables - Further Study

Observables - Further Study

16

W: 1.74 (GeV) 0.3 1111111111 0.2 Integrated over IMpn+ 0.1 Observables -0.1 -0.2 -0.3 50 100 150 200 250 300 350 Φ (Deg.)

W: 1.74 (GeV) 0.3 T After Invariant 0.2 mass peak cut 0.1 Observables -0.1 -0.2 50 100 150 200 250 300 350

Hadron Spectroscopy PWG, Jun 15, 2012

Observable-Sensibility on $IM_{P^{\Pi+}}$ peak cut

•In one W bin (1.74 GeV) •In one Invariant Mass bin of $p\pi$ + (1.4-1.6 GeV) •Bin the Azimuthal angle

What we can find?

•Much larger amplitudes for all the 3 polarization observables

Univ. of South Carolina

12年6月14日星期四

Y. Mao

Comparison of the Pz

17

Yuqing (South Carolina): Linearly-Polarized beam of g9a Sungkyun (Florida State): Circularly-Polarized beam of g9a

Univ. of South Carolina

Different runs
Similar distribution
Similar amplitudes

Y. Mao

Conclusion & Future

Conclusion: •Asymmetries are calculated by using normalized data

 Observables have symmetric behavior for azimuthal angle bin

 In addition to W and Phi bins, further kinematic bins showed more different asymmetries and observables

•Yuqing vs. Sungkyun -- Qualitatively comparable observable Pz

Future: •Systematic uncertainty analysis